
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HESSIANGRAD: OPTIMIZING AI SYSTEMS WITH
HESSIAN-AWARE TEXTUAL GRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large language models (LLMs) have significantly en-
hanced the ability of LLM-based systems to perform complex tasks through natural
language processing and tool interaction. However, optimizing these LLM-based
systems for specific tasks remains challenging, often requiring manual interven-
tions like prompt engineering and hyperparameter tuning. Existing automatic
optimization methods, such as textual feedback-based techniques (e.g., TextGrad),
tend to focus on immediate feedback, analogous to using first-order derivatives
in traditional numerical gradient descent. However, relying solely on first-order
derivatives can be limited when the gradient is either very small or fluctuates irreg-
ularly, which may slow down or stall optimization. To address these limitations,
better adaptation in regions with small or fluctuating gradients is necessary. Second-
order gradient methods, which incorporate the Hessian matrix, offer a promising
solution by enabling more precise adjustments. Inspired by this, in this paper, we
introduce HessianGrad, a novel optimization method that leverages textual feed-
back and tracks the iterative evolution of LLM systems responses across iterations,
leading to more dynamic and adaptive optimization. We evaluate the effectiveness
of HessianGrad on three tasks: prompt optimization, solution optimization, and
code optimization. Experimental results demonstrate that HessianGrad consistently
improves performance across all three tasks, achieving a 7.8% improvement in
prompt optimization, a 20.72% gain in solution refinement, and a 29.17% in-
crease in code optimization compared to baselines, highlighting its adaptability
and effectiveness in optimizing LLM-based systems.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have dramatically advanced AI’s ability to handle
complex tasks through natural language processing, enabling LLM-based systems, often referred to
as language agents, to interact with external tools and solve problems previously considered out of
reach (Brown, 2020; Achiam et al., 2023; Team et al., 2023; Anthropic, 2023; Touvron et al., 2023;
Zheng et al., 2024). However, the development of these language agents still requires significant
manual effort to break down tasks and fine-tune prompts, tools, and APIs, limiting scalability and
adaptability (Wei et al., 2022; Lyu et al., 2023; Zhou et al., 2024). This raises the need for automated,
scalable optimization techniques that can enhance language agents efficiently.

To this end, a number of recent efforts has been made on automatic optimization of language agents.
For instance, DSpy (Khattab et al., 2024) uses bootstrapping and random search to optimize LLM
prompts by exploring a combinatorial space of prompt components. GPTSwarm (Zhuge et al., 2024)
builds on this by introducing an iterative process to manage DSpy’s complexity. Other methods like
Agent-Pro (Zhang et al., 2024) and AgentOptimizer (Zhang et al.) target specific modules, refining
prompts, and agent policies. However, these approaches often suffer from local optimization, where
improvements in isolated components do not lead to overall system performance gains—similar to
early neural network practices (Hinton & Salakhutdinov, 2006).

Building on these efforts, more advanced research has introduced gradient descent-inspired techniques
for automatic prompt optimization. ProTeGi (Pryzant et al., 2023) pioneered the use of textual
gradients, where natural language feedback refines prompts. Agent Symbolic Learning (ASL) (Zhou
et al., 2024) extended this to optimize the entire agent system by treating prompts and tools as

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The illustrative comparison between HessianGrad and first-order optimization methods. First-order
methods rely solely on immediate feedback, often leading to stagnation in local optima and limiting further
improvement. In contrast, HessianGrad incorporates both immediate feedback and response evolution over time,
enabling continuous progress and the ability to escape stagnation.

learnable parameters. Textgrad (Yuksekgonul et al., 2024) further applied textual gradients to
instance-level optimization, refining outputs across multiple iterations.

While effective, these methods all rely on what can be described as first-order optimization. In this
context, first-order methods mean they adjust the agent’s behavior based on immediate feedback
from the current iteration, similar to how traditional first-order gradient descent updates parameters
using only the current gradient. This limits their ability to account for how responses evolve across
multiple iterations, leading to potential stagnation in suboptimal solutions. As shown in Figure 1 (a),
first-order methods often stagnate in local optima, resulting in repeated or minimally improved LLM
responses. This challenge motivates us to explore LLM optimization techniques that consider how
responses evolve over time, allowing for more adaptive and refined adjustments that can break free
from local optima across iterations.

In this paper, we introduce HessianGrad, an optimization method that builds upon TextGrad (Yuk-
sekgonul et al., 2024) by incorporating a deeper understanding of how responses change over time.
The optimization process begins with a forward pass, where the system executes a series of tasks,
logging inputs, outputs, and any prompt or tool usage. A language-based loss function then evaluates
the quality of the generated responses, quantifying how well they align with task objectives. In the
backward pass, feedback in the form of natural language critiques is used to adjust system variables.
HessianGrad improves this standard process by focusing on how response patterns evolve over
multiple iterations, enabling the system to make more informed and effective adjustments, ultimately
leading to improved performance in handling complex tasks.

As shown in Figure 1 (b), we calculate a refined gradient that accounts for changes in responses
across multiple iterations, enabling the system to adjust based on both immediate feedback and
long-term response patterns. This parallels the concept of second-order optimization in traditional
methods, where the Hessian matrix captures how the gradient itself changes. In our case, we model
the evolving relationship between consecutive prompts and responses, enabling the system to make
more informed adjustments. By incorporating this additional layer of information, the system can
avoid stagnating in suboptimal patterns, which is a common limitation of methods that rely solely on
immediate feedback.

We test the proposed method on three tasks, Prompt Optimization, Solution Optimization, and
Code Optimization. These tasks require handling complex reasoning, refining solutions to scientific
questions, and optimizing code under challenging constraints. Experimental results show that Hes-
sianGrad consistently improves performance across all tasks, showing its versatility and effectiveness
in overcoming the limitations of existing optimization methods.

2 BACKGROUND

Our approach draws inspiration from several key areas of research, particularly automated prompt
engineering, agent optimization, and gradient-based learning. Below, we highlight foundational
works in these areas and situate our method within this broader context.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

From Prompt Engineering to Agent Optimization. Prompt engineering has become a key focus
in both academia and industry, leading to several methods aimed at automating the process. Early
works (Pryzant et al., 2020; Yang et al., 2024) explored the use of structured prompts that enable
LLMs to optimize their own inputs. Other approaches (Prasad et al., 2022; Guo et al., 2023)
use search algorithms, like genetic algorithms, to automatically refine prompts. Building on the
success of automated prompt engineering, researchers have extended these concepts to broader agent
optimization. Techniques like Agent-Pro (Zhang et al., 2024) and AgentOptimizer (Zhang et al.) focus
on optimizing individual components, such as prompts or tools. However, these methods often treat
components in isolation, which can result in local improvements without significantly enhancing the
overall system. Search-based approaches, such as DSpy (Khattab et al., 2024) and GPTSwarm (Zhuge
et al., 2024), take a more comprehensive view by optimizing across the combinatorial space of agent
components. Despite their scope, these methods rely heavily on numerical metrics that are often
inadequate for real-world tasks like software development or creative writing. Additionally, they
struggle to optimize multiple components simultaneously or adapt dynamically to changes in the
agent pipeline.

Gradient-Based Approaches for Agent Optimization. Recent advancements have introduced
gradient descent-inspired techniques to optimize prompts more effectively. ProTeGi (Pryzant et al.,
2023) is among the first to use natural language feedback—referred to as textual gradients—to
iteratively refine prompts. However, as a first-order optimization method, ProTeGi adjusts based only
on immediate feedback from a single iteration, limiting its capacity to handle more complex, multi-
step tasks. Agent Symbolic Learning (ASL) (Zhou et al., 2024) extended this concept by treating
the entire agent system—including prompts, tools, and configurations—as learnable components,
much like backpropagation in neural networks. This allows for a more comprehensive optimization
but remains dependent on immediate feedback from each iteration. Textgrad (Yuksekgonul et al.,
2024) further advanced this first-order gradient approach by optimizing LLM responses using natural
language feedback. By treating feedback as a gradient, Textgrad refines responses without directly
altering the model’s parameters. While effective for simpler tasks, Textgrad struggles with deeper,
multi-step optimizations, frequently getting stuck in suboptimal states.

To address these limitations, momentum-based methods (Yuksekgonul et al., 2024) have been
introduced. These techniques track feedback trends across iterations, adjusting step sizes when
feedback becomes repetitive. This approach helps break stagnation but can sometimes lead to
overshooting, where adjustments are too drastic, destabilizing the optimization process. While
momentum-based methods provide more variation, they may still lack the fine-tuned control needed
for long-term improvement.

HessianGrad: Optimization Through Response Evolution. HessianGrad enhances traditional
optimization methods by focusing on how responses evolve over multiple iterations, enabling more
refined adjustments throughout the process. Instead of relying solely on immediate feedback, our
approach tracks the evolving relationship between consecutive prompts and their corresponding
responses. This parallels second-order methods in traditional optimization, where the the Hessian
matrix is used to capture changes in the gradient to guide more precise adjustments. However, rather
than directly computing numerical second derivatives, we model these iterative shifts in responses to
inform our adjustments, giving the system a broader understanding of response dynamics over time.
The key advantages of our approach include:

• Response Evolution Awareness: HessianGrad monitors changes across iterations, allowing for
more refined and adaptive optimization, unlike first-order methods that rely only on immediate
feedback.

• Avoiding Local Optima: By tracking iterative changes, HessianGrad prevents models from getting
stuck in suboptimal solutions, effectively overcoming a common limitation of first-order methods.

• Stabilized Optimization: Unlike momentum methods, which risk overshooting due to large
adjustments, HessianGrad applies carefully measured adjustments that ensure smoother and more
consistent progress throughout the optimization process.

Key Differences Between momentum-based methods and HessianGrad. The primary distinction
between momentum-based methods and our HessianGrad approach lies in how they address feedback
and response adaptation. Momentum-based methods focus on feedback similarity across iterations,
making larger adjustments when feedback becomes repetitive. However, they do not account for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

deeper changes in how the responses themselves evolve, overlooking key aspects like shifts in the
underlying response patterns.

In contrast, HessianGrad directly tracks how responses change over time, focusing on the long-term
evolution of the model’s outputs. This allows our method to adapt more effectively by considering
both the immediate feedback and the broader dynamics of the responses. By doing so, HessianGrad
avoids the issues caused by overshooting in momentum methods and ensures more stable, guided
improvements throughout the optimization process.

3 HESSIANGRAD: OPTIMIZING AI SYSTEMS WITH HESSIAN-AWARE
TEXTUAL GRADIENTS

3.1 METHOD OVERVIEW

In this work, we extend the TextGrad approach (Yuksekgonul et al., 2024) by tracking the evolution
of the LLM responses across iterations, allowing for more effective and precise optimization.

3.2 OVERVIEW OF OPTIMIZATION PIPELINE

Our method builds upon the general optimization pipeline used in LLM-based systems (Zhou et al.,
2024; Yuksekgonul et al., 2024), introducing natural language feedback (textual gradients) to refine
system responses over multiple iterations, instead of relying on numerical gradients.

Forward Pass. In the forward pass, the AI system is modeled as a computation graph where each
node represents a specific task. Inputs are processed sequentially through the nodes, with each node
generating outputs based on prior results. These intermediate outputs are stored in a trajectory, which
is later used in the backward pass.

Language Loss Computation. After the forward pass, an evaluator LLM assesses the system’s
performance by generating textual feedback, which serves as the loss. This feedback reflects how well
the system’s outputs align with the task objectives and drives the subsequent optimization process.

Backward Pass. In the backward pass, similar to numerical gradients in conventional deep learning,
textual gradients are backpropagated through the nodes of the system. These gradients, in the form
of natural language instructions, indicate how the system’s variables—such as prompts, tools, and
decisions—should be adjusted to improve the objective function. Starting from the final node, the
system computes the necessary updates for these variables as it moves backward. This process mirrors
backpropagation in neural networks, but the adjustments are determined by language feedback rather
than numerical values.

While the above process sets the stage for optimizing the system, the effectiveness of the optimization
depends on how well this feedback is utilized. In this context, different gradient-based optimization
methods come into play.

3.3 FIRST-ORDER OPTIMIZATION: TEXTGRAD APPROACH

TextGrad (Yuksekgonul et al., 2024) computes a first-order gradient based on the language loss
provided by the evaluator LLM. The first-order gradient captures the difference in response quality
between consecutive iterations. Mathematically, the first-order gradient is expressed as:

∇L
(
r(pt)

)
=

∂̃L
(
r(pt)

)
∂̃pt

(1)

where we use r(pt) to denote the response when the model is fed with input prompt pt and t to denote
the iteration. Also, we use ∂̃ to denote the TextGrad-style derivative of loss function with respective
to the input prompt due to its analogous nature to the actual derivative that is typically denoted as ∂.

3.4 HESSIANGRAD AND ITS ANALOGY TO SECOND-ORDER GRADIENT OPTIMIZATION

We seek to extend the previous method by extending Eq. 1 to consider the history of previous
prompts and their responses. Optimizing based on only the current response can lead to short-term

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

improvements but might results in stagnation, especially in complex tasks where deeper issues arise
over time. For example, a LLM might slightly refine responses with each iteration, yet without
considering the history of prompts and responses, it risks repeating similar patterns. By factoring in
the evolution of responses over multiple iterations, we aim to uncover underlying issues that cause
stagnation and enable the system to break free from suboptimal cycles.

Similarity Function. To quantify the differences between previous responses, we need to firstly
define a similarity function. We use S

(
r(pt), r(pt−1)

)
to denote the similarity between the responses

triggered by prompts pt and pt−1. This function plays a critical role in extending the optimization
process to account for the dynamics between successive iterations.

HessianGrad. With this setup, to extend Eq. 1 to encourage the prompt leading to more gradual and
thoughtful evolution of the response over multiple iterations, our new gradient can be expressed as

HessianGrad
(
L
(
r(pt)

))
=

∂̃L
(
r(pt)

)
+ S

(
r(pt), r(pt−1)

)
∂̃pt

, (2)

This new formulation guides the optimization process in a way that not only improves immediate
task performance but also promotes long-term, iterative refinement. We name our new method Eq. 2
HessianGrad. Practically, we rely on a LLM to evaluate the similarity function S

(
r(pt), r(pt−1)

)
.

Analogy to Second-order Derivative. To understand the intuition behind calling our approach an
analogy to second-order methods, consider how second-order derivatives (Hessians) in classical
optimization capture the rate of change of the gradient. The second-order derivative provides deeper
insight into the curvature of the optimization landscape, allowing for more informed adjustments that
go beyond the immediate gradient.

In our context, the similarity function S serves a parallel role by tracking how the system’s responses
shift from one iteration to the next. We can formalize this by using a generalized norm function
(denoted ∥ · ∥) to quantify the differences between two elements (either loss functions or prompts).
One way to concretely define the similarity function S

(
r(pt), r(pt−1)

)
is as follows:

S
(
r(pt), r(pt−1)

)
=

∥L
(
r(pt)

)
− L

(
r(pt−1)

)
∥

∥pt − pt−1∥
.

This equation mirrors the classical definition of a derivative when the difference between successive
prompts ∥pt − pt−1∥ is sufficiently small. Thus, by assuming ∥pt − pt−1∥ to be sufficiently small
and instructing the LLM to evaluate S

(
r(pt), r(pt−1)

)
as above, we can have

S
(
r(pt), r(pt−1)

)
=

∂̃L
(
r(pt)

)
∂̃pt

As a result, our HessianGrad in Eq. 2 can be rewritten as:

HessianGrad
(
L
(
r(pt)

))
=

∂̃L
(
r(pt)

)
∂̃pt

+
∂̃2L

(
r(pt)

)
∂̃pt2

, (3)

which is a second-order derivative method. By considering this higher-order information, HessianGrad
allows the system to escape from local optima and overcome the limitations of approaches that rely
solely on immediate feedback.

4 EXPERIMENTS - EVALUATION AND UNDERSTANDING OF MODELS

We evaluate HessianGrad on three challenging tasks: Prompt Optimization for Reasoning, Solution
Optimization, and Code Optimization. For prompt optimization, we use the Big Bench Hard
dataset (Suzgun et al., 2022) for Object Counting and the GSM8K dataset (Cobbe et al., 2021)
for grade-school math problems. In solution optimization task, we assess performance on the
Google-proof Question Answering (GPQA) benchmark (Rein et al., 2023), which consists of expert-
level multiple-choice questions, and the Machine Learning and College Physics subsets of the
MMLU (Hendrycks et al., 2020), a benchmark designed to evaluate the extent to which LLMs can

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

perform at a human level. For code optimization, we use the LeetCode Hard dataset (Shinn et al.,
2024), which includes complex coding problems that challenge both humans and language models.
For all LLMs used in our experiments, we consistently set the temperature to 0 (set to 1× 10−6 for
Llama 3.1 8B Instruct), allow a maximum of 2000 new tokens, and use a top-p value of 0.99. Across
all tasks, HessianGrad consistently achieves leading reasoning accuracy and strong code completion
rates, demonstrating superior performance across the majority of tasks. More details can be found in
Appendix A.

4.1 PROMPT OPTIMIZATION FOR REASONING

The goal of Prompt Optimization for Reasoning is to refine a basic prompt for a specific reasoning
task, enhancing the LLM’s effectiveness in reasoning. This task is ideal for evaluating optimiza-
tion methods, as reasoning tasks often involve large, complex search spaces where subtle prompt
adjustments can significantly influence the outcome.

Task Setup: We evaluate prompt optimization on two reasoning tasks: Object Counting from the
Big Bench Hard benchmark (Suzgun et al., 2022; Srivastava et al., 2022) and grade-school math
problem solving from the GSM8K dataset (Cobbe et al., 2021). For each task, when using the iterative
optimization methods, we use a batch size of 3 across 12 optimization iterations, allowing the model
to process a total of 36 training examples, randomly sampled with replacement. After each iteration,
we validate the prompt using a validation set, and if the validation accuracy improves, we update the
prompt accordingly. We compare the model’s accuracy on the test set after all 12 iterations, using
prompts generated by different optimization methods. Consistent with (Yuksekgonul et al., 2024), for
both tasks, we use the string-based exact match metric, which looks at the final numerical value
provided in the answer, and compares it to the ground truth answer. Detailed task setup is provided in
Appendix B.

Baselines and LLM Backends: We evaluate HessianGrad against three key baselines:

• Zero-shot Chain-of-Thought (CoT) (Kojima et al., 2022; Wei et al., 2022): This baseline initial-
izes all prompts using a zero-shot CoT strategy, where the model is prompted to "think step-by-step"
before generating an answer. This approach is widely regarded as a strong baseline for reasoning
tasks.

• TextGrad (Yuksekgonul et al., 2024): Textual feedback is treated as a first-order gradient to
iteratively optimize prompts.

• Momentum-Enhanced TextGrad (Yuksekgonul et al., 2024): This method extends the original
TextGrad framework by incorporating momentum. This variant aims to overcome potential
stagnation in the optimization process by enlarging updates to the prompt when previous feedbacks
on the variable are similar.

Our experiments perform prompt optimization separately on four LLMs: gpt-3.5-turbo-0125, GPT-4,
Gemini 1.5 Pro, and Llama 3.1 8B Instruct, with gpt-4o serving as the backend of the optimization
system. This multi-model setup allows us to evaluate the effectiveness of the optimization methods
across diverse architectures, ensuring a comprehensive assessment of their capabilities.

Results: As evidenced by Table 1, in both reasoning tasks, HessianGrad delivers a substantial
improvement over the Zero-shot CoT prompt, underscoring its effectiveness across diverse datasets
and model architectures. On the Object Counting task, with Llama 3.1 8B Instruct as the base model,
HessianGrad outperforms TextGrad by achieving a 6% higher accuracy, demonstrating its superior
ability to refine LLM responses. Similarly, on GSM8K, HessianGrad exceeds both TextGrad and
M-Textgrad across most LLM backends, with an average performance increase of 2% over TextGrad.
These results suggest that HessianGrad not only enhances the optimization process but also addresses
the inherent limitations of first-order feedback in TextGrad, leading to more accurate and refined
reasoning capabilities.

Universality: "HessianGrad’s universality is evidenced by its consistent performance across all
LLMs, including gpt-3.5-turbo-0125, GPT-4, and Llama 3.1 8B Instruct, where it delivers the highest
accuracy with an average improvement of 5-7% compared to the baselines. However, there is one
exception on the Gemini-1.5-Pro model, where HessianGrad slightly trails behind TextGrad. This
small performance gap may be due to the use of GPT-4o to guide the Gemini-1.5-pro in the prompt
optimization reasoning task. Given that Gemini-1.5-pro may exhibit more sophisticated reasoning

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Prompt optimization results for reasoning tasks for various LLMs, with gpt-4o as the
optimization engine. The values in parentheses represent the relative improvement in accuracy of the
method compared to TextGrad.

Dataset Models Accuracy % (Improv. over TextGrad)
CoT TextGrad M-TextGrad HessianGrad

Object Counting

GPT-3.5 77.8 (15.3%↓) 91.9 (-) 92.1 (0.2%↑) 95.5 (3.9%↑)
GPT-4 92.1 (2.2%↓) 94.2 (-) 90.0 (4.5%↓) 96.3 (2.2%↑)

Gemini 1.5 Pro 94.0 (0.0%) 94.0 (-) 94.0 (0.0%) 94.0 (0.0%)
Llama 3.1 8B Instruct 65.0 (15.6%↓) 77.0 (-) 80.0 (3.9%↑) 83.0 (7.8%↑)

GSM8k

GPT-3.5 72.9 (9.9%↓) 80.9 (-) 82.1 (1.5%↑) 85.9 (6.2%↑)
GPT-4 92.6 (0.4%↓) 93.0 (-) 93.9 (1.0%↑) 94.5 (1.6%↑)

Gemini 1.5 Pro 92.9 (0.4%↓) 93.3 (-) 93.9 (0.6%↑) 93.0 (0.3%↓)
Llama 3.1 8B Instruct 84.6 (0.0%) 84.6 (-) 84.6 (0.0%) 84.6 (0.0%)

capabilities than GPT-4o in this specific scenario, the transfer of guidance from GPT-4o could have
introduced suboptimal adjustments, leading to a slight degradation in performance. Despite this,
HessianGrad remains highly adaptable and effective across diverse LLM backends, reaffirming its
versatility as a powerful optimization tool.

We notice that on the GSM8K dataset with Llama-3.1, all methods show stagnant performance,
likely due to the model’s saturation on this task, leaving little room for further improvement from
optimization methods. Despite this, HessianGrad demonstrates clear advantages in enhancing weaker,
cost-effective models like gpt-3.5-turbo-0125, using feedback from stronger models such as gpt-4o.
By incurring a one-time optimization cost, HessianGrad provides optimized prompts for weaker
models, offering significant performance gains without the high inference costs of stronger models.
This efficiency makes it an ideal solution for cost-sensitive AI deployment.

4.2 SOLUTION OPTIMIZATION

We proceed to evaluate HessianGrad on the solution optimization task. This task aims to refine
and improve the solution to complex scientific or technical problems, such as questions in quantum
mechanics or organic chemistry. The solution will evolve dynamically through self-evaluation and
critique, challenging the LLM to continually refine its responses. This process aligns with test-time
training (Sun et al., 2020; 2024), where models are refined during testing, as well as with recent
progress in self-refinement for reasoning tasks (Yao et al., 2022; Madaan et al., 2024; Shinn et al.,
2024), which have demonstrated efficacy in iterative problem-solving.

Task Setup: We evaluate solution optimization on two challenging benchmarks: Google-proof
Question Answering (GPQA)(Rein et al., 2023), which consists of expert-level multiple-choice
questions in physics, biology, and chemistry, and two subsets of the MMLU benchmark(Hendrycks
et al., 2020), specifically focused on Machine Learning and College Physics. GPQA is a highly
difficult benchmark, with experts achieving 81% accuracy and skilled non-experts reaching only
22%, highlighting the challenge of the questions. Performance of LLMs on these benchmarks has not
yet saturated, making them ideal for benchmarking solution refinement. We use three iterations of
optimization for each question when using the iterative optimization methods. The final answer is
determined through majority voting across all iterations for all the iterative optimization methods.
Consistent with (Yuksekgonul et al., 2024), we use the string-based exact match metric. Detailed
task setup is in Appendix C.

Baselines and LLM Backends: We compare HessianGrad against three primary baselines for
solution optimization: Chain-of-Thought (CoT) (Kojima et al., 2022; Wei et al., 2022), TextGrad
(Yuksekgonul et al., 2024) and Momentum-Enhanced TextGrad. All methods use the Llama 3.1 8B
Instruct model as the backend. Detailed baseline configurations and prompting exemplars can be
found in Appendix C.

Results: As shown in Table 2, across all benchmarks, HessianGrad significantly improves the
performance of Llama 3.1 8B Instruct compared to all baselines. On average, across the three
benchmarks, HessianGrad achieves a 17.79% relative improvement in final accuracy over TextGrad.
This substantial gain highlights the effectiveness of incorporating second-order gradients into the
optimization process, enabling more precise adjustments and greater performance gains on solution
optimization tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Solution optimization results for Llama 3.1 8B Instruct, with itself as the optimization engine.
The values in parentheses represent the relative improvement of the method compared to TextGrad.

Dataset Stage Accuracy % (Improv. over TextGrad)

CoT TextGrad M-TextGrad HessianGrad

Google-proof QA

Before Training 21.7 (0.0%) 21.7 (-) 21.7 (0.0%) 21.7 (0.0%)
1st Iteration - 25.8 (-) 26.5 (2.7%↑) 26.8 (3.88%↑)
2nd Iteration - 26.8 (-) 29.3 (9.3%↑) 29.8 (11.19%↑)
3rd Iteration - 24.8 (-) 25.7 (3.6%↑) 27.8 (12.10%↑)
Final Results 21.7 (8.4%↓) 23.7 (-) 25.1 (5.9%↑) 28.3 (19.41%↑)

MMLU-Machine Learning

Before Training 51.8 (0.0%) 51.8 (-) 51.8 (0.0%) 51.8 (0.0%)
1st Iteration - 43.8 (-) 46.9 (7.1%↑) 48.2 (10.05%↑)
2nd Iteration - 43.8 (-) 45.2 (3.2%↑) 47.3 (7.99%↑)
3rd Iteration - 43.8 (-) 44.4 (1.4%↑) 46.4 (5.94%↑)
Final Results 51.8 (9.5%↑) 47.3 (-) 47.4 (0.2%↑) 57.1 (20.72%↑)

MMLU-College Physics

Before Training 54.7 (0.0%) 54.7 (-) 54.7 (0.0%) 54.7 (0.0%)
1st Iteration - 51.1 (-) 55.9 (9.4%↑) 58.3 (14.1%↑)
2nd Iteration - 51.1 (-) 61.0 (19.4%↑) 62.0 (21.3%↑)
3rd Iteration - 55.7 (-) 60.3 (8.3%↑) 65.7 (18.0%↑)
Final Results 54.7 (9.3%↓) 60.3 (-) 61.6 (2.2%↑) 66.4 (10.1%↑)

Before training1 2 3 4 5 6 Final Results
Stage

20

22

24

26

28

30

32

34

Ac
cu

ra
cy

 (%
)

TextGrad
M-TextGrad
HessianGrad

(a) Google-proof QA

Before training1 2 3 4 5 6 Final Results
Stage

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

Ac
cu

ra
cy

 (%
)

TextGrad
M-TextGrad
HessianGrad

(b) MMLU-Machine Learning

Before training1 2 3 4 5 6 Final Results
Stage

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

TextGrad
M-TextGrad
HessianGrad

(c) MMLU-College Physics

Figure 2: Loss curves w.r.t. accuracy on solution optimization task.

Deterioration in TextGrad: Interestingly, we observe performance deterioration with TextGrad on
the MMLU benchmark, where both intermediate and final results are worse than the initial state.
This highlights a key limitation of first-order optimization: relying solely on immediate feedback
without accounting for curvature can lead to unstable optimization, potentially causing the model’s
performance to degrade over time.

Fluctuations in Momentum-Based TextGrad: While Momentum-Based TextGrad avoids stagnation
seen in TextGrad method, its performance fluctuates significantly across iterations. This is due to its
reliance on larger, varied changes when feedback becomes repetitive, which can lead to overshooting
and destabilization. Though it helps break feedback loops, momentum-based methods often amplify
change without tracking the precise evolution of responses.

In contrast, HessianGrad overcomes these limitations by capturing gradient curvature, enabling
better global adjustments and avoiding stagnation, proving its superiority in complex optimization
scenarios. These results illustrate that by spending additional computational resources during test-
time, HessianGrad significantly enhances performance, even for advanced models. Its iterative,
second-order optimization approach makes it highly effective across diverse tasks, ensuring robust
and versatile optimization for AI systems requiring high performance and accuracy.

Empirical Analysis of Loss Curves. To evaluate the effectiveness of HessianGrad’s second-order-
inspired behavior, we further analyze the optimization curves on solution optimization. Since explicit
numerical loss values are unavailable, we use test accuracy as a proxy for loss to approximate the
optimization dynamics. To better illustrate the optimization trends and provide clearer insights into
the iterative process, we extend the number of iterations to 6 and plot the resulting loss curves in
Figure 2. The results demonstrate the following key effects:

• Escaping Local Optima: HessianGrad consistently surpasses performance plateaus, as shown in
Figure 2 (b), by leveraging cumulative response dynamics to guide updates.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

• Stabilizing Updates: Unlike baselines such as M-TextGrad, which exhibit oscillations and insta-
bility (e.g., Figure 2 (c)), HessianGrad achieves smoother optimization trajectories, demonstrating
its robustness in maintaining stability.

• Improved Performance in Complex Scenarios: Proxy loss curves across all datasets highlight
HessianGrad’s ability to make meaningful adjustments over iterative refinements.

These results validate that HessianGrad effectively simulates and operationalizes second-order-
inspired effects, enhancing optimization outcomes without relying on explicit numerical second-order
computations.

4.3 CODE OPTIMIZATION

The Code Optimization task aims to refine code snippets to improve their correctness and runtime
efficiency, often with limited supervision from local tests and iterative self-evaluation. This task
is also well-suited for evaluating optimization techniques as it requires handling intricate problem
constraints and optimizing through iterative adjustments.

Task Setup: We evaluate code optimization using the LeetCode Hard dataset (Shinn et al., 2024), an
online platform featuring coding challenges commonly used for technical interview preparation. The
primary metric for this task is the Completion Rate, which measures the percentage of problems
for which all test cases are passed, calculated as Number of problems passed

Total number of problems . Since LeetCode test cases are
not publicly available, generated code is submitted to the LeetCode platform for evaluation on these
unseen test cases. Results are averaged over multiple runs for robustness. Additional details of the
task setup are provided in Appendix D.

Baselines and LLM Backends: We evaluate HessianGrad against four key baselines on the LeetCode
Hard dataset using Llama 3.1 8B Instruct model as the backend:

• Zero-shot Baseline: We run a zero-shot baseline, following the same zero-shot baseline setup
described in (Shinn et al., 2024).

• Reflexion (Shinn et al., 2024): The state-of-the-art method for code optimization, which prompts an
LLM to self-reflect on generated code snippets and errors based on candidate unit tests. Reflexion
then prompts the LLM to update the code based on this self-reflection. We run Reflexion using a
one-shot setting, with one in-context demonstration to guide its behavior.

• TextGrad and Momentum-Enhanced TextGrad: We run TextGrad, M-TextGrad, and Hessian-
Grad in a zero-shot setting without demonstrations, refining the code based solely on feedback
from each iteration.

Table 3: Code optimization results (averaged over 5 seeds) for Llama 3.1 8B Instruct, with itself as
the optimization engine. The values in parentheses represent the relative improvement in completion
rate of the method compared to TextGrad.

Dataset Method Completion Rate (Improv. over TextGrad)

LeetCode Hard

Zero-shot 0.12 (50%↓)
Reflexion (1 demonstration, 5 iterations) 0.20 ± 0.002 (16.67%↑)
TextGrad (0 demonstrations, 5 iterations) 0.24 ± 0.005 (-)

M-TextGrad (0 demonstrations, 5 iterations) 0.25 ± 0.003 (4.17%↑)
HessianGrad (0 demonstrations, 5 iterations) 0.31 ± 0.006 (29.17%↑)

Results: As presented in Table 3, HessianGrad demonstrates the strongest performance on the
LeetCode Hard dataset, achieving a completion rate of 31%, which represents a 29.17% improvement
over the baseline TextGrad. This significantly surpasses Reflexion’s performance, which showed a
16.67% improvement, and Momentum-Enhanced TextGrad, which only offered a marginal 4.17%
increase over TextGrad. These results highlight the effectiveness and robustness of HessianGrad in
refining code snippets, especially in challenging coding problems where more nuanced optimization
techniques are required. While Momentum-Enhanced TextGrad does provide some improvement, its
performance lags considerably behind HessianGrad.

4.4 ABLATION STUDY

Given the simplicity of our method, there are no complex components that can be eliminated for a
traditional ablation. Instead, we conduct an ablation study by testing different prompt designs to
evaluate their impact on performance. Specifically, we compare our HessianGrad prompt, a variant

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Comparison of computational resources (GPU memory and runtime) for HessianGrad and
baseline methods across tasks.

Dataset Stage Time per Iteration (s) Total Time to Converge (s) GPU Usage (GB)

TextGrad M-TextGrad HessianGrad TextGrad M-TextGrad HessianGrad TextGrad M-TextGrad HessianGrad

Prompt Optimization Objective Counting 92.144 110.721 137.815 276.450 110.732 137.821 3.23 3.24 3.23

GSM8K 135.184 152.423 176.538 1351.85 1219.393 1235.774 3.23 3.23 3.23

Solution Optimization
Google-proof QA 153.522 178.879 197.235 614.216 1091.162 453.641 3.24 3.23 3.24

MMLU-Machine Learning 172.429 207.819 223.807 896.631 685.803 626.659 3.24 3.24 3.24

MMLU-College Physics 188.116 225.631 245.167 1636.612 1308.662 1054.229 3.24 3.24 3.24

Code Optimization LeetCode Hard 1078.783 1241.917 1352.174 18986.655 18472.411 15820.489 6.46 6.46 6.46

of this prompt, and the prompt used in TextGrad to highlight the effectiveness of our approach. More
details on the prompts can be found in Appendix E.

• HessianGrad Prompt: This is the prompt carefully designed for HessianGrad, which takes into
account both immediate feedback and the evolution of responses across iterations.

• Variant Prompt: It differs from our method by directly instructing the LLM to generate more
diverse responses, effectively pushing it towards greater variation with each iteration.

• TextGrad Prompt: Serving as the baseline, TextGrad’s prompt focuses primarily on immediate
feedback, making adjustments based solely on the latest response.

Table 4: Prompt optimization results for
reasoning tasks for various LLMs, with
gpt-4o as the optimization engine.

Dataset Method Accuracy %

Object Counting
TextGrad 77.0
Variant 80.0

HessianGrad 83.0

We conducted experiments on objective counting in the
prompt optimization task, with results shown in Table 6.

On the Object Counting task, the Variant prompt surpasses
TextGrad by encouraging larger, more diverse shifts in the
response space, enabling the model to explore more dis-
tinct outputs with each iteration. HessianGrad, on the other
hand, achieves even better results by promoting stable, it-
erative refinement rather than abrupt changes. While the
Variant’s strategy can lead to sudden, exaggerated shifts, HessianGrad ensures smoother, controlled
optimization, gradually fine-tuning responses for greater accuracy.

4.5 COMPARISON OF COMPUTATIONAL RESOURCES

To analyze the computational efficiency of HessianGrad, we compare its GPU memory usage and
runtime against baseline methods across three task categories. All experiments use Llama-3.1-8B as
the base LLM, running on a setup with 4 NVIDIA 3090 GPUs. The results are shown in Table 5.

We observe that while HessianGrad involves slightly higher per-iteration runtime due to its second-
order optimization-inspired design, it converges in fewer iterations, resulting in significant overall
savings. The detailed findings are as follows:

• On Object Counting dataset, HessianGrad reduces total runtime by 50% compared to TextGrad by
converging in fewer iterations despite slightly higher per-iteration costs.

• For solution optimization task, HessianGrad achieves 26.14% lower total runtime than TextGrad,
while M-TextGrad incurs 77.65% higher runtime due to instability.

• For code optimization task, HessianGrad reduces total runtime by 16.67% compared to baselines.
• For GPU memory usage, HessianGrad demonstrates similar requirements to baseline methods,

indicating no significant increase in computational resources.

5 CONCLUSION

In this paper, we introduced HessianGrad, an optimization framework that extends traditional methods
by considering the evolution of responses over multiple iterations. Instead of focusing only on
immediate feedback, HessianGrad incorporates insights from the similarity between consecutive
responses, akin to how second-order information is used in classic optimization. This approach
allows for more informed adjustments, addressing issues like stagnation and instability seen in earlier
methods. By capturing these iterative changes, HessianGrad achieves more stable and consistent
improvements across tasks, particularly in complex scenarios where simpler methods fall short. This
makes HessianGrad a valuable step forward in effective optimization for AI systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Introducing claude. 2023. URL https://www.anthropic.com/index/
introducing-claude.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Saiful
Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, et al. Dspy: Compiling
declarative language model calls into state-of-the-art pipelines. In The Twelfth International
Conference on Learning Representations, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning. arXiv preprint arXiv:2301.13379,
2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based
instruction search for prompting large language models. arXiv preprint arXiv:2203.07281, 2022.

Reid Pryzant, Richard Diehl Martinez, Nathan Dass, Sadao Kurohashi, Dan Jurafsky, and Diyi
Yang. Automatically neutralizing subjective bias in text. In Proceedings of the aaai conference on
artificial intelligence, volume 34, pp. 480–489, 2020.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with" gradient descent" and beam search. arXiv preprint arXiv:2305.03495, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

11

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. In International conference on
machine learning, pp. 9229–9248. PMLR, 2020.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic" differentiation" via text. arXiv preprint arXiv:2406.07496,
2024.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Offline training of language model agents with functions as learnable weights. In Forty-first
International Conference on Machine Learning.

Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li,
Yueting Zhuang, and Weiming Lu. Agent-pro: Learning to evolve via policy-level reflection and
optimization. arXiv preprint arXiv:2402.17574, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. Language agents as optimizable graphs. arXiv preprint arXiv:2402.16823, 2024.

12

https://openreview.net/forum?id=Bb4VGOWELI

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A SYSTEM PROMPT DETAILS FOR HESSIANGRAD

In HessianGrad, we use system prompts designed to guide iterative response refinement. The prompts
focus on comparing the current response with previous iterations, emphasizing gradual, thoughtful
evolution. They request the model to provide feedback not only on immediate changes but also on
patterns observed across multiple iterations.

we use the following glossary to the system prompt:

GLOSSARY TEXT

Glossary of tags that will be sent to you:
- <LM_SYSTEM_PROMPT>: The system prompt for the language model.
- <LM_INPUT>: The input to the language model.
- <LM_OUTPUT>: The output of the language model.
- <FEEDBACK>: The feedback to the variable.
- <CONVERSATION>: The conversation history.
- <FOCUS>: The focus of the optimization.
- <ROLE>: The role description of the variable.

The Optimize Prompts details are as follows:

OPTIMIZER SYSTEM PROMPT

"You are part of an optimization system that improves text (i.e., variable) by analyzing how
the responses evolve across multiple iterations. "
"Your goal is not just to make a single improvement, but to ensure that the variable evolves
naturally and meaningfully over time. "
"Focus on adjusting the variable in a way that each step introduces thoughtful, measured
changes based on past iterations, rather than drastic shifts. "
"The feedback provided will help guide these adjustments, but ensure that your improvements
maintain coherence and contextual alignment. "
"You MUST give your response by sending the improved variable between
{new_variable_start_tag} {{improved variable}} {new_variable_end_tag} tags. "
f"{GLOSSARY_TEXT}"

Textual Gradient Descent Prompt Prefix

"Here is the role of the variable you will improve: <ROLE>{variable_desc}</ROLE>."
"The variable is the text within the following span: <VARIABLE> {variable_short}
</VARIABLE>" "Here is the context and feedback we received for the variable:"
"<CONTEXT>{variable_grad}</CONTEXT>"
"Additionally, reflect on how the responses to this variable have evolved across iterations:"
"<PAST_ITERATIONS>{past_values}</PAST_ITERATIONS>"
"Make nuanced improvements, keeping in mind that too-similar responses suggest insufficient
change, but avoid making overly large changes. "
"Ensure that the response evolves in a coherent and thoughtful manner that aligns with the
context, feedback, and past responses."

The following is how we save gradients to the variable.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

GRADIENT TEMPLATE

"Here is a conversation:<CONVERSATION>{context}</CONVERSATION>"
"This conversation is part of a larger system. The output is used as {response_desc}. "
"Here is the feedback we received for {variable_desc} in the conversa-
tion:<FEEDBACK>{feedback}</FEEDBACK>"
"Additionally, consider how the responses to this variable have changed across previous
iterations:"
"<PAST_ITERATIONS>{past_values}</PAST_ITERATIONS>"
"Make sure future responses reflect a meaningful, gradual evolution based on these past
iterations, encouraging thoughtful progress rather than drastic shifts."

B PROMPT OPTIMIZATION

For the dataset split, we follow the settings used in TextGrad (Yuksekgonul et al., 2024). The Big
Bench Hard Object Counting dataset is divided into 50/100/100 samples for train/validation/test,
respectively. For GSM8K, we adopt the split from DSPy (Khattab et al., 2024), using 200/300/1399
samples for train/validation/test. In each task, we limit the training set to 36 samples, consistent with
the TextGrad setup. Example queries for each dataset are shown below:

Example Query for Big Bench Hard Object Counting

I have an apple, three bananas, a strawberry, a peach, three oranges, a plum, a raspberry, two
grapes, a nectarine, and a blackberry. How many fruits do I have?

Example Query for GSM8K

Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May?

For the momentum-enhanced TextGrad baseline, to ensure a fair comparison with HessianGrad,
which accounts for responses from all previous iterations, we set the momentum window to 12 so
that momentum-enhanced TextGrad has access to gradients from all prior iterations.

Regarding specific hyperparameters for the LLMs, we set the temperature to 0 (1× 10−6 for Llama
3.1 8B Instruct), allow a maximum of 2000 new tokens, and use a top-p value of 0.99.

C SOLUTION OPTIMIZATION

For the solution optimization task, we follow the experimental setup outlined by TextGrad (Yuk-
sekgonul et al., 2024). This ensures fair comparisons across all experiments. We evaluate on two
benchmarks: Google-Proof Question Answering (GPQA) (Rein et al., 2023) and two subsets from
the MMLU benchmark (Hendrycks et al., 2020), Machine Learning and College Physics. Following
the simple-evals repository practice, we employ string matching to extract the final answer (one
of ABCD) and compare it to the ground truth. The datasets comprise 198 questions in the GPQA
Diamond subset, 112 in MMLU Machine Learning, and 92 in MMLU College Physics. We compare
HessianGrad against three primary baselines for solution optimization:

• Chain-of-Thought (CoT) (Kojima et al., 2022; Wei et al., 2022): This baseline serves as our initial
baseline. This method employs a step-by-step reasoning process, providing a strong foundation for
comparison in complex problem-solving tasks.

• TextGrad (Yuksekgonul et al., 2024): This method leverages textual gradients to iteratively refine
solutions. For the solution optimization task, we apply three iterations of test-time updates using
TextGrad, refining the solution at each step. The process involves making one call to GPT-4o to
evaluate the test-time loss, another call to collect gradients, and a final call to update the solution
accordingly.

14

https://github.com/openai/simple-evals/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• Momentum-Enhanced Textgrad: This model builds upon the original TextGrad framework by
incorporating momentum. This variant aims to overcome potential stagnation in the optimization
process by adjusting the magnitude of updates based on the history of previous iterations. Like
TextGrad, we apply three iterations of test-time updates for this method.

For TextGrad, Momentum-Enhanced TextGrad, and our proposed HessianGrad method, we determine
the final answer through majority voting across all iterations. This approach ensures that we capture
the best performance from each method over multiple refinement steps.

Example Query for GPQA Diamond

Answer the following multiple choice question. The last line of your response should be
of the following format: ’Answer: $LETTER’ (without quotes) where LETTER is one of
ABCD. Think step by step before answering.
A) A = cyclohexane-1,3,5-trione, B = dimethyl fumarate
B) A = benzoquinone, B = dimethyl fumarate
C) A = benzoquinone, B = methyl 2-hydroxypropanoate
D) A = cyclohexane-1,3,5-trione, B = methyl 2-hydroxypropanoate

Example Comparison of TextGrad and HessianGrad

Answer the following multiple-choice question... Select the suitable reagents for the following
mentioned reactions. butan-2-one + NaCN + A —> 2-hydroxy-2-methylbutanenitrile 2-(4-
benzylphenyl)-2-hydroxybutanenitrile + B (H2O) —> 2-(4-benzylphenyl)-2-hydroxybutanoic
acid.
A) A = NaHSO3, B = CH3COOH
B) A = H3O+, B = HCl
C) A = NaHSO3, B = HCl
D) A = H3O+, B = CH3COOH
(Ground Truth Answer: C)
TextGrad Response: ...let’s evaluate the options: ... Option B: A = H3O+, B = HCl - H3O+
(hydronium ion) is a suitable proton source for cyanohydrin formation. HCl is a strong acid
and commonly used for hydrolyzing nitriles to carboxylic acids. Option C: A = NaHSO3,
B = HCl NaHSO3 is not typically used in cyanohydrin formation. HCl is suitable for
hydrolyzing nitriles. ... Based on the analysis, the most suitable reagents for the reactions
are: A = H3O+ for the cyanohydrin formation. B = HCl for the hydrolysis of the nitrile to a
carboxylic acid. Therefore, the correct answer is: Answer: B.
HessianGrad Response: ...The first reaction is the addition of cyanide ion (CN-) to butan-2-
one to form 2-hydroxy-2-methylbutanenitrile. This is an example of a cyanohydrin reaction,
which typically involves the addition of cyanide ion to an aldehyde or ketone in the presence
of a catalyst such as sodium bisulfite (NaHSO3).The second reaction is the hydrolysis of
2-(4-benzylphenyl)-2-hydroxybutanenitrile to form 2-(4-benzylphenyl)-2-hydroxybutanoic
acid. This is an example of a hydrolysis reaction, which typically involves the addition of
water (H2O) in the presence of a strong acid such as hydrochloric acid (HCl). Based on this
analysis, the suitable reagents for the reactions are:A = NaHSO3 (sodium bisulfite) for
the first reaction. B = HCl (hydrochloric acid) for the second reaction. So, the correct
answer is: Answer: C.

Case Study: In this example, TextGrad incorrectly selects H3O+ for cyanohydrin formation, mis-
understanding the role of NaHSO3, which is a typical catalyst in such reactions. Its reliance on
first-order feedback leads to an erroneous conclusion. In contrast, HessianGrad correctly identifies
NaHSO3 as the catalyst for the first reaction and HCl for the hydrolysis in the second reaction. By
leveraging second-order gradients, HessianGrad better captures the complexities of the chemical
mechanisms, leading to the correct answer.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D CODE OPTIMIZATION

In the code optimization task, we primarily rely on the settings from previous work, particularly
TextGradYuksekgonul et al. (2024), to ensure a fair comparison across experiments. Specifically,
we adopt the version of ReflexionShinn et al. (2024) as used in TextGrad, which includes minor
modifications for compatibility within the TextGrad framework.

For the baselines, we employ two key approaches:

• Reflexion Shinn et al. (2024): In this setup, the language model is guided by a one-shot prompt
instructing it to provide feedback on the code it generates. The process begins by generating an
initial solution based on a provided code prompt. The solution is first tested locally, and if it passes,
it is then submitted to the LeetCode platform for a more rigorous evaluation using harder test
cases. If the local tests fail, Reflexion is used to request feedback from the model to refine the
code. This feedback-guided optimization is repeated for up to 5 iterations, during which the model
continuously improves the code until it successfully passes local tests and is ready for submission.

• TextGrad Yuksekgonul et al. (2024): This baseline runs 5 independent trials, each with five seeds
with [15, 17, 21, 55, 91], and averages the results to ensure consistency. During each optimization
iteration, TextGrad performs three key operations: first, it makes a call to GPT-4o to evaluate the
test time loss; next, it collects gradients based on the loss; finally, the code snippet is updated
according to the gradients. This process repeats, optimizing the code over several iterations to
minimize the test time loss and improve performance on the test cases.

The number of coding problems in LeetCodeHard is 39. We set By following the setup from TextGrad,
we ensure that both Reflexion and TextGrad are evaluated under the same conditions, facilitating a
fair and consistent comparison with these two baselines and HessianGrad.

Example Query for LeetCode Hard

def minimumTime(grid: List[List[int]]) -> int:
"""
You are given a ‘m x n’ matrix ‘grid’ consisting of non-negative integers where ‘grid[row][col]‘
represents the minimum time required to be able to visit the cell ‘(row, col)’, which means
you can visit the cell ‘(row, col)’ only when the time you visit it is greater than or equal to
‘grid[row][col]’.
You are standing in the top-left cell of the matrix in the ‘0th’ second, and you must move to
any adjacent cell in the four directions: up, down, left, and right. Each move you make takes
1 second. Return the minimum time required in which you can visit the bottom-right cell of
the matrix. If you cannot visit the bottom-right cell, then return ‘-1’.
Example 1:
Input: grid = [[0,1,3,2],[5,1,2,5],[4,3,8,6]]
Output: 7
Explanation:
One of the paths that we can take is the following:
- at t = 0, we are on the cell (0,0).
- at t = 1, we move to the cell (0,1). It is possible because grid[0][1] <= 1.
- at t = 2, we move to the cell (1,1). It is possible because grid[1][1] <= 2.
- at t = 3, we move to the cell (1,2). It is possible because grid[1][2] <= 3.
- at t = 4, we move to the cell (1,1). It is possible because grid[1][1] <= 4.
- at t = 5, we move to the cell (1,2). It is possible because grid[1][2] <= 5.
- at t = 6, we move to the cell (1,3). It is possible because grid[1][3] <= 6.
- at t = 7, we move to the cell (2,3). It is possible because grid[2][3] <= 7.
The final time is 7. It can be shown that it is the minimum time possible.
Example 2:
Input: grid = [[0,2,4],[3,2,1],[1,0,4]]
Output: -1
Explanation:
There is no path from the top left to the bottom-right cell. Constraints:
* ‘m == grid.length’

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

* ‘n == grid[i].length’
* ‘2 <= m, n <= 1000’
* ‘4 <= m * n <= 105’
* ‘0 <= grid[i][j] <= 105’
* ‘grid[0][0] == 0’
"""

Example Comparison of TextGrad and HessianGrad

Task Description:
"""
You have k bags. You are given a 0-indexed integer array weights where weights[i] is the
weight of the ith marble. You are also given the integer k.
Divide the marbles into the k bags according to the following rules:
• No bag is empty.
• If the ith marble and jth marble are in a bag, then all marbles with an index between the
ith and jth indices should also be in that same bag.

• If a bag consists of all the marbles with an index from i to j inclusively, then the cost of the
bag is weights[i] + weights[j].

The score after distributing the marbles is the sum of the costs of all the k bags.
Return the difference between the maximum and minimum scores among marble distribu-
tions.
Example 1:
Input: weights = [1,3,5,1], k = 2
Output: 4
Explanation:
The distribution [1],[3,5,1] results in the minimal score of (1+1) + (3+1) = 6.
The distribution [1,3],[5,1], results in the maximal score of (1+3) + (5+1) = 10.
Thus, we return their difference 10 - 6 = 4.
Example 2:
Input: weights = [1, 3], k = 2
Output: 0
Explanation:
The only distribution possible is [1],[3].
Since both the maximal and minimal score are the same, we return 0.
"""
def putMarbles(weights: List[int], k: int) -> int:
Code Generated by TextGrad:
from typing import List

def putMarbles(weights: List[int], k: int) -> int:
n = len(weights)
if k == 1:

return 0

Calculate the cost of each possible bag
costs = [weights[i] + weights[i + 1] for i in range(n - 1)]

Sort the costs to find the minimum and maximum possible scores
costs.sort()

The minimum score is the sum of the smallest k-1 costs
min_score = sum(costs[:k-1])

The maximum score is the sum of the largest k-1 costs
max_score = sum(costs[-(k-1):])

return max_score - min_score

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Tests that the code passed:
No tests passed.

Tests that the code failed:

assert putMarbles([1,3,5,1], 2) == 4 # ERROR: This unit test fails.
Output was 2, but expected value was: 4

assert putMarbles([1,3], 2) == 0 # ERROR: This unit test fails.
Output was -1, but expected value was: 0

Code Generated by HessianGrad
from typing import List

def putMarbles(weights: List[int], k: int) -> int:
n = len(weights)
if k == 1 or k == n:

return 0

Calculate the cost of each possible bag
costs = [weights[i] + weights[i + 1] for i in range(n - 1)]

Sort the costs to find the minimum and maximum possible scores
costs.sort()

The minimum score is the sum of the smallest k-1 costs
min_score = sum(costs[:k-1])

The maximum score is the sum of the largest k-1 costs
max_score = sum(costs[-(k-1):])

return max_score - min_score

Tests that the code passed:
assert putMarbles([1,3,5,1], 2) == 4
assert putMarbles([1,3], 2) == 0

Tests that the code failed:

No tests failed.

E ABALTION STUDY

E.1 ABLATION STUDY

Given the simplicity of our method, there are no complex components that can be eliminated for a
traditional ablation. Instead, we conduct an ablation study by testing different prompt designs to
evaluate their impact on performance. Specifically, using Llama-3.1-8B-Instruct as the LLM backend,
we compare our HessianGrad prompt, a variant of this prompt, and the prompt used in TextGrad to
highlight the effectiveness of our approach.

• HessianGrad Prompt: This is the prompt carefully designed for HessianGrad, which takes into
account both immediate feedback and the evolution of responses across iterations.

• Variant Prompt: It differs from our method by directly instructing the LLM to generate more
diverse responses, effectively pushing it towards greater variation with each iteration.

• TextGrad Prompt: Serving as the baseline, TextGrad’s prompt focuses primarily on immediate
feedback, making adjustments based solely on the latest response.

The detailed prompts for the variant are as follows:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

OPTIMIZER SYSTEM PROMPT

"You are part of an optimization system that improves text (i.e., variable). "
"You will be asked to creatively and critically improve prompts, solutions to problems, code,
or any other text-based variable. "
"You will receive some feedback, and use the feedback to improve the variable. "
"Pay attention to the role description of the variable, and the context in which it is used. "
"Importantly, focus on creating responses that are varied and diverse in nature. "
"You MUST give your response by sending the improved variable between
{new_variable_start_tag} {{improved variable}} new_variable_end_tag tags. "
"The text you send between the tags will directly replace the variable."
f"{GLOSSARY_TEXT}"

Textual Gradient Descent Prompt Prefix

"Here is the role of the variable you will improve: <ROLE>{variable_desc}</ROLE>."
"The variable is the text within the following span: <VARIABLE> {variable_short}
</VARIABLE>"
"Here is the context and feedback we got for the variable:"
"<CONTEXT>{variable_grad}</CONTEXT>"
"Improve the variable ({variable_desc}) using the feedback provided in <FEEDBACK> tags.
"
"Ensure that your response introduces new and diverse ways of solving the problem or
addressing the prompt."

The following is how we save gradients to the variable.

GRADIENT TEMPLATE

"Here is a conversation:<CONVERSATION>{context}</CONVERSATION>"
"This conversation is part of a larger system, where varied and creative outputs are important.
"
"The output is used as {response_desc}. Here is the feedback we received for {variable_desc}
in the conversation:"
"<FEEDBACK>{feedback}</FEEDBACK>"
"Encourage diversity in your improvements."

Table 6: Prompt optimization results for
reasoning tasks for various LLMs, with
gpt-4o as the optimization engine.

Dataset Method Accuracy %

Object Counting
TextGrad 77.0
Variant 80.0

HessianGrad 83.0

We conducted experiments on objective counting in the
prompt optimization task, with results shown in Table 6.

On the Object Counting task, the Variant prompt surpasses
TextGrad by encouraging larger, more diverse shifts in the
response space, enabling the model to explore more dis-
tinct outputs with each iteration. HessianGrad, on the other
hand, achieves even better results by promoting stable, it-
erative refinement rather than abrupt changes. While the
Variant’s strategy can lead to sudden, exaggerated shifts, HessianGrad ensures smoother, controlled
optimization, gradually fine-tuning responses for greater accuracy.

19

	Introduction
	Background
	HessianGrad: Optimizing AI Systems with Hessian-Aware Textual Gradients
	Method Overview
	Overview of Optimization Pipeline
	First-Order Optimization: Textgrad Approach
	HessianGrad and Its Analogy to Second-Order Gradient Optimization

	Experiments - Evaluation and Understanding of Models
	Prompt optimization for reasoning
	Solution optimization
	Code Optimization
	Ablation Study
	Comparison of Computational Resources

	Conclusion
	System Prompt Details for HessianGrad
	Prompt Optimization
	Solution Optimization
	Code Optimization
	Abaltion Study
	Ablation Study

