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Figure 1: Compared to OpenCLIP [11], our CLIPA-v2 models achieve higher performance with
much lower training cost.

Abstract

The recent work CLIPA [13] presents an inverse scaling law for CLIP training —3

whereby the larger the image/text encoders used, the shorter the sequence length4

of image/text tokens that can be applied in training. This finding enables us to5

train high-performance CLIP models with significantly reduced computations.6

Building upon this work, we hereby present CLIPA-v2 with two key contributions.7

Technically, we find this inverse scaling law is also applicable in the finetuning8

stage, enabling further reduction in computational needs. Empirically, we explore9

CLIPA at scale, extending the experiments up to the H/14 model with ∼13B10

image-text pairs seen during training.11

Our results are exciting — by only allocating a budget of $10,000, our CLIP model12

achieves an impressive zero-shot ImageNet accuracy of 81.1%, surpassing the prior13

best CLIP model (from OpenCLIP, 80.1%) by 1.0% and meanwhile reducing the14

computational cost by ∼39×. Moreover, with an additional investment of $4,000,15

we can further elevate the zero-shot ImageNet accuracy to 81.8%. By upscaling16

a G/14 model, we’ve achieved an impressive state-of-the-art zero-shot ImageNet17

accuracy of 83.0%, relying solely on open-source data.18
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model # image token # text token data source # seen samples total compute (×1e11) IN-1K
CLIPA-L/16 36 8 LAION-400M 2.56B + 128M 0.5 69.3

CLIPA H/14 36 8
LAION-400M 2.56B + 128M 0.8 72.8

LAION-2B 2.56B + 128M 0.8 74.1
LAION-2B 12.8B + 128M 4 77.9

Table 1: Scaling up CLIPA-v1 [13]. Specifically, we explore scaling from the aspects of data, model,
and schedule. We pretrain the H/14 model with 36 image tokens (84 × 84) and 8 text tokens; for
finetuning, we use 256 (224× 224) image tokens and 32 text tokens, following [13].

1 Introduction19

CLIP [18] has emerged as the pioneering foundation model that bridges the gap between text and20

images, ushering computer vision research into the “post-ImageNet” era [11, 14, 29, 1, 19, 21, 23, 27,21

4]. However, the demanding computational requirements of CLIP hinder its widespread exploration.22

The recent work CLIPA [13] offers a computationally efficient solution — with the introduction of an23

inverse scaling law for CLIP training, it reveals that larger models can be trained with fewer input24

tokens. Building upon this observation, CLIPA demonstrates its efficacy in scenarios with limited25

computational resources, leading to a substantial reduction in the training cost of CLIP.26

This report provides a follow-up on CLIPA. Firstly, we validate that the inverse scaling law is also27

applicable when finetuning models with input tokens at full resolution. This further reduces the28

training cost of CLIPA. Secondly, we investigate the performance of CLIPA at scale across various29

aspects, including model size (up to H/14), data (up to DataComp-1B [7] and LAION-2B [23]30

datasets), and training schedule (up to ∼13B samples seen).31

With these two contributions, we can train CLIP models with strong zero-shot performance on32

ImageNet [5], meanwhile significantly reducing training costs. For instance, we can train a H/1433

model with 81.1% accuracy within a $10,000 budget. We stress that, compared to the best publicly34

available CLIP model from OpenCLIP [11], ours is both better (+1.0%) and faster (by ∼39×).35

Moreover, we can further boost this accuracy to 81.8%, with an additional $4,000 investment. These36

results are exciting as no prior work has thus far reached a similar performance within this small37

budget limitation. By open-sourcing our training code and models, we hope to contribute to the38

broader advancement and adoption of advanced CLIP models.39

masking ratio random block grid
25% 78.2 78.0 77.9
50% 77.7 77.6 77.6
75% 76.2 74.3 76.2

Table 2: Comparison of dif-
ferent masking strategy. The
results are obtained on on the
LAION-2B dataset with H/14
model.

case masking ratio resolution # seen samples training FLOPs IN-1K
CLIPA-v1 0% 2242 128M 177.0G 77.9

(1) 30% 2242 128M 135.9G 78.0
(2) 30% 2242 512M 135.9G 78.6
(3) 30% 2242 640M 135.9G 78.5
(4) 40% 3362 640M 237.8G 78.9
(5) 30%+40% 2242 + 3362 512M+128M 156.3G 79.1

Table 3: Ablation of CLIPA-v2. In case (5), we use 224 × 224
input with a masking ratio of 30% for the first 512M samples, and
336 × 336 input with a masking ratio of 40% for the rest 128M
samples.

2 Background40

CLIP has been a prominent foundation model due to its exceptional zero-shot capability and remark-41

able versatility [18, 12]. The tremendous success of CLIP can be attributed to the extensive scale of42

both the data [18, 22, 12, 3, 29, 30] and the model [28, 16, 24] it is built upon. Nevertheless, it also43

poses a significant cost barrier to researchers who wish to train a strong CLIP model. To reduce the44

computational burden, the recent work by Li et al. [13] presents an inverse scaling law, which reveals45

that larger models can effectively utilize fewer input tokens for training without severe performance46

drop, therefore enabling highly efficient CLIP training. As a byproduct of this discovery, the CLIPA47

models are introduced, which attain a zero-shot top-1 ImageNet accuracy of 69.3% and can be trained48

on an 8 A100-GPU machine in just 4 days.49

Our work is built upon CLIPA [13], but focuses on furthering its efficiency and scaling it up.50
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zero-shot classification zero-shot retrieval

IN-1K IN-V2 IN-A IN-R ObjectNet IN-SK
COCO Flickr30k

Models Data Source # seen samples@input size GPU hours1 Est. cost 2 image text image text

OpenCLIP 32.0B@2242 216,712 $247,864 78.0 70.8 59.2 89.3 69.7 66.6 49.5 66.0 77.8 90.8
CLIPA-v2

H/14 LAION-2B
12.8B@842 + 512M@2242 + 128M@3362 8,640 $13,613 79.1 72.3 71.7 92.7 69.9 70.0 50.2 67.5 78.2 92.3

OpenCLIP
L/14 DataComp-1B 12.8B@2242 41,472 $47,434 79.2 72.1 69.6 90.8 74.3 68.0 45.7 63.3 73.4 89.5
G/14* LAION-2B 32.0B@2242 + 6.7B@2242 232,448 $366,105 80.1 73.6 69.4 92.2 73.0 68.9 51.4 67.3 79.6 92.9

CLIPA-v2 H/14 DataComp-1B 12.8B@702 + 512M@2242 5,920 $9,324 81.1 74.7 76.2 93.7 72.7 72.4 49.1 67.1 76.1 92.4
12.8B@842 + 512M@2242 4,008 $6,318 79.7 72.8 73.2 92.1 71.1 69.3 46.3 64.1 73.0 89.1

L/14
+128M@3362 +512 +$806 80.3 73.5 77.7 93.3 73.1 70.9 47.2 65.5 74.6 90.5
12.8B@842 + 512M@2242 7,776 $12,247 81.5 75.0 76.9 94.3 74.1 72.7 49.1 67.0 75.7 90.6CLIPA-v2 H/14 DataComp-1B
+128M@3362 +864 +$1,366 81.8 75.6 82.7 94.4 77.4 72.8 49.2 67.2 76.3 90.3

G/14 12.8B@842 + 512M@2242 21,998† $34,646† 82.7 76.9 81.7 95.1 77.1 74.3 50.0 67.9 77.7 91.8
+128M@3362 +1,744† +$4,410† 83.0 77.3 85.9 95.4 79.7 74.5 50.4 67.8 78.2 92.1

Table 4: Comparison with OpenCLIP [11]. Our CLIPA-v2’s GPU hour is estimated using an
8-A100 80GB GPU machine on Google Cloud, while the OpenCLIP’s GPU hour is calculated based
on their report1. The corresponding training cost is estimated based on 80GB A100’s cloud pricing2.
* denotes this model is trained with FLIP at a masking ratio of 50%. † denotes gradient accumulation
is adopted in compute and cost estimation to accommodate large models given A100 GPUs.

3 Experiments51

10
0 80 70 60 50 40 30 20

Unmasking Ratio (%)

0

­2

­4

­6

­8

P
er

fo
rm

an
ce

 d
ro

p 
(%

)

S/16
B/16
L/16
H/14

Figure 2: The inverse scaling law on finetun-
ing. All models are finetuned with 128M samples,
where we employ random masking for token re-
duction.

Our experiments contain three parts. Firstly, we52

check the applicability of inverse scaling law53

during the finetuning stage with full-resolution54

tokens. Next, we scale up CLIPA in terms of55

data, model, and schedule. Lastly, we compare56

with other advanced CLIP models in terms of57

performance and computation cost. Our pretrain-58

ing setup strictly follows CLIPA [13]. We report59

the corresponding zero-shot top-1 accuracy on60

ImageNet [5].61

Inverse scaling law in the finetuning stage.62

Following [13], we choose four different scales63

of models: S/16, B/16, L/16, and H/14, and train64

them on LAION-400M dataset. Random mask-65

ing [14, 8] is used as the image token reduction66

strategy. As shown in Figure 2, larger models67

consistently exhibit a lower performance drop68

compared to smaller models when finetuning69

with the same number of input tokens. For in-70

stance, retaining 50% of the input tokens merely71

results in a performance drop of 0.4% for the72

H/14 model, compared to much higher drops73

of 0.8% for L/16, 1.1% for B/16, and 1.8% for74

S/16.75

These results confirm the existence of the in-76

verse scaling law in the finetuning stage, which77

enables us to reduce the required computations for CLIP training further.78

Scaling up CLIPA [13]. We next investigate the scaling behavior beyond the largest case studied in79

CLIPA. Specifically, our scaling efforts cover three aspects: model, data, and training schedule. The80

results are reported in Table 1.81

First, we can observe that scaling the model size from L/14 to H/14 boosts the performance from82

69.3% to 72.8%. Furthermore, we note switching the training dataset from LAION-400M [23]83

to LAION-2B [22] yields another 1.3% improvement, suggesting the importance of data diversity.84

Lastly, by increasing the training schedule by a factor of 5, resulting in a total of ∼13B seen samples,85

we achieve an impressive performance of 77.9%. We stress that this scaled version of CLIPA H/1486

model readily outperforms its counterpart in FLIP [14] by 0.3% while requiring only 1/3 of the87

training budget.88
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These results confirm the efficiency and effectiveness of training CLIPA at scale. Next, we set this89

CLIPA H/14 with 77.9% performance as our baseline for further ablation in the finetuning stage.90

Ablation. In addition to random masking, we hereby investigate how grid masking and block91

masking affect finetuning performance. The results are reported in Table 2. Interestingly, compared92

to finetuning input tokens at the full resolution, we observe that 25% masked random finetuning93

and block finetuning all lead to a slight performance improvement. With a larger masking ratio, all94

these masking strategies will lead to worse performance than full-resolution fine-tuning; but overall,95

random masking consistently yields stronger performance than the other two masking strategies.96

We next ablate different finetuning setups and summarize the results in Table 3. We choose 30%97

masked random finetuning as the default strategy, as it leads to a slight performance improvement98

(+0.1%) and enables a 1.3× speedup of the finetuning process. Furthermore, adopting a 4× finetuning99

schedule results in an additional improvement of 0.6%. However, further increasing the finetuning100

schedule does not lead to any substantial performance gains.101

Following [11], we also investigate progressively finetuning with large image resolutions. Initially,102

for the first 512 million samples, we finetune the model using a 224× 224 input size with a masking103

ratio of 30%; subsequently, for the remaining 128 million samples, we adopt a larger 336× 336 input104

size with a masking ratio of 40% and a smaller learning rate. As shown in the last row of Table 3, i.e.,105

case (5), progressive finetuning results in a slight performance improvement of 0.2% compared to106

direct finetuning with a 336× 336 input size and meanwhile achieving a notable 1.5× speedup of107

the finetuning process.108

Comparison with OpenCLIP [11]. We summarize the results in Table 4. Firstly, when trained109

on the LAION-2B dataset, our CLIPA-v2 H/14 model outperforms OpenCLIP’s version by 1.1%110

(79.1% vs 78.0%) and meanwhile significantly reducing the training cost by ∼18×. Furthermore,111

when upgrading to the DataComp-1B dataset, our CLIPA-v2 H/14 (pretrained on images at 70× 70)112

achieves an impressive zero-shot ImageNet accuracy of 81.1%, while keeping the training cost within113

$10,000. Notably, this 81.1% accuracy is 1.0% higher than the prior best CLIP model, which is114

OpenCLIP’s G/14 model with a zero-shot ImageNet accuracy of 80.1%.115

With an additional investment of $4000, we can further enhance CLIPA-v2’s training by 1) pretraining116

with a larger resolution (the image size from 70 to 84) and 2) applying the progressive finetuning117

with a larger image resolution of 336. These enhancements lead to an additional 0.7% improvement,118

resulting in the best-performing CLIP model to date with an 81.8% zero-shot ImageNet accuracy.119

We also validate the superiority of CLIPA-v2 models on zero-shot robustness. For example, our120

81.8% H/14 model consistently yields much stronger performance than OpenCLIP’s 80.1% G/14121

model on IN-V2 [20] (75.6% vs 73.6%), IN-A [10] (82.7% vs 69.4%), IN-R [9] (94.4% vs 92.2%),122

ObjectNet [2] (77.4% vs 73.0%), and IN-SK [26] (72.8% vs 68.9%). However, we note that, when123

evaluating zero-shot retrieval performance on COCO [15] and Flickr30k [17], OpenCLIP’s 80.1%124

G/14 model still performs better We conjecture this performance advantage should be attributed125

to the difference in training datasets, as Table 4’s results empirically suggest models trained with126

LAION-2B are better at retrieval tasks than models trained with DataComp-1B. Nonetheless, when127

also scaling to G/14, our CLIPA-v2 model achieves an unprecedented ImageNet zero-shot top-1128

accuracy of 83.0%, surpassing the previous best record of 82.0% made by EVA-02-CLIP-E/14+129

[25, 6], with only 1/2 number of parameters.130
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