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ABSTRACT

We introduce dMARK, the first decoding-guided watermarking method for dis-
crete diffusion language models (dLLMs). Unlike prior approaches that mod-
ify token probabilities, IMARK embeds watermark signals by steering the de-
coding order according to a binary hashing rule that prioritizes tokens whose
indices match a target parity, leaving the underlying probability distribution in-
tact. AMARK is broadly compatible with common decoding strategies (e.g., confi-
dence, entropy, and margin-based) and can be further enhanced with beam search.
Experiments on multiple dLLMs and benchmark datasets show that dAMARK
achieves strong detectability with minimal quality degradation. The watermark
also remains robust under post-editing operations, including insertion, deletion,
substitution, and paraphrasing, establishing decoding-guided watermarking as a
practical solution for dLLMs.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress in generating coherent and
high-quality text, enabling applications in question answering (Yue), 2025)), programming (Jiang
et al., 2024)), and academic writing (Perkins| 2023). At the same time, the ability of LLMs to
generate human-like text poses serious risks. Machine-generated content can be weaponized for
disinformation (Ranade et al.|[2021), phishing (Karanjail [2022), or plagiarism (Kasneci et al.,|2023),
and can exacerbate issues of copyright infringement (Rillig et al.,|2023), identity theft (Kumar et al.,
2024])), and fraud (Mirsky et al. [2023). As LLMs become more accessible, reliable methods to
distinguish machine-generated from human-authored text are urgently needed (Bender et al.| 2021}
Crothers et al | [2023)).

Watermarking has emerged as one of the most practical approaches for content provenance.
In LLMs, watermarking methods embed imperceptible statistical signals that can later be de-
tected (Feng et al., 2025; Wu et al., 2025). Existing approaches, however, are largely designed
for autoregressive models (ARMs) and fall into two categories. The first biases token probabili-
ties, typically by partitioning the vocabulary into “green” and “red” lists (Kirchenbauer et al., 2023}
Zhao et al., 2024); while effective in theory, this biasing distorts the output distribution and degrades
text quality. The second aims for distortion-free watermarking, where token probabilities remain
unchanged but token selection is conditioned on long pseudo-random key sequences (Kuditipudi
et al., 2024); although this avoids distributional shifts, it requires long keys, which slow detection
and limit scalability. Despite their differences, both approaches fundamentally assume left-to-right
generation, restricting applicability to ARMs.

Recent works have introduced discrete diffusion language models (ALLMs) (Lou et al., |2024; [Nie
et al.||20235)) as a promising alternative to the widely deployed autoregressive paradigm. By modeling
conditional probabilities under arbitrary masking patterns, dLLLMs match or exceed the performance
of ARMs in low-resource regimes, while offering additional benefits such as adaptive decoding and
controllable generation (Yu et al.,| 2025} |Li et al., 2025)). Despite the recent progress of dLLMs, a wa-
termarking method specifically tailored to these models remains underexplored. This gap motivates
our work on decoding-based watermarking designed for their order-agnostic generation process.

This paper introduces dMARK, the first watermarking method designed for dLLMs. Rather than
modifying token probabilities, IMARK embeds a watermark by adjusting which position is revealed
first. At each decoding step, a hashing function assigns every candidate token a binary value, and
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Figure 1: Overview. (Left) Existing autoregressive watermarking methods generate green/red token sets
by hashing the preceding context and embed watermark signals by biasing the sampling distribution toward
green tokens. (Middle) In contrast, decoding in dLLMs does not follow the traditional left-to-right generation
process; instead, the model selects high-reward tokens at each position even in the absence of prior context.
(Right) The proposed method leverages these rewards and embeds watermark signals by prioritizing tokens
with high reward that satisfy the parity condition.

the decoder prioritizes positions where the binary value matches the parity of the position index.
Over an entire sequence, this creates a systematic bias: the proportion of tokens aligned with the
parity condition (the matching ratio) is systematically greater than the 0.5 baseline expected under
randomness. This ratio then serves as the test statistic for watermark detection, while the underlying
distribution pp (y|z) remains unchanged, preserving text quality.

This design has important implications. First, AMARK is general-purpose: it can be combined
with any decoding strategy, including confidence, entropy, margin, or greedy-based rules. Sec-
ond, it introduces no distortion to the output distribution, providing quality preservation superior
to probability-biasing approaches. Third, it is inherently robust: even after tokens are inserted,
deleted, or substituted, watermark traces persist. By combining parity-guided decoding with a
sliding-window detection procedure, AMARK reliably identifies watermarked text, even under heavy
random edits or paraphrasing, because shifts in token alignment produce predictable deviations from
the baseline matching ratio of 0.5.

We evaluate dIMARK on benchmark datasets using state-of-the-art dLLMs, including LLaDA and
Dream. Our experiments show that AIMARK achieves strong detectability, minimal quality loss, and
resilience against a wide range of post-editing scenarios. These results demonstrate that decoding-
guided watermarking is not only feasible but also a practical path toward reliable provenance in
order-agnostic language models.

2 RELATED WORKS

Watermarking in LLMs. Digital watermarking has long been used to trace provenance and em-
bed imperceptible signals across text, images, and other media (Petitcolas et al.l |{1999; [Zhu et al.|
2018 [Liang et al., [2024). In LLMs, most methods embed watermarks by biasing token proba-
bilities. A common approach (Kirchenbauer et al., 2023 [Zhao et al.l [2023; 2024)) partitions the
vocabulary into “green” and “red” sets, increasing the probability of green tokens and detecting
watermarks via statistical tests. While theoretically grounded, such biasing can distort generation
quality. Distortion-free variants (Kuditipudi et al., 2024; (Christ et al., [2024) preserve probability
distributions but require long keys and remain tailored to left-to-right generation.

More recently, [Chen et al.|(2025)) extended watermarking to order-agnostic models, but their method
still biases token probabilities, preserving the trade-off between detectability and text quality. In
contrast, our work is the first to exploit the decoding strategy of discrete diffusion language models
(dLLMs), embedding watermarks without modifying probabilities and ensuring compatibility with
diverse decoding strategies.

Discrete Diffusion LLMs. Diffusion models (Ho et al., [2020; |Song et al.l [2021; 2022)) have
achieved strong results in continuous domains such as images (Rombach et al. [2022; Saharia
et all 2022) and have been adapted to discrete domains through Masked Diffusion Models
(MDMs) (Austin et al., 20215 [Lou et al., [2024; Sahoo et al., [2024; Shi et al., 2024; /Ou et al.,[2025)),
which iteratively denoise masked tokens. A key property of MDMs, and by extension dLLMs, is
their order-agnostic generation: they learn to model conditional distributions under arbitrary mask-
ing patterns. This order-agnostic nature admits a wide variety of decoding strategies (e.g., random,
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Algorithm 1 Generic dLLMs Decoding Algorithm 2 dMARK: Watermarks by Decoding
Require: Prompt x; output length n; predictor Require: Prompt z; output length n; predictor
po; decoding strategy F Dg; decoding strategy F'; matching set G

Iy« [MASK]™; Z+ 0 I: y«+ [MASK]™; Z+ 0
2. fori=1,...,ndo 2. fort=1,...,ndo
3 Get{(rj,vj) = F(jipo,z,yr)lj ¢ Z} 3 Get{(rj,v;) = F(jipo, 2, yz) | j ¢ I}
4@ C{j¢1} 4 C—{j¢TI|v;€q;}
5 kY ¢ argmax;eery 50 ifC=0thenC « {j ¢ Z} endif
6: Yk — Vg I+ TU{k*} 6: k* « argmax;cc1;
7: end for 7: Yix = Uprs I+ TU{k*}
8: Return y 8: end for
9: Return y

confidence, entropy, and margin-based), making dLLMs more flexible than autoregressive models
(ARMs), where generation is strictly left-to-right.

Recent large-scale dLLMs such as LLaDA (Nie et al., [2025; |Zhu et al., [2025)) and Dream (Ye et al.,
2025)) demonstrate that this framework scales competitively, often matching or surpassing autore-
gressive models (ARMs), especially in low-resource regimes (Prabhudesai et al., [2025)). Industrial
systems including Mercury (Labs et al. |2025) and Gemini Diffusion (DeepMind, [2025) further
showcase the efficiency of dLLMs. These advances motivate watermarking methods specifically
tailored to dLLMs. Our work addresses this gap by introducing the first decoding-guided water-
marking scheme, exploiting their order-agnostic property and diverse decoding strategies to embed
robust watermarks without sacrificing quality.

3 DECODING-GUIDED WATERMARKING FOR dLLMS

3.1 GENERIC DECODING STRATEGY

Discrete diffusion language models (dLLMs) differ from autoregressive models in a crucial way:
instead of being forced to generate text strictly from left to right, they can in principle reveal tokens
in any order. This property arises because dLLMs are trained to predict a missing token given an
arbitrary subset of revealed tokens. As a result, the same sequence can be generated through many
different decoding orders, making decoding strategy an essential design choice.

Formally, let pq., denote the true data distribution. Given a prompt z = (x1,..., %), the goal
of dLLMs is to generate a sequence y = (y1,...,Yn) such that ¥ ~ pgua(y|z). For any subset of
revealed indices Z C {1,...,n} (where y; is revealed for j € Z) and a target index ¢ ¢ Z, the
dLLMs learn a predictor py that approximates

Po(Yilyz, *) = Paaa(yilyz, ),

while treating the remaining tokens as [MASK]. This means that, ideally, the distribution of y can
be factorized along any permutation 7 of {1,...,n}:

pdata(y|$) = H pdata(yr(i) |y7r(<i)> {E) ~ HPG (y'n'(i) |y7r(<i)a 37)7
i=1 i=1
where yr(<iy = {Yr@|k < i}. In theory, the choice of order 7 should not matter. In practice,
however, imperfect training causes different decoding strategies to yield different results, making
the decoding strategy a central component of dLLMs generation (Kim et al., 2025)). Accordingly,
the watermark signal observed in practice arises from approximation error and decoding heuristics.

At each decoding step 4, let Z = {x(1),...,7(i — 1)} be the set of revealed indices. A decoding
strategy J(j; pg, ¢, yz) returns, for each unrevealed index j ¢ Z, a reward r; and a sampled candi-
date token v;. The next index is then chosen as 7 (i) = arg max ;¢ 15, and the corresponding token
will be Y (;) <= vr(s)- This generic decoding procedure is summarized in Algorithmm

A range of decoding strategies F have been proposed, reflecting trade-offs between certainty and
exploration (Nie et al.} 2025} |Ye et al., [2025; |[Kim et al.| 2025). Common examples include:
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* Random: rewards r; are sampled uniformly at random; sample v; ~ po(y; = -|yz, ).

‘lyz, x) and set r; = pp(y; = vjlyz, ).

* Confidence: sample v; ~ py(y; =
* Entropy: setr; = —H(Y; | yz, x), where H (-) denotes the conditional entropy under pg.

* Margin: let v; = argmax, po(v | yz, ) and define 7; as the probability gap between the
top-1 and top-2 candidates.

In decoding strategies that involve stochastic sampling, the token v; may either be drawn from
po(- | yz,x) or chosen greedily as

v; = argmaxpg(yj = vlyr, x).
v

Finally, although parallel decoding methods exist that reveal multiple tokens at once to speed up
generation (Ben-Hamu et al.| 2025 Wei et al.| [2025)), here we focus on the sequential framework.
This provides a clean foundation on which we will build our watermarking method.

3.2 PROBLEM SETUP

Our goal is to design a watermarking strategy specifically for dLLMs. In this setting, watermarking
means that a sequence ¥y ~ paaa(y|z) and a sequence y' ~ pg(y|z) generated by dLLMs can be
made statistically distinguishable, while still preserving the performance of the model.

Most existing watermarking methods for LLMs achieve detectability by biasing token probabili-
ties. Although effective, such approaches distort the model’s output distribution and can noticeably
degrade text quality. dLLMs, however, offer a unique opportunity: because pg(y|x) is, in princi-
ple, invariant to the order in which tokens are generated, watermarking can instead be realized by
modifying the decoding strategy J rather than altering probabilities.

In our formulation, the watermark is embedded directly through the decoding process. We design
an adaptive ordering strategy in which the choice of which position to unmask is guided to enhance
detectability. This embeds a signal without altering the generating distributions, ensuring that the
watermark remains imperceptible to humans and minimally invasive to the model’s outputs.

We formalize watermarking for dLLMs as a decoding problem subject to three requirements:

1. Performance preservation: The decoding procedure must not distort the underlying dis-
tribution py (y|z), ensuring that text quality is maintained.

2. Detectability: The watermark must be verifiable from the generated text 3’ and the water-
mark key alone, without requiring access to model internals or prompts.

3. Robustness: The watermark must remain detectable even under random or adversarial
modifications of the text (e.g., insertions, deletions, and substitutions).

3.3 dMARK: DECODING-GUIDED WATERMARKING FOR dLLMS

We now present AMARK, our watermarking method for dLLMs. The approach is inspired by prior
LLM watermarking schemes (Kirchenbauer et al., 2023)), which conceptually divide the vocabulary
into two groups and analyze the frequency of designated tokens. In contrast to those methods,
which modify token probabilities, IMARK embeds the watermark by guiding the decoding order.
A lightweight binary hashing rule determines which candidate tokens align with the position index,
and the decoder simply prioritizes those positions. This embeds a detectable signal while leaving
the conditional probabilities pg(y,|yz, =) unchanged, thereby preserving generation quality.

Given a watermark key £, we define a deterministic hashing function f : V x = — {0, 1} that maps
each token v € V to a binary value conditioned on £. The function is constructed so that, for any
key &, the resulting partition is balanced. At each position i, the vocabulary is divided as

Gi={veV]|fw¢& =i (mod?2)}, R: =V\ G,
where G; is the parity-matching set and R; is the residual set.

During decoding, indices whose predicted tokens fall in G; are prioritized; that is, we select the index
with the largest reward among parity-matching candidates. If no such index exists, the procedure
falls back to R;. This strategy is summarized in Algorithm 2]
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Prompt

ﬁ Non-watermarked

In a small village, there lived a young woman
named Lily. She was a kind-hearted and gen-
tle soul, always willing to help others. One
day, she met a young man named Jack, who
was also kind-hearted and gentle. They fell in
love and spent their days together, sharing
laughter and tears.

However, their happiness was short-lived.
One day, a terrible earthquake struck the
village, killing many people, including Lily
and Jack. The village was left in ruins, and
the survivors were left to pick up the pieces
of their lives. [...continues]

- Parity-Matching Ratio = 0.55

The most saddest love story you can ever think of

®

& Watermarked (AMARK)

In a small town, there was a young girl
named Lily who lived in a small house with
her parents. One day, she met a young man
named Jack who was from a wealthy family.
They shared a lot in common and soon fell
deeply in love.

However, their happy moment was short-
lived. Lily's parents did not approve of their
relationship, and they forced Jack to leave
Lily behind. Jack was heartbroken, but he did
not give up on her. He waited for Lily for
many (years, but she never came back.
[...continues]

- Parity-Matching Ratio = 0.74

Figure 2: Non-watermarked vs. watermarked text. Generated by LLaDA-1.5 on the Writing Prompts
dataset. Tokens highlighted in green indicate parity matches.

The dMARK framework is compatible with any decoding strategy F. Within dIMARK, the deocding
order 7 is adjusted so that positions with parity-matching candidates are filled first, while remaining
positions are handled afterward. The resulting text is indistinguishable from standard decoding, yet
statistically it exhibits a systematic bias toward parity-matching positions, which provides a reliable
watermarking signal.

3.4 dMARK WITH BEAM SEARCH

The standard version of dMARK selects the index with the highest reward among those whose
predicted tokens belong to G;. Although straightforward, this choice can commit too early to a local
optimum, which may reduce the number of positions satisfying the parity constraint in later steps.

To address this limitation, we propose a generalized beam-search variant with one-step lookahead.
At each step, the algorithm first identifies the top-k indices 7 with the largest rewards, as in standard
dMARK. For each candidate j € 7, a lookahead score is then computed to estimate how many
future positions will remain parity-consistent if we commit to (j, v;).

Formally, given the revealed set Z, the lookahead score for candidate j is defined as

Z ]l[f)gEQZ},

L¢TU{j}

g =

where U, denotes the greedy prediction from pg at position £ after committing y; <— v;. This score
approximates the number of remaining positions expected to satisfy the parity condition in the next
step. The selected index is then chosen as £* = arg max; .1 g,

This balances immediate reward maximization with preserving parity consistency across future
steps. When & = 1, the method reduces exactly to the greedy dMARK strategy. For larger k,
the decoder trades off efficiency for greater robustness, as the lookahead mechanism preserves more
opportunities for parity alignment in later decoding steps.

3.5 WATERMARK DETECTION

We now describe how to detect the presence of a watermark in generated text. Recall that our scheme
partitions the vocabulary at each position ¢ into a parity-matching set G; and a residual set R ;. Given
access to (f, €), verification can be performed directly on the generated sequence without requiring
the prompt or access to model internals.
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Table 1: Empirical error rates for watermark

040 NonWM — —— WM detectability on the C4 and Writing Prompts

035 FPRO99) FNR (0.07) datasets. The results are based on texts generated

0.30 /N by multiple dLLMs with multinomial sampling at a

0.25 / \ z-score threshold of 4.

0.20 / \

0.15 / \ z=4.0

0.10 Dataset Model PPL —————

/ FPR FNR

0.05 / \\\

000 - - . — LLaDA 490 0.000 0.043
z-score C4 LLaDA 1.5 5.27 0.000 0.071

Dream 5.75 0.000 0.042
Figure 3: Illustration of z-scores computed from
matching ratios of non-watermarked (Non WM) Writing LLaDA 6.00 0.000 0.017
and watermarked (WM) texts. The false negative  Prompts LLaDA 1.5 6.34  0.004  0.267
rate (FNR) at a threshold of 4 is highlighted in red, Dream 6.87 0.007 0318
while the false positive rate (FPR) is measured as 0.

Basic Detection. Given a sequence of n tokens, each token y; is checked for membership in G;,
and let G denote the number of matches. For non-watermarked text, token assignments to G; are
effectively random, so the expected matching ratio converges to v = % In contrast, AMARK pro-
duces a systematically higher matching ratio, since the decoding order explicitly prioritizes parity-

matching indices. This deviation can be quantified using a one-sided z-test:

VA =)/n’

and the sequence is flagged as watermarked if z exceeds a predefined threshold.

Robust Detection. While basic detection is effective for clean generations, post-editing operations
such as insertions, deletions, or substitutions may disrupt parity alignment. In particular, insertions
or deletions induce a parity shift, flipping the alignment of subsequent tokens. As a result, the
matching ratio beyond the shift often drops below %, producing inverted signals.

To address this, we adopt a sliding-window detection strategy. The sequence is divided into over-
lapping windows of length w, and the local matching ratio is computed within each window. For
non-watermarked text, window-level ratios remain concentrated around % For watermarked text,
they cluster around o > % When edits occur, the distribution becomes multimodal: some windows
remain aligned with the watermark (peaking near «), while others flip after a parity shift (peaking
near 1 — ¢). This multimodality provides a clear indicator of watermark (see Appendix [E] Figure[7).

Formally, detection is performed by computing the z-score in Equation (I for each window and
aggregating the results across windows. A sequence is classified as watermarked if a fraction of
windows exhibit matching ratios that deviate from % This sliding-window approach preserves de-
tectability even under extensive edits, providing robustness to insertion, deletion, and substitution.

4 EXPERIMENTAL EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets and Prompts. We use two benchmark datasets. The first is the news-like subset of
C4 (Raffel et al.l [2023)), which has been widely employed in prior watermarking studies (Kirchen-
bauer et al., |2023} [Kuditipudi et al., 2024; Block et al., 2025} |[Feng et al.l 2025). The second is
Writing Prompts (Fan et al.,2018]), which provides diverse topics and narrative styles, ranging from
apocalyptic scenarios to everyday stories. For C4, we randomly sample texts and truncate them to a
fixed length to serve as prompts; for Writing Prompts, the given prompts are used directly.

Models and Environments. Experiments are conducted on LLaDA-8B (Instruct) (Nie et al.,
2025), LLaDA 1.5-8B (also instruction-tuned) (Zhu et al., 2025)), and Dream-7B (Instruct) (Ye
et al., [2025). All models generate sequences of length 256 using block-wise generation (Arriola
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Table 2: Watermark Detectability Comparison. Empirical results under greedy and multinomial sampling
with LLaDA 1.5 on the C4 dataset, reported across two evaluation metrics: fixed z = 4.0 and TPR@FPR.
Greedy and multinomial sampling represent the non-watermarked baselines.

z=14.0 TPR@FPR 1
Method PPL |
FPR| TNRt TPRT FNR| | 10% 1%  01%  0.01%

Greedy Sampling 4.03 - - - - - - - -
KGW (6 = 1) 4.33 0.0 1.0 0.072  0.928 88.52 62.68 30.14 11.48
KGW (§ = 2) 5.02 0.0 1.0 0.866  0.134 | 100.00 97.31 93.01 97.63
KGW (6 = 3) 5.83 0.0 1.0 0.970 0.030 | 100.00 100.00 98.52 97.78
PATTERN-MARK (§ = 1) 4.11 0.0 1.0 0.000  1.000 21.76 4.17 1.39 0.00
PATTERN-MARK (§ = 2) 4.72 0.0 1.0 0.040  0.960 73.50 48.50 20.50 12.00
PATTERN-MARK (6 = 3) 5.86 0.0 1.0 0.584 0416 96.26 91.59 87.38 78.97
dMARK 4.44 0.0 1.0 0.540 0.460 97.86 91.98 76.47 60.96

+ 3-beam 4.75 0.0 1.0 0.963 0.037 | 100.00  99.54 98.62 97.25

+ 5-beam 5.01 0.0 1.0 0.987 0.013 | 100.00 100.00 99.56 98.69

+ 8-beam 5.16 0.0 1.0 0.991 0.008 100.00 100.00  100.00 99.12
Multinomial Sampling 4.21 - - - - - - - -
KGW (6 = 1) 5.59 0.0 1.0 0.107  0.893 89.80 60.91 32.99 14.21
KGW (6 = 2) 6.38 0.0 1.0 0.876  0.124 99.41 98.82 97.65 91.18
KGW (6 = 3) 7.87 0.0 1.0 0.984 0.016 | 100.00 99.21 99.21 98.41
PATTERN-MARK (6 = 1) 5.45 0.0 1.0 0.000  1.000 25.26 5.67 1.55 0.00
PATTERN-MARK (§ = 2) 6.33 0.0 1.0 0.060  0.940 78.00 53.50 27.50 16.50
PATTERN-MARK (§ = 3) 7.69 0.0 1.0 0.586 0.414 98.99 95.96 91.41 83.33
dMARK 5.27 0.0 1.0 0.929 0.071 100.00  100.00 99.41 95.29

+ 3-beam 5.40 0.0 1.0 1.000  0.000 | 100.00 100.00  100.00 100.00

+ 5-beam 5.76 0.0 1.0 1.000  0.000 | 100.00 100.00  100.00 100.00

+ 8-beam 6.00 0.0 1.0 1.000  0.000 | 100.00 100.00  100.00 100.00

Table 3: Benchmark results for dAMARK. Evaluated on LLaDA, LLaDA 1.5, and Dream under greedy and
multinomial sampling. The comparison includes (1) non-watermarked baseline, (2) KGW, (3) PATTERN-
MARK, (4) dMARK, and (5) dMARK with 3-beam search.

Greedy Sampling Multinomial Sampling
Model Method MMLU GSMS8K  HumanEval MMLU GSMS8K  HumanEval
(Acc 1) (Acc 1) (Pass@1 1) (Acc 1) (Acc 1) (Pass@1 1)
Non-watermarked 0.648 0.797 0.427 0.594 0.775 0.360
KGW 0.558 0.662 0.092 0.520 0.464 0.055
LLaDA  PATTERN-MARK 0.570 0.635 0.134 0.532 0.438 0.073
dMARK 0.647 0.787 0.280 0.588 0.735 0.226
dMARK +3-beam 0.647 0.771 0.268 0.580 0.678 0.152
Non-watermarked 0.650 0.821 0.400 0.601 0.808 0.348
KGW 0.567 0.726 0.104 0.536 0.582 0.092
LLaDA 1.5 PATTERN-MARK 0.579 0.670 0.152 0.540 0.513 0.079
dMARK 0.649 0.814 0.317 0.596 0.759 0.201
dMARK +3-beam 0.649 0.774 0.207 0.588 0.723 0.134
Non-watermarked 0.700 0.800 0.427 0.630 0.789 0.420
KGW 0.558 0.661 0.287 0.523 0.444 0.134
Dream PATTERN-MARK 0.594 0.652 0.335 0.551 0.639 0.287
dMARK 0.695 0.746 0.470 0.647 0.686 0.390
dMARK +3-beam 0.695 0.701 0.342 0.636 0.648 0.262

et al.}2025;|Nie et al.,|2025)). We adopt block sizes of 32 for the LLaDA family and 8 for Dream-7B
to encourage longer outputs. Responses are generated for 300 prompts, and we retain sequences
longer than 200 tokens (100 tokens for Dream-7B, due to its shorter generations). Text quality is
evaluated using perplexity (PPL) computed with Gemma3-12B (Team et al.| [2025)), a larger model
serving as an oracle.

Sampling Schemes. We consider two sampling schemes: multinomial sampling, where tokens
are drawn from py, and greedy sampling, where the most likely token is chosen at each step. In
both settings, the decoding strategy J follows the confidence rule unless otherwise stated. Beam
search, as described in Section [3.4] augments these schemes with one-step lookahead. Additional
experiments with entropy and margin-based decoding strategies are reported in the Appendix [E]
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Figure 4: ROC curves under post-editing attacks. Illustration of the sliding-window strategy against (A)
random deletion, (B) insertion, and (C) substitution with modification budget e. The comparison includes (1)
KGW, (2) PATTERN-MARK, and (3) dMARK with 3-beam search.

Evaluation Metrics. Performance is assessed along three axes: (1) Detectability: measured by
z-score (Equation [T, false positive rate (FPR), false negative rate (FNR), and true positive rate at
a fixed false positive rate (TPR@FPR). (2) Text Quality: measured by perplexity (PPL) and bench-
mark accuracy. We include three representative benchmarks using the Im-evaluation-harness (Gao
et al.,|2023)) to measure downstream capability: MMLU (Hendrycks et al.,[2021}) (multi-task reason-
ing), GSM8K (Cobbe et al., 2021) (mathematical problem solving), and HumanEval (Chen et al.,
2021)) (code generation). (3) Robustness: measured by ROC curves under token-level perturbations
and paraphrasing attacks.

4.2 EXPERIMENTAL ANALYSES

Watermark Detectability. Figure [3] shows that watermarked sequences consistently achieve
higher z-scores than non-watermarked ones, allowing clear separation at a threshold of z = 4.
Table [T reports empirical FPR/FNR rates and perplexity (PPL) across LLaDA, LLaDA 1.5, and
Dream models on both datasets. These results confirm that AIMARK provides reliable detection with
negligible error rates while maintaining text quality close to that of non-watermarked text. Illustra-
tive examples in Figure 2] highlight the difference in parity-matching ratios between watermarked
and non-watermarked text. Table 2] compares the watermark detectability of dIMARK with exist-
ing methods, KGW (Kirchenbauer et al., [2023) and PATTERN-MARK (Chen et al.l 2025). As
KGW employs an autoregressive text generation process, results are derived from dLLMs config-
ured to generate tokens sequentially from left to right. The results indicate that IMARK with 3-beam
search consistently achieves higher detectability while maintaining lower PPL compared to existing
watermarking methods.

Effect of Sampling Schemes. Table [2]compares greedy sampling and multinomial sampling with
and without beam search. As beam size increases (k € {1,3,5,8}), error rates consistently de-
crease, demonstrating that one-step lookahead strengthens parity alignment. Multinomial sampling
generally yields higher perplexity but produces stronger watermark signals than greedy sampling.
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Figure 5: Detection AUC under paraphrasing attacks. Results for IMARK with DIPPER (Krishna et al.|
2023): (Left) paraphrasing at predefined ratios via lexical modification; (Right) paraphrasing with ratio-
adjusted lexical modification and an additional 10% order diversity. Comparative results with KGW and
PATTERN-MARK are included to assess relative robustness.

Text Generation Quality. Table [3] presents benchmark results on MMLU, GSM8K, and Hu-
manEval under greedy and multinomial sampling, each including results for (1) the non-
watermarked baseline, (2) KGW, (3) PATTERN-MARK, (4) dMARK, and (5) dMARK with 3-
beam search. We employ v = 0.5, = 3 for KGW and PATTERN-MARK, which are chosen to
achieve detectability comparable to dMARK with 3-beam search, based on the results in Table [2]
On MMLU and GSMB8K, watermarking causes only minor degradation, while HumanEval shows a
larger drop, consistent with the low entropy of code generation tasks (Lee et al.,2024)). Compared to
existing methods, dIMARK shows minimal degradation in text quality. Table [2]compares perplexity
across non-watermarked text, KGW, PATTERN-MARK, and dMARK. Although watermarking in-
creases perplexity relative to the baseline, the increase is negligible compared to probability-biasing
methods, since AMARK modifies only the decoding order rather than the token probabilities.

Detectability-Quality Trade-off. A clear trade-off emerges between detectability and text quality.
As shown in Table[2] larger beam sizes consistently strengthen watermark detectability but also raise
perplexity slightly. In practice, we find that £ = 3 offers a favorable balance, providing strong
detection while keeping quality degradation minimal.

Robustness to Post-editing. We simulate random token insertions, deletions, and substitutions
with perturbation budgets ¢ € {0.1,0.2,0.3,0.4} and apply sliding-window detection (w = 8).
Figure [ presents ROC curves comparing dMARK with existing watermarking schemes, including
KGW and PATTERN-MARK. dMARK outputs lower-PPL text while achieving detection perfor-
mance comparable to existing methods and demonstrating notable robustness to random substitution
attacks. Beam search further improves robustness by maintaining better parity alignment. We also
evaluate adversarial paraphrasing using DIPPER (Krishna et al., [2023). DIPPER-1 applies para-
phrasing at fixed lexical-modification ratios, while DIPPER-2 introduces additional order diversity.
As shown in Figure |§L detection performance across KGW, PATTERN-MARK, and dMARK de-
creases as paraphrasing strength increases. AMARK with 3-beam search remains reliably detectable
even at lower PPL compared to existing methods, and larger beam sizes further enhance robustness
against paraphrasing.

5 PRACTICAL CONSIDERATIONS

The experiments above demonstrated that IMARK achieves strong detectability with minimal qual-
ity degradation and remains robust against diverse post-editing attacks. We now analyze two addi-
tional factors that influence watermark performance: sequence length and block-wise generation.

Generation Length. We evaluate how the number of generated tokens n affects watermark de-
tectability by measuring TPR@FPR (= 10%, 1%, 0.1%, 0.01%) for n € {16,32,64,128,256}. As
shown in Figure[6] detection error rates decrease substantially as sequence length increases. When
n > 200, beam search with k > 3 consistently achieves TPR = 1.0 even under a stringent FPR of
0.01. This confirms that watermark reliability improves significantly with longer text.
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Figure 6: Watermark detectability vs. sequence length. Results under multinomial sampling with beam
sizes k € {1, 3, 5,8}, reported as TPR at FPR levels of 10%, 1%, 0.1%, and 0.01%.

Table 4: Effect of block length on watermarking. TPR at FPR levels of 10%, 1%, 0.1%, and 0.01%, along
with PPL on the C4 dataset for dAMARK with block lengths of 8, 16, and 32.

TPR@FPR
10% 1% 0.1% 0.01%

8 498 100.00 97.69 93.06 80.56
Multinomial 16 5.16 9950 98.02 97.03 89.60
32 5.27 100.00 100.00 9941 95.29

8 428 9342 7412 4825 29.82
Greedy 16 442 9677 86.64 69.59 50.23
32 444 9786 9198 7647 60.96

Sampling  Block PPL

Block-wise Generation. For efficiency, dLLMs often employ block-wise text generation (Arriola
et al., [2025; Nie et al |2025). To study its effect, we generate sequences of fixed total length (256
tokens) using block sizes {8, 16, 32,64, 128} and report TPR@FPR and PPL in Table |4 Because
block sizes of 64 and 128 frequently fail to produce sequences longer than 200 tokens, results are
reported only for block sizes up to 32. The Appendix [E] provides details on the effective sequence
lengths under each setting. The results indicate that larger blocks strengthen watermark embedding
but that excessively large blocks reduce stability for long-sequence generation.

6 CONCLUSION

We introduced dMARK, a decoding-guided watermarking method for discrete diffusion language
models (dLLMs). Instead of biasing token probabilities, AMARK embeds watermark signals by
guiding the decoding order, preserving the model’s original distribution. Comprehensive experi-
ments demonstrate that AMARK provides strong detectability, minimal quality degradation, and ro-
bustness against post-editing. These results establish decoding-based watermarking as an effective
and practical approach for ensuring provenance in dLLMs.

ETHICS STATEMENT

This study focuses on embedding watermarks in text generated by dLLMs, and our experiments
were conducted using publicly available models and datasets. The study does not involve human
participants and contains no elements that pose privacy, legal, or ethical risks. In addition, the work
does not produce harmful information or introduce conflicts of interest, discrimination, or bias, and
all relevant usage conditions and ethical standards were observed throughout the handling of data.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we employ publicly available models such as LLaDA-
Instruct and Dream-Instruct, and the proposed methodology is described in detail in Section[3} For
accessibility and transparency, Table[6]in Appendix [D] presents the models and datasets used in our
experiments, including their references and associated licenses. We plan to release the code used in
our experiments to further promote reproducibility.
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A LLM USAGE

This manuscript made limited use of Large Language Models (LLMs) for language editing only.
Their role was restricted to improving readability—such as grammar, style, and flow—without con-
tributing to the conception of ideas, analyses, or results. All scientific content remains the original
work of the authors, who carefully reviewed any edited text to ensure accuracy and integrity.

B dMARK WITH BEAM SEARCH ALGORITHM

Algorithm [3|summarizes the complete procedure of Top-k one-step lookahead beam search.

Algorithm 3 dIMARK with Top-%k One-Step Lookahead

Require: Prompt x; output length n; predictor py; decoding strategy J; watermark key £; beam
size k
Iy« [MASK]™; Z+ 0
2. function NEXTMATCHCOUNT(y, Z)

3: Compute (7¢, 0p) for all £ ¢ T using F(¢; pg, x, yz)
4: return )., 1[d¢ € G|

5: end function

6: fori=1,...,ndo

7: Compute (r;,v;) for all j ¢ Z using F(j; ps, x, yz)
8  C<{j¢Ilveg;}

9:  ifC=0thenC <« {j ¢ I}

10: end if

11: T < indices of the top-£ elements of C by

12: k* < arg max; .7 NEXTMATCHCOUNT(y with y; <~ v;, ZU {j})
13: Ypr & vges L+ TZU{k*}

14: end for

15: Return y

C EXPERIMENT DETAILS

For benchmark evaluation, we adopted a block-wise text generation strategy. We used the origi-
nal framework implementations for the LLaDA family and implemented the strategy for Dream-
7B following prior studies. The block lengths and total sequence lengths used for evaluating our
method are summarized in Table 5] The confidence strategy is applied to all benchmarks. The non-
watermarked baseline of the LLaDA family was evaluated with the block lengths specified in their
respective papers (Dream-7B was evaluated with the block lengths reported in the Table [5). In our
experiments, deterministic function f maps each token to a binary value by performing a bitwise
operation between the token ID modulo 2 and the watermark key &.

The experiments were conducted under the following hardware configurations: (1) Text generation:
Non-watermarked and watermarked text generated on NVIDIA GeForce RTX 4090. (2) Text per-
plexity (PPL) computation: Performed on NVIDIA GeForce RTX 5090. (3) Benchmark evaluations:
LLaDA family tested on RTX 5090, Dream-7B tested on an RTX 4090.

Table S: Inference configurations. A block length shorter than the total length indicates the use of the block-
wise generation strategy for LLaDA-8B, LLaDA 1.5-8B, and Dream-7B.

LLaDA-8B LLaDA 1.5-8B Dream-7B
Block Length  Total Length | Block Length  Total Length | Block Length  Total Length
MMLU 3 3 3 3 3 3
GSMSK 8 256 16 256 32 256
HumanEval 8 512 8 512 32 512
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D REPRODUCIBILITY

For reproducibility, Table [f] lists the external resources employed in our experiments, along with
their corresponding licenses and references.

Table 6: List of external resources. Resources used in the experiments, with corresponding licenses and
references.

Resource License Reference

LLaDA Instruct MIT License Nie et al.[(2025)
LLaDA 1.5 MIT License Zhu et al.[(2025))
Dream Instruct Apache License 2.0 |Ye et al.|(2025)
Gemma3 Gemma Team et al.[(2025))
Dipper Paraphraser  Apache License 2.0  |Krishna et al.[(2023)
C4 ODC-BY Raffel et al.|(2023))
WritingPrompts MIT License Fan et al.| (2018)
MMLU MIT License Hendrycks et al.|(2021)
GSMSK MIT License Cobbe et al.| (2021)
HumanEval MIT License Chen et al.| (2021)

E ADDITIONAL RESULTS

E.1 COMPUTATIONAL OVERHEAD

We measured the per-token decoding time of dMARK, and Table[7]shows that multinomial sampling
with k£ = 1 introduces negligible overhead relative to standard decoding. Increasing the beam size
to k = 3 yields a substantial improvement in detectability while increasing cost by only ~ 2.7x.
Larger beam sizes naturally incur additional overhead, as beam search evaluates multiple candidate
sequences in parallel.

Table 7: Computational overhead. Comparison of ms/token and overhead between the non-watermark base-
line and AMARK with beam sizes k € {1, 3,5}

Watermarked
Method Non-watermarked
dMARK +3 beam +5 beam
ms / token 60.52 69.95 165.50 229.69
Overhead 1.00x 1.16x 2.73x 3.80x

E.2 WATERMARK DETECTABILITY

Watermarking with Additional Decoding Strategies. Tables [§] and [9] present the experimental
results of applying dIMARK with entropy and margin-based decoding strategies, respectively. Under
the entropy strategy, increasing the beam size k led to substantially stronger watermark detectability
with only a slight increase in PPL. In contrast, under the margin strategy, PPL loss was negligible
at k = 1 but rose considerably for £ > 3, while detectability remained notably high. Moreover,
Table 8] demonstrates that watermark embedding is more effective under multinomial sampling than
greedy sampling.

Evaluation on an Additional Dataset. Table [10| reports results on the Writing Prompts dataset
with LLaDA 1.5-8B. Across prompts inducing diverse writing styles, IMARK consistently achieved
higher watermark detectability as beam size increased. Meanwhile, IMARK incurred only negligi-
ble PPL penalty, even as beam size k increased, demonstrating the capacity to embed watermarks
effectively while preserving text quality.
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E.3 TEXT GENERATION QUALITY

Figure |10|illustrates the PPL comparison between non-watermarked text and text watermarked us-
ing dMARK under the entropy strategy. The results demonstrate that IMARK is compatible with
various decoding strategies while incurring minimal quality degradation.

E.3.1 ADDITIONAL QUALITATIVE RESULTS

Tables E] to @] present qualitative results from LLaDA, LLaDA 1.5, and Dream under multino-
mial sampling, comparing non-watermarked and watermarked text and highlighting a noteworthy
difference in the parity-matching ratio.

E.4 ROBUSTNESS AGAINST POST-EDITING ATTACKS

Robust Detection. Figures [7] to [0] show the distributions of window-level parity-matching ratios
under random token insertion, deletion, and substitution attacks, respectively. For insertions and
deletions, parity shifts cause multimodality in the matching ratios, providing an indicator of water-
mark presence. In contrast, under substitutions, the distribution of matching ratios tends to resem-
ble the intact distribution of watermarked text. Consequently, across all three perturbation types,
the distribution of matching ratios for watermarked text remains distinguishable from that of non-
watermarked text.

Figures [I2] and [I3] illustrate ROC curves for watermark detection against the DIPPER-1 and
DIPPER-2 attack scenarios, using the sliding-window strategy with window sizes w € {8, 16, 32}.
The results indicate robustness regardless of window size, with a slight advantage for smaller win-
dows. Figures[[4]to[I6]present ROC curves for watermark detection against random token insertion,
deletion, and substitution attacks, evaluated at beam size k € {3, 5, 8}. The results demonstrate that
increasing k consistently strengthens robustness and improves watermark detectability.

E.5 ABLATION ON GENERATED LENGTH

Figure [17] shows the distribution of sequence lengths generated from 300 prompts using the block-
wise generation strategy. The target length was fixed at 256 tokens, with block sizes set to
{8,16,32,64,128}. The generated sequence lengths were grouped into five bins (1-50, 51-100,
101-150, 151-200, and 201-256 tokens) to visualize the proportion of sequences in each range.
The results suggest that block length influences the sequence lengths in both multinomial and greedy
sampling. Smaller block lengths (e.g., 8 or 16) tend to yield a higher proportion of longer sequences,
whereas larger block lengths (e.g., 64 or 128) often lead to most sequences clustering in the 1-50
token range, indicating frequent failures to generate long sequences.

Table 8: Error rates of watermarking. Empirical results under greedy and multinomial sampling with
LLaDA-1.5 with entropy strategy on the C4 dataset, reported across different z-score thresholds

z=4.0 z=2>5.0
FPR TNR TPR FNR FPR TNR TPR FNR
dMARK (Greedy) 4.51 0.0 1.0 0.511 0.489 0.0 1.0 0216 0.784

Sampling PPL |

+ 3-beam 4.84 0.0 1.0 0970 0.030 0.0 1.0 0867 0.113
+ 5-beam 5.02 0.0 1.0 0987 0.127 0.0 1.0 0970 0.030
+ 8-beam 5.16 0.0 1.0 099 0.004 0.0 1.0 0960 0.040
dMARK (Multinomial)  6.39 0.0 1.0 0995 0.005 0.0 1.0 0985 0.155
+ 3-beam 6.16 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
+ 5-beam 6.42 0.0 1.0 1.000 0.000 0.0 1.0  1.000 0.000
+ 8-beam 6.78 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
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Table 9: Error rates of watermarking. Empirical results under greedy sampling with LLaDA-1.5 with mar-
gin strategy on the C4 dataset, reported across different z-score thresholds. Since the margin strategy (Kim
et al.| [2025)) was proposed to allow tokens to be chosen greedily, results are reported under greedy sampling.

z=4.0 z=25.0
FPR TNR TPR FNR FPR TNR TPR FNR

dMARK (Greedy) 4.40 0.0 1.0  0.601 0399 0.0 1.0 0.282 0.718
+ 3-beam 9.17 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
+5-beam 1477 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
+8-beam 1794 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000

Sampling PPL |

Table 10: Error rates of watermarking. Empirical results under greedy and multinomial sampling with
LLaDA-1.5 on the “Writing Prompts”, reported across different z-score thresholds

z=4.0 z=25.0
FPR TNR TPR FNR FPR TNR TPR FNR
dMARK (Greedy) 5.37 0.0 1.0 0.223 0.777 0.0 1.0 0.058 0.942

Sampling PPL |

+ 3-beam 5.42 0.0 1.0 0.836 0.164 0.0 1.0 0424 0.576
+ 5-beam 5.72 0.0 1.0 0951 0.049 0.0 1.0 0.684 0.316
+ 8-beam 5.92 0.0 1.0 0976 0.024 00 1.0 0.868 0.133
dMARK (Multinomial)  6.34  0.004 0996 0.733 0.257 0.0 1.0 0235 0.765
+ 3-beam 6.44 0.004 099 0987 0.013 00 1.0 0811 0,189
+ 5-beam 6.48 0.0 1.0 0995 0.005 0.0 1.0 0966 0.034
+ 8-beam 6.95 0.0 1.0 0995 0.005 0.0 1.0 0976 0.024
Non WM A Non WM A Non WM |
[ WM (intact) [ [ WM (intact) | [ WM (intact) |
71 WM (insertion) ‘w‘ \‘ 71 WM (insertion) ‘w‘ ““ 71 WM (insertion) ‘
a A & B
00 02 04 06 08 10 12 —025 000 025 050 075 100 125 00 02 04 06 08 10

Figure 7: Illustration of the distribution of parity alignment. At window size w = 32, comparison of (1)
non-watermarked texts (Non WM), (2) intact watermarked texts (WM), and (3) watermarked texts (WM) with
“random token insertions”, where the number of inserted tokens increases from left to right.

Non WM Non WM A Non WM
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Figure 8: Illustration of the distribution of parity alignment. At window size w = 32, comparison of (1)
non-watermarked texts (Non WM), (2) intact watermarked texts (WM), and (3) watermarked texts (WM) with
“random token deletion”, where the number of deleted tokens increases from left to right.
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Figure 9: Illustration of the distribution of parity alignment. At window size w = 32, comparison of (1)
non-watermarked texts (Non WM), (2) intact watermarked texts (WM), and (3) watermarked texts (WM) with
“random token substitution”, where the number of substituted tokens increases from left to right.
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dom deletion, insertion, and substitution with modification budget e.
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Figure 12: ROC curves under the “DIPPER-1” setting. Illustration of the sliding-window strategy for
detection performance against paraphrasing attacks, evaluated at window sizes w € {8, 16, 32}.
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ROC curves under the “DIPPER-2” setting. Illustration of the sliding-window strategy for

detection performance against paraphrasing attacks, evaluated at window sizes w € {8,16, 32}.
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Figure 14: ROC curves under post-editing attacks. Illustration of the sliding-window strategy against “ran-
dom token insertion” attacks with modification budget €, when texts are generated with beam sizes {3, 5, 8}.
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Figure 15: ROC curves under post-editing attacks. Illustration of the sliding-window strategy against “ran-
dom token deletion” attacks with modification budget ¢, when texts are generated with beam sizes {3, 5, 8}.
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Figure 16: ROC curves under post-editing attacks. Illustration of the sliding-window strategy against
“random token substitution” attacks with modification budget €, when texts are generated with beam sizes
{3,5,8}.
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Table 11: Non-watermarked vs. watermarked text. Generated by “LLaDA-8B” on the Writing Prompts
dataset with multinomial sampling, with parity-matching ratios reported for the outputs.

Prompt

Non-watermarked

Watermarked

A kid doodling in a math class
accidentally creates the world ’s
first functional magic circle in
centuries.

That sounds like quite an ad-
venture!  The kid’s doodling
in a math class turned into a
groundbreaking discovery. Can
you imagine the excitement and
wonder that must have filled the
room? The teacher and class-
mates must have been in awe,
trying to replicate the magic
circle, and perhaps even ask-
ing the kid to explain how it
works. [...continues]

(Matching Ratio = 0.54)

That sounds like a fascinating
and unexpected scenario! The
idea of a child doodling in math
class and accidentally stumbling
upon a functional magic circle
is intriguing. The concept of a
“magic circle” is often associ-
ated with folklore and mythol-
ogy, so the idea of such a discov-
ery happening in a classroom set-
ting is quite captivating. [...con-
tinues]

(Matching Ratio = 0.74)

A person with a high school ed-
ucation gets sent back into the
1600s and tries to explain sci-
ence and technology to the peo-
ple.

That sounds like a fascinating
scenario! A person with a high
school education transported to
the 1600s would likely face sig-
nificant challenges in trying to
explain science and technology
to the people of the time.

In the 1600s, science was still in
its early stages, and most peo-
ple had a limited understanding
of the natural world. They relied
heavily on religion, [...continues]
(Matching Ratio = 0.57)

That sounds like an intrigu-
ing scenario! A person with
a high school education trans-
ported to the 1600s would likely
face many challenges in explain-
ing science and technology to the
people of that time. The 1600s
were a time of great religious
and philosophical debates, and
many people were still grappling
with the mysteries of the uni-
verse. [...continues]

(Matching Ratio = 0.70)

You were born on a colonizing
spacecraft on your way to a dis-
tant star . You are the middle
generation of history ; born to
late to have seen Earth , and to
early to live to see your destina-
tion.

What a fascinating scenario!
You were born on a colonizing
spacecraft, which means you’re
part of a pioneering human civi-
lization that’s expanding beyond
our home planet. As the mid-
dle generation of history, you're
caught between the era of Earth
and the era of your new home, a
distant star.

As a colonizing spacecraft, you
would have been [...continues]
(Matching Ratio = 0.43)

That’s a fascinating scenario! As
the middle generation of history,
you would have witnessed the
dawn of space travel and the es-
tablishment of a new civiliza-
tion on a distant star system.
Your lifetime would be marked
by the challenges of adapting
to a new environment, devel-
oping cutting-edge technology,
and exploring the vastness of
space. [...continues]

(Matching Ratio = 0.73)

Narrate a game of Civilization as
though it were excerpted from a
history textbook.

The game of Civilization is a
strategy simulation game that al-
lows players to experience the
development of ancient civiliza-
tions. The game begins with
the establishment of a small
settlement, and players must
gather resources, build cities,
and wage wars to expand their
territory. [...continues]
(Matching Ratio = 0.46)

In 2500, the city of Nineveh was
established on the banks of the
Euphrates River. Under the lead-
ership of Hammurabi, its king,
the city grew rapidly and be-
came a major power in the region
ofumeria. The code of Ham-
murabi, a set of laws, became a
model for other cities in the re-
gion. [...continues]

(Matching Ratio = 0.68)
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Table 12: Non-watermarked vs. watermarked text. Generated by “LLaDA 1.5-8B” on the Writing Prompts
dataset with multinomial sampling, with parity-matching ratios reported for the outputs.

Prompt

Non-watermarked

Watermarked

A kid doodling in a math class
accidentally creates the world ’s
first functional magic circle in
centuries.

That sounds like a fascinating
scenario!  The idea of a kid
doodling in math class and ac-
cidentally creating a functional
magic circle is quite intriguing.
It’s a testament to the power of
curiosity and the importance of
encouraging students to explore
and experiment with their inter-
ests. [...continues]

(Matching Ratio = 0.55)

That sounds like a fascinating
and unexpected event! The idea
of creating a functional magic
circle is intriguing, especially in
the context of mathematics and
geometry. Magic circles, also
known as false circles, are shapes
that appear to be circles, but
are actually composed of straight
lines and contain [...continues]
(Matching Ratio = 0.73)

A person with a high school ed-
ucation gets sent back into the
1600s and tries to explain sci-
ence and technology to the peo-
ple.

That sounds like a fascinat-
ing scenario. A person with
a high school education try-
ing to explain science and tech-
nology to the people in the
1600s would likely face signif-
icant challenges, as the under-
standing and acceptance of sci-
entific concepts were extremely
limited at that time.

The person would need to be pa-
tient, persistent, [...continues]
(Matching Ratio = 0.53)

That sounds like an intriguing
scenario! A person with a high
school education trying to com-
municate science and technology
to people in the 1600s would be
quite a challenge. They would
need to explain complex con-
cepts like physics, mathematics,
astronomy, and even biology in
a way that is relevant and un-
derstandable to the people of the
time. [...continues]

(Matching Ratio = 0.68)

You were born on a colonizing
spacecraft on your way to a dis-
tant star . You are the middle
generation of history ; born to
late to have seen Earth , and to
early to live to see your destina-
tion.

What a fascinating scenario.
You’re the middle generation of
history, born on a colonizing
spacecraft on your way to a dis-
tant star. This is a unique and ex-
traordinary experience.

As a child, you would have
grown up in a microgravity en-
vironment, surrounded by ad-
vanced technology and a diverse
group of people [...continues]
(Matching Ratio = 0.50)

That’s a fascinating scenario! To
be born on a colonizing space-
craft on the way to a distant
star, and being the middle gener-
ation of history, would mean that
you were born after the space-
craft left Earth but before it ar-
rived at its destination. This
would offer a unique perspec-
tive on both Earth and the distant
planet. [...continues]

(Matching Ratio = 0.78)

Narrate a game of Civilization as
though it were excerpted from a
history textbook.

In the year 2000, the game of
Civilization was released by Sid
Meier’s Civilization series. The
game was played by two play-
ers, each of whom would con-
trol one of the ten different civ-
ilizations: China, Egypt, Greece,
Rome, Spain, England, France,
Germany, Russia, and the United
States. The game was divided
into six phases: Exploration, Ex-
pansion, Science, Culture, Reli-
gion, and Warfare. [...continues]
(Matching Ratio = 0.53)

In the game of Civilization, you
take on the role of one of
the ancient civilizations: Egypt,
Greece, Rome, China, Rome,
Egypt, or Inca. Each civiliza-
tion has its unique characteris-
tics, strengths, and weaknesses.
The game begins with the estab-
lishment of your city, which is
the foundation of your empire.
You must then build structures
to expand your empire, such as
roads, walls, [...continues]
(Matching Ratio = 0.69)
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Table 13: Non-watermarked vs. watermarked text. Generated by “Dream-7B” on the Writing Prompts
dataset with multinomial sampling, with parity-matching ratios reported for the outputs.

Prompt

Non-watermarked

Watermarked

A kid doodling in a math class
accidentally creates the world ’s
first functional magic circle in
centuries.

During math class, a student
named Alex was quietly doo-
dling in their notebook, trying to
escape the monotony of the les-
son. As they drew a simple cir-
cle, they began to notice some-
thing strange. The circle seemed
to have a life of its own, shifting
and changing as if it were alive.
Curious, Alex began to experi-
ment with the circle, discovering
that it had unique [...continues]
(Matching Ratio = 0.59)

Once upon a time, in a small
town, there lived a young high
school student named Tom. He
wasn’t particularly fond of math,
but he had a knack for art
and drawing. One day, while
bored during his geometry class,
he began doodling in his note-
book. He started drawing differ-
ent shapes and patterns, trying to
come up with some unique and
interesting designs. [...continues]
(Matching Ratio = 0.70)

A person with a high school ed-
ucation gets sent back into the
1600s and tries to explain sci-
ence and technology to the peo-
ple.

The 1600s were a time of great
exploration and discovery in the
fields of science and technology.
During this time, people were
exploring the mysteries of the
natural world and trying to un-
derstand the workings of the uni-
verse. However, the understand-
ing of science and technology
was quite limited compared to
what we know [...continues]
(Matching Ratio = 0.42)

During the 1600s, the concept
of science and technology would
have been foreign to many peo-
ple, who still believed in the
teachings of the Church and su-
perstition. However, a person
with a high school education
would try to explain the basics of
science and technology in a sim-
ple and straightforward manner.
They would start [...continues]
(Matching Ratio = 0.74)

You were born on a colonizing
spacecraft on your way to a dis-
tant star . You are the middle
generation of history ; born to
late to have seen Earth , and to
early to live to see your destina-
tion .

As a middle generation on the
colonizing spacecraft, I have had
the privilege of witnessing the
progress of our mission and the
challenges we faced along the
way. Growing up on the space-
craft, I learned the history of our
journey and the importance of
our mission to establish a new
home for humanity on a distant
star.

I remember the days when I
would look out the [...continues]
(Matching Ratio = 0.51)

As a middle generation on a col-
onizing spacecraft on our way
to a distant star, I experience a
unique blend of longing and cu-
riosity. Growing up within the
confines of spacecraft, I never
got to witness the beauty of
Earth, the vastness of the night
sky, or the familiarity of my an-
cestral home. However, I am for-
tunate to have the opportunity to
explore the unknown and witness
the far reaches of [...continues]
(Matching Ratio = 0.82)

Narrate a game of Civilization as
though it were excerpted from a
history textbook.

In the year 4000, the dawn of
the ancient era was marked by
the rise of the first civiliza-
tions around the world. The
game began with the establish-
ment of the first city-states along
the banks of the Euphrates and
Tigris rivers in Mesopotamia.
As the game progressed, the
civilizations made advancements
in agriculture, architecture, and
trade, laying the [...continues]
(Matching Ratio = 0.52)

In the heart of the ancient world,
rival civilizations faced off in the
pursuit of prosperity and dom-
inance. The game of civiliza-
tion was played in the arena of
time, with each turn representing
a chapter in the grand tapestry of
history. As the game advanced,
so did the complexities of tech-
nology, diplomacy, and warfare.
The early game saw the rise of
cities, growth [...continues]
(Matching Ratio = 0.83)
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