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ABSTRACT

Face identity customization, i.e., face generation with specified identity, has re-
ceived increasing attention owing to its extensive applications in personalized
content creation. Although existing methods achieve high consistency in identity
with reference faces, they still struggle to precisely manipulate fine-grained fa-
cial attributes. We attribute this issue to the inherent entanglement of identity and
attribute information, as well as the lack of attribute-specific supervision. Accord-
ingly, to address this issue, we propose AttPortrait, a high-quality identity-attribute
conditional face generation framework. Based on a foundational face diffusion
model, we introduce an extra disentanglement branch alongside the conventional
denoising branch during the training stage. This extra branch employs explicit
attribute supervision to encourage the model to capture the attribute information
from the text prompts, effectively disentangling the identity and attributes and
achieving precise attribute manipulation with high identity consistency. Compre-
hensive experiments demonstrate that our method achieves at least 34% improve-
ment in attribute accuracy, attains identity similarity close to the state-of-the-art
methods, and maintains comparable FID scores on real and synthetic datasets.

1 INTRODUCTION

Recent advances in diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021;
Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023), along with the availability
of large-scale text-image pair datasets (Schuhmann et al., 2022; Changpinyo et al., 2021), have led
to significant progress in text-to-image (T2I) generation (Rombach et al., 2022; Ramesh et al., 2022;
Saharia et al., 2022; Balaji et al., 2022; Li et al., 2024a; Chen et al., 2024a; Esser et al., 2024;
BlackForestLab; Xie et al., 2025). Correspondingly, face identity customization, as one of the key
applications of T2I generation, has attracted growing research interest and reached new heights.
Typically, existing methods incorporate facial features (Xiao et al., 2024; Li et al., 2024b; Wang
et al., 2024b; Huang et al., 2024; Zhang et al., 2023a; Varanka et al., 2024) into diffusion models,
enabling the specification of face identities when generating novel images.

Despite their success in specifying face identities, existing methods exhibit inherent limitations in
specifying fine-grained facial attributes, such as hair style and age. As demonstrated in Figure 1,
although the generated images have correct identities, their facial attributes do not match the given
text prompts. In other words, the capacity to manipulate facial attributes via textual descriptions
is substantially constrained when identity customization is required, which impedes the practical
application of these approaches. We attribute this issue to the following two factors:

1) The attribute information is entangled with the identity (ID) information. Previous methods (Xiao
et al., 2024; Valevski et al., 2023; Li et al., 2024b; Wang et al., 2024b; Huang et al., 2024) employ
either general vision models such as CLIP image encoder (Radford et al., 2021) or specialized face
recognition models such as ArcFace (Deng et al., 2019) to extract ID embeddings from the refer-
ence images for ID-conditional generation. However, these extractors usually fail to disentangle
facial attribute information from the ID embeddings. In consequence, the attributes of the generated
face images are often similar to those of the reference images, even when the text prompts specify
different attributes. For example, as can be seen in Figure 1, both the reference and generated im-
ages display nearly identical facial attributes, demonstrating a high degree of entanglement between
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Figure 1: Given the reference images and the text description of the target attributes, the generated
images of existing methods have the correct identity but fail to reflect the target attributes.

the attribute information and the ID information. 2) Previous methods lack explicit supervision to
capture the attribute information from text prompts, which is a more direct reason. Since there
is no explicit supervision, most previous models tend to follow the entangled attribute in the ID
embeddings rather than the attributes described in the text prompts when generating images.

In response to the aforementioned analysis, we propose AttPortrait, a face generation framework
conditioned on both attributes and identity, which is capable of precise attribute control through
textual descriptions while maintaining high identity consistency. Our framework consists of two
branches: the denoising branch and the disentanglement branch, as shown in Figure 2. The denoising
branch is a conditional diffusion model with classifier-free guidance (Ho & Salimans, 2022) that
only employs an MSE loss, which is similar to existing methods (Cui et al., 2024; Xiao et al., 2024;
Valevski et al., 2023; Chen et al., 2023). This branch is mainly responsible for generating high-
quality and identity-consistent face images given the ID embeddings of reference faces. However,
as discussed above, the attribute information is highly entangled with the ID information, which
makes it difficult for the model to manipulate the attributes via text prompts. To solve this problem,
we introduce an extra disentanglement branch with explicit supervision for attribute manipulation.
Specifically, to ensure that the model faithfully captures the target attributes, we employ a pre-
trained facial attribute predictor to assess the attributes present in the generated images. An attribute
matching loss is then applied to minimize the discrepancy between the desired input attributes and
those manifested in the generated images. Furthermore, we introduce a dual cross-attention module,
which utilizes two parallel cross-attention blocks to separately incorporate the attribute information
and the ID information. In this manner, the interference between the attribute information and the
ID information is reduced, which improves both the attribute accuracy and identity consistency.

Our contributions are summarized below:

1. We reveal the entanglement of attribute and identity information in ID embeddings and quantify
how this entanglement degrades attribute manipulation in diffusion models with comprehensive
studies, providing critical guidance for future ID customization based on diffusion model.

2. We propose AttPortrait, an identity-attribute conditional generation framework, which adopts a
denoising branch and a disentanglement branch to guide the generation process to ensure the
correct attributes and identities. To our knowledge, AttPortrait is the first customization method
that achieves satisfactory attribute manipulation with high identity consistency.

3. Extensive experiments demonstrate that our AttPortrait significantly outperforms existing ap-
proaches in attribute accuracy and attains identity consistency close to the state-of-the-art meth-
ods. Moreover, our model can achieve multiple attribute manipulation and zero-shot attribute
manipulation with satisfactory performance.

2 RELATED WORK

2.1 SUBJECT-DRIVEN TEXT-TO-IMAGE DIFFUSION MODEL

Owing to the powerful generative capability of the text-to-image diffusion models (Rombach et al.,
2022; Ramesh et al., 2022; Saharia et al., 2022; Balaji et al., 2022; Li et al., 2024a; Chen et al.,
2024a; Esser et al., 2024; BlackForestLab; Xie et al., 2025), subject-driven methods have attracted
increasing research attention. These methods aim to adapt large-scale diffusion models to synthesize
images conditioned on specified subjects. Based on whether fine-tuning is required when testing a
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new subject, these methods can be divided into two types: test-time fine-tuning methods (Ruiz et al.,
2023; Gal et al., 2022; Dong et al., 2022; Kumari et al., 2023; Smith et al., 2023; Wang et al., 2024a;
Yuan et al., 2023) and test-time free-tuning methods (Wei et al., 2023; Ye et al., 2023; Gal et al.,
2023; Shi et al., 2024; Ma et al., 2024; He et al., 2024; Zhang et al., 2024). The test-time fine-tuning
methods optimize the diffusion model at test time for each individual subject using one or more
reference images. However, per-subject optimization is time-consuming and limits the applications.
Test-time free-tuning methods, also known as encoder-based methods, typically incorporate diverse
subject features into diffusion models with various fusion mechanisms. Specifically, in order to
better capture subject-specific details, ELITE (Wei et al., 2023) inserts global subject features into
the textual embedding and incorporates the local subject feature with an additional cross-attention,
which inspires many subsequent works (Ye et al., 2023; Ma et al., 2024; Xiao et al., 2024; Shi
et al., 2024). IP-adapter (Ye et al., 2023) is another representative subject-driven method, which
introduces a lightweight adapter along with a separate cross-attention to fuse the subject informa-
tion into the model and only finetune the lightweight adapter during training. To achieve better
subject consistency, Subject-Diffusion (Ma et al., 2024) incorporates more subject information, in-
cluding segmentations and bounding boxes, into the diffusion model and sets an adapter between
self-attention and cross-attention.

2.2 ID CUSTOMIZATION IN DIFFUSION MODEL

A prominent direction within subject-driven methods is ID customization (Cui et al., 2024; Peng
et al., 2024; Xiao et al., 2024; Huang et al., 2024; Li et al., 2024b; Wang et al., 2024b; Chen et al.,
2024b; Wu et al., 2024b), which aims to generate images with specified identities. For example,
FastComposer (Xiao et al., 2024) fuses multi-identity features with textual embeddings, and intro-
duces localized attention control to support multi-identity generation. PortraitBooth (Peng et al.,
2024) builds on FastComposer by improving the localized attention control through a truncated
cross-attention mechanism, and additionally supports emotion control. Based on IP-Adapter (Ye
et al., 2023), InstantID (Wang et al., 2024b) utilizes a modified ControlNet (Zhang et al., 2023b)
to incorporate facial landmarks as an additional condition. Unlike the above methods that rely on
a single reference image, PhotoMaker (Li et al., 2024b) combines multiple reference images of the
same identity. IDAdapter (Cui et al., 2024) also employs multi-image design and further inserts
adapters between attention blocks to better fuse identity features.

Moreover, to improve identity fidelity, several methods (Chen et al., 2023; Peng et al., 2024; Cui
et al., 2024; Gal et al., 2024; Guo et al., 2024) introduce identity (ID) losses. PortraitBooth,
IDAdapter, and PhotoVerse (Chen et al., 2023) directly generate images within one step at an early
diffusion timestep and then calculate ID loss between the generated images and the reference images.
However, such generated images are often noisy and low-quality, which reduces the effectiveness
of the ID loss. To solve this issue, LCM-lookahead (Gal et al., 2024) and PuLID (Guo et al., 2024)
employ fast sampling methods (Luo et al., 2023; Ren et al., 2024; Lin et al., 2024) to generate im-
ages of higher quality compared to previous approaches, which enables more reliable computation
of ID loss. Although current approaches demonstrate strong identity consistency, the majority still
fall short in correctly manipulating facial attributes.

3 METHODS

3.1 PRELIMINARIES

Stable Diffusion The Stable Diffusion model (Rombach et al., 2022) consists of three compo-
nents: a CLIP (Radford et al., 2021) text encoder, a Variational Autoencoder (VAE) (Kingma et al.,
2013), and a U-Net (Ronneberger et al., 2015). In the training phase, the VAE compresses the image
x into the latent code z. The latent code is subsequently perturbed by a Gaussian noise ϵ. Then, the
U-Net ϵθ(·) is optimized to denoise the noisy latent code zt, conditioned on the CLIP text embedding
e, with objective function as follows:

Ldiff = Ez∼VAE(x),ϵ∼N (0,I),t,e

[
∥ϵ− ϵθ(zt, t, e)∥2

]
. (1)

In the inference phase, a Gaussian noise zT is iteratively denoised by the U-Net to obtain a clean
latent z0, which is then decoded into the final image by the VAE decoder.
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Figure 2: The overall framework of our AttPortrait. The upper half of this framework illustrates the
denoising branch, which uses the original attribute embedding ea, containing attribute information
present in the reference face. The lower part shows the disentanglement branch, which uses the
target attribute embedding eb, containing target attribute information not present in the reference
face. Both branches employ the identical ID embedding eid and share the same attribute text encoder
and U-Net. For clarity, textual descriptions are used to represent tokenized text embeddings.

Embedding-Conditioning Cross-Attention Mechanism In the Stable Diffusion model, the U-
Net uses multiple cross-attention (Vaswani et al., 2017) layers to incorporate the textual information,
guiding the generation process according to the text prompt. Specifically, the text embedding e is
projected to the key Ke = Wke and value Ve = Wve, and the noisy latent code zt is projected to
the query Q = Wqzt. The cross-attention mechanism is formulated as follows:

Attn(Q,Ke, Ve) = Softmax

(
QKT

e√
d

)
Ve, (2)

where d is the dimension of Ke, Ve, and Q. In this work, we employ cross-attention to incorporate
attribute information and identity information.

3.2 ID-ATTRIBUTE CONDITIONAL FACE GENERATION

Task Definition Let Iaref denote a reference image with the target identity, and a = [ a1, · · · , an ]
denote the corresponding attributes where each component ai is one kind of attribute, such as
“Bangs”, “Eyeglasses”, and “Gender”. Let b = [ b1, · · · , bn ] denote the target attributes. Our ob-
jective is to develop a face diffusion model G capable of generating faces with the target attributes
and identities, which is formulated as follows:

Ibgen = G(b, Iaref), (3)

where the generated image Ibgen is expected to faithfully exhibit the target attributes b while main-
taining the same identity as the reference image Iaref.
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To clarify, we use ArcFace (Deng et al., 2019) to extract the feature ϕ(Iaref) from the reference
image. This feature, following Arc2Face (Paraperas Papantoniou et al., 2024), is further mapped
into an embedding eid, which is used as a condition input to the diffusion model. In the rest of the
paper, to distinguish the two easily confused concepts, we refer to ϕ(Iaref) as the “face recognition
feature” and refer to eid as the “ID embedding”.

Denoising Branch As shown in the upper branch of Figure 2, to generate identity-consistent and
high-quality face images, we employ the classifier-free guidance (Ho & Salimans, 2022) diffusion
model conditioned on the ID embeddings. Following Arc2Face (Paraperas Papantoniou et al., 2024),
we first map the reference image Iaref into the ID embedding eid. Besides, we employ CLIP to map the
text description of the original attributes a into the attribute embedding ea. Using the ID embedding
and the original attribute embedding as a joint condition, our diffusion model learns to predict the
noise using an MSE loss according to Eq. (1), which is formulated as follows:

Ldiff = E
[
∥ϵ− ϵθ(zt, t, ea, eid)∥2

]
. (4)

Identity-Attribute Disentanglement Branch Although the denoising branch can generate
identity-consistent faces, it fails to precisely manipulate the attributes due to the inherent entan-
glement between attribute and identity information within the ID embeddings. Specifically, the ID
embedding eid generally covers most of the attribute information, which makes the model directly
ignore the attribute information from ea. As a consequence, we cannot effectively control the at-
tributes by modifying the attribute input.

To address this issue, as shown in the lower part of Figure 2, we introduce a disentanglement branch,
which applies explicit supervision to encourage the model to capture the information from the at-
tribute embeddings. Let b denote the target attributes, which is distinct from the original attributes
a of the reference image Iaref. Given the target attributes and the reference identity image, in this
branch, the diffusion model generates the final image Ibgen = G(b, Iaref) through 10 sampling steps,
rather than just predicting the noise of one specific step. Further, to make the generated image
accurately exhibit the target attributes, we apply an attribute matching loss as follows:

Latt =

n∑
i=1

−bi log Ci(Ibgen)− (1− bi) log(1− Ci(Ibgen)), (5)

where C is a pretrained multi-attribute classifier and Ci is the prediction of the ith attribute. The
objective function in Eq. (5) encourages the generated image Ibgen to be classified as possessing the
target attributes b.

Besides, to avoid identity drift, we incorporate an auxiliary identity loss, formulated as follows:

Lid = 1−
ϕ(Ibgen) · ϕ(Iaref)

∥ϕ(Ibgen)∥∥ϕ(Iaref)∥
, (6)

where ϕ is the face recognition feature from ArcFace (Deng et al., 2019). The objective function in
Eq. (6) encourages a high identity similarity between the generated image and the reference image.

As mentioned above, we perform 10 sampling steps in this branch to generate the final image Ibgen.
However, backpropagation through 10 diffusion steps requires a large amount of GPU memory and a
large number of FLOPs. To alleviate the computational requirements, we adopt DRTune (Wu et al.,
2024a), which only maintains the gradient for a small subset of sampling steps while stopping the
gradient of the U-Net input for the rest steps. In this manner, the attribute loss and identity loss can
be effectively backpropagated through our model.

Identity-Attribute Dual Cross-Attention To effectively capture both the attribute and identity
information, we design a dual cross-attention (DCA) module. Specifically, as shown in Figure 2, the
attribute embedding and the ID embedding are independently processed by distinct cross-attention
blocks and then summed, formulated as follows:

Q∗
a = Attn(Q,Keid , Veid) +Attn(Q,Kea , Vea), (7)

Q∗
b = Attn(Q,Keid , Veid) +Attn(Q,Keb

, Veb
), (8)

where Attn is defined in Eq. (2), Q∗
a and Q∗

b correspond to the DCA outputs in the denoising branch
and disentanglement branch respectively. In this manner, the interference between the attribute and
identity information is mitigated, thereby enhancing both the accuracy of attribute manipulation and
the consistency of identity information.
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Objective Function The full objective function is given by:

L = Ldiff + λattLatt + λidLid, (9)

where λatt and λid are the hyperparameters to modulate the strength of the attribute loss and identity
loss. In this paper, both λatt and λid are set to 0.01.

4 EXPERIMENTS

4.1 SETUP

Datasets Our training dataset consists of about 500K highest-quality faces selected from LAION-
Face (Schuhmann et al., 2022) and their corresponding attribute labels predicted by our pretrained at-
tribute predictor, including “Bald”, “Young”, “Male”, “Bangs”, “Black Hair”, “Blond Hair”, “Bushy
Eyebrows”, “Eyeglasses”, “Mouth Slightly Open”, “No Beard” and “Pale Skin”. Each attribute is
encoded as 1 if present and 0 if absent. For evaluation, we use two datasets with attribute labels, one
is the 500 synthetic faces from Karras et al. (2020), referred to as Synth-test, the other is 5K faces
randomly selected from CelebA test dataset (Liu et al., 2015), referred to as CelebA-test.

Implement Details Our AttPortrait is built upon the SD-v1.5 architecture and uses two text en-
coders, namely ID text encoder and attribute text encoder, as illustrated in Figure 2. The ID text
encoder and the U-Net are initialized from Arc2Face (Paraperas Papantoniou et al., 2024), and the
attribute text encoder and the VAE are initialized from SD-v1.5. During the training phase, the de-
noising branch and the disentanglement branch utilize the shared U-Net and text encoders. Only
the key and the value matrices in the cross-attention layers of attribute embeddings are trained with
AdamW (Loshchilov & Hutter, 2017). In each iteration, the disentanglement branch generates im-
ages using a classifier-free guidance scale (Ho & Salimans, 2022) of 3.0 with 10 DPM-Solver (Lu
et al., 2022) sampling steps, and for 8 randomly chosen steps we stop gradients of the U-Net input.
During the inference phase, images are generated using the same classifier-free guidance scale with
25 DPM-Solver sampling steps. Our model is trained for 1 epoch on 8 NVIDIA A100 GPUs, with
a constant learning rate of 1e-6 and a total batch size of 8.

4.2 EVALUATION PROTOCOLS

Identity and FID Evaluation Protocol In this protocol, Identity (ID) Similarity and FID (Heusel
et al., 2017) are employed to assess visual fidelity and identity consistency. Specifically, for each
image, we randomly modify one attribute and generate a sample. This procedure is repeated twice.
Then we report 1) the FID scores between the generated and reference sets, and 2) the average ID
similarity for each generated–reference pair.

Attribute Evaluation Protocol In this protocol, we use Attribute Accuracy to evaluate whether
the generated images correctly reflect the target attributes. Specifically, for each attribute we modify
it and generate two samples per reference image. Then we use the pretrained attribute predictor to
predict the attribute of generated samples and compute the attribute accuracy, which is defined as the
proportion of generated images where the target attributes are correctly present. Finally, we report
the mean attribute accuracy over all attributes to show the overall performance.

4.3 COMPARISON WITH EXISTING METHODS

Quantitative comparison We compare our AttPortrait with Arc2Face (Paraperas Papantoniou
et al., 2024), ConsistentID (Huang et al., 2024), Photomaker (Li et al., 2024b), InstantID (Wang
et al., 2024b), and PuLID (Guo et al., 2024) on our evaluation protocols. As shown in Table 1,
AttPortrait achieves the highest attribute accuracy, with gains of 55.4% on Synth-test and 34.4% on
CelebA-test. Our method also achieves the best identity similarity on Synth-test and the second-
best on CelebA-test while maintaining comparable FID scores across both datasets. These results
demonstrate that AttPortrait effectively manipulates attributes while maintaining identity consis-
tency, surpassing prior approaches.

Qualitative comparison Beyond the quantitative metrics, superior visual results of our AttPor-
trait are observed compared to existing approaches. As shown in Figure 3, other methods exhibit
shortcomings to varying degrees. Arc2Face and ConsistentID generate high-quality faces but fail
to control attributes. PhotoMaker is capable of controlling certain attributes, such as gender and
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Figure 3: Qualitative comparison against existing works. We compare our method against
Arc2Face, ConsistentID, PhotoMaker, InstantID, and PuLID across five distinct identities and five
diverse attributes. For each row, we input the reference image and the text of the attribute on its
right into these models. Here, we only compare the image quality against Arc2Face, since it does
not support attribute text prompts.

hair color (3rd row and 5th row), but the outputs exhibit low identity consistency. InstantID usually
generates less realistic faces (2nd row and 4th row) and shows limited ability to control attributes.
PuLID can handle simple attributes like hair color, but it still has difficulty manipulating more ab-
stract attributes such as age (2nd row) and gender (3rd row). In contrast, all images generated by
AttPortrait exhibit high identity fidelity and accurately reflect the attributes specified in the texts,
even under challenging cases like gender or age changes.

4.4 EXTENSIVE VISUAL RESULTS

Multiple Attribute Manipulation We show the performance of our AttPortrait in a more compli-
cated scenario: multiple attribute manipulation, which imposes higher demands on attribute manipu-
lation. The visual results in Figure 4 demonstrate that, despite manipulating more than one attribute,
our approach maintains strong identity consistency.

Table 1: Quantitative comparison against existing methods on CelebA-test (Liu et al., 2015) and
Synth-test (Karras et al., 2020). We report mean ID similarity (ID Sim), mean attribute accuracy (Att
Acc), and FID. Here we do not report the attribute accuracy of Arc2Face (Paraperas Papantoniou
et al., 2024) because it fails to accept the attribute text prompts.

Method
CelebA-test Synth-test

ID Sim ↑ Att Acc ↑ FID ↓ ID Sim ↑ Att Acc ↑ FID ↓
Arc2Face 0.795 - 12.43 0.746 - 9.75
ConsistentID 0.499 0.094 7.99 0.475 0.074 3.98
PhotoMaker 0.234 0.525 9.01 0.249 0.357 5.21
InstantID 0.764 0.171 19.46 0.699 0.163 27.96
PuLID 0.631 0.371 9.56 0.609 0.322 5.16
AttPortrait (ours) 0.793 0.869 9.32 0.768 0.911 7.33
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Figure 4: Visual results on multiple attribute manipulation.

MustacheWearing HatWavy HairGray HairInput MustacheWearing HatWavy HairGray HairInput

MustacheWearing HatWavy HairGray HairInput MustacheWearing HatWavy HairGray HairInput

Figure 5: Visual results on zero-shot attribute manipulation.

Zero-Shot Attribute Manipulation Our method supports zero-shot control of novel attributes.
Even though certain attributes such as ”Gray Hair”, ”Wavy Hair”, ”Wearing Hat”, and ”Mustache”
are never seen during training, our model can still generate identity-consistent faces reflecting these
attributes. Figure 5 illustrates several examples where novel attributes are correctly exhibited.

4.5 ABLATION STUDY

Effect of Target Attributes In the disentanglement branch, target attributes distinct from the origi-
nal ones are used as text prompts. To evaluate their impact, we compare the model trained with target
attributes to that trained with original attributes. As shown in Figure 6 and Table 2, replacing target
attributes with the original ones severely reduces the control capability over attributes, resulting in a
marked decline in attribute accuracy.

Effect of Disentanglement Branch As shown in Figure 6 and Table 2, removing the disentan-
glement branch substantially reduces attribute accuracy, increases FID scores, and even produces
some distorted faces. These results highlight that the disentanglement branch is crucial for precise
attribute manipulation while maintaining facial realism.

Effect of Denoising Branch Figure 6 and Table 2 together show that removing the denoising
branch results in severe noise and sharply higher FID scores on both datasets, highlighting its essen-
tial contribution to high-quality face generation.

Effect of ID loss As shown in Figure 6 and Table 2, without the ID loss, the model suffers a marked
drop in ID similarity and produces images with identity drift and noticeable distortions. These results
clearly show that the ID loss effectively prevents identity drift during attribute manipulation.

Effect of DCA To assess the impact of our dual cross-attention, we compare against a baseline
where the ID and attribute embeddings are simply concatenated and injected through a single cross-
attention block. As shown in Figure 6 and Table 2, removing the dual cross-attention reduces identity
similarity, increases FID scores, and produces noisier images, highlighting the importance of our
dual cross-attention mechanism in attribute manipulation while maintaining identity.
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Input Ours w/o target w/o disent.

Beard

w/o ID lossw/o denoise w/o DCA

Old

Male

Bangs

Figure 6: Qualitative comparison for ablation studies. For clarity, we denote “w/o target” as “w/o
target attributes”, “w/o denoise” as “w/o denoising branch”, and “w/o disent.” as “w/o disentangle-
ment branch”. Zoom in for better observation.

Table 2: Effect of each component, evaluated on CelebA-test† and Synth-test (Paraperas Papanto-
niou et al., 2024). Here, the CelebA-test† contains a randomly selected 1K images from CelebA-
test (Liu et al., 2015).

Ablations
CelebA-test† Synth-test

ID Sim ↑ Att. Acc ↑ FID ↓ ID Sim ↑ Att. Acc ↑ FID ↓
w/o Target Attributes 0.810 0.481 13.31 0.788 0.520 9.75
w/o Disentanglement Branch 0.774 0.207 20.65 0.735 0.212 18.20
w/o Denoising Branch 0.805 0.932 24.99 0.772 0.949 26.17
w/o ID Loss 0.539 0.959 13.56 0.430 0.965 9.88
w/o DCA 0.694 0.886 28.35 0.660 0.902 28.74

Full 0.792 0.866 9.18 0.768 0.911 7.33

5 CONCLUSION AND LIMITATIONS

In this paper, we present AttPortrait, a face generation framework that precisely manipulates at-
tributes through text prompts while maintaining high identity consistency. Existing methods fail to
follow given attributes due to the entanglement of identity and attribute information in ID embed-
dings. However, we overcome this limitation by employing a novel dual-branch framework with
explicit attribute supervision. Extensive experiments demonstrate that AttPortrait significantly out-
performs prior methods in attribute accuracy. We hope our work can bring new inspiration to the
area of personalized face generation.

While AttPortrait excels at identity consistency and precise attribute control, it has two main limita-
tions. Firstly, our method exhibits a slight decline in image realism compared to Arc2Face (Parap-
eras Papantoniou et al., 2024). This may be caused by the attribute matching loss, which encourages
the model to align with the given attribute, but also introduces a mild adversarial effect. Secondly,
AttPortrait cannot generate full-body images with diverse backgrounds and styles, as it is trained
exclusively on face-centric data. In the future, we plan to incorporate datasets with diverse back-
grounds and contexts to enable simultaneous control over attributes, scenes, and styles.
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STATEMENTS

Ethics Statement The ability of our model to generate realistic, attribute-controllable face images
also carries risks such as disinformation, privacy violations, and misuse in identity fraud (West-
erlund, 2019; Mirsky & Lee, 2021). To mitigate potential harm, we will release the model with
mandatory watermarking, a clear usage license prohibiting malicious applications, and guidelines
for explicitly labeling generated content. We encourage the community to follow ethical best prac-
tices and develop traceability mechanisms to discourage misuse.

Reproducibility Statement Our method is fully reproducible. We provide a clear description of
the proposed approach in section 3, and detailed experimental settings and implementation details
are included in both section 4 and appendix A. In addition, we plan to release the source code to
further facilitate reproduction of our results.
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APPENDIX

A ADDITIONAL EXPERIMENT DETAILS

A.1 DETAILS OF DATASET CONSTRUCTION

Our training dataset is selected from LAION-Face (Schuhmann et al., 2022) and contains approxi-
mately 500,000 face images. We start by using InsightFace (Deng et al., 2019) to detect and align
faces in the original LAION-Face images. Next, we filter these faces and retain those with size
larger than 133×133 pixels, face score above 0.85, and CLIP-IQA+ score (Wang et al., 2023) above
0.645, resulting in approximately 500,000 high-quality face images. We then employ GFPGAN
v1.4 (Wang et al., 2021) to further enhance the image quality. Finally, we use a facial attribute
predictor trained on CelebA (Liu et al., 2015) to assign attribute labels to each face.

A.2 DETAILS OF THE INPUT PROMPTS

For existing methods, we follow the prompt templates described in the corresponding papers to
guarantee their optimal performance. Specifically, given an attribute <att>, we use “photo of a
person, <att>” for ConsistentID (Huang et al., 2024) and PhotoMaker (Li et al., 2024b), “<att>”
for InstantID (Wang et al., 2024b), and “portrait, <att>” for PuLID (Guo et al., 2024). For our
method, we construct the prompt with format: “who is ” +

∑11
i=1(M(atti)+“, ”), where atti denotes

the ith attribute label and M is a label to text mapping shown in Table 3.

Table 3: Our mapping M from attribute labels to texts. N/A indicates an empty string.
Attribute (atti) Label = 1 Label = 0

1: Bald “Bald” N/A
2: Young “Young” “Old”
3: Male “Male” “Female”
4: Bangs “with Bangs” N/A
5: Black Hair “with Black Hair” N/A
6: Blond Hair “with Blond Hair” N/A
7: Bushy Eyebrows “with Bushy Eyebrows” N/A
8: Eyeglasses “with Eyeglasses” N/A
9: Mouth Slightly Open “with Mouth Slightly Open” N/A
10: No Beard “with No Beard” N/A
11: Pale Skin “with Pale Skin” N/A

B ADDITIONAL VISUAL RESULTS

We present additional qualitative comparisons of single attribute manipulation in Figure 7 and Fig-
ure 8, which demonstrate that our AttPortrait achieves more effective attribute control than existing
methods while maintaining high identity consistency. We also present additional results of multi-
attribute manipulation in Figure 9, which accurately reflect the given attributes, demonstrating our
satisfactory ability to handle multiple attributes.

C FAILURE CASES

Three types of failure cases of our model are shown in Figure 10. The first is visual deformation,
where the generated faces exhibit irregularities or distorted features that reduce visual realism. The
second is unexpected artifacts, such as colored marks or undesired accessories. These two types
of failure might be related to adversarial effects (Szegedy et al., 2013; He et al., 2019) caused by
the attribute matching loss. The third is ineffective manipulation, where the given attributes are not
correctly reflected in the generated faces.

D THE USE OF LARGE LANGUAGE MODELS

The use of LLMs in this paper was strictly limited to enhancing readability, such as refining language
and correcting grammatical errors. No part of the research process, including problem formulation,
method design, experimental implementation, or result interpretation, was assisted by LLMs.
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Bald

No Bald
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Black Hair

No
Black Hair

Blond Hair

No
Blond Hair

Beard

No Beard

Male

Female

Reference Arc2Face ConsistentID PhotoMaker InstantID PuLID Ours

Figure 7: Additional qualitative comparisons (1/2). The results of Arc2Face (Paraperas Papantoniou
et al., 2024) are included solely to show the image quality and identity consistency, as it does not
support attribute manipulation.
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Figure 8: Additional qualitative comparisons (2/2). The results of Arc2Face (Paraperas Papantoniou
et al., 2024) are included solely to show the image quality and identity consistency, as it does not
support attribute manipulation.
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Figure 9: Additional results of multi-attribute manipulation.
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Figure 10: Failure cases.
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