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Abstract

Agentic tasks, which require multi-step prob-
lem solving with autonomy, tool use, and adap-
tive reasoning, are becoming increasingly cen-
tral to the advancement of NLP and AI. How-
ever, existing instruction data lacks tool inter-
action, and current agentic benchmarks rely on
costly human annotation, limiting their scal-
ability. We introduce TASKCRAFT, an au-
tomated workflow for generating difficulty-
scalable, multi-tool, and verifiable agentic tasks
with execution trajectories. TaskCraft expands
atomic tasks using width-based and depth-
based expansion to create structurally and hi-
erarchically complex challenges. Empirical
results show that these tasks improve prompt
optimization in the generation workflow and
enhance supervised fine-tuning of agentic foun-
dation models. We present a large-scale syn-
thetic dataset of approximately 32,000 tasks
with varying difficulty to support future re-
search on agent tuning and evaluation.

1 Introduction

Agentic tasks, involving autonomous multi-step
problems that require tool use and adaptive rea-
soning, are becoming increasingly critical in Al
and NLP advancement. As Al transitions from
passive assistance to proactive agency, the demand
for benchmarks that accurately capture real-world
workflows has intensified. This shift is particu-
larly evident in deep research, where agents engage
with high-complexity problems through sustained
reasoning and strategic tool application. While so-
lution trajectories can significantly enhance agent
capabilities, the complexity of these tasks makes
large-scale human annotation impractical, necessi-
tating alternative approaches to training and evalu-
ation.

To assess advanced agent capabilities, bench-
marks such as GAIA (Mialon et al., 2023),
BrowseComp (Wei et al., 2025), and Humanity’s

Last Exam (HLE) (Phan et al., 2025) have been
introduced. GAIA evaluates reasoning, tool use,
and web browsing through 466 real-world ques-
tions. BrowseComp comprises 1,266 tasks that
test an agent’s ability to retrieve and integrate com-
plex online information. HLE includes 2,500 multi-
modal questions across over 100 disciplines to mea-
sure advanced reasoning and domain knowledge.
While these datasets have significantly contributed
to agent evaluation, they suffer from scalability
limitations due to the labor-intensive nature of data
annotation. For example, creating HLE required
1,000 experts to label just 2,500 data points, hinder-
ing its ability to scale.

Prior work has explored the automatic genera-
tion of instruction-following data using large lan-
guage models to alleviate the scalability issues of
human-annotated datasets. A representative ex-
ample is the Self-Instruct framework (Wang et al.,
2022), which demonstrated that LLMs can generate
high-quality, diverse instruction data for multi-turn
dialogues. This approach has proven effective for
supervised fine-tuning (SFT). However, these meth-
ods are primarily designed for static instruction-
following scenarios and fall short in modeling agen-
tic tasks, which require interaction with external
tools and environments. Consequently, such data
is insufficient for training or evaluating agents that
operate in dynamic, real-world settings.

In this work, we introduce TASKCRAFT, an
agentic workflow for the automated generation of
agentic tasks. Our approach provides the following
advantages:

* Scalability. The workflow supports adaptive
difficulty, seamless multi-tool integration, and
the generation of tasks beyond the agent’s ca-
pability, along with corresponding trajecto-
ries.

« Efficient Verification. During each task ex-
pansion, only incremental components un-



dergo agentic validation, eliminating the need
for full verification of the extended task.

The core approach involves initially generating
multiple atomic tasks, each solvable with a single
tool, and then expanding them using depth-based
and width-based expansion. For depth-based task
expansion, we iteratively transform specific textual
elements of the original task (such as key terms)
into a new atomic task to support progressive res-
olution. In contrast, the width-based expansion
formulates tasks that require resolving multiple
sub-problems by integrating distinct problem in-
stances.

To ensure high-quality agentic tasks, we employ
a rejection sampling strategy during verification.
For atomic tasks, we exclude cases where an agent
using external tools can solve the task while an
LLM cannot, ensuring that atomic tasks genuinely
necessitate tool usage. For extension tasks, we
leverage linguistic analysis with LLMs, enabling
rapid validation and facilitating the creation of chal-
lenges beyond existing agent capabilities. This ap-
proach enhances efficiency and broadens problem-
solving potential.

The controlled generation process ensures inher-
ent access to ground-truth execution trajectories,
enabling precise interpretability, reproducibility,
and verifiability—critical for agent evaluation and
reinforcement learning. To further validate task ef-
fectiveness, we implement a self-evolving prompt
optimization strategy inspired by bootstrap few-
shot learning (Khattab et al., 2024). This iterative
refinement improves rejection sampling pass rates
while minimizing generation time. Additionally,
we leverage the generated task trajectories to train
an agent foundation model (Jin et al., 2025). Ex-
perimental results show that an independent LLM,
trained on these trajectories, effectively plans and
invokes tools, yielding performance gains on Hot-
potQA (Yang et al., 2018a), Musique (Trivedi et al.,
2022), and Bamboogle (Press et al., 2022).

Based on this method, we generated a task
dataset comprising approximately 32,000 tasks of
varying difficulty, each requiring different tools for
resolution, including search, web browsing, PDF
reading, and image understanding.

Our key contributions are as follows:

* We introduce an automated agentic task gener-
ation workflow capable of producing scalable
difficulty, efficient verification, and multi-tool

supported tasks, along with their correspond-
ing execution trajectories.

* We empirically evaluate task effectiveness
through prompt learning, which facilitates
the self-evolution of our workflow and holds
potential for optimizing existing agent work-
flows. Additionally, supervised fine-tuning
is applied to the agent foundation model to
further enhance performance.

* We release a synthetic dataset comprising
about 32k agentic tasks of varying difficulty
levels, complete with their execution trajecto-
ries, to facilitate further research.

2 Notations and Preliminary

Tool-Assisted Task Execution

Given a task ¢, the agent searches for the
input index i (e.g., document name, web-
page title) as the invocation input for a tar-
get tool T'. While this may involve a search
tool or a file system tool, we omit these de-
tails for simplicity. Executing tool T" with
i retrieves the associated context C'. The
LLM implicitly deduces the relationship R
between C and the expected outcome, pro-
ducing the final result a.
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Figure 2: Atomic task generation workflow.

An atomic task is resolved with a single
target tool invocation. To simplify, we dis-
regard search and file system operations,
assuming a detailed input index i1 enables
retrieval through finite navigation.

Given an answer a, the most direct approach
to construct an atomic task involves prompting an
LLM to generate the corresponding question. How-
ever, questions produced in this manner often suffer
from low tool invocation rates, unpredictable dif-
ficulty levels, unregulated tool requirements, and
inconsistent verification complexity (see exp for
more details). To mitigate these issues, we assume
an ideal search engine capable of retrieving precise
data based on ir (e.g., paper titles, image paths,
music names, etc.). Under this assumption, we can
construct a task question ¢ = f(ir, R) — a (see
Figure 2), where f represents a sampling function
that enables the LLLM to generate the correspond-
ing natural language representation of the question
based on the provided information.

3 Automated Task Generation Workflow

3.1 Atomic Task Generation

We begin by compiling a corpus of unlabeled data
aligned with the tool’s input requirements. From
this corpus, we extract i and derive textual content
C via tool execution. For example, browsing, PDF,
and image comprehension tools yield webpage ti-
tles, PDF names, and image paths, from which we
extract textual content C for answer sampling. We
prompt an LLM to identify key candidate answers
a from C and infer their relationship R with C,
ultimately constructing question ¢ conditioned on

i7 and R.

3.2 Task Extension

In order to increase task difficulty in a scalable way,
we adopted two extended task strategies: the depth-
based expansion and the width-based expansion.
Depth-based expansion. We aim to construct
tasks requiring multiple sequential tool executions,
where each step depends on the output of the previ-
ous one. To achieve this, a new subproblem must
be derived from a known problem. The tool input
index ¢ at each stage exhibits strong extensibil-
ity due to (1) its frequent association with proper
nouns, which are less likely to be memorized by
LLMs, and (2) its natural suitability for recursive
definition. Specifically, a single atomic task fol-
lows the formulation:

q" = f(ip, R") — a. 1)

To extend a n-hot question ¢" into a (n+1)-hop

dependency task ¢!, we can define the recursive
formulation:
¢ = (" R") — a, 2
where we ensure that
¢t =fapt R =i )

Here, i%“ can represent any form of tool input,

such as a web title, document title, or music name.
Many search processes exhibit reversibility, e.g.,
retrieving lyrics from a song name or vice versa. To
obtain i?ﬂ and R"*!, we employ a search agent
to execute the retrieval process. To further mitigate
cyclic generation risks, we encourage the agent
to search for i%“ whose extracted textual content
C™*! forms a superset of the current i7, thereby
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Figure 3: Strategy for task extension

expanding contextual coverage. Finally, we let
the LLM analyze the relationship R’ between the
extracted C’ and ir.

Width-based expansion. The goal of the width-
based expansion is to generate a new problem that
needs to be decoupled into multiple subtasks to be
completed. For simplicity, for two subtasks ¢; —
a1 and g2 — ag, the combined subtask q,,;4+n can
be represented as

“

where the + indicates using LLM to merge and
rephrase two question strings.

(Quidth = @1 + q2) = a1 + as,

3.3 Task validation

Under this generation workflow, the verification
of generated tasks can be easily performed in two
distinct phases:

Atomic task verification: An atomic task is a sim-
ple agentic task, resolvable within a finite number
of tool executions. For each candidate, we evalu-
ate the task agent’s output within a limited number
of tool-use steps (e.g., three) and compare it with
the infer-LLM separately. The judge-LLM verifies
whether only the agent’s output contains the golden
answer, retaining only validated tasks.

Task expansion verification: This process solely
involves linguistic analysis, without relying on any
agent. During depth-wise extension, we analyze
the pre- and post-merge tasks ¢" and ¢"*! using
the judge-LLM to verify whether the last input in-
dex 77 in ¢" has been replaced by Gg"t!in ¢" L.
Additionally, the infer-LLLM derives the merged
task, while the judge-LLM filters out tasks where
the correct result is easily inferred, preventing in-
formation leakage that could render the problem
trivially solvable after merging.

This framework ensures efficiency by applying
agent reasoning only in atomic task validation at
creation, while relying on LLM-based validation
elsewhere for faster execution. It also enables com-
plex task generation beyond agent capabilities, with
reverse reasoning providing supervisory signals to
enhance agent learning.

4 Experiments

4.1 Corpus Construction

We collect seed documents to generate atomic tasks
for various tools, extracting key conclusions to en-
sure relevance. For instance, the PDF tool con-
structs atomic tasks using a document’s title and



Figure 4: distribution of data source

critical insights to enhance usability. To support
atomic task generation, we constructed a dataset
comprising webpages, PDF files, and images. Web-
page data constitutes the largest proportion (75%),
sourced from up-to-date news across multiple do-
mains. Image data accounts for 15%, primarily
derived from financial reports and research papers,
with filtering to retain images containing informa-
tion beyond text. PDF data makes up 10%, origi-
nating from English financial documents and aca-
demic publications.

4.2 Synthetic Tasks Analysis

To practically assess task difficulty, we sample
1,000 tasks and deploy both Smolagents (Roucher
et al., 2025) and its enhanced variant, Smolagents+
(see appendix for details), for execution and valida-
tion. While both agents performed identical tasks,
Smolagents+ incorporated advanced tool capabili-
ties for refined analysis.
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Figure 5: score distribution comparison
Responses were evaluated by comparing the

agents’ outputs to the golden answer, following
a three-point scoring scheme: 2 for fully correct

responses, 1 for answers that included the golden
answer but contained additional information, and 0
for incorrect responses.

We observed that task failure rates for the two
tested agents increase progressively from web
pages to PDFs and then to images within PDFs.
This trend suggests that tasks requiring multi-hop
web searches are comparatively easier for agents to
complete, whereas more complex comprehension
challenges—such as extracting information from
PDFs and interpreting embedded images—remain
difficult for the evaluated models.

Table 1: Accuracy comparison of Smolagents on the
GAIA dataset and our synthetic tasks.

Levell Level2 Level3 Avg.

GAIA 5471  43.02 2692 44.20

. PDF html  Image Avg.
syntheticTask | 504 507 221 424

Table 1 presents the accuracy comparison of
Smolagent on the GAIA dataset and our generated
dataset. The results indicate that tasks derived from
different tool corpora align with GAIA’s varying
difficulty levels, with image understanding tasks
posing the greatest challenge and achieving accu-
racy comparable to LEVEL3 data.

Unlike GAIA, which requires extensive human
annotation, our approach automates task genera-
tion, eliminating the need for labor-intensive data
labeling while maintaining scalability and adapt-
ability for agent self-evolution and optimization.

In Figure 5, task failure rates increase from web
pages to PDFs and then to images within PDFs, in-
dicating that multi-hop web search tasks are more
manageable for agents, while complex comprehen-
sion challenges, such as PDF extraction and image
interpretation, remain difficult. Additionally, these
results demonstrate that our generated tasks span
varying difficulty levels, including those that pose
significant challenges for current agent capabilities.

Table 2: Effectiveness of generated task data in prompt
learning and depth-wise extension across six expansion
attempts.

Method Pass rate  Time
Smolagent 549%  29.1s
+ Optimization 68.1%  23.5s
Smolagent+ 41.0%  31.5s
+ Optimization 51.2%  30.2s
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Figure 6: Generated case examples requiring multiple tool calls for completion.

4.3 Enhancing Task Generation Efficiency via
Prompt Learning

We employ rejection sampling in both atomic task
generation and task extension. To reduce the rejec-
tion rate and enhance sampling efficiency, several
key challenges must be addressed:

* Efficiently extract candidate answers from the
corpus to support atomic task formation and
minimize rejections (Section 3.1).

* Guide the agent to find an input index z‘%“,
ensuring coherent depth-wise expansion.

* Prompt the LLM in deep-wise extension to
articulate the relationship R"*! between the
previous input index ¢7. and observed content
C™*1, refining problem construction and mit-
igating incoherence-related rejections.

* Integrate tasks to ensure precise substitution
(@' = f(g"*', R™)), and clarity while
maintaining logical coherence.

Evaluation. We assess atomic task generation and
task extension separately. For atomic task gener-
ation, we evaluate four key metrics: (1) pass rate,
representing the proportion of successfully vali-
dated atomic tasks relative to candidate tasks. (2)
task density, quantifying the average number of
validated atomic tasks per document. (3) sampling

time, measuring the time required for processing
each document. (4) token consumption, assessing
the number of tokens utilized per document. For
task extension, we evaluate three key metrics: (1)
pass rate, the proportion of successful expansions
across ny attempts (set to 6 in our experiment).
(2) sampling time, measuring the time required for
extending each task. (3) token consumption, assess-
ing the number of tokens utilized per extension.
Prompt Learning. Intuitively, providing the LLM
with effective exemplars can further enhance its
ability to identify intermediate objectives. To this
end, we employ bootstrap few-shot learning (Khat-
tab et al., 2024) to systematically optimize the four
prompts corresponding to the aforementioned chal-
lenges, thereby facilitating the generated workflow.
For atomic task generation, each prompt is op-
timized by appending 20 randomly sampled ex-
amples. Multiple prompt configurations are then
generated by varying these samples, followed by
an iterative evaluation process where pass rates
determine the optimal selection of inserted exam-
ples. For task extension, we focus on depth-wise
expansion and adopt a similar strategy to optimize
the prompts using 10 randomly sampled examples.
These prompts are refined to maximize the number
of hops.
Results. Table 3 examines atomic task genera-
tion and depth-wise task extension before and after
prompt learning, highlighting the role of generated



Table 3: Effectiveness of generated task data in prompt
learning and depth-wise extension across six expansion
attempts.

Method Pass rate Time
Atomic Task 54.9%  29.1s
+ Optimization 68.1%  23.5s
Depth-wise @6 41.0%  31.5s
+ Optimization 51.2%  30.2s

task data in enabling self-evolution within both
workflows. For atomic task generation, the data
improves efficiency by reducing generation time
by 19.2% (29.1 to 23.5 seconds) and increasing
pass rate from 54.9% to 68.1%. Similarly, depth-
wise extension benefits from the data, with pass
rate rising by 10.2% (41.0% to 51.2%) across six
expansion attempts, and generation time decreas-
ing by 1.3 seconds (31.5 to 30.2 seconds). These
results validate the effectiveness of generated task
data in enhancing sampling efficiency and support-
ing workflow adaptation.

4.4 Fine-Tuning Agent Models Using
Synthetic Trajectory

To validate the effectiveness of our synthetic multi-
hop data method, we apply supervised fine-tuning
(SFT) and reinforcement learning (RL) using the
generated trajectory, refining an agent foundation
model—an LLM with tool-integrated reasoning.
Evaluation. We evaluate our models on three
multi-hop question answering benchmark datasets,
as follows: HotpotQA (Yang et al., 2018b),
Musique (Trivedi et al., 2023), and Bamboogle
(Press et al., 2023). These datasets encompass a
diverse range of search with reasoning challenges,
enabling a comprehensive evaluation.

Baselines. We conduct a comprehensive evalua-
tion by comparing various baseline models before
and after SFT with generated tasks to assess per-
formance improvements: (1) Base workflow: We
implement agent workflows (Search-R1 without
training) across different LLM models. (2) Search-
R1: An agentic workflow leveraging reinforcement
learning for LLM model optimization.
Implementation setup. We evaluate two model
variants: Qwen2.5-3B-Base and Qwen2.5-3B-
Instruct. To facilitate multi-hop reasoning, we syn-
thesize 3,202 multi-hop tasks and their trajectories
for SFT. Following the Chain-of-Action framework
(Zhang et al., 2025), we apply content masking to

search tool contexts during training. Our search
method, RL training data, and reinforcement learn-
ing strategy follow the Search-R1 (Jin et al., 2025).
For further training details, refer to Appendix B.

Method HotpotQA Musique Bamboogle Avg.
Qwen2.5-3b-Base

Base workflow 0.032 0.006 0.063 0.034
+SFT 0.232 0.067 0.224 0.174
Search-R1 0.284 0.049 0.088 0.140
+SFT 0.344 0.111 0.280 0.245
Qwen2.5-3b-Instruct

Base workflow 0.190 0.037 0.112 0.113
+SFT 0.221 0.049 0.248 0.173
Search-R1 0.324 0.103 0.264 0.230
+SFT 0.340 0.104 0.264 0.236

Table 4: Performance across three datasets and two
models. Avg. denotes average.

Results. As shown in Table 4, our method
demonstrates significant performance improve-
ments across three representative datasets and two
model variants.

First, our synthetic data demonstrates significant
value in standalone SFT training, achieving average
performance improvements of +14.0% (Qwen2.5-
3B-Base) and +6.0% (Qwen2.5-3B-Instruct) over
the base workflow for their respective models.
These gains validate the quality and effectiveness
of our synthetic data generation methodology.

Second, compared to the Search-R1 baseline, the
workflow with Qwen2.5-3b-Base achieves maxi-
mum gains of +19.2% on Bamboogle and +6.2%
on Musique. The Qwen2.5-3B-Instruct maintains
steady gains, with an average performance margin
of +0.6%. The strong performance of our SFT-
trained models underscores their suitability for sub-
sequent reinforcement learning, suggesting that our
synthetic data not only enhances immediate task
execution but also provides a more effective initial-
ization for RL optimization.

4.5 Effectiveness of Tool Context in
Constructing Agentic Tasks.

In atomic task generation, we integrate the addi-
tional input index ¢7 along with the relational map-
ping R between the tool context and a given answer
to systematically structure tasks.

To assess the efficiency of our atomic task gen-
eration approach, we perform an ablation study
using an LLM to directly generate a task g that re-
quires only one external tool to obtain the answer a,
explicitly excluding the conditions ¢7 and RR. Eval-
uation metrics include pass rate, task resolution



time, average tool usage, and the variance in tool
usage frequency.

Table 5: The effectiveness of tool context.

Method Passrate Time #Tool-use o2
LLMonly 185% 119.7s 2.8 1.2
Ours 43.0% 86.7s 2.1 0.4

Compared to atomic tasks generated via direct
prompting of GPT-4.1, our approach significantly
enhances atomic task generation efficiency. Specif-
ically, our workflow achieves a 24.5% higher pass
rate (43.0% vs. 18.5%) while reducing task gen-
eration time by 28 seconds (86.7s vs. 119.7s), un-
derscoring the limitations of vanilla LLMs in con-
structing agentic tasks. Furthermore, our atomic
tasks exhibit greater atomicity, as evidenced by a
lower average tool invocation count (2.1 vs. 2.8 per
query). Task complexity also remains more stable
and controllable, with a reduced variance in tool
usage (0.4 vs. 1.2). These findings underscore the
robustness of our workflow, validating its efficacy
in structured task generation.

5 Related Work

5.1 Instruction data generation

Synthetic data has emerged as a promising solution
for enhancing performance and enabling new ca-
pabilities. STaR (Zelikman et al., 2024) augments
learning with chain-of-thought (CoT) rationales but
often requires a substantial number of task queries
beforehand. Methods such as Self-Instruct (Wang
et al., 2022), Self-Chat (Xu et al., 2023b), Numi-
naMath (Li et al., 2024), and OpenMathInstruct-
2 (Toshniwal et al., 2024) generate data from mini-
mal seed examples using LLMs, yet they struggle
to extend task generation for multiple tool invo-
cations. WizardLM (Xu et al., 2023a) employs
Evol-Instruct to incrementally enhance instruction
complexity. However, it relies primarily on rule-
based modifications, making its generated instruc-
tions unsuitable for agentic task scenarios. Meta-
Math (Yu et al., 2023) generates mathematical data
by rewriting questions, but adapting agent tasks
to environmental feedback presents challenges be-
yond simple rephrasing. Weblnstruct (Yue et al.,
2024) extracts question-answer pairs from a pre-
training corpus across multiple domains; however,
the generated questions often fail to incorporate
tool utilization in their solutions.

5.2 Language Agent

Recent breakthroughs in large language models
have catalyzed the development of autonomous
agent systems. These systems demonstrate remark-
able capabilities In complex tasks, through tool in-
tegration and reasoning strategy optimization. Tool-
augmented architectures extend LLMs’ capabilities
by integrating code execution (Qin et al., 2024;
Wang et al., 2024), web browsing (Schick et al.,
2023; Qin et al., 2024), and other tools (Qin et al.,
2024), as exemplified by LangChain (LangChain,
2023). Studies indicate that the precision of tool
definitions significantly impacts task completion ef-
ficiency. Reasoning enhancement strategies based
on Chain-of-Thought (CoT) (Wei et al., 2022),
ReACT (Yao et al., 2023), and other prompting
techniques have substantially improved task plan-
ning capabilities. Recent work by Magnetic-One
leverages ol-preview’s complex reasoning abili-
ties for agent orchestration, Though challenges per-
sist in maintaining stability during dynamic envi-
ronment interactions. Reliability mechanisms like
self-verification (Paul et al., 2023; Fu et al., 2025;
Pan et al., 2024; Zhang et al., 2024), inference-
time search (Koh et al., 2024; Chen et al., 2024;
Song et al., 2024), and memory in multi-step
tasks. FRIDAY (Wu et al., 2024) uses iterative
self-optimization for continuous improvement.

6 Conclusion

We present TASKCRAFT, an automated workflow
for scalable, multi-tool, verifiable agentic task gen-
eration. Through width-based and depth-based ex-
pansion, our framework constructs hierarchically
complex challenges. Empirical results demonstrate
its effectiveness in structured task generation, im-
proving prompt optimization and supervised fine-
tuning while reducing reliance on human annota-
tion. Additionally, we release a large-scale syn-
thetic dataset to support future advancements in
agent tuning and evaluation.

7 Limitation

This work currently focuses on constructing atomic
tasks for common tools, including browsing, PDF
processing, and image analysis. Future iterations
will enable users to generate atomic tasks tailored
to their agents’ specific tool requirements. Due to
time and cost constraints, the evaluation primarily
assessed the problem-solving capabilities of smola-
gents and smolagents+.
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Figure 7: Analysis of all tasks.

As shown in Figure 7, task generation exhibits
a hierarchical decline across all domains as the
number of hop increase. The expansion of depth-
based and width-based layers leads to progres-
sively more complex and valuable tasks. Below are
the detailed statistics for tasks synthesized through
depth-based and width-based expansion.:

e PDF domain: 1-hop (34.6%) and 2-hop
(28.52%) together constitute 63.12% of tasks,
with 1-3 hop contributing 83.23% of the to-
tal. High-hop tasks (5-6 hop) account for only
5.34%, indicating balanced initial-layer ex-
pansion but limited deep-extension efficiency.

Image domain: Exhibits the highest 1-hop
proportion (38.37%) and strong reliance on
shallow extensions (1-3 hop: 85.66%). High-
hop tasks contribute the lowest proportion
(4.24%), likely due to the shallow scalabil-
ity of its data structure.
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e HTML domain: With the largest total task
count (6,804), it shows a 1-hop propor-
tion of 32.05%, including the highest abso-
lute 1-hop task count (2,181). While 1-3
hop tasks still dominate (81.32%), its high-
hop contribution (5-6 hop: 6.44%) is the
strongest across domains, suggesting better
deep-extension capability.
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Figure 8: Distribution of atomic data.

Atomic task analysis. We collect data from web-
pages, PDF files, and images to support the gen-
eration of atomic tasks, which form the basis of
the dataset, totaling 14,291 instances as shown in
Figure 8.

Among them, atomic conclusions extracted by
web-based tools account for the largest proportion,
reaching 64%. They are sourced from the latest
news and relevant resources covering academic,
cultural, economic, and governmental domains.
Atomic conclusions extracted by image-based tools
account for 19%, mainly derived from the charts
and tables in English financial reports and research
papers. Additional screening is carried out to en-
sure that the conclusions are not present in the
original text. Data extracted by PDF-based tools
accounts for 16%, also sourced from English finan-
cial reports and academic papers.

This data collection and task-construction pro-
cess ensures the effectiveness of atomic task gen-
eration, laying a high-quality foundation for its
subsequent expansion and optimization.

B Further Training Detail

For SFT training, we synthesize 3,202 multi-hop
tasks and their trajectories and apply content mask-
ing to search tool contexts in these trajectories.
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For RL training, we follow the Search-R1 (Jin
et al., 2025) and use the 2018 Wikipedia dump as a
knowledge source and the ES embedding model as
a retriever. For fair evaluation, we fix the retrieval
depth to 3 passages for all methods. We merge
the training sets of NQ and HotpotQA to form a
unified dataset. Evaluation is conducted on the test
or validation sets of three datasets to assess both
in-domain and out-of-domain performance. Exact
Match is used as the evaluation metric. In the PPO
settings, we set the learning rate of the policy LLM
to le-6 and that of the value LLM to le-5. Training
is conducted for 500 steps, with warm-up ratios
of 0.285 and 0.015 for the policy and value mod-
els, respectively. We use Generalized Advantage
Estimation with parameters A = 1 and v = 1. We
employ vLLM for efficient LLM rollouts, config-
ured with a tensor parallelism degree of 1 and a
GPU memory allocation ratio of 0.6. Our sampling
strategy utilizes a temperature parameter of 1.0 and
top-p threshold of 1.0. For policy optimization,
we apply KL divergence regularization with coef-
ficient 7=0.001 and implement a clip ratio €=0.2.
The action budget is constrained to 4, with a default
retrieval depth of 3 passages per query.

C Smolagents+

We developed Smolagents+, enhancing its web
search capabilities, integrating multiple informa-
tion sources, streamlining search results, and im-
plementing a query rewriting strategy to optimize
search performance.
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