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Abstract001

Agentic tasks, which require multi-step prob-002
lem solving with autonomy, tool use, and adap-003
tive reasoning, are becoming increasingly cen-004
tral to the advancement of NLP and AI. How-005
ever, existing instruction data lacks tool inter-006
action, and current agentic benchmarks rely on007
costly human annotation, limiting their scal-008
ability. We introduce TASKCRAFT, an au-009
tomated workflow for generating difficulty-010
scalable, multi-tool, and verifiable agentic tasks011
with execution trajectories. TaskCraft expands012
atomic tasks using width-based and depth-013
based expansion to create structurally and hi-014
erarchically complex challenges. Empirical015
results show that these tasks improve prompt016
optimization in the generation workflow and017
enhance supervised fine-tuning of agentic foun-018
dation models. We present a large-scale syn-019
thetic dataset of approximately 32,000 tasks020
with varying difficulty to support future re-021
search on agent tuning and evaluation.022

1 Introduction023

Agentic tasks, involving autonomous multi-step024

problems that require tool use and adaptive rea-025

soning, are becoming increasingly critical in AI026

and NLP advancement. As AI transitions from027

passive assistance to proactive agency, the demand028

for benchmarks that accurately capture real-world029

workflows has intensified. This shift is particu-030

larly evident in deep research, where agents engage031

with high-complexity problems through sustained032

reasoning and strategic tool application. While so-033

lution trajectories can significantly enhance agent034

capabilities, the complexity of these tasks makes035

large-scale human annotation impractical, necessi-036

tating alternative approaches to training and evalu-037

ation.038

To assess advanced agent capabilities, bench-039

marks such as GAIA (Mialon et al., 2023),040

BrowseComp (Wei et al., 2025), and Humanity’s041

Last Exam (HLE) (Phan et al., 2025) have been 042

introduced. GAIA evaluates reasoning, tool use, 043

and web browsing through 466 real-world ques- 044

tions. BrowseComp comprises 1,266 tasks that 045

test an agent’s ability to retrieve and integrate com- 046

plex online information. HLE includes 2,500 multi- 047

modal questions across over 100 disciplines to mea- 048

sure advanced reasoning and domain knowledge. 049

While these datasets have significantly contributed 050

to agent evaluation, they suffer from scalability 051

limitations due to the labor-intensive nature of data 052

annotation. For example, creating HLE required 053

1,000 experts to label just 2,500 data points, hinder- 054

ing its ability to scale. 055

Prior work has explored the automatic genera- 056

tion of instruction-following data using large lan- 057

guage models to alleviate the scalability issues of 058

human-annotated datasets. A representative ex- 059

ample is the Self-Instruct framework (Wang et al., 060

2022), which demonstrated that LLMs can generate 061

high-quality, diverse instruction data for multi-turn 062

dialogues. This approach has proven effective for 063

supervised fine-tuning (SFT). However, these meth- 064

ods are primarily designed for static instruction- 065

following scenarios and fall short in modeling agen- 066

tic tasks, which require interaction with external 067

tools and environments. Consequently, such data 068

is insufficient for training or evaluating agents that 069

operate in dynamic, real-world settings. 070

In this work, we introduce TASKCRAFT, an 071

agentic workflow for the automated generation of 072

agentic tasks. Our approach provides the following 073

advantages: 074

• Scalability. The workflow supports adaptive 075

difficulty, seamless multi-tool integration, and 076

the generation of tasks beyond the agent’s ca- 077

pability, along with corresponding trajecto- 078

ries. 079

• Efficient Verification. During each task ex- 080

pansion, only incremental components un- 081
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dergo agentic validation, eliminating the need082

for full verification of the extended task.083

The core approach involves initially generating084

multiple atomic tasks, each solvable with a single085

tool, and then expanding them using depth-based086

and width-based expansion. For depth-based task087

expansion, we iteratively transform specific textual088

elements of the original task (such as key terms)089

into a new atomic task to support progressive res-090

olution. In contrast, the width-based expansion091

formulates tasks that require resolving multiple092

sub-problems by integrating distinct problem in-093

stances.094

To ensure high-quality agentic tasks, we employ095

a rejection sampling strategy during verification.096

For atomic tasks, we exclude cases where an agent097

using external tools can solve the task while an098

LLM cannot, ensuring that atomic tasks genuinely099

necessitate tool usage. For extension tasks, we100

leverage linguistic analysis with LLMs, enabling101

rapid validation and facilitating the creation of chal-102

lenges beyond existing agent capabilities. This ap-103

proach enhances efficiency and broadens problem-104

solving potential.105

The controlled generation process ensures inher-106

ent access to ground-truth execution trajectories,107

enabling precise interpretability, reproducibility,108

and verifiability—critical for agent evaluation and109

reinforcement learning. To further validate task ef-110

fectiveness, we implement a self-evolving prompt111

optimization strategy inspired by bootstrap few-112

shot learning (Khattab et al., 2024). This iterative113

refinement improves rejection sampling pass rates114

while minimizing generation time. Additionally,115

we leverage the generated task trajectories to train116

an agent foundation model (Jin et al., 2025). Ex-117

perimental results show that an independent LLM,118

trained on these trajectories, effectively plans and119

invokes tools, yielding performance gains on Hot-120

potQA (Yang et al., 2018a), Musique (Trivedi et al.,121

2022), and Bamboogle (Press et al., 2022).122

Based on this method, we generated a task123

dataset comprising approximately 32,000 tasks of124

varying difficulty, each requiring different tools for125

resolution, including search, web browsing, PDF126

reading, and image understanding.127

Our key contributions are as follows:128

• We introduce an automated agentic task gener-129

ation workflow capable of producing scalable130

difficulty, efficient verification, and multi-tool131

supported tasks, along with their correspond- 132

ing execution trajectories. 133

• We empirically evaluate task effectiveness 134

through prompt learning, which facilitates 135

the self-evolution of our workflow and holds 136

potential for optimizing existing agent work- 137

flows. Additionally, supervised fine-tuning 138

is applied to the agent foundation model to 139

further enhance performance. 140

• We release a synthetic dataset comprising 141

about 32k agentic tasks of varying difficulty 142

levels, complete with their execution trajecto- 143

ries, to facilitate further research. 144

2 Notations and Preliminary 145

Tool-Assisted Task Execution

Given a task q, the agent searches for the
input index iT (e.g., document name, web-
page title) as the invocation input for a tar-
get tool T . While this may involve a search
tool or a file system tool, we omit these de-
tails for simplicity. Executing tool T with
iT retrieves the associated context C. The
LLM implicitly deduces the relationship R
between C and the expected outcome, pro-
ducing the final result a.

146

Task q Answer a
"Stock with highest
price increase
today?"

Input Index iT

Tool Execution

LLM Parsing

"Nasdaq Stock Market Data" 

"INTC (+10.44%), 
  NVDA(+4.11%), 
  TSLA(+1.65%) ..."

Tool Context C

"Highest stock price
increase"

Implicit Relation R

"INTC    
 (+10.44%)"

LLM 
Reasoning

Web Tool

Image Tool

PDF Tool

Tool List

LLM Reasoning

Figure 1: Execution flow of a single tool invocation.
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Tool List

Web Tool

Image Tool

PDF Tool

Music Tool

Extract context
using PDF tool

《Apple2025AnnualReport.pdf》

iT: "Apple2025AnnualReport"

What is the
relationship?

What is
the task?

q = f (iT,R)

...

2. Financial Highlights 

In the 2025 fiscal year, Apple's 

total revenue reached $383.3 billion, 

a 2% increase from the previous year. 

 • Net profit was $94.7 billion, 

with a gross margin of 44.3%. 

• Operating cash flow from operations 

amounted to $108.2 billion.  

Answer 

Context

Context

What's the
answers and
context content
in the PDF?

 R: "science fiction
film released Nov 7,

2014"

q: "In the financial report'
Apple2025Annual 

Report', what is total
revenue value in 2025?"

Figure 2: Atomic task generation workflow.

Atomic Task

An atomic task is resolved with a single
target tool invocation. To simplify, we dis-
regard search and file system operations,
assuming a detailed input index iT enables
retrieval through finite navigation.

147

Given an answer a, the most direct approach148

to construct an atomic task involves prompting an149

LLM to generate the corresponding question. How-150

ever, questions produced in this manner often suffer151

from low tool invocation rates, unpredictable dif-152

ficulty levels, unregulated tool requirements, and153

inconsistent verification complexity (see exp for154

more details). To mitigate these issues, we assume155

an ideal search engine capable of retrieving precise156

data based on iT (e.g., paper titles, image paths,157

music names, etc.). Under this assumption, we can158

construct a task question q = f(iT , R) −→ a (see159

Figure 2), where f represents a sampling function160

that enables the LLM to generate the correspond-161

ing natural language representation of the question162

based on the provided information.163

3 Automated Task Generation Workflow164

3.1 Atomic Task Generation165

We begin by compiling a corpus of unlabeled data166

aligned with the tool’s input requirements. From167

this corpus, we extract iT and derive textual content168

C via tool execution. For example, browsing, PDF,169

and image comprehension tools yield webpage ti-170

tles, PDF names, and image paths, from which we171

extract textual content C for answer sampling. We172

prompt an LLM to identify key candidate answers173

a from C and infer their relationship R with C,174

ultimately constructing question q conditioned on175

iT and R. 176

3.2 Task Extension 177

In order to increase task difficulty in a scalable way, 178

we adopted two extended task strategies: the depth- 179

based expansion and the width-based expansion. 180

Depth-based expansion. We aim to construct 181

tasks requiring multiple sequential tool executions, 182

where each step depends on the output of the previ- 183

ous one. To achieve this, a new subproblem must 184

be derived from a known problem. The tool input 185

index iT at each stage exhibits strong extensibil- 186

ity due to (1) its frequent association with proper 187

nouns, which are less likely to be memorized by 188

LLMs, and (2) its natural suitability for recursive 189

definition. Specifically, a single atomic task fol- 190

lows the formulation: 191

qn = f(inT , R
n) −→ a. (1) 192

To extend a n-hot question qn into a (n+1)-hop 193

dependency task qn+1, we can define the recursive 194

formulation: 195

qn+1 = f(q̂n+1, Rn) −→ a, (2) 196

where we ensure that 197

q̂n+1 = f(in+1
T , Rn+1) −→ inT . (3) 198

Here, in+1
T can represent any form of tool input, 199

such as a web title, document title, or music name. 200

Many search processes exhibit reversibility, e.g., 201

retrieving lyrics from a song name or vice versa. To 202

obtain in+1
T and Rn+1, we employ a search agent 203

to execute the retrieval process. To further mitigate 204

cyclic generation risks, we encourage the agent 205

to search for in+1
T whose extracted textual content 206

Cn+1 forms a superset of the current iT , thereby 207
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a₂="Interstellar"

Atomic task (first hop) The second-hop task

    : What science fiction film
was released Nov 7, 2014?

i1T: Interstellar

 a1: Christopher
Nolan

i2T: science fiction film i2T: science fiction film 

a2: Interstellar

q1: Interstellar's
director?

Interstellar

 R: The director of
Interstellar

 R: science fiction film
released Nov 7, 2014  R: science fiction film

released Nov 7, 2014

q2: Who is the director of the
science fiction film, which

was released on Novermber 7,
2014?

The merged task

step3

step4

search agentstep1

step2

(a) Depth-based expansion

a1: $2.40

q1:What was Apple
Inc.'s Q1 2025 EPS?

q2: What's Apple Inc.'s P/E
ratio for the same period?

a2: 39.65

qwidth: What were the
earnings per share and price -
to - earnings ratio of Apple in
the fourth quarter of 2023?

LLM Merging 

awidth: $1.46, 28.5

Execute Tool Execute Tool

(b) Width-based expansion

Figure 3: Strategy for task extension

expanding contextual coverage. Finally, we let208

the LLM analyze the relationship R′ between the209

extracted C ′ and iT .210

Width-based expansion. The goal of the width-211

based expansion is to generate a new problem that212

needs to be decoupled into multiple subtasks to be213

completed. For simplicity, for two subtasks q1 −→214

a1 and q2 −→ a2, the combined subtask qwidth can215

be represented as216

(qwidth = q1 + q2) −→ a1 + a2, (4)217

where the + indicates using LLM to merge and218

rephrase two question strings.219

3.3 Task validation220

Under this generation workflow, the verification221

of generated tasks can be easily performed in two222

distinct phases:223

Atomic task verification: An atomic task is a sim-224

ple agentic task, resolvable within a finite number225

of tool executions. For each candidate, we evalu-226

ate the task agent’s output within a limited number227

of tool-use steps (e.g., three) and compare it with228

the infer-LLM separately. The judge-LLM verifies229

whether only the agent’s output contains the golden230

answer, retaining only validated tasks.231

Task expansion verification: This process solely 232

involves linguistic analysis, without relying on any 233

agent. During depth-wise extension, we analyze 234

the pre- and post-merge tasks qn and qn+1 using 235

the judge-LLM to verify whether the last input in- 236

dex inT in qn has been replaced by q̂n+1 in qn+1. 237

Additionally, the infer-LLM derives the merged 238

task, while the judge-LLM filters out tasks where 239

the correct result is easily inferred, preventing in- 240

formation leakage that could render the problem 241

trivially solvable after merging. 242

This framework ensures efficiency by applying 243

agent reasoning only in atomic task validation at 244

creation, while relying on LLM-based validation 245

elsewhere for faster execution. It also enables com- 246

plex task generation beyond agent capabilities, with 247

reverse reasoning providing supervisory signals to 248

enhance agent learning. 249

4 Experiments 250

4.1 Corpus Construction 251

We collect seed documents to generate atomic tasks 252

for various tools, extracting key conclusions to en- 253

sure relevance. For instance, the PDF tool con- 254

structs atomic tasks using a document’s title and 255
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Figure 4: distribution of data source

critical insights to enhance usability. To support256

atomic task generation, we constructed a dataset257

comprising webpages, PDF files, and images. Web-258

page data constitutes the largest proportion (75%),259

sourced from up-to-date news across multiple do-260

mains. Image data accounts for 15%, primarily261

derived from financial reports and research papers,262

with filtering to retain images containing informa-263

tion beyond text. PDF data makes up 10%, origi-264

nating from English financial documents and aca-265

demic publications.266

4.2 Synthetic Tasks Analysis267

To practically assess task difficulty, we sample268

1,000 tasks and deploy both Smolagents (Roucher269

et al., 2025) and its enhanced variant, Smolagents+270

(see appendix for details), for execution and valida-271

tion. While both agents performed identical tasks,272

Smolagents+ incorporated advanced tool capabili-273

ties for refined analysis.274
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32.4%
31.3%

14.7%

7.3% 13.0%

55.0%

Smol Smol+ Smol Smol+ Smol Smol+
Score: 2
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Score: 0

Figure 5: score distribution comparison

Responses were evaluated by comparing the275

agents’ outputs to the golden answer, following276

a three-point scoring scheme: 2 for fully correct277

responses, 1 for answers that included the golden 278

answer but contained additional information, and 0 279

for incorrect responses. 280

We observed that task failure rates for the two 281

tested agents increase progressively from web 282

pages to PDFs and then to images within PDFs. 283

This trend suggests that tasks requiring multi-hop 284

web searches are comparatively easier for agents to 285

complete, whereas more complex comprehension 286

challenges—such as extracting information from 287

PDFs and interpreting embedded images—remain 288

difficult for the evaluated models. 289

Table 1: Accuracy comparison of Smolagents on the
GAIA dataset and our synthetic tasks.

GAIA
Level1 Level2 Level3 Avg.
54.71 43.02 26.92 44.20

Synthetic Task
PDF html Image Avg.
54.4 50.7 22.1 42.4

Table 1 presents the accuracy comparison of 290

Smolagent on the GAIA dataset and our generated 291

dataset. The results indicate that tasks derived from 292

different tool corpora align with GAIA’s varying 293

difficulty levels, with image understanding tasks 294

posing the greatest challenge and achieving accu- 295

racy comparable to LEVEL3 data. 296

Unlike GAIA, which requires extensive human 297

annotation, our approach automates task genera- 298

tion, eliminating the need for labor-intensive data 299

labeling while maintaining scalability and adapt- 300

ability for agent self-evolution and optimization. 301

In Figure 5, task failure rates increase from web 302

pages to PDFs and then to images within PDFs, in- 303

dicating that multi-hop web search tasks are more 304

manageable for agents, while complex comprehen- 305

sion challenges, such as PDF extraction and image 306

interpretation, remain difficult. Additionally, these 307

results demonstrate that our generated tasks span 308

varying difficulty levels, including those that pose 309

significant challenges for current agent capabilities. 310

Table 2: Effectiveness of generated task data in prompt
learning and depth-wise extension across six expansion
attempts.

Method Pass rate Time
Smolagent 54.9% 29.1s
+ Optimization 68.1% 23.5s
Smolagent+ 41.0% 31.5s
+ Optimization 51.2% 30.2s
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Figure 6: Generated case examples requiring multiple tool calls for completion.

4.3 Enhancing Task Generation Efficiency via311

Prompt Learning312

We employ rejection sampling in both atomic task313

generation and task extension. To reduce the rejec-314

tion rate and enhance sampling efficiency, several315

key challenges must be addressed:316

• Efficiently extract candidate answers from the317

corpus to support atomic task formation and318

minimize rejections (Section 3.1).319

• Guide the agent to find an input index in+1
T ,320

ensuring coherent depth-wise expansion.321

• Prompt the LLM in deep-wise extension to322

articulate the relationship Rn+1 between the323

previous input index inT and observed content324

Cn+1, refining problem construction and mit-325

igating incoherence-related rejections.326

• Integrate tasks to ensure precise substitution327

(qn+1 = f(q̂n+1, Rn)), and clarity while328

maintaining logical coherence.329

Evaluation. We assess atomic task generation and330

task extension separately. For atomic task gener-331

ation, we evaluate four key metrics: (1) pass rate,332

representing the proportion of successfully vali-333

dated atomic tasks relative to candidate tasks. (2)334

task density, quantifying the average number of335

validated atomic tasks per document. (3) sampling336

time, measuring the time required for processing 337

each document. (4) token consumption, assessing 338

the number of tokens utilized per document. For 339

task extension, we evaluate three key metrics: (1) 340

pass rate, the proportion of successful expansions 341

across nk attempts (set to 6 in our experiment). 342

(2) sampling time, measuring the time required for 343

extending each task. (3) token consumption, assess- 344

ing the number of tokens utilized per extension. 345

Prompt Learning. Intuitively, providing the LLM 346

with effective exemplars can further enhance its 347

ability to identify intermediate objectives. To this 348

end, we employ bootstrap few-shot learning (Khat- 349

tab et al., 2024) to systematically optimize the four 350

prompts corresponding to the aforementioned chal- 351

lenges, thereby facilitating the generated workflow. 352

For atomic task generation, each prompt is op- 353

timized by appending 20 randomly sampled ex- 354

amples. Multiple prompt configurations are then 355

generated by varying these samples, followed by 356

an iterative evaluation process where pass rates 357

determine the optimal selection of inserted exam- 358

ples. For task extension, we focus on depth-wise 359

expansion and adopt a similar strategy to optimize 360

the prompts using 10 randomly sampled examples. 361

These prompts are refined to maximize the number 362

of hops. 363

Results. Table 3 examines atomic task genera- 364

tion and depth-wise task extension before and after 365

prompt learning, highlighting the role of generated 366
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Table 3: Effectiveness of generated task data in prompt
learning and depth-wise extension across six expansion
attempts.

Method Pass rate Time
Atomic Task 54.9% 29.1s
+ Optimization 68.1% 23.5s
Depth-wise@6 41.0% 31.5s
+ Optimization 51.2% 30.2s

task data in enabling self-evolution within both367

workflows. For atomic task generation, the data368

improves efficiency by reducing generation time369

by 19.2% (29.1 to 23.5 seconds) and increasing370

pass rate from 54.9% to 68.1%. Similarly, depth-371

wise extension benefits from the data, with pass372

rate rising by 10.2% (41.0% to 51.2%) across six373

expansion attempts, and generation time decreas-374

ing by 1.3 seconds (31.5 to 30.2 seconds). These375

results validate the effectiveness of generated task376

data in enhancing sampling efficiency and support-377

ing workflow adaptation.378

4.4 Fine-Tuning Agent Models Using379

Synthetic Trajectory380

To validate the effectiveness of our synthetic multi-381

hop data method, we apply supervised fine-tuning382

(SFT) and reinforcement learning (RL) using the383

generated trajectory, refining an agent foundation384

model—an LLM with tool-integrated reasoning.385

Evaluation. We evaluate our models on three386

multi-hop question answering benchmark datasets,387

as follows: HotpotQA (Yang et al., 2018b),388

Musique (Trivedi et al., 2023), and Bamboogle389

(Press et al., 2023). These datasets encompass a390

diverse range of search with reasoning challenges,391

enabling a comprehensive evaluation.392

Baselines. We conduct a comprehensive evalua-393

tion by comparing various baseline models before394

and after SFT with generated tasks to assess per-395

formance improvements: (1) Base workflow: We396

implement agent workflows (Search-R1 without397

training) across different LLM models. (2) Search-398

R1: An agentic workflow leveraging reinforcement399

learning for LLM model optimization.400

Implementation setup. We evaluate two model401

variants: Qwen2.5-3B-Base and Qwen2.5-3B-402

Instruct. To facilitate multi-hop reasoning, we syn-403

thesize 3,202 multi-hop tasks and their trajectories404

for SFT. Following the Chain-of-Action framework405

(Zhang et al., 2025), we apply content masking to406

search tool contexts during training. Our search 407

method, RL training data, and reinforcement learn- 408

ing strategy follow the Search-R1 (Jin et al., 2025). 409

For further training details, refer to Appendix B. 410

Method HotpotQA Musique Bamboogle Avg.
Qwen2.5-3b-Base
Base workflow 0.032 0.006 0.063 0.034
+ SFT 0.232 0.067 0.224 0.174
Search-R1 0.284 0.049 0.088 0.140
+ SFT 0.344 0.111 0.280 0.245
Qwen2.5-3b-Instruct
Base workflow 0.190 0.037 0.112 0.113
+ SFT 0.221 0.049 0.248 0.173
Search-R1 0.324 0.103 0.264 0.230
+ SFT 0.340 0.104 0.264 0.236

Table 4: Performance across three datasets and two
models. Avg. denotes average.

Results. As shown in Table 4, our method 411

demonstrates significant performance improve- 412

ments across three representative datasets and two 413

model variants. 414

First, our synthetic data demonstrates significant 415

value in standalone SFT training, achieving average 416

performance improvements of +14.0% (Qwen2.5- 417

3B-Base) and +6.0% (Qwen2.5-3B-Instruct) over 418

the base workflow for their respective models. 419

These gains validate the quality and effectiveness 420

of our synthetic data generation methodology. 421

Second, compared to the Search-R1 baseline, the 422

workflow with Qwen2.5-3b-Base achieves maxi- 423

mum gains of +19.2% on Bamboogle and +6.2% 424

on Musique. The Qwen2.5-3B-Instruct maintains 425

steady gains, with an average performance margin 426

of +0.6%. The strong performance of our SFT- 427

trained models underscores their suitability for sub- 428

sequent reinforcement learning, suggesting that our 429

synthetic data not only enhances immediate task 430

execution but also provides a more effective initial- 431

ization for RL optimization. 432

4.5 Effectiveness of Tool Context in 433

Constructing Agentic Tasks. 434

In atomic task generation, we integrate the addi- 435

tional input index iT along with the relational map- 436

ping R between the tool context and a given answer 437

to systematically structure tasks. 438

To assess the efficiency of our atomic task gen- 439

eration approach, we perform an ablation study 440

using an LLM to directly generate a task q that re- 441

quires only one external tool to obtain the answer a, 442

explicitly excluding the conditions iT and R. Eval- 443

uation metrics include pass rate, task resolution 444
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time, average tool usage, and the variance in tool445

usage frequency.446

Table 5: The effectiveness of tool context.

Method Pass rate Time #Tool-use σ2

LLM only 18.5% 119.7s 2.8 1.2
Ours 43.0% 86.7s 2.1 0.4

Compared to atomic tasks generated via direct447

prompting of GPT-4.1, our approach significantly448

enhances atomic task generation efficiency. Specif-449

ically, our workflow achieves a 24.5% higher pass450

rate (43.0% vs. 18.5%) while reducing task gen-451

eration time by 28 seconds (86.7s vs. 119.7s), un-452

derscoring the limitations of vanilla LLMs in con-453

structing agentic tasks. Furthermore, our atomic454

tasks exhibit greater atomicity, as evidenced by a455

lower average tool invocation count (2.1 vs. 2.8 per456

query). Task complexity also remains more stable457

and controllable, with a reduced variance in tool458

usage (0.4 vs. 1.2). These findings underscore the459

robustness of our workflow, validating its efficacy460

in structured task generation.461

5 Related Work462

5.1 Instruction data generation463

Synthetic data has emerged as a promising solution464

for enhancing performance and enabling new ca-465

pabilities. STaR (Zelikman et al., 2024) augments466

learning with chain-of-thought (CoT) rationales but467

often requires a substantial number of task queries468

beforehand. Methods such as Self-Instruct (Wang469

et al., 2022), Self-Chat (Xu et al., 2023b), Numi-470

naMath (Li et al., 2024), and OpenMathInstruct-471

2 (Toshniwal et al., 2024) generate data from mini-472

mal seed examples using LLMs, yet they struggle473

to extend task generation for multiple tool invo-474

cations. WizardLM (Xu et al., 2023a) employs475

Evol-Instruct to incrementally enhance instruction476

complexity. However, it relies primarily on rule-477

based modifications, making its generated instruc-478

tions unsuitable for agentic task scenarios. Meta-479

Math (Yu et al., 2023) generates mathematical data480

by rewriting questions, but adapting agent tasks481

to environmental feedback presents challenges be-482

yond simple rephrasing. WebInstruct (Yue et al.,483

2024) extracts question-answer pairs from a pre-484

training corpus across multiple domains; however,485

the generated questions often fail to incorporate486

tool utilization in their solutions.487

5.2 Language Agent 488

Recent breakthroughs in large language models 489

have catalyzed the development of autonomous 490

agent systems. These systems demonstrate remark- 491

able capabilities In complex tasks, through tool in- 492

tegration and reasoning strategy optimization. Tool- 493

augmented architectures extend LLMs’ capabilities 494

by integrating code execution (Qin et al., 2024; 495

Wang et al., 2024), web browsing (Schick et al., 496

2023; Qin et al., 2024), and other tools (Qin et al., 497

2024), as exemplified by LangChain (LangChain, 498

2023). Studies indicate that the precision of tool 499

definitions significantly impacts task completion ef- 500

ficiency. Reasoning enhancement strategies based 501

on Chain-of-Thought (CoT) (Wei et al., 2022), 502

ReACT (Yao et al., 2023), and other prompting 503

techniques have substantially improved task plan- 504

ning capabilities. Recent work by Magnetic-One 505

leverages o1-preview’s complex reasoning abili- 506

ties for agent orchestration, Though challenges per- 507

sist in maintaining stability during dynamic envi- 508

ronment interactions. Reliability mechanisms like 509

self-verification (Paul et al., 2023; Fu et al., 2025; 510

Pan et al., 2024; Zhang et al., 2024), inference- 511

time search (Koh et al., 2024; Chen et al., 2024; 512

Song et al., 2024), and memory in multi-step 513

tasks. FRIDAY (Wu et al., 2024) uses iterative 514

self-optimization for continuous improvement. 515

6 Conclusion 516

We present TASKCRAFT, an automated workflow 517

for scalable, multi-tool, verifiable agentic task gen- 518

eration. Through width-based and depth-based ex- 519

pansion, our framework constructs hierarchically 520

complex challenges. Empirical results demonstrate 521

its effectiveness in structured task generation, im- 522

proving prompt optimization and supervised fine- 523

tuning while reducing reliance on human annota- 524

tion. Additionally, we release a large-scale syn- 525

thetic dataset to support future advancements in 526

agent tuning and evaluation. 527

7 Limitation 528

This work currently focuses on constructing atomic 529

tasks for common tools, including browsing, PDF 530

processing, and image analysis. Future iterations 531

will enable users to generate atomic tasks tailored 532

to their agents’ specific tool requirements. Due to 533

time and cost constraints, the evaluation primarily 534

assessed the problem-solving capabilities of smola- 535

gents and smolagents+. 536
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Figure 7: Analysis of all tasks.

As shown in Figure 7, task generation exhibits 720

a hierarchical decline across all domains as the 721

number of hop increase. The expansion of depth- 722

based and width-based layers leads to progres- 723

sively more complex and valuable tasks. Below are 724

the detailed statistics for tasks synthesized through 725

depth-based and width-based expansion.: 726

• PDF domain: 1-hop (34.6%) and 2-hop 727

(28.52%) together constitute 63.12% of tasks, 728

with 1-3 hop contributing 83.23% of the to- 729

tal. High-hop tasks (5-6 hop) account for only 730

5.34%, indicating balanced initial-layer ex- 731

pansion but limited deep-extension efficiency. 732

• Image domain: Exhibits the highest 1-hop 733

proportion (38.37%) and strong reliance on 734

shallow extensions (1-3 hop: 85.66%). High- 735

hop tasks contribute the lowest proportion 736

(4.24%), likely due to the shallow scalabil- 737

ity of its data structure. 738
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• HTML domain: With the largest total task739

count (6, 804), it shows a 1-hop propor-740

tion of 32.05%, including the highest abso-741

lute 1-hop task count (2, 181). While 1-3742

hop tasks still dominate (81.32%), its high-743

hop contribution (5-6 hop: 6.44%) is the744

strongest across domains, suggesting better745

deep-extension capability.746
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Figure 8: Distribution of atomic data.

Atomic task analysis. We collect data from web-747

pages, PDF files, and images to support the gen-748

eration of atomic tasks, which form the basis of749

the dataset, totaling 14,291 instances as shown in750

Figure 8.751

Among them, atomic conclusions extracted by752

web-based tools account for the largest proportion,753

reaching 64%. They are sourced from the latest754

news and relevant resources covering academic,755

cultural, economic, and governmental domains.756

Atomic conclusions extracted by image-based tools757

account for 19%, mainly derived from the charts758

and tables in English financial reports and research759

papers. Additional screening is carried out to en-760

sure that the conclusions are not present in the761

original text. Data extracted by PDF-based tools762

accounts for 16%, also sourced from English finan-763

cial reports and academic papers.764

This data collection and task-construction pro-765

cess ensures the effectiveness of atomic task gen-766

eration, laying a high-quality foundation for its767

subsequent expansion and optimization.768

B Further Training Detail769

For SFT training, we synthesize 3,202 multi-hop770

tasks and their trajectories and apply content mask-771

ing to search tool contexts in these trajectories.772

For RL training, we follow the Search-R1 (Jin 773

et al., 2025) and use the 2018 Wikipedia dump as a 774

knowledge source and the E5 embedding model as 775

a retriever. For fair evaluation, we fix the retrieval 776

depth to 3 passages for all methods. We merge 777

the training sets of NQ and HotpotQA to form a 778

unified dataset. Evaluation is conducted on the test 779

or validation sets of three datasets to assess both 780

in-domain and out-of-domain performance. Exact 781

Match is used as the evaluation metric. In the PPO 782

settings, we set the learning rate of the policy LLM 783

to 1e-6 and that of the value LLM to 1e-5. Training 784

is conducted for 500 steps, with warm-up ratios 785

of 0.285 and 0.015 for the policy and value mod- 786

els, respectively. We use Generalized Advantage 787

Estimation with parameters λ = 1 and γ = 1. We 788

employ vLLM for efficient LLM rollouts, config- 789

ured with a tensor parallelism degree of 1 and a 790

GPU memory allocation ratio of 0.6. Our sampling 791

strategy utilizes a temperature parameter of 1.0 and 792

top-p threshold of 1.0. For policy optimization, 793

we apply KL divergence regularization with coef- 794

ficient π=0.001 and implement a clip ratio ϵ=0.2. 795

The action budget is constrained to 4, with a default 796

retrieval depth of 3 passages per query. 797

C Smolagents+ 798

We developed Smolagents+, enhancing its web 799

search capabilities, integrating multiple informa- 800

tion sources, streamlining search results, and im- 801

plementing a query rewriting strategy to optimize 802

search performance. 803
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