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Abstract
Large Language Models (LLMs) have exhib-001
ited remarkable proficiency in comprehend-002
ing and generating natural language. On the003
other hand, personalized LLM response gen-004
eration holds the potential to offer substan-005
tial benefits for individuals. However, exist-006
ing work struggles with efficiently incorpo-007
rating user information for LLM personaliza-008
tion. In this study, we draw inspirations from009
real-world bionic memory mechanism to pro-010
pose a novel parameterized Memory-injected011
approach using parameter-efficient fine-tuning012
(PEFT), combined with a Bayesian Optimi-013
sation searching strategy to achieve LLM014
Personalization(MiLP). Our MiLP takes ad-015
vantage from the alignment between real-world016
memory mechanism and the LLM’s architec-017
ture. Extensive experiments have shown the018
superiority and effectiveness of MiLP. To en-019
courage further research into this area, we are020
releasing our implementations1.021

1 Introduction022

The undeniable capability of large language models023

in comprehending and producing natural language024

has been underscored by various studies (Brown025

et al., 2020; Chowdhery et al., 2022; Touvron et al.,026

2023). Simultaneously, there exists untapped po-027

tential to customize these models for delivering028

personalized responses to users, enabling them to029

receive tailored and fitting replies according to their030

individual requirements (Bender and Koller, 2020).031

For instance, in an LLM-based medical dialogue032

scenario, an assistant capable of recognizing the pa-033

tient’s medical history can generate more tailored034

responses, rather than offering generic and poten-035

tially inappropriate suggestions. Individuals in re-036

gions with limited access to the medical resources037

can benefit significantly from such applications,038

highlighting the imperative needs for personalized039

LLM response generation (Chen et al., 2023).040

1A copy is attached with this submission

Figure 1: Three types of methods for incorporating user
historical content to achieve personalized LLM.

Incorporating user historical information prop- 041

erly to LLM can be a key towards LLM person- 042

alization. Existing works can be concluded into 043

three lines as illustrated in Fig. 1. Text-Prompt 044

based methods draw inspiration from in-context 045

learning to organize the user historical content 046

as prompts, providing them to LLM so that per- 047

sonal information can be considered (Petrov and 048

Macdonald, 2023; Kang et al., 2023; Liu et al., 049

2023). However, this paradigm suffers from the 050

long-context window limitation of LLM (Liu et al., 051

2024). Memory-based approaches provide a solu- 052

tion by leveraging a memory to store user historical 053

content. When a new user query comes, a retriever 054

will first retrieve relevant user information from 055

the memory to prompt LLM produce personalized 056

responses (Dalvi et al., 2022; Madaan et al., 2022; 057

Lewis et al., 2020; Zhang et al., 2023). Unfortu- 058

nately, they are limited in capturing fine-grained 059

information due to the nature of similarity com- 060

parison retrieval process (Zhang et al., 2023). Ad- 061

ditionally, user historical content can be complex 062

and noisy, posing difficulties for LLMs to focus 063

on the most relevant information without a proper 064

learnable process. To address this, recent studies 065
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have proposed parameterizing and projecting user066

historical content into a learnable representation067

space (Ning et al., 2024; Deng et al., 2022; Zhong068

et al., 2022). Instead of using text to prompt LLMs,069

the learned user representations can be neglected070

in the LLM’s decoding process via cross-attention071

to enable personalized response generation. In this072

study, we take a further step by investigating a073

memorization process that mimics real-world mem-074

ory mechanisms to incorporate user information,075

aiming to achieve personalization while mitigating076

associated challenges.077

Previous studies in neuroscience have indicated078

that memory is stored in different parts of the brain079

and is activated accordingly when needed (Leven-080

son and Sweatt, 2005; Nadel et al., 2012). Concur-081

rently, efforts have revealed that the Feed Forward082

Layers (FFL) of Transformer architecture serve as083

a memory bank, storing both shallow patterns (e.g.,084

sentences ending with a certain word) and seman-085

tic patterns (e.g., sentences about a certain topic)086

(Tay et al., 2022; Geva et al., 2021; Chen et al.,087

2024). Subsequent attempts have been made to in-088

ject external knowledge into LLMs via parameter-089

efficient fine-tuning (PEFT) (Houlsby et al., 2019;090

Pfeiffer et al., 2020b; Li and Liang, 2021; Hu et al.,091

2021), maintaining a modular and adaptable struc-092

ture without compromising the LLM’s original ca-093

pabilities compared to fully fine-tuning (Ye et al.,094

2023; Wang et al., 2020; Diao et al., 2023; Yao095

et al., 2022; Wang et al., 2020). Drawing valuable096

inspiration from the alignment between real-world097

bionic memory mechanisms and LLM’s memory098

mechanisms, we propose to first parameterize user099

historical content and store it as memory in the100

LLM via adapters, followed by fine-tuning the101

LLM for personalized response generation.102

However, different memories, with different103

characteristics highlighting the distinct sensitiv-104

ity to the allocated parameter budget and the lo-105

cation of the injected layers(He et al., 2021; Zhang106

et al., 2023). Unfortunately, most PEFT applica-107

tions are limited to a single PEFT architecture with108

fixed decisions on its components (e.g. hidden109

size, insertion layers) which can not store and ac-110

tivate different memories for personalization. To111

address this, we propose to leverage multiple PEFT112

modules (e.g., LoRAs) for different memory stor-113

age and utilize a high-dimensional multi-objective114

Bayesian optimization (BO) approach to determine115

the optimal configurations for memory storage. In116

tandem, we draw inspirations from the alignment 117

between real-world bionic memory mechanism 118

and the LLM’s memory mechanism to propose 119

a novel parameterized Memory-injected method 120

that capitalizes on PEFT, complemented by a novel 121

Bayesian Optimization-based searching strategy 122

to handle multi-PEFT settings for achieving LLM 123

Personalization (MiLP). Our contributions can be 124

outlined as follows: 125

• In contrast to previous studies, we leverage 126

the alignment between real-world memory mecha- 127

nisms and the LLM’s architecture to inject parame- 128

terized user memory directly into the LLM which 129

offers a fresh perspective for the community on the 130

topic of LLM personalization. 131

• To achieve parameterized memory injection, 132

we propose the MiLP framework, which integrates 133

a comprehensive searching space and a Bayesian 134

optimization-based approach to handle multi-PEFT 135

settings for LLM personalization. 136

• Our empirical results demonstrate significant 137

improvements over three datasets compared to 138

three baselines which validates the effectiveness 139

and superiority of our MiLP approach. 140

2 Methodology 141

Overview Our proposed MiLP takes user’s content 142

including user profile, historical content (e.g., di- 143

alogues, posts) U = {c0, ..., cn} and a query x as 144

input and the goal is to inject and search for proper 145

memory to output personalized response y. The 146

parameterized user memory injection is achieved 147

by applying multiple Low-Rank Adaption (LoRA) 148

modules into the FFL of the base LLM Φ under an 149

optimal configuration and a modified Bayesian Op- 150

timisation approach is utilized to handle the multi- 151

LoRA setting as illustrated in Fig 2. The LLM’s 152

performance p (e.g., loss, metrics) will be targeted 153

by the optimal search and this process will iterate 154

until it converges. Finally, an instruction-tuning 155

will be performed for aligning the generated re- 156

sponse with human intents. 157

2.1 LoRA Module 158

Previous work have provided insights in the success 159

of injecting knowledge into the LLM via PEFT tun- 160

ing Yao et al. (2022); Wang et al. (2020). Inspired 161

by the function analysis of feed-forward layers in 162

Transformer(Geva et al., 2021), our MiLP modified 163

the usage of Low-Rank Adaption (LoRA) Hu et al. 164

(2021) to the feed-forward layers of the base LLM. 165
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Figure 2: Illustration of the proposed MiLP: The search space encompasses the number of LoRAs, inserted layers
and the size of injected LoRA. Given a suggested configuration (upper right) (e.g., two LoRAs with fixed size r
are injected into the 0-th and (n-1)-th layer, respectively), the base LLM trains on this configuration and take the
performance as target. Then the BO search will make a new suggestion and iterate the process until it converges.

For a feed-forward layer h = Wlx, the forward166

process is modified to be:167

h = Wlx+BAx (1)168

where Wl ∈ Rd×k denotes the weights of the l−th169

feed-forward layer, B ∈ Rd×r, A ∈ Rr×k are170

the low-rank decomposed matrices and the rank171

r ≪ min(d, k).172

2.2 Parameterized Memory Injection173

Determining how to properly store and activate per-174

tinent information presents a challenge. Inspired175

by the success of neural architecture search, we176

start by defining a search space. Subsequently, we177

employ a Bayesian optimization (BO) approach to178

identify the optimal configuration for generating179

personalized responses. In the following sections,180

we provide a detailed explanation of our search181

space design, along with the rationale behind it,182

and describe the process of conducting BO.183

2.2.1 Search Space184

Inserted Layer Prior work has shown that185

different feed-forward layers in the LLM store186

distinct information (Geva et al., 2021) where187

the shallow layers store shallow patterns (e.g.,188

sentences end with a certain word), deep layers189

store semantic patterns (e.g., sentences about a190

certain topic). Consequently, applying LoRA to 191

all layers can lead to suboptimal results. Thus, we 192

introduce a binary parameter α at each layer li 193

that controls whether the layer is active (i.e., to be 194

inserted) or inactive. 195

Number of LoRAs It is intuitive that the volume 196

of distinct user content can vary, resulting in a 197

range of learnable spaces for injecting such content 198

(Wang et al., 2020). Utilizing a fixed number of 199

LoRAs may therefore result in suboptimal learning 200

spaces for accommodating different user content. 201

To address this, we incorporate the number of 202

LoRAs, denoted as n, into our search space. 203

Low-Rank Size Prior studies have demonstrated 204

that the performance of LoRA is greatly influenced 205

by the number of adjustable parameters (Chen 206

et al., 2022). Therefore, it is crucial to dynamically 207

adjust its capacity to align with the demands of the 208

specific task to achieve optimal performance. To 209

address this, we include the rank r as a parameter 210

in our search space, which signifies LoRA’s 211

capability to store user-specific content in memory. 212

213

2.2.2 Bayesian Optimal Search 214

While much existing work concentrates on identi- 215

fying a single PEFT module with the best perfor- 216

mance, real-world applications often involve opti- 217
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mizing multiple PEFT models, a scenario that has218

been rarely explored (Zhou et al., 2023). To address219

this gap, we opt to employ a modified Bayesian220

Optimization (BO) approach to determine how dif-221

ferent parts of injected memory should be utilized222

in response to a user’s query.223

Bayesian Optimization leverages two key com-224

ponents:1) A probabilistic surrogate model to ap-225

proximate the objective function using previous ob-226

servations.2) An acquisition function that suggests227

which point in the search space should be evalu-228

ated next. The fundamental principle of Bayesian229

Optimization (BO) is to iteratively select points for230

evaluation, striking a balance between exploration231

(searching different areas) and exploitation (focus-232

ing on areas likely to yield the best results). The233

surrogate model estimates the objective function234

and its uncertainty, while the acquisition function235

identifies the most promising points to evaluate.236

By continuously updating the surrogate model and237

selecting points expected to improve the objective,238

BO efficiently explores the space for the optimal239

solution while minimizing the number of evalua-240

tions of the costly objective function.241

Surrogate Function Applying BO to our de-242

fined search space is non-trivial. Thus, we opt243

for the usage of Sparse AxisAligned Subspace244

(SAAS-GP) (Eriksson and Jankowiak, 2021) to245

serve as the surrogate function. SAAS-GP em-246

ploys robust, sparsity-inducing priors to address247

the challenge of modeling high-dimensional data.248

It assumes that despite the nominal high dimen-249

sionality, the effective dimensionality is signifi-250

cantly lower, thereby simplifying the modeling251

process. Given the user’s content U , a query252

x and the base LLM Φ with a suggested con-253

figuration θ, the performance p(l, rl|x,U ,Φ(θ))254

can be represented by the CrossEntropyLoss l =255

− 1
N

∑N
i=1 logP (yi|y<i,U , x), where N is the the256

length of targeted length, and ROUGE-L score rl257

between generated ŷ and targeted response y. Thus,258

we can give the surrogate function in our settings:259

p(θ) ∼ N (µ(θ), σ2(θ)) (2)260

where θ ∈ Θ is a suggested configuration from our261

defined search space Θ as elaborated in Section262

2.2.1, µ(θ) is the mean and σ2(θ) is the variance.263

For the kernel function, we use log-Normal distri-264

bution as the kernel. Then given a new configura-265

tion θ∗, the posterior distribution of p(θ∗) can be266

updated as follows: 267

p(θ∗)|{θi, f(θi)}ni=1 ∼ N (µ∗, σ
2
∗) (3) 268

where n is the number of observed points. The 269

mean and variance of the posterior distribution are 270

computed using the Gaussian process regression. 271

Acquisition Function For acquisition function, we 272

use the Negative Expected Hypervolume Improve- 273

ment (NEHVI) (Daulton et al., 2021) since it quan- 274

tifies the negative expected improvement in hyper- 275

volume when including a new point in the solution 276

set which in nature is suitable for handling multi- 277

objective optimization setting. The function in our 278

setting can be described as: 279

NEHV I(θ) = −E[H(p(θ+)∪p(θ))−H(p(θ+)]
(4) 280

where H(·) is the hypervolume function, p(θ+) is a 281

reference point representing the best-known objec- 282

tive values achieved so far and p(θ) is the predicted 283

function value at θ calculated by the surrogate func- 284

tion. 285

2.3 Personalized Response Generation 286

Upon on the learned user representation from 287

historical content, the LLM can be fine-tuned 288

to generate personalized response. We resort to 289

the usage of instruction tuning which has shown 290

great ability for leading LLM to generate desired 291

response in just a few samples(Stiennon et al., 292

2020; Min et al., 2021; Ouyang et al., 2022). In 293

this work, we fine-tune the memory injected model 294

on instruction-following examples in a supervised 295

manner to aligned the LLM’s response with human 296

intents with respect to the user historical content. 297

298

In contrast to prior approaches, we emulate the 299

real-world bionic memory mechanism using mul- 300

tiple LoRA modules and employ a novel BO opti- 301

mization strategy to manage the multi-LoRA set- 302

ting. This allows us to achieve effective parameter- 303

ized memory injection. Coupled with instruction 304

fine-tuning, this approach ultimately leads to LLM 305

personalization using user historical content, as 306

depicted in Figure 2. 307

3 Experimental Settings 308

MiLP is tailored to fine-tune the base LLM to gen- 309

erate personalized responses. To evaluate its ef- 310

fectiveness, we compare our method across three 311

public datasets that contain user historical content. 312
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AmazonQA Reddit MedDia
# User 46,923 46,818 60

# Samples 51,936 95,881 10,920
# Len(History) 30.7 72.4 182

Avg. Len(Content) 23.6 22.8 27.8
Avg. Len(Response) 50.2 9.1 23.7

Table 1: Statistics comparison of the datasets

For this evaluation, we utilize four different base313

LLMs of varying scales.314

3.1 Datasets315

AmazonQA/Products(Deng et al., 2022) is a pub-316

lic E-commerce dataset of which each data sample317

contains user’s historical posted content, including318

questions, answers and reviews as well as the cor-319

responding product’s description2.320

Reddit(Zhong et al., 2022) is a public dataset col-321

lect from social media platforms where a user can322

post question and respond to other users. Each data323

sample contains a query, a response and a sequence324

of this user’s dialogue history3.325

MedicalDialogue(Zhang et al., 2023) is a medical326

dialogue dataset derived from open-source medi-327

cal corpus of which each data sample contains a328

patient’s profile, preference and the historical dia-329

logues between the patient and the doctor4.330

The detailed comparisons can be seen in Table331

1.For our experiments, we split the dataset in a332

user-oriented manner and format each user’s histor-333

ical content into a fixed text phrase which allows334

us to perform next user content prediction task to335

learn the user’s preference.336

3.2 Baselines337

We opt to compare our MiLP with three differ-338

ent configurations for LLM Personalization: Text-339

prompt (TpLP), Memory-Augmented(Zhang et al.,340

2023) (MaLP), User-embedding (UeLP)(Ning341

et al., 2024) in terms of four LLMs as the342

base models5: DialoGPT(Zhang et al., 2020),343

RoBERTa(Liu et al., 2019), LLaMA2-7B and344

LlaMA2-13B(Touvron et al., 2023). For a fair com-345

parison, we use the configuration with the best346

performance as reported in their paper.347

2https://cseweb.ucsd.edu/ jmcauley/datasets.html
3https://github.com/bangbangbang12315/MSP/tree/release/data
4https://github.com/MatthewKKai/MaLP/tree/main/data
5Due to the resources limitation, we are unable to test

larger scale LLMs.

3.3 Evaluation Metrics 348

Automatic Evaluation We resort to the usage of 349

ROUGE-1 and ROUGE-L to measure the word 350

overlaps between the generated response and the 351

ground truth. Further, since the goal is to generate 352

personalized response, the Persona F1 (P-F1)(Ma 353

et al., 2021) is also used to measure the unigram 354

F1 between the generated response and the user’s 355

content (e.g., historical dialogues, profile etc.). 356

Human Evaluation Automatic evaluation can as- 357

sure the quality of the generated response with 358

respect to the ground-truth, however, we recognize 359

that human evaluation is needed. Thus, we follow 360

the scoring method of Wang et al. (2023) and calcu- 361

late the Win Rate, scoring the generated response 362

and compare the scores between different settings 363

and the standard generation of the Text-prompt 364

based method. 365

3.4 Implementation Details 366

For implementation details, we leverage the Trans- 367

formers (Wolf et al., 2020) and Adapters(Pfeiffer 368

et al., 2020a) as the base code and conduct exten- 369

sive experiments with the DialoGPT, RoBERTa, 370

LlaMA2-7B and LlaMA2-13B. We use the 371

AdamW optimizer(Loshchilov and Hutter, 2018; 372

Paszke et al., 2017) with a learning rate of 5e-4 and 373

also a linear warm-up scheduler initialized with 374

10% of the total training steps as warm-up steps 375

and a weight decay of 1e-4 to avoid over-fitting for 376

all the experiments. The batch size per device is 377

set to 8. Further, for all the LLMs, we follow their 378

default settings from the Transformers (Wolf et al., 379

2020) and add search space factors in the their con- 380

figurations. We modified the forward logic of in- 381

jected layers by combing the outputs from both the 382

base model layer and the injected lora module. For 383

BO algorithm implementation, we resorted to the 384

usage of BoTorch (Balandat et al., 2020) and follow 385

the suggested settings from Zhou et al. (2023) for 386

both surrogate function and acquisition function. 387

For prior distributions, we randomly sample 100 388

initialisation points for all the experiments. For all 389

datasets used, we split 70% of them as the training 390

set, 10% of them as the validation set and 20% of 391

them as the testing set. For search space, each fac- 392

tor is an integer from different ranges. The details 393

can be seen in Table 2. All the experiments are 394

conducted on a computation node configured with 395

four 80G Tesla A100 GPUs. 396

5



Factor Range
α [0, 1]
n [0 ∼ 32]
r [8, 16, 32, 64, 96]

Table 2: Search range for each factor from the space.

4 Experimental Results397

4.1 Comparative Study398

Table 3 presents the automatic evaluation compar-399

ative results between baselines and our proposed400

MiLP on three datasets. It is evident that the in-401

clusion of memory improves performance across402

all baseline models, highlighting the ability of pro-403

vided personal information to enhance personal-404

ized response generation. MaLP, which incorpo-405

rates long- and short-term memory, outperforms406

text-prompt based methods, indicating the effec-407

tiveness of differentiating stored information. How-408

ever, our proposed MiLP exhibits superior perfor-409

mance compared to them. MiLP achieves average410

relative improvements of 4.38%, 5.05% and 2.09%411

in ROUGE-L scores over all base LLMs against412

the best baselines on three datasets, respectively.413

One interesting thing we found is that as the base414

LLMs goes deeper (e.g., the number of hidden lay-415

ers is larger), the relative improvements will also in-416

crease. For example, LlaMA2-13B equipped with417

MiLP achieves a relative improvement of 0.44% in418

ROUGE-L score while DialoGPT equipped with419

MiLP only achieves a relative improvement of420

1.19% on MedicalDialogue dataset against the best421

baseline. We attribute this to the deeper layers422

learning more semantic features (Geva et al., 2021).423

Moreover, the improvements in persona-F1424

score confirm that incorporating a memory mech-425

anism allows for the integration of more user-426

specific information into the generated response,427

thereby enhancing personalization. However, we428

observed that MiLP demonstrates better coverage429

of personalized information compared to the best430

baselines, achieving average increases of 0.090,431

0.088, and 0.117 in persona-F1 score across the432

three datasets, respectively. This can be attributed433

to the fact that the approach of retrieving pre-stored434

memory to augment LLM personalization relies on435

the quality of retrieval and the LLM’s understand-436

ing of the retrieved prompts, which may lead to437

sub-optimal results. In contrast, user-embedding-438

based method anticipated in the LLM’s decoding439

process leading to a better performance. Addition- 440

ally, our MiLP injects memory directly into the in- 441

tricate LLM and achieves a better understanding of 442

the injected information through our proposed BO 443

approach, thereby producing more relevant user- 444

specific information when generating personalized 445

responses. The comprehensive results validate the 446

effectiveness and superiority of our proposed MiLP. 447

4.2 Quality Study6 448

We further conduct quality study to examine the 449

quality of generated responses as illustrated in Ta- 450

ble 4. We observed that leveraging a memory 451

achieves above 50% win rate for all base LLMs 452

over three datasets. We attribute this to the na- 453

ture that introducing user-specific information as 454

prompts can enhance LLM response generation in 455

terms of personalization. However, relying solely 456

on memory can lead to misunderstandings by the 457

LLM when generating responses, resulting in sub- 458

optimal outcomes. Our MiLP not only utilizes 459

user-specific information from the user’s histori- 460

cal content but also leverages the natural language 461

understanding and inference abilities of the LLM 462

itself through our proposed BO method. This en- 463

ables the LLM to comprehend which information 464

should be considered when generating a response, 465

leading to optimal performance compared to other 466

baselines in most scenarios. However, we also 467

notice that as the base LLM becomes more com- 468

plicated, its greater natural language understanding 469

and inferring ability are not always accompanied 470

with better performance. For example, the results 471

of LlaMA2-13B are incomparable with LLaMA2- 472

7B on MedicalDialogue dataset. We attribute this 473

disparity to the greater sparsity of user-specific in- 474

formation in the historical user content of the Med- 475

icalDialogue dataset compared to the other two 476

datasets. Consequently, the configuration space for 477

LlaMA2-13B is relatively sparser than that of other 478

models, leading to suboptimal performance. The 479

base LLM size selection with respect to the scale of 480

input information (e.g., user numbers, the memory 481

size etc.) is worthy to be explored in the future. 482

Despite these challenges, the increase in win rate 483

confirms the effectiveness of our proposed MiLP. 484

Human validation To validate the alignment of 485

our automatic scoring schema with human judg- 486

ments, we adopted the methodology of Wang et al. 487

6We further provide a Case Study which can be seen in
Appendix A.

6



Model Type AmazonQA Reddit MedDia
ROUGE-1 ROUGE-L P-F1 ROUGE-1 ROUGE-L P-F1 ROUGE-1 ROUGE-L P-F1

DialoGPT

TpLP 16.44 14.63 0.741 14.57 13.89 0.337 15.47 14.31 0.890
MaLP 17.02 16.31 0.843 16.12 13.40 0.399 17.15 15.87 0.929
UeLP 18.02 17.74 0.901 15.95 13.71 0.389 16.92 15.04 0.916
MiLP 18.61 17.83 0.925 16.38 14.51 0.409 17.67 15.94 1.072

RoBERTa

TpLP 17.35 15.41 0.704 13.91 12.81 0.391 14.81 13.99 0.947
MaLP 18.50 15.76 0.828 14.17 13.96 0.462 17.79 16.80 1.141
UeLP 18.97 16.19 0.899 15.96 14.86 0.491 16.21 14.33 0.971
MiLP 19.73 17.59 0.974 16.83 15.09 0.531 18.96 17.18 1.187

LlaMA2-7B

TpLP 19.61 17.71 1.817 14.37 13.70 0.533 17.19 16.77 1.818
MaLP 19.80 17.06 1.834 13.91 13.09 0.533 19.98 18.89 1.917
UeLP 20.91 18.79 2.083 16.61 14.74 0.613 18.27 16.73 2.081
MiLP 21.69 19.96 2.176 18.63 16.81 0.756 20.98 19.73 2.274

LlaMA2-13B

TpLP 24.91 23.36 2.107 20.87 20.19 0.678 22.77 21.32 2.009
MaLP 22.61 21.29 2.061 21.18 20.78 0.671 23.77 22.69 2.250
UeLP 25.02 23.74 2.089 22.03 21.80 0.704 22.18 20.88 2.131
MiLP 25.51 24.25 2.283 22.28 21.83 0.864 24.13 22.96 2.337

Table 3: Comparative results on different datasets using automatic metrics.

Model Type AmazonQA Reddit MedDia

DialoGPT

TpLP - - -
MaLP 57.37 51.95 69.33
UeLP 63.20 60.17 75.02
MiLP 63.97 60.76 75.78

RoBERTa

TpLP - - -
MaLP 57.91 56.39 63.83
UeLP 59.99 60.11 66.75
MiLP 61.97 60.19 67.63

LlaMA2-7B

TpLP - - -
MaLP 64.74 59.67 88.93
UeLP 65.91 61.870 89.43
MiLP 66.17 59.81 91.83

LlaMA2-13B

TpLP - - -
MaLP 71.82 72.96 87.89
UeLP 74.37 75.13 89.18
MiLP 75.48 76.61 90.67

Table 4: Quality study results on different datasets using
the Win Rate metric.

(2023) for point-wise evaluation. We hired two488

master’s students to evaluate 50 response pairs, con-489

sisting of responses generated by standard settings490

and MiLP using LLaMA2-13B, along with the cor-491

responding user content for each pair. The students492

were asked to indicate which response they deemed493

better by selecting 1 (win), 0 (tie), or -1 (lose) for494

each pair. Subsequently, we calculated the Pearson495

Correlation Coefficient (P.C) and the accuracy be-496

tween human selections and automatic selections.497

The high P.C of 0.86 and an accuracy of 91% collec-498

tively indicate the feasibility and high confidence499

of our evaluation method.500

4.3 Ablation Study on Search Space501

To explore the effectiveness of each factor within502

the search space, an ablation study is conducted. As503

can be observed in Table 5, search number n or size504

Space AmazonQA Reddit MedDia
Num 2.011 0.604 2.027
Size 2.017 0.601 2.034

Layer 1.921 0.597 2.001
Num+Size 2.016 0.604 2.073

Num+Layer 2.130 0.731 2.196
Size+Layer 2.195 0.767 2.197

Num+Size+layer 2.283 0.864 2.337

Table 5: Ablation study of using LlaMA2-13B as the
base on different search space using Persona-F1 score
as the metric.

r only achieves similar personal information cover- 505

age which we attribute to these two factors are more 506

related to the scale of stored memory. In contrast, 507

the choice of which layer to inject influences how 508

the LLM understands the injected memory. During 509

our experiments, when only searching which lay- 510

ers to inject, as the number of LoRAs and LoRA 511

size become larger, the overall performance will be 512

better.However, performance eventually dropped 513

once n and r reached a threshold. This observation 514

aligns with our understanding that there should be 515

a balance between the size of input information and 516

trainable parameters. Meanwhile, without being 517

aware of what memory should be used when gen- 518

erating responses will lead to a sub-optimal result. 519

These findings verify the necessity and effective- 520

ness of the comprehensive search space. 521

4.4 Ablation Study on MiLP Components 522

To determine whether the effectiveness of MiLP 523

is due to instruction-tuning or the parameterized 524

memory injection component, we conducted an 525

ablation study. The results are presented in Ta- 526

ble 6. As shown, neither instruction-tuning alone 527
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Components ROUGE-1 ROUGE-L P-F1
Instruction Tuning 23.67 22.07 2.107
Memory Injection 22.81 19.90 2.331

Full MiLP 24.13 22.96 2.337

Table 6: Ablation study of using LlaMA2-13B as the
base on different components on MedDia dataset.

nor parameterized memory injection alone can out-528

perform the fully configured MiLP. Additionally,529

we observed that ROUGE scores are higher with530

instruction-tuning, while the Persona-F1 score is531

higher with parameterized memory injection. We532

attribute this to instruction-tuning aligning the gen-533

erated response with human intents, while param-534

eterized memory provides more personal informa-535

tion. With all components incorporated, our MiLP536

demonstrates the highest effectiveness.537

5 Conclusion & Future Work538

In a nutshell, we propose a novel frame called539

MiLP to achieve Memory-injected LLM person-540

alization. MiLP uses LoRA as the base PEFT mod-541

ule and leverages a Bayesian Optimisation based542

approach to iterative inject and search user histori-543

cal information towards personalized response gen-544

eration from our defined search space. Addition-545

ally, we conduct extensive experiments to compare546

our method with three baselines on three datasets547

and the results verify the effectiveness and supe-548

riority of our MiLP. Further, an ablation study is549

conducted for validating the the necessity of each550

factor within the defined search space.551

In the future, exploring scalability with a larger552

number of users and larger LLMs is essential. Ad-553

ditionally, enhancing the inference ability to bet-554

ter understand user-specific needs is crucial. This555

includes integrating shared information and user556

graphs into the LLM to improve personalized re-557

sponse generation.558

6 Related Work559

Memory-Augmented LLM refers to apply a mem-560

ory that stores extra information for enhancing561

LLM’s output (Ouyang et al., 2022). Various ef-562

forts have been made to utilize memory in this563

context. Tandon et al. (2021) proposed leveraging564

a corrector that can rectify the model’s output based565

on similar mistakes stored in memory. However,566

this method focuses on repairing wrong outputs. In567

contrast, Madaan et al. (2022) argued that stored568

experiences can be used to prevent incorrect out-569

puts by incorporating feedback into the new query. 570

Another usage of memory is to include the mem- 571

ory into a learning frame such as self-learning or 572

teacher-student paradigm so that the LLM can learn 573

by iterative refinement(Madaan et al., 2023; Dalvi 574

et al., 2022). In tandem, the key for better usage of 575

memory is to equip powerful retrievers(Guu et al., 576

2020; Lewis et al., 2020; Yuan et al., 2022) and im- 577

prove the effectiveness of storing memory (Zhang 578

et al., 2023). Unlike previous studies, our MiLP 579

framework parameterizes and injects memory di- 580

rectly into the LLM through PEFT modules while 581

accounting for memory budgets. 582

Personalized LLM has garnered increasing atten- 583

tion for its ability to provide tailored experiences 584

that align with user expectations and needs (Salemi 585

et al., 2023). Previous works focused on identifying 586

user preferences using Ceteris Paribus (CP)-nets 587

(Asher et al., 2010) and modeling user historical 588

content into language models (Zhong et al., 2022; 589

Deng et al., 2022). However, these methods suffer 590

from limited natural language understanding ability 591

of language models. With the emergence of LLMs, 592

prompt-based methods have been developed to de- 593

sign detailed prompts that guide LLMs in produc- 594

ing desired outputs while being aware of user status 595

and contextual content (Wang et al., 2023; Wu et al., 596

2023; Aher et al., 2023). Another line of approach 597

attempts to leverages memory to store user rele- 598

vant information. When a new user query arises, 599

a retriever will retrieve relevant user information 600

from the memory to prompt the LLM to produce 601

personalized responses (Dalvi et al., 2022; Madaan 602

et al., 2022; Lewis et al., 2020; Zhang et al., 2023). 603

Moreover, recent studies have explored projecting 604

user information into embeddings, allowing param- 605

eterized user data to participate in the decoding 606

process of the LLM to generate personalized re- 607

sponses (Korbak et al., 2023; Salemi et al., 2023; 608

Xu et al., 2023; Ning et al., 2024). In contrast 609

to previous works, we build on the alignment be- 610

tween real-world bionic memory mechanisms and 611

LLM memory mechanisms. We leverage a novel 612

Bayesian Optimization strategy to inject parame- 613

terized user memory into the LLM, enabling it to 614

produce personalized responses. 615

In tandem, our work stands out from previous re- 616

search as we pioneer a parameterized memory in- 617

jection method. By leveraging this novel method, 618

user information can be stored and activated effec- 619

tively to produce personalized responses. 620
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Limitations621

Despite its empirical success, our approach has two622

notable limitations that warrant attention. Firstly,623

it has high experimental requirements. Our search624

space demands significant computational resources;625

for instance, a minimum of 4 A100 GPUs is needed626

to run our method. Additionally, our approach re-627

lies on the user’s historical content, and the sparsity628

of user-specific information within this content can629

influence the quality of the generated response. In630

the near future, recent efficient search strategies on631

LoRAs, such as LoNAS (Munoz et al., 2024) and632

Shears (Muñoz et al., 2024), should be considered633

for more efficient memory injection.634

Secondly, our method is designed for a single635

user. Therefore, it would be valuable to explore636

how the number of users and the scale of the LLM637

can impact the generated response. For example,638

when dealing with a larger group of users, it would639

be important to consider how to assign Personal-640

ized Fine-Tuning (PEFT) modules (e.g., type, num-641

ber) for each user and how to select the base LLM642

(e.g., one single small LLM for one user or one sin-643

gle layer within a large LLM for one user). How-644

ever, due to computational and data resource lim-645

itations, we are unable to explore this at present.646

We hope to address this in future work and see647

increasing attention given to this aspect.648
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Figure 3: Case study of generated responses by LlaMA2-13B under three different settings based on provided
background information.

A Case Study951

As can be seen in Figure 3, Tex-prompt-based mem-952

ory only perceives that this patient has skin dis-953

ease and give general reasons as well suggestions.954

MaLP, on the other hand, captures the respiratory955

infection information due to its long- and short-956

term memory coordination and gives a more tar-957

geted analysis. However, the suggestions are still958

in general. Our MiLP, with the ability of under-959

standing and inferring user-specific information,960

produces more detailed responses such as "blood961

sugar control", "circulation" etc. It analyzes the po-962

tential causes and gives suggestions from both dia-963

betes and skin infection aspects. The response of964

MiLP covers the most personal information against965

other two settings which show the high quality of966

generated responses in terms of penalization and967

further confirm the power of our proposed method.968
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