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Abstract

While transformer models are widely believed to operate in high-dimensional
hidden spaces, we show that attention outputs are confined to a surprisingly low-
dimensional subspace, where about 60% of the directions account for 99% of the
variance–a phenomenon that is induced by the attention output projection matrix
and consistently observed across diverse model families and datasets. Critically,
we find this low-rank structure as a fundamental cause of the prevalent dead
feature problem in sparse dictionary learning, where it creates a mismatch between
randomly initialized features and the intrinsic geometry of the activation space.
Building on this insight, we propose a subspace-constrained training method for
sparse autoencoders (SAEs), initializing feature directions into the active subspace
of activations. Our approach reduces dead features from 87% to below 1% in
Attention Output SAEs with 1M features, and can further extend to other sparse
dictionary learning methods. Our findings provide both new insights into the
geometry of attention and practical tools for improving sparse dictionary learning
in large language models.
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1 Introduction

Over the past years, mechanistic interpretability has shifted from a collection of proof-of-concept
tools [Olsson et al., 2022, Wang et al., 2022, Meng et al., 2023, Gould et al., 2023] toward a fast-
growing, scale-driven field [Templeton et al., 2024, Ameisen et al., 2025, Lindsey et al., 2025]. This
transformation is driven by a wave of sparse dictionary learning methods–such as sparse autoencoders
(SAEs) and their variants [Cunningham et al., 2023, Bricken et al., 2023b, Lindsey et al., 2024b],
transcoders [Dunefsky et al., 2024, Ge et al., 2024], and low-rank sparse attention [He et al., 2025]–
that once targeted small models but are now being pushed to larger architectures and wider model
families. As these approaches scale in performance and model coverage, they provide increasingly
complete and fine-grained explanations of neural network behavior [Lindsey et al., 2024a, Gao et al.,
2024].

However, scaling these approaches presents practical difficulties [Templeton et al., 2024, Gao et al.,
2024, Mudide et al., 2025]. As models and feature dictionaries grow, the number of parameters
increases rapidly, driving up computational costs. At the same time, the prevalence of dead features
leads to substantial waste in computation and memory [Templeton et al., 2024, Kissane et al., 2024],
limiting the efficiency of interpretability methods. In this work, we identify low-rank activation
structure as a major driver of dead features (Section 5.1).

In Section 4, we show that attention outputs exhibit a remarkably strong low-rank structure
compared to multilayer perceptron (MLP) outputs and residual streams. Through singular value
decomposition and intrinsic dimension analyses [Guth et al., 2023, Staats et al., 2025], we demonstrate
that this phenomenon holds universally across layers, model families, and datasets, which is consistent
with the universality hypothesis [Olah et al., 2020, Chughtai et al., 2023, Gurnee et al., 2024, Wang
et al., 2025]. We further trace the origin of this low-rank structure to the anisotropy of the output
projection matrix WO, which compresses the multi-head outputs into a lower-dimensional subspace.

In Section 5, we investigate how the low-rank nature of attention outputs interacts with SAE training.
By evaluating the full suite of open-source SAEs from LlamaScope [He et al., 2024], we show
that low intrinsic dimension strongly correlates with the number of dead features, suggesting a
mismatch between random initialization and the low-dimensional geometry of the activations. To
address this, we propose Active Subspace Initialization, which aligns SAE features with the active
subspace of activations, substantially reducing dead features while improving reconstruction.
Following Lindsey et al. [2024a] and Gao et al. [2024], we conduct scaling experiments, which
further reveal that ASI achieves superior reconstruction across feature counts, and when combined
with SparseAdam2, it achieves the best reconstruction in large scale and reduces dead features from
87% to below 1% in Attention Output SAEs with 1M features trained on Llama-3.1-8B [Dubey et al.,
2024].

Furthermore, we show that Active Subspace Init can generalize to sparse replacement models [He
et al., 2025, Dunefsky et al., 2024, Ameisen et al., 2025] (Section 5.4). When applied to other sparse
dictionary learning methods, our initialization procedure systematically reduces the prevalence of
dead parameters across architectures.

2 Related Work

2.1 Low-Rankness in Attention Mechanisms

Prior work has investigated various notions of “low-rankness” within attention mechanisms.: low-
rank approximation of attention patterns [Wang et al., 2020, Tay et al., 2020, Raganato et al., 2020],
low-rank parameterization for model compression [Noach and Goldberg, 2020, Hu et al., 2022], and
the inherent low-rank bottleneck in single-head outputs [Bhojanapalli et al., 2020].

It is important to note that our perspective differs from these prior lines of work. We demonstrate that
the multi-head self-attention outputs naturally exhibit a low-rank structure, revealing a distinct and
under-explored phenomenon.

2https://docs.pytorch.org/docs/stable/generated/torch.optim.SparseAdam.html

2

https://docs.pytorch.org/docs/stable/generated/torch.optim.SparseAdam.html


2.2 Linear Representation Hypothesis and Sparse Dictionary Learning Methods

The linear representation hypothesis posits that high-level concepts correspond to linear directions
in representation space [Arora et al., 2018, Olah et al., 2020, Elhage et al., 2022, Park et al., 2024].
Building on this view, a series of sparse dictionary learning methods have been proposed as inter-
pretability tools, including sparse autoencoders and their variants [Cunningham et al., 2023, Bricken
et al., 2023b, Lindsey et al., 2024b], transcoders [Dunefsky et al., 2024, Ge et al., 2024], and low-rank
sparse attention [He et al., 2025]. These approaches aim to decompose activations into combinations
of sparsely activated features, while adopting different strategies, depending on their interpretability
objectives, to predict or approximate feature activations. Importantly, this hypothesis has been shown
to hold across a wide range of model scales [Templeton et al., 2024, Lieberum et al., 2024, He et al.,
2024], architectures [Wang et al., 2025], and modalities [Abdulaal et al., 2024].

2.3 Dead Features in Sparse Dictionary Learning Methods

A persistent challenge in sparse dictionary learning methods is the emergence of dead features3 [Tem-
pleton et al., 2024, Kissane et al., 2024], which are also referred to as dead units in sparse replacement
models [Dunefsky et al., 2024, Ge et al., 2024, He et al., 2025]. These features contribute nothing to
reconstruction quality, wasting parameters and computation. Existing approaches to mitigate this issue
rely on auxiliary loss terms [Gao et al., 2024, Conerly et al., 2025] or resampling strategies [Bricken
et al., 2023b] to encourage feature usage.

3 Preliminaries

3.1 Multi-Head Self-Attention and Notations

We consider a Transformer layer with multi-head self-attention (MHSA). Given input representations
X ∈ Rn×d, where n is the number of tokens and d is the hidden size, each attention head i computes:

Qi = XWQ
i , Ki = XWK

i , Vi = XWV
i , WQ

i ,WK
i ,WV

i ∈ Rd×dh ,

where dh = d/H is the dimensionality of each head, and H is the total number of heads. The
attention weights and head outputs are then given by:

Ai = softmax

(
QiK

⊤
i√

dh

)
, Zi = AiVi.

Let Z = Concat[Z1, . . . , ZH ] ∈ Rn×d denote the concatenated output of all attention heads [Nanda
and Bloom, 2022]. The final attention output is computed by applying the output projection:

O = ZWO, WO ∈ Rd×d.

This formulation shows that O can be viewed as the sum of low-dimensional outputs from each head,
projected into the residual stream space. O serves as the attention block’s contribution to the residual
stream.

3.2 TopK Sparse Autoencoders

In this work, we adopt the TopK sparse autoencoder (TopK SAE) variant introduced by Gao et al.
[2024]. Unlike standard SAEs that impose an ℓ1 penalty, TopK SAE enforces exact sparsity by
keeping only the top-k activations in the latent representation for each input. Formally, given an input
vector x ∈ Rd, the encoder produces

z = TopK(Wex+ be),

where TopK(v) sets to zero all but the largest k entries of v. The decoder then reconstructs

x̂ = Wdz + bd.

3Following Bricken et al. [2023b], we define a feature as dead if it never activates over 10 million tokens in
this paper.
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The model is trained to minimize the reconstruction loss, optionally augmented with an auxiliary
penalty to prevent dead latents:

LTopK-SAE = ∥x− x̂∥22 + α · Laux,

where Laux is an optional term designed to penalize latents that never activate over a training period,
and α balances reconstruction fidelity and latent utilization.

4 Low-Rank Structure of Attention Outputs

Figure 1: Across layers, model families and datasets, attention outputs exhibit dramatically lower
intrinsic dimensions (details in Section 4.1) than residual streams and MLP outputs, showing that the
attention layer writing into a low dimensional subspace of residual stream is a universal phenomenon.

We begin by presenting our central empirical finding: in Transformer models, attention outputs con-
sistently display the strongest low-rank structure compared to MLP outputs and residual streams. As
shown in Figure 1, attention outputs have a significantly lower intrinsic dimension. This phenomenon
is remarkably robust, holding across different intermediate layers, model families and datasets. These
observations highlight that the attention block modifies a subspace of the residual stream, while the
MLP operates nearly on the full space.

4.1 Quantifying Low-Rankness with Relative Singular Values

We consider activation matrix Ã ∈ Rn×d, where each row corresponds to one token’s activation
vector, and n is the number of data points, while d is the dimensionality of the activation space (e.g.,
the hidden size of the model). Unless otherwise specified, Ã refers to the mean-centered activations.
We refer readers to Appendix B for more details of activations sources.

To quantify the rank of data, we perform singular value decomposition (SVD) on Ã:

Ã = UΣV ⊤,

where U ∈ Rn×r, V ∈ Rd×r, and Σ = diag(σ1, . . . , σr) ∈ Rr×r contains the singular values
σ1 ≥ · · · ≥ σr ≥ 0, with r = rank(Ã). The squared singular values σ2

i indicate the amount of
variance captured along each principal direction.

To analyze the intrinsic dimension of these activations, we compute the smallest integer k such that:∑k
i=1 σ

2
i∑r

i=1 σ
2
i

≥ τ,

for a given threshold τ ∈ (0, 1). Since SVD yields the optimal low-rank approximation in terms of
reconstruction error, this k provides a principled way to assess how concentrated the activations are
in a low-dimensional subspace4 (Figure 1). We further compute the fraction of delta downstream

4We use 0.99 as the threshold in main text, results of some other thresholds are provided in Appendix D,
with no influence to the conclusion.
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loss recovered by different number of components. These metrics complement our central findings,
offering a numerical characterization of low-rankness.

4.2 Empirical Evidence of Low-Rank Structure

(a) (b)

Figure 2: Results for 1M samples from SlimPajama [Soboleva et al., 2023] fed into Llama-3.1-8B.
(A) The attention outputs are the most low-rank, as indicated by the sharpest decay in singular values.
(B) The fraction of loss recovered by different number of components, selected in descending order
of singular values.

We draw our findings from three lines of evidence:

Low Intrinsic Dimension of Attention Outputs Attention outputs exhibit significantly lower
intrinsic dimensionality compared to other activation types, with an intrinsic dimension of around
60% of the total dimensionality. In contrast, MLP outputs and the residual streams show much higher
intrinsic dimensions above 90% (Figure 1).

Rapid Spectral Decay in Attention Outputs Attention outputs exhibit a sharply decaying singular
value spectrum. This is quantitatively evidenced by the number of components retaining significant
energy: only 1174 singular values exceed 5% of the maximum value in attention outputs, compared
to 3276 for MLP outputs and 3943 for the residual streams (Figure 2a).

Efficient Downstream Loss Recovery Attention outputs demonstrates superior dimensional ef-
ficiency in downstream task performance. Compared to zero ablation, attention outputs requires
only 25.0% of dimensions to recover 95% of the downstream loss. This contrasts sharply with MLP
outputs and residual streams, which require 78.1% and 85.9% of dimensions respectively to achieve
the same recovery level (Figure 2b).

More results of these metrics across different layers, models and datasets are shown in Appendix C.

4.3 Low-Rankness of Attention Outputs Results from the Output Projection Matrix

Among all activation types, attention outputs consistently exhibits the most rapid spectral decay.
To investigate whether this low-rank structure originates from the attention heads (Z), the output
projection matrix (WO), or their interaction, we perform a decomposition-based analysis.

Recall that the attention output is computed as O = ZWO, where Z ∈ Rn×d is the concatenated
output of all attention heads, and WO ∈ Rd×d is a learned linear projection. To understand how the
variance in O is shaped, we analyze the variance of O along an arbitrary unit direction ê ∈ Rd, given
by:

Var(Oê) = Var(ZWO ê).

This expression highlights that the variance along e is determined by two factors: the norm of WOe
and the variance of Z projected onto the direction WO ê. Specifically, we can rewrite the variance as:

Var(Oê) = Var(Zv̂) · ∥v∥22 where v = WO ê, v̂ =
v

∥v∥2
.

5



We refer to Var(Zv) as the contribution of Z,
capturing how much variance the head output
Z provides in that direction, and ∥v∥22 as the
contribution of WO, measuring how much the
output projection WO scales or suppresses
that direction.
We compute and visualize both quantities
across a set of directions aligned with the
right singular vectors of attention output, as
shown in Figure 3. Our analysis reveals that
the low-rank structure of attention outputs O
arises primarily from the anisotropy of WO,
which heavily compresses the output space
into a lower-dimensional subspace. From a
mechanistic perspective, an intuitive way to
see this is that although each attention head
contributes a dhead-dimensional subspace, the
superposition of heads [Jermyn et al., 2024,
He et al., 2025] inherently leads to overlaps
among these subspaces. We note the output
of the ith head as headi. Consequently, the
dimension of the MHSA output satisfies

Figure 3: Decomposition of variance in attention
output O. We analyze the contributions of the
concatenated head outputs Z and the projection
matrix WO to the variance along each princi-
pal component of O (=ZWO). All values are
normalized to a common scale. The curve of O
closely follow that of Z for the top components,
whereas the downward trend of attention output
at the tail is mainly due to WO contribution.

dim

(⋃
i

span(headi)

)
≤
∑
i

dim
(
span(headi)

)
= dhead · nhead ( = dmodel in standard MHSA).

5 Active Subspace Initialization for Sparse Autoencoders

5.1 Empirical Correlation Between Low-Rank Structure and Dead Features

Figure 4: The number of dead features and the intrinsic dimension of each layer in Llama-3.1-8B,
shows a surprising consistency: activations with lower intrinsic dimensions have more dead features.

To explore how low-rankness affects the interpretability of attention, we use the same framework
and data as the original study to evaluate the LlamaScope SAEs [He et al., 2024]5, which provide
a complete set of SAEs trained on attention output, MLP output, and residual stream. We find that
the number of dead features is strongly related to intrinsic dimensions, as shown in Figure 4. This

5Another prominent open-source SAEs, GemmaScope [Lieberum et al., 2024], train their attention SAEs on
Z rather than attention output.
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observation suggests that dead features may stem from a fundamental mismatch between the SAE’s
randomly initialized weights and the geometry of the activation space.

5.2 Active Subspace Initialization for Sparse Autoencoders

To investigate this co-occurrence, we train SAEs on the attention output of Llama-3.1-8B at layer 15,
initializing the SAE feature directions in the subspace spanned by the top dinit singular vectors of the
activations. As shown in Figure 5, we find that constraining the initialization to a lower-dimensional
active subspace substantially decreases the number of dead features.

Based on this observation, we propose Active
Subspace Initialization (ASI), a lightweight
and generalizable strategy for scaling SAEs to
high capacities. Let d be the input dimension,
h the SAE hidden dimension, and n the num-
ber of data points. Given activation matrices
Ã ∈ Rn×d, we compute the SVD:

Ã = UΣV ⊤, V ∈ Rd×d.

We select the top dinit right singular vectors to
form the active subspace:

Vactive = V:,:dinit ∈ Rd×dinit .

We then initialize the SAE weights directly in
this subspace:

Wd ∈ span(Vactive), We = W⊤
d .

Figure 5: Proportion of dead features and nor-
malized MSE across different subspace dimen-
sions. Random subspaces are used as the baseline,
whereas only initialization with the active subspace
yields improvement.

Using Active Subspace Initialization offers several benefits:

(a) (b)

Figure 6: At a fixed number of features (n = 32768), Active Subspace Init achieves a better
reconstruction-sparsity trade-off than Base TopK and AuxK. A similar trend is observed in its
impact on Language Model Downstream Loss. Note: The improvement in downstream loss is less
pronounced than that in reconstruction, likely because Active Subspace Init allocates more features to
the active subspace, which implicitly enhances reconstruction quality.

Enhanced Sparsity-Reconstruction Frontier Without Additional Compute It empirically out-
performs TopK on the sparsity-reconstruction frontier. It achieves slightly better results compared to
the auxiliary loss approach while introducing no additional computational overhead (Figure 6).

Optimal Scaling Characteristics Our approach demonstrates optimal scaling behavior across
various model configurations. On SAEs with an expasion factor of 32 times or more, it can achieve
the same or even better performance as the auxiliary loss approach with only half the number of
parameters (Section 5.3).
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Broad Architectural Applicability The technique maintains applicability to diverse activation
functions and architectural variants, as it operates directly on the intrinsic properties of activations.
This generalizability is further explored in Section 5.4.

5.3 Scaling Laws

(a) Loss vs. Number of Parameters.

(b) Number of Dead vs. Number of Parameters. (c) Loss vs. Number of Alive Parameters.

Figure 7: Scaling results of TopK SAEs and their variants enhanced with AuxK, Active Subspace
Init, and SparseAdam–all trained on attention output from Llama-3.1-8B. (A) Loss at convergence
across different feature counts: Active Subspace Init consistently achieves lower reconstruction error
than TopK and AuxK. Active Subspace Init with SparseAdam achieves the best at large scale. (B)
Dead features: Active Subspace Init reduces dead features compared to TopK, but still retains many
at extremely large scales. Enhanced with SparseAdam, dead features can be reduced to less than 1%.
(C) Loss across different number of alive features: Active Subspace Init achieves the most efficient
utilization of alive features, while AuxK shows the lowest efficiency. Details in Section 5.3.

To understand how our method scales, we evaluate performance as the number of SAE features
increases from 16K to 1M, keeping other hyperparameters fixed (details in Appendix E). Figure 7
summarizes the results.

Active Subspace Init improves reconstruction. As shown in Figure 7a, the normalized MSE
follows a smooth power-law decay with increasing feature count. Across all scales, Active Subspace
Init consistently outperforms baseline TopK and AuxK, achieving superior reconstruction at equivalent
feature counts.

Caveat: some dead features remain at extremely large scales in Active Subspace Init. Figure 7b
shows that, when scaling to extremely large feature counts, Active Subspace Init produces more dead
features than AuxK. However, reconstruction performance remains better, indicating that the revived
features from AuxK contribute little to actual reconstruction quality(Figure 7c).

Use Active Subspace Init with SparseAdam further improves performance. Prior work [Bricken
et al., 2023a] identified stale momentum as a key factor in dead feature formation. Building on this
insight, we propose using SparseAdam, an optimizer specifically designed for sparse activation
settings. By updating only the moments and parameters corresponding to non-zero gradients,
SparseAdam naturally avoids stale momentum and thus mitigates the dead feature issue. As shown
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in Figures 7a, 7b, combining Active Subspace Init with SparseAdam substantially reduces dead
features while reaching the lowest reconstruction error. While orthogonal to our initialization method,
this choice provides a practical complement that further stabilizes training when scaling SAEs to very
large capacities. We discuss more about stale momentum and SparseAdam in Appendix A.

5.4 Generalize to Sparse Replacement Models

Recent work by He et al. [2025] reports that Lorsa, a sparse replacement model for attention layers,
exhibits a high proportion of dead parameters. We hypothesize that the low-rank structure of attention
outputs contributes significantly to this phenomenon.

To test this, we apply Active Subspace Initialization to Lorsa6. This modification reduces the
proportion of dead parameters from 68.4% to 40.5% under identical hyperparameter settings (Table 1),
while also slightly improving reconstruction error.

Table 1: Effect of Active Subspace Initialization on reducing dead parameters in attention replacement
model.

Method Vanilla Active Subspace Init
Dead Parameters (%) 68.4 40.5
Normalized MSE 0.130 0.121

These results indicate that Active Subspace Initialization provides an effective strategy for mitigating
dead parameters when training sparse replacement models on low-rank activations. We posit that
complete elimination of dead heads may require additional mechanisms, such as the tied initialization
used in SAEs to ensure alignment between feature encoding and decoding methods7. This approach
has been shown to be crucial for reducing dead features in SAEs [Gao et al., 2024], and its absence in
Lorsa may limit further improvement.

6 Conclusion

We identified the low-rank structure of attention outputs as a fundamental property of Transformer
models and a key cause of dead features in sparse dictionary learning. Our proposed Active Subspace
Initialization method addresses this by aligning SAE features with the intrinsic geometry of acti-
vations, reducing dead features while improving reconstruction quality. The approach generalizes
beyond SAEs to sparse replacement models.
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A Stale Momentum as Another Root Cause of Dead Features

Recent work by Bricken et al. [2023a] identifies stale momentum as a key cause to dead feature
formation. Specifically, when a feature remains inactive over training steps, its associated opti-
mizer momentum continues to accumulate. If the feature activates, the stale momentum results
in disproportionately large updates, destabilizing training and potentially suppressing that feature
permanently.

To directly address this, we adopt SparseAdam, an optimizer tailored for sparse activation settings,
designed for more efficient use of compute and memory. SparseAdam updates both parameters and
moments only when the corresponding feature is active. This could effectively prevent the harmful
accumulation of stale momentum. Empirically, we observe that this change substantially reduces the
rate of dead feature formation in large-scale SAE training. We believe that this is a core technique for
scaling sparse dictionary methods, as stale momentum is a common problem for them.

B Activation Sources

The spectral characteristics of activations vary substantially across model architectures, datasets, and
positional contexts. Below, we describe the experimental configurations used to support a broad and
representative analysis.

Models We study three large language models of different families–Llama-3.1-8B8, Qwen3-8B9,
and Gemma-2-9B10–all based on the Transformer architecture. This allows us to assess the robustness
of spectral properties under varying model training configurations.

Datasets To investigate how dataset diversity affects activation spectra, we select three datasets with
varying linguistic and domain characteristics: (1) SlimPajama, an English corpus comprising web
text, books, and other sources; (2) RedPajamaGithub, a large-scale code corpus; and (3) CCI3-Data,
a Chinese dataset with broad domain coverage.

Activation Positions Unless otherwise specified, activations are extracted from intermediate layers.
For example, in LLaMA-3.1-8B (32 layers), we use activations from layer 15 (zero-indexed). We
analyze four types of activations: (1) attention output, (2) MLP output, and (3) residual stream (post

8https://huggingface.co/meta-llama/Llama-3.1-8B
9https://huggingface.co/Qwen/Qwen3-8B

10https://huggingface.co/google/gemma-2-9b
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layer). For each type, we collect 10 million activation vectors. We empirically verify that this sample
size is sufficient to produce stable and reproducible spectral analyses.

C More Low-Rank Result Across Different Models and Datasets

(a) Activation spectra for many samples from SlimPajama fed into pythia-2.8b.

(b) Activation spectra for many samples from CCI3-Data fed into Qwen3-8B.

(c) Activation spectra for many samples from RedPajamaGithub fed into Qwen3-8B.

Figure 8

We present relative singular values and fraction of loss recovered for some other model-dataset pairs
in Figure 8. Models include pythia-2.8b11. Datasets include RedPajamaGithub12 and CCI3-Data13

D Different Choose of Variance Threshold for Intrinsic Dimension

We use 0.99 as the variance threshold in the main text. We show other threshold chose make no
influence to the conclusion in Figure 9. Attention outputs show low-rank structure consistently.

11EleutherAI/pythia-2.8b
12https://huggingface.co/datasets/cerebras/SlimPajama-627B
13https://huggingface.co/datasets/BAAI/CCI3-Data
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(a) Intrinsic dimension with threshold 0.5.

(b) Intrinsic dimension with threshold 0.9.

(c) Intrinsic dimension with threshold 0.999.

(d) Intrinsic dimension with threshold 0.9999.

Figure 9: Comparison of intrinsic dimensions across different variance thresholds.
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E SAE Training Details

E.1 Collecting Activations

We truncate each document to 1024 tokens and prepend a <bos> token to the beginning of each
document. During training, we exclude the activations corresponding to the <bos> and <eos> tokens.

It has been observed that activations from different sequence positions within the same document
are often highly correlated and may lack diversity. To mitigate this issue, it is common to introduce
randomness into the training data. Our shuffling strategy maintains a buffer that is reshuffled whenever
the buffer is refilled.

E.2 Initialization and Optimization

The decoder columns W dec
:,i are initialized uniformly and normalized to achieve the lowest initial

reconstruction loss. We find that the specific initialization norm has little impact, as long as in a
reasonable scope. For example, initializing W dec

:,i uniformly with a fixed bound, as in Conerly et al.
[2025], yields similar results. The encoder weights W enc are initialized as the transpose of W dec,
while both the encoder bias benc and decoder bias bdec are set to zero.

This initialization scheme ensures that the SAE begins training with an almost zero reconstruction
loss. Such initialization has been widely observed to benefit SAE training.

We train SAEs using the Adam and SparseAdam optimizers, both with β1 = 0.9, β2 = 0.999, and
ϵ = 10−8.

E.3 Fixed Hyperparameters in Scaling Law

Model, Dataset, Layer, Pos Llama-3.1-8B, SlimPajama, 15(index start at 0), attention output.

Sparsity We empirically set k = 50 for a reasonable sparsity in scaling laws.

Batch Size We empirically set batchsize = 4096, which belows the critical batch size.

Learning Rate The learning rate for Adam and SparseAdam is sweeped separately in [1e−5,
2e−5, 4e−5, 6e−5, 8e−5, 1e−4, 2e−4, 4e−4], and we ultimately use 4e−5 for Adam and 6e−5
for SparseAdam.

AuxK We follow Gao et al. [2024] to set auxiliary loss coefficient α as 1
32 . We sweep the kaux in

[256, 512, 1024, 2048] and finally choose 512.

Dimension of Subspace for SAE Initialization As shown in Figure 5, dinit is a hyperparameter
with a wide range of sub-optimal value space (from 256 to 2048). We use 768 for all experiments.

Total Tokens We use 2.5B tokens for each SAE training.
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