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ABSTRACT

Incorporating watermarking techniques into large language models (LLMs) is a
promising solution for determining whether text is generated by a specific LLM.
Existing green-red list-based methods embed watermarks by roughly adding bias
to the logits of all tokens in the green list, leading to distorted output due to the dis-
turbance of the original generative distribution. To move towards distortion-free
watermarking, we propose p-Mark, an adaptive scheme to derive potential green
tokens that can add bias by leveraging the Beta Distribution to dynamically adjust
the sampling threshold in Top-p Sampling. This essentially ensures the diversity of
text watermarks while preserving the quality of text output during the watermark-
ing process. Experiments on various LLMs show that our p-Mark improves the
quality of text generation while showing superior watermark detectability com-
pared to existing baselines.

1 INTRODUCTION

Large language models (LLMs) have undergone a meteoric rise in recent years, rapidly becoming
a dominant force at the forefront of AI research (Guo et al., 2025; Achiam et al., 2023; Dubey
et al., 2024). The growing development of LLMs has endowed them with powerful text generation
capabilities. However, this rapid technological evolution has also raised ethical, security, and le-
gal concerns, including plagiarism, fake news, misinformation, and malicious content (Fang et al.,
2024; Zellers et al., 2019; Pan et al., 2023; Weidinger et al., 2022; Liu et al., 2024b; Lim et al.,
2023; Augenstein et al., 2024). Therefore, mitigating the potential harms of LLMs necessitates the
development of reliable methods to distinguish machine-generated texts from human-written texts,
serving as a critical safeguard for security, ethics, and trust.

Incorporating identifiable watermarks into the outputs of LLMs is a promising technology to track
machine-generated content effectively (Kirchenbauer et al., 2023; Zhao et al., 2023). One prominent
and effective watermarking strategy involves injecting bias into the model’s logits via a partitioned
“green-red” list (Kirchenbauer et al., 2023). Specifically, they randomly divide the vocabulary into
a green/red list based on the prefix token, and then augment the choosing probabilities of “green”
words in text generation. This method provides an effective and straightforward approach for detect-
ing LLM-generated texts by leveraging the biased distribution of green words. However, it operates
by increasing the logit probabilities of green words across the entire vocabulary, which is vulnerable
to unintended selection of semantically inappropriate tokens, thereby introducing distortions and
reducing the coherence of the generated text.

In this paper, to balance text quality and watermark detectability, we get inspiration from top-p
sampling (nucleus sampling) (Holtzman et al., 2020) and propose a novel watermarking method
for LLMs via an adaptive truncation strategy for top-p sampling, called p-Mark. To be specific,
following existing studies, we first randomly divide the vocabulary into a “green list” and a “red list”
based on the prefix token. To mitigate the introduction of incoherent tokens and preserve text quality,
we then apply top-p sampling to this green list to select the candidate words whose logit probabilities
will be increased. This confines the bias addition to the appropriate green tokens selected by top-p
sampling, rather than the entire vocabulary, thereby reducing the risk of nonsensical or incoherent
word choices and improving the quality of generated text.
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While increasing probabilities only within the top-p set helps reduce distortions caused by over-
promoting inappropriate green-list words, the inherent uncertainty of sampling can still exclude
certain appropriate green tokens, thereby limiting their selection during text generation, leading to
insufficient watermarks. To address this issue, we propose an adaptive adjustment of the sampling
threshold to facilitate the inclusion of more green-list tokens into the top-p token set. Conceptually,
the inclusion of a token in the top-p set is a binary outcome, which can therefore be naturally
modeled using a binomial distribution. We thus employ the beta distribution (McDonald & Xu,
1995) to model the probability that a token will be included in the top-p set, given its sampling
probability and the current top-p sampling threshold. Specifically, for each token, the probability is
used to model the number of successes and failures for parameterizing the shape parameters α and
β, and the sampling threshold is treated as the target variable for the beta distribution. In this way,
tokens with near-threshold probabilities can be incorporated into the top-p set while excluding those
from the long-tail distribution. This essentially encourages LLMs to explore diverse watermarks
in cases of uncertainty and retain only high-confidence tokens when assured, thereby effectively
balancing quality and diversity during the watermarking process.

We evaluate the proposed p-Mark on a series of LLMs. Experimental results demonstrate that
p-Mark outperforms existing baselines in both text quality and watermark detectability. Further,
our p-Mark not only reduces generation perplexity compared to strategies that increase green-word
probabilities across the entire vocabulary, but also enhances the coverage and diversity of water-
marks compared to vanilla top-p sampling.

Our main contributions are summarized as follows:

• We are the first to explore Top-p sampling in watermarking for LLMs, which effectively
enhances the quality of generated text by confining the introduction of bias to a refined set
of green tokens.

• We propose p-Mark, a novel adaptive sampling method that dynamically adjusts the top-p
set to incorporate a wider range of green tokens that should be considered, thus effectively
balancing text quality and watermark diversity.

• Experiments on various LLMs demonstrate the outstanding performance of our p-Mark,
which significantly enhances text quality while ensuring watermark detectability.

2 RELATED WORKS

Watermarking on Texts The watermarks that are injected directly into texts can be divided into
two categories. (1) Inject watermarks by special tokens. Samsudin & Rahman (2016) introduced
a robust digital text watermarking scheme that embeds information by selectively inserting Unicode
extended characters according to a pre-agreed lookup table. Sato et al. (2023) proposes Easymark,
which embeds watermarks by replacing specific characters in the text with other visually indistin-
guishable Unicode characters. WASA (Wang et al., 2023) trains the generative model to generate
text containing special invisible Unicode tokens. (2) Inject watermarks by transformation. Yang
et al. (2022) propose a context-aware lexical substitution method using BERT to embed and extract
watermarks in natural language text while preserving its original semantic meaning. He et al. (2022)
proposes a conditional watermarking framework called CATER, which optimizes watermark rules
and adjusts word selection under specific language conditions without significantly changing the
overall word distribution.

Watermarking for Large Language Models Existing injecting watermarks by modifying the
generation process can be roughly divided into two categories. (1) Design the mechanism through
dedicated theories or extra models. Aaronson & Kirchner (2022) designed an Exponential water-
mark based on the GumbelMax trick. GumbelSoft (Fu et al., 2024) further developed sampling with
softmax-based Gumbel noise. Kuditipudi et al. (2024) proposes a distortion-free and robust text
watermarking method based on inverse transform sampling and exponential minimum sampling.
SIR (Liu et al., 2024a) introduces an auxiliary model to extract the semantic embeddings, and trains
a lightweight model to map the semantic embeddings into logits. (2) Increase the probability of
some tokens called green list tokens. Kirchenbauer et al. (2023) first proposed the algorithm called
KGW, which is based on dividing red-green lists and using bias on logits to improve the probabil-
ity of green list token generation. This work established the paradigm, but was plagued by severe
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text distortion caused by the bias. NS-Watermark (Takezawa et al., 2023) minimally embeds de-
tectable green-word patterns into LLM outputs via adaptive constrained optimization, preserving
text quality while guaranteeing detectability. Zhao et al. (2024) proposed a robust watermarking
method called Unigram, which divides the vocabulary into a fixed green-red list. Lee et al. (2024)
proposed a code watermarking method SWEET, which devises a selective strategy through the en-
tropy to avoid disrupting code functionality. WatME (Chen et al., 2024) exploits lexical redundancy
and applies mutual exclusion rules to prevent quality loss while maintaining the detectability. Hou
et al. (2023) proposes SEMSTAMP, a sentence-level semantic watermarking algorithm that uses
Locality-sensitive hashing to partition the semantic space into regions and obtain the new sentences
by reject sampling. Unlike existing work, we propose to introduce an adaptive method to dynami-
cally select appropriate green tokens for adding bias during watermarking, thereby reducing the risk
of nonsensical or incoherent text generation.

3 PRELIMINARY

Language Model LetM denote an auto-regressive language model and V denote its vocabulary.
For an input prompt X = {s−Np+1, · · · , s0} with length Np, modelM generates a response S =
{s1, s2, · · · , sT } with length T . For the t-th step of the generation process,M derives the logits lt
over V with the prior tokens s<t = {s−Np+1, · · · , s0, s1, · · · , st−1}. Then the logits transform into
a probability distribution via the softmax function. The language modelM samples the next token
from the distribution as st ∼ Pt.

The Watermarking Task The green-red-list-based watermarking technique of LLMs includes
two steps: 1) injecting a specific mechanism in the generation process to embed the watermark (wa-
termarking generation), and 2) identifying the watermark among raw texts (watermark detection).
As introduced in Kirchenbauer et al. (2023), first randomly partition the vocabulary V randomly
into a green list Gt of size γ|V| and a red list Rt of size (1 − γ)|V|, where γ is the ratio of green
list. Then, add a constant bias δ to the logits lt computed byM and apply the softmax operator to
these modified logits to get the renewed probability distribution. The next token is sampled from
this updated distribution, where tokens from the green list Gt are softly promoted by δ.

Watermark detection is typically constructed as a hypothesis testing process. It generally involve
the null hypothesis H0: The text sequence is generated with no knowledge of the green/red list rule.
For a token sequences S = {s1, s2, · · · , sT }, it use a one-sided z-test with a z-score calculated as
z = (|s|G − γT )/

√
Tγ(1− γ), where |s|G denotes the count of green list tokens in sequences S.

If the calculated z exceeds the threshold τ , then reject the null hypothesis.

… …

+	𝜹

Original distribution Modified distribution

Figure 1: Add bias to green tokens across the
entire vocabulary.

Trade-off between Text Quality and Water-
marking The green-red list-based watermarking
paradigm is designed to add bias to green tokens
across the entire vocabulary, aiming to make the
model inclined to choose green tokens during de-
coding. However, as shown in Figure 1, roughly
adding bias to green tokens in the entire vocabu-
lary may enhance the probability of generating con-
textually unsuitable words, ultimately impairing the
coherence and quality of the text. Therefore, developing more sophisticated strategies to effectively
balance watermark strength with text quality remains a critical challenge in LLM watermarking.

Top-p v.s. Top-k In autoregressive language models, generating the next token involves sam-
pling from a probability distribution over the vocabulary. Two common methods for this are Top-k
sampling and Top-p sampling. Both techniques aim to truncate the full vocabulary to prevent the
generation of low-probability tokens. In addition, watermarking for LLMs typically involves sam-
pling for two scenarios: low-entropy and high-entropy. The low-entropy scenario indicates the
presence of a few high-confidence tokens during decoding. To preserve text quality, the model’s se-
lection should be from these tokens, rather than reluctantly embedding watermarks outside of them.
In this case, Top-k sampling risks incorporating low-probability tokens for watermarking, as a fixed
k is challenging to set optimally for all contexts, which may be too large for a narrow distribution.
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… …

Sampling threshold

Original distribution Modified distribution

+	𝜹

(a) Top-p sampling

… …

Adaptive Sampling threshold

Original distribution Modified distribution

+	𝜹

(b) p-Mark (ours)

Figure 2: Illustration of the comparison in adding bias between top-p and our p-Mark.

This inevitably compromises textual coherence. In contrast, Top-p sampling inherently maintains
coherence by dynamically adapting the candidate set to include only tokens within a high-confidence
cumulative probability threshold. For the high-entropy scenario, both top-k and top-p may exclude
tokens whose probabilities are close to some of the tokens in the candidate set. However, compared
to top-k, which is based on quantity to determine the threshold, top-p is based on probability to
determine the threshold, making it easier to dynamically adjust the threshold. Detailed description
of why we choose top-p for adaptive sampling is shown in Appendix D.

Beta Distribution The beta distribution is a family of continuous probability distributions defined
on the interval [0, 1]. It is parameterized by two positive parameters α and β. The probability density
function of a random variable X which follows the beta distribution is given by:

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, 0 ≤ x ≤ 1 (1)

where B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt is the beta function. The beta distribution holds a pivotal

position in Bayesian inference, primarily due to its status as the conjugate prior for the Bernoulli
and binomial likelihood functions. This conjugacy property ensures that if the prior distribution
for a success probability p is modeled by a beta distribution, the posterior distribution will also
belong to the beta family after observing a set of Bernoulli trials. This characteristic provides a
clear and interpretable mechanism for updating beliefs. The shape parameters α and β can be
conceptualized as prior observations, representing α−1 pseudo-successes and β−1 pseudo-failures.
The beta distribution naturally incorporates new evidence, thereby enabling a robust and transparent
framework for sequential learning and probabilistic reasoning.

4 WATERMARKING WITH ADAPTIVE TOP-p SAMPLING

In this section, we provide a detailed introduction to the proposed p-Mark, an adaptive sampling
threshold truncation scheme to derive more appropriate green tokens for watermarking of LLMs.
Our objective is to achieve distortion-free watermarking, i.e., select as many appropriate tokens
as possible to act as watermarks while preserving text quality, then design a detection algorithm
that identifies distributional shifts caused specifically by this bias. Specifically, the proposed p-Mark
mainly consists of three components: 1) Green list derivation based on top-p sampling. 2) Green list
expansion based on adaptive sampling. 3) Watermark detection.

4.1 GREEN LIST DERIVATION BASED ON TOP-p SAMPLING

Based on this insight, and following the methodology of green-red list-based watermarking stud-
ies, we proceed as follows: For each current prefix st, the language model’s (M) vocabulary
V is randomly partitioned into a green list Go

t and a red list Ro
t according to a pre-defined size

ratio γ. Formally, V = Go
t ∪ Ro

t . Let P denote the probability distribution over the vocab-
ulary V = {v1, v2, . . . , vN} for the current prefix. To reduce the risk of unintended selection
of semantically inappropriate tokens, we employ top-p sampling to get a subset Vp for vocabu-
lary V based on the sorted probability distribution P = {P (v1) ≥ P (v2) ≥ · · · ≥ P (vN )}:
Vp = {vi ∈ V :

∑i
j=1 P (vj) < p}. Then the truncated green list tokens Gt = Go

t

⋂
Vp, which

contains more appropriate green tokens selected by top-p.

4
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4.2 GREEN LIST EXPANSION BASED ON ADAPTIVE SAMPLING

Although top-p sampling is a simple and effective method for removing long tails, there are two
remaining problems when applying it to the watermark algorithm.

1) The dynamic adaptation of the threshold p. Traditional Top-p sampling typically employs
a fixed probability threshold. However, this threshold setting is often determined heuristically or
based on empirical observation, lacking a principled foundation. A static threshold inherently strug-
gles to adapt to dynamic operational factors, such as variations in model types (M) and desired
watermark strengths (γ). This inflexibility can lead to suboptimal performance in both watermark
embedding and subsequent detection. Furthermore, as illustrated in Figure 2 (a), a static Top-p
threshold may inadvertently exclude tokens that share similar probabilities, thereby restricting the
potential diversity of the resulting watermarks.

2) The robustness of Top-p sampling. While Top-p sampling is effective for pruning low-
probability tokens, this truncation process can inadvertently compromise both the strength and ro-
bustness of the embedded watermark. On the one hand, overly aggressive pruning (i.e., a small p)
risks removing tokens otherwise acceptable for watermark encoding; specifically, in cases of low
entropy, it might only retain the highest-probability token, while in high-entropy scenarios, many
suitable tokens are inevitably discarded even if their probability values are closely aligned with those
retained in Vp. On the other hand, an excessively large p might retain too many tokens, primarily
serving to supplement the deficiency in the cumulative probability mass by including tokens with
notably low probabilities in Vp, which degrades the overall quality and detectability.

To solve the problems above, as shown in Figure 2 (b), we propose a novel watermark approach
that dynamically adjusts the top-p set to incorporate a wider range of green tokens that should be
considered, which contains the following components:

Get rid of the stable threshold. We do not consider the stable threshold p for truncating the dis-
tribution as the gold standard, but only as a reference for determining whether a token is appropriate
for the current position. If a token is suitable enough, it must have a high confidence to reach the
minimum probability of the tokens in Vp.

How to determine whether a green list token is suitable? Given an input prefix s<t and a token
v ∈ V , the most direct way to determine whether v is appropriate for s<t is through the probability
P (v|s<t). For each token v at position t, it is either sampled or not with P (v|s<t). Therefore, there
is a potential Beta distribution fv(x;α, β) for each token v. fv(x;α, β) reveals all possibilities of
x = P (v|s<t), where α and β denote the parameters of the Beta distribution. We use the original
distribution Pt as prior knowledge to estimate the successful and failed sampling trials as the values
of α and β, formulated as

α = 100Pt[v] + 1, β = 100(1− Pt[v]) + 1 (2)

Here we use a Python-like notation Pt[v] to denote the probability of token v in distribution Pt.
Based on the distribution fv(x;α, β), the confidence cv that the probability of v reaches the mini-
mum probability of the tokens in Vp is calculated as

cv = 1− Fv(pm), pm = min
v∈Vp

Pt[v] (3)

where Fv(·) represents the Cumulative Distribution Function (CDF) of fv(x;α, β).

Do reliable selection with confidence. Based on the preceding computation, a token v ∈ Go
t

is deemed suitable for bias application without compromising text quality if it satisfies a two-part
criterion: first, its probability Pt[v] must exceed a minimum probability threshold pm; and second,
its confidence cv must be greater than the predefined confidence threshold c0. We thus expand the
initial green list Go

t to form the final set Gt by including all tokens that satisfy this confidence
condition. Finally, the watermark is embedded by promoting the logits of all tokens v ∈ Gt with an
additive bias δ. The complete procedure of p-Mark is formally depicted in Algorithm 1. In addition,
we provide the theoretical analysis of p-Mark, which is detailed in Appendix E.

5
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Algorithm 1: Watermarked Text Generation with p-Mark
Input: Prompt X = {s−Np+1, · · · , s0}; Language modelM with vocabulary V; Green list size ratio

γ ∈ (0, 1); Response length T ; Green list token bias δ; Top-p sampling threshold p; Beta
distribution confidence threshold c0.

1 for t← 1 to T do
2 Compute a hash of the previous token st−1 and use it as the seed for a random number generator;
3 Using this random number generator, randomly partition the vocabulary V into a green list Go

t (of size
γ|V|) and a red list Ro

t (of size (1− γ)|V|);
4 ApplyM to prior tokens to compute the logits lt over V;
5 Compute the probability distribution Pt = softmax(lt);
6 Truncate the distribution Pt using top-p sampling with threshold p to get Vp ⊂ V;
7 pm ← minv∈Vp Pt[v];
8 Initialize the set of suitable green list tokens with top-p strategy as Gt ← Go

t

⋂
Vp;

9 for v ∈ Go
t do

10 if Pt[v] > pm then cv = 1;
11 else
12 α0 ← Pt[v], β0 ← 1− Pt[v];
13 Construct a Beta distribution fv(x;α, β), where α = 100α0 + 1, β = 100β0 + 1;
14 Compute the confidence cv = 1− Fv(pm), where Fv is the CDF of fv(α, β);

15 if cv ≥ c0 then Gt ← Gt

⋂
{v};

16 for v ∈ Gt do update logit of v in lt as lt[v]← lt[v] + δ;
17 Compute the probability distribution P = softmax(lt);
18 Sample st from P ;

Algorithm 2: Watermark Detection
Input: Text S = {s1, s2, · · · , sT }; Detection threshold τ ; Green list size ratio γ ∈ (0, 1).
Output: Whether S is watermarked or not.

1 Initialize the number of biased tokens |s|G ← 0;
2 for t← 1 to T do
3 Compute a hash of the previous token st−1 and use it as the seed for a random number generator;
4 Using the random number generator, randomly partition the vocabulary V into a green list Go

t (of size
γ|V|) and a red list Ro

t (of size (1− γ)|V|);
5 Compute the probability distribution Pt over V and construct Gt following the generation algorithm;
6 if st ∈ Gt then |s|G ← |s|G + 1;
7 Calculate the probability of biased token γt =

∑
v∈At

Pt(v);

8 Calculate the expectation µ =
∑T

t=1 γt and variation σ2 =
∑T

t=1 γt(1− γt);
9 Compute the z-statistic:

z = (|s|G − µ)/σ

10 if z > τ then return True;
11 else return False;

4.3 WATERMARK DETECTION

To accommodate the truncated green list Gt resulting from our selection process, we derive a more
general z-test method for watermark detection. Specifically, during the decoding stage for a given
prefix st, we model the event of sampling a watermark-biased token as a random variable Xt, which
follows a Bernoulli distribution. Xt is formulated as

Xt ∼ Bernoulli(γt), γt =
∑
v∈Gt

Pt[v], t = 1, 2, · · · , T (4)

where Gt denotes the set of biased token, γt denotes the probability of sampling a token from Gt,
calculated by the summation of all the probabilities of v ∈ Gt.

Let X represent the number of green-list token in response S. Following Kirchenbauer et al. (2023),
we simply consider X1, X2, · · · , XT as i.i.d. variables. Thus X = X1 +X2 + · · ·+XT , with the

6
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Table 1: Performance comparison of our p-Mark and baseline models. For text quality evaluation,
perplexity (PPL) is reported. For watermark detection, F1 score, and AUC are reported. The best
and second-best results are highlighted in red and blue, respectively. Vanilla represents the original
LLMs without watermarking.

Model Method Quality Detection (τ = 2.0) Detection (τ = 4.0)

PPL ↓ AUC ↑ F1 ↑ AUC ↑ F1 ↑

OPT-1.3B

Vanilla 13.8218 - - - -
KGW 15.5253 0.9715 0.9714 0.9495 0.9468

Unigram 14.7300 0.9705 0.9700 0.9125 0.9042
SWEET 14.4978 0.9580 0.9568 0.8890 0.8751
DiPmark 14.1725 0.9760 0.9760 0.9560 0.9540
p-Mark 14.1133 0.9715 0.9715 0.9535 0.9512

OPT-6.7B

Vanilla 11.2474 - - - -
KGW 12.7840 0.9725 0.9723 0.9354 0.9310

Unigram 12.0542 0.9550 0.9535 0.8713 0.8526
SWEET 11.6789 0.9480 0.9461 0.8650 0.8439
DiPmark 11.5236 0.9713 0.9715 0.9485 0.9457
p-Mark 11.4063 0.9735 0.9735 0.9600 0.9583

Llama2-7B

Vanilla 7.4424 - - - -
KGW 8.1000 0.9770 0.9772 0.9495 0.9468

Unigram 7.9730 0.9575 0.9571 0.9095 0.9006
SWEET 7.7983 0.9520 0.9529 0.9425 0.9390
DiPmark 7.5563 0.9735 0.9734 0.9356 0.9311
p-Mark 7.3513 0.9840 0.9840 0.9655 0.9643

Qwen3-8B

Vanilla 12.9772 - - - -
KGW 13.7518 0.9790 0.9792 0.9545 0.9523

Unigram 13.8118 0.9785 0.9785 0.9300 0.9247
SWEET 13.5662 0.9720 0.9723 0.9605 0.9589
DiPmark 12.3622 0.9790 0.9790 0.9595 0.9577
p-Mark 12.0890 0.9830 0.9830 0.9670 0.9660

expectation µ and variation σ2 as

µ =

T∑
t=1

γt, σ2 =

T∑
t=1

γt(1− γt) (5)

Then the z-score is rewritten as z = (|s|G − µ)/σ, where |s|G now denotes the count of biased
tokens in S. Therefore, we rewrite the detection algorithm as Algorithm 2.

5 EXPERIMENTS

In this section, we conduct experiments to demonstrate the effectiveness of our proposed p-Mark,
including evaluating the performance on text quality and watermark detectability. Then, we provide
various insightful experiments and analyses to demonstrate why the sampling strategy in p-Mark
works well. Finally, we provide the robustness of p-Mark against attacks compared to the baselines.

5.1 EXPERIMENT SETTING

Datasets and Metrics. Following Kirchenbauer et al. (2023), we randomly select a subset from C4
dataset (Raffel et al., 2020) to conduct the experiments. Perplexity (PPL) is used to evaluate the
quality of generated text. F1 score and AUC are used to measure watermark detection.

Language Models. We conduct experiments with four LLMs: OPT-1.3B and OPT-6.7B (Zhang
et al., 2022), Llama2-7B (Touvron et al., 2023) which is following Kirchenbauer et al. (2023) and
Zhao et al. (2024); Qwen3-8B (Yang et al., 2025), which is the recent popular model.

Baselines. We compare our proposed method with various baselines that follows the green-red list
watermarking paradigm, including KGW (Kirchenbauer et al., 2023), Unigram (Zhao et al., 2024),
SWEET (Lee et al., 2024), and DiPmark (Wu et al., 2024). Further details are in Appendix F.
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5.2 MAIN RESULTS

Table 1 demonstrates the performance on text quality and watermark detection of our proposed p-
Mark and the baselines. The watermarked text generated by p-Mark consistently outperforms all
baseline methods on text quality across four LLMs and achieves competitive performance compared
to the vanilla LLMs. This indicates that our proposed adaptive sampling scheme can ensure the
quality of the generated text during watermarking, achieving distortion-free watermarking. In terms
of watermark detection performance, p-Mark achieves the best performance on three LLMs, and is
only slightly inferior to DiPmark on OPT-1.3B. This demonstrates the effectiveness of watermarking
in our p-Mark.

(a) KGW (b) p-Mark (ours)

Figure 3: Histograms of z-score distributions of
our method and KGW. The dotted line in the mid-
dle indicates the mean value of each distribution.

In addition, to vividly show the effectiveness of
our p-Mark in watermarking, we provide the
histograms of z-score distributions to compare
p-Mark with KGW based on OPT-1.3B in Fig-
ure 3. From the histogram and statistics, our
proposed method can obtain higher z-values.
Due to the higher z-values, the two distribu-
tions are further apart. Thus, our proposed p-
Mark achieves better detectability and exhibits
stability at different thresholds. The histograms
based on other models are presented in Ap-
pendix A.

5.3 ANALYSIS OF OUR p-MARK

(a) Detectability at 𝜏 = 2.0 (b) Detectability at 𝜏 = 4.0

Figure 4: The detectability among p-Mark, Top-p and
Top-k sampling.

We investigate the impact of various sam-
pling strategies to demonstrate the superi-
ority of our p-Mark.

Analysis of sampling strategy To ana-
lyze how the adaptive sampling benefits
the performance of p-Mark, we conduct
experiments with sampling methods deter-
mined by adaptive and fixed parameters.
We compare the detectability among p-
Mark, Top-p, and Top-k sampling. We set
parameters p = 0.9 and k = 10, the results are shown in Figure 4. We can see that our adaptive strat-
egy outperforms the other two strategies with fixed parameters on most situations except OPT-1.3B
at τ = 4.0. This indicates that our adaptive sampling is better than that with fixed parameters.

(a) Detectability at 𝜏 = 2.0 (b) Detectability at 𝜏 = 4.0

Figure 5: The performance comparison of watermark
detection among other sampling expansion strategies.

Analysis of sampling expansion Con-
sidering that the distribution may be un-
reliable when the model is uncertain, we
conduct experiments to analyze whether
sampling multiple times is beneficial to
construct the set of candidate green list
tokens. We compare the detectability
among four construction strategies: p-
Mark, sample N times with Top-p then
union these candidates, sample K times
with Top-p then decide the candidates by
voting, and Min-p (Minh et al., 2025). We
set the parameters p = 0.9, K = 3, and pbase = 0.1 for Min-p. As shown in Figure 5, sampling
multiple times brings no performance improvement but involves extra costs. This proves that a sin-
gle sampling is sufficient, and the introduction of multiple sampling will lead to a decrease in the
generation of green list tokens.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Detectability at 𝜏 = 2.0 (b) Detectability at 𝜏 = 4.0

Figure 6: Detectability between using confidence for weights or to truncate. p-Mark denotes using
confidence to truncate, and cvδ denotes using confidence as a weight of bias (left). Distribution of
the fraction of green list tokens |s|G/T of Top-p and our p-Mark with Llama2-7B (right).

Analysis of the use of confidence We further explored whether to use confidence for weights or
to truncate. We modify the use of confidence as a weight of δ for green list tokens, i.e., update the
logit of v as lt[v]← lt[v] + cvδ. As shown in Figure 6 (left), the OPT family models show different
results under the two thresholds, but our method performs better under the other two models. This
indicates that the confidence as a truncation method used in our approach is more stable.

We further compare the fraction of green list tokens |s|G/T generated with p-Mark and Top-p. The
result of Llama2-7B is shown in Figure 6 (right), and the results of the other models are presented in
Appendix B. The contents generated with p-Mark contain more green list tokens. This also indicates
that our adaptive sampling method can generate more green list tokens.

5.4 ROBUSTNESS AGAINST ATTACKS
Table 2: The robustness of our proposed
method against attacks.

Attack AUC F1

KGW p-Mark KGW p-Mark
Original 0.9770 0.9840 0.9772 0.9840

Copy-paste 0.9084 0.8979 0.9096 0.8961
GPT-4-turbo 0.6191 0.6249 0.4020 0.4249

DIPPER 0.7687 0.8034 0.7071 0.7590

Watermarks should be able to resist attacks. To investi-
gate the robustness of the watermarking method we pro-
posed, we subjected the watermark to different types of
attacks: copy-paste attack (Kirchenbauer et al., 2023),
paraphrase attack and DIPPER attack (Krishna et al.,
2023). We perform the paraphrase attack with GPT-4-
turbo. We report the detection performance of KGW and
our method under the attacks above with Llama2-7B and
τ = 2.0 in Table 2. Our proposed algorithm is slightly weaker than KGW in terms of robustness
under copy-paste attack, and outperforms KGW under paraphrase attack and DIPPER attack.

5.5 ANALYSIS OF THE NEW WATERMARK DETECTION ALGORITHM

Table 3: Impact of the detection algorithm. “w/o detect”
indicates detecting with the original detection algorithm.

Model Method Detection (τ = 2.0) Detection (τ = 4.0)

AUC ↑ F1 ↑ AUC ↑ F1 ↑

Llama2-7B

Top-p 0.9830 0.9830 0.9550 0.9529
p-Mark 0.9840 0.9840 0.9655 0.9643

Top-p, w/o detect 0.9570 0.9563 0.7720 0.7047
p-Mark, w/o detect 0.9685 0.9684 0.8565 0.8325

We investigate the impact of the
detection algorithm we proposed.
We compared the original detection
method of KGW with our modified
method on the models above. We
report the results of Llama2-7B, as
shown in Table 3. The remaining re-
sults can be viewed in the Appendix
C. The results proved the effective-
ness of our modifications.

6 CONCLUSION

In this paper, we explore the text watermark of LLMs and propose a novel adaptive sampling method
p-Mark that dynamically adjusts the top-p set to incorporate a wider range of green tokens. To be
specific, we first derive the original green list via Top-p sampling to reduce the risk of unintended
token selection. Then, we expand the truncated green list based on the confidence computed by the
Beta distribution constructed by the probability of the token. Finally, we derive a more general z-test
method to satisfy the modification of the green list. Experiments on a series of LLMs demonstrate
the outstanding performance of our proposed p-Mark.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have open-sourced the code for our proposed
method. The code is available at https://anonymous.4open.science/r/p-Mark-647D. All experiments
conducted as a part of this study utilized publicly available datasets and models.
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A OMITTED RESULTS OF THE DETECTION STABILITY

(a) KGW (b) p-Mark (ours)

Llama2-7B

Figure 7: Histograms of z-score distributions of our method and KGW based on Llama2-7B.

(a) KGW (b) p-Mark (ours)

OPT-6.7B

Figure 8: Histograms of z-score distributions of our method and KGW based on OPT-6.7B.

(a) KGW (b) p-Mark (ours)

Qwen3-8B

Figure 9: Histograms of z-score distributions of our method and KGW based on Qwen3-8B.
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B OMITTED RESULTS OF THE IMPACT OF RELIABLE SELECTION STRATEGY
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Figure 10: The distributions of the fraction of green list tokens |s|G/T with Llama2-7B.
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Figure 11: The distributions of the fraction of green list tokens |s|G/T with OPT-1.3B.
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Figure 12: The distributions of the fraction of green list tokens |s|G/T with OPT-6.7B.
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Figure 13: The distributions of the fraction of green list tokens |s|G/T with Qwen3-8B.

C OMITTED RESULTS OF THE IMPACT OF THE NEW DETECTION
ALGORITHM

Table 4: Impact of the detection algorithm.

Model Method Detection (z = 2.0) Detection (z = 4.0)
AUC ↑ F1 ↑ AUC ↑ F1 ↑

OPT-1.3B

Top-p 0.9715 0.9715 0.9595 0.9577
p-Mark 0.9715 0.9715 0.9535 0.9512

Top-p w/o detect 0.9620 0.9614 0.8685 0.8486
p-Mark w/o detect 0.9645 0.9640 0.9180 0.9107

OPT-6.7B

Top-p 0.9705 0.9702 0.9430 0.9396
p-Mark 0.9735 0.9735 0.9600 0.9583

Top-p w/o detect 0.9530 0.9518 0.8135 0.7707
p-Mark w/o detect 0.9640 0.9634 0.8815 0.8656

Qwen3-8B

Top-p 0.9820 0.9820 0.9470 0.9440
p-Mark 0.9830 0.9830 0.9670 0.9660

Top-p w/o detect 0.9560 0.9553 0.8730 0.8542
p-Mark w/o detect 0.9675 0.9674 0.9245 0.9183

D WHY CHOOSE TOP-p SAMPLING?

Consider the definitions of Top-p sampling and Top-k sampling. We assume the probability distri-
bution P over the vocabulary V = {v1, v2, · · · , vN} is ordered such that P (v1) ≥ P (v2) ≥ · · · ≥
P (vN ). Let p and k be the truncation thresholds for Top-p and Top-k sampling, respectively.

D.1 TOP-p SAMPLING

Top-p sampling selects the smallest set of most probable tokens whose cumulative probability ex-
ceeds the threshold p.

1. Construct the token pool Vp: Select tokens whose cumulative probability is less than p.

Vp = {vi ∈ V :

i∑
j=1

P (vj) < p} (6)
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2. Sample the next token: The next token is sampled from the pool Vp after normalizing its
probabilities.

P ′(v) =
P (v)∑

v′∈Vp
P (v′)

, v ∈ Vp (7)

D.2 TOP-k SAMPLING

Top-k sampling selects the k most probable tokens from the vocabulary.

1. Construct the token pool Vk: Select the k most probable tokens.

Vk = {vi ∈ V : i ≤ k} (8)

2. Sample the next token: The next token is sampled from the pool Vk after normalizing its
probabilities.

P ′(v) =
P (v)∑

v′∈Vk
P (v′)

, v ∈ Vk (9)

D.3 ANALYSIS FROM AN ENTROPY PERSPECTIVE

The effectiveness of these methods can be considered from the perspective of the entropy of the
distribution P . The distribution P typically falls into two categories:

D.3.1 HIGH ENTROPY DISTRIBUTION

When P has a high entropy, tokens in V all have relatively similar probabilities of being sampled.
If we truncate P using either Top-k or Top-p, the differences in probability values between the
selected tokens will not become significantly more pronounced after normalization. In this context,
if an external mechanism (like partitioning into “green” and “red” lists) introduces a uniform bias δ
to a subset of tokens, boosting the likelihood of those tokens is generally acceptable, as the original
probabilities are already close.

D.3.2 LOW ENTROPY DISTRIBUTION

When P has a low entropy, there are significant differences in the probabilities of tokens in V ,
usually with a few tokens dominating the probability mass.

• Top-p Strategy: This strategy is typically effective because it naturally excludes tokens
with relatively low probabilities (which might be considered “noise”) unless a very high
threshold p is set. Even if a few low-probability tokens are included in Vp and happen to
belong to an externally preferred set, their small individual probabilities will not substan-
tially impact the quality of the generated text.

• Top-k Strategy: This strategy is often suboptimal because k is a fixed constant. It’s dif-
ficult to know how many reasonable candidate tokens exist at any given decoding step.
Consequently, an inappropriate setting of k might uncontrollably include tokens with very
low probabilities as candidates, potentially distorting the text quality.

E THEORETICAL ANALYSIS OF p-MARK

E.1 ANALYSIS OF THE CANDIDATE SET

Theorem 1. Let Gt be the biased token set in p-Mark at the t-th decoding step, Vp be the subset of
V which is truncated with Top-p strategy, and Go

t be the current original green list. The cardinality
of the set A satisfies |Vp ∩Go

t | ≤ |Gt| ≤ |Go
t |.

Proof. According to Algorithm 1, we set the confidence cv of token v ∈ Go
t to 1 if its probability at

the current step Pt[v] is greater than the minimum probability among the tokens in Vp. Therefore,
there must be at least |Vp ∩Go

t | tokens in set Gt.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Since the threshold of confidence c0 is a hyperparameter, the worst case is that c0 = 0. Then all
the tokens of the current green list satisfy the constraint of confidence value. Therefore, the upper
bound of |Gt| is |Go

t |. Thus we have |Vp ∩Go
t | ≤ |Gt| ≤ |Gt|.

E.2 ANALYSIS OF THE TEXT QUALITY

Theorem 2. The expectation of the perplexity of the generation with KGW is higher than that of the
text generated by the vanilla model. The expectation of the perplexity of the generation with p-Mark
is not greater than that of the text with KGW.

Proof. Consider a sentence S = {s1, s2, · · · , sT } generated by an LLM M by a prompt X =
{s−Np+1, · · · , s0}. The perplexity of S could be calculated as

PPL(S) = P (s1, s2, · · · , sT )−
1
T =

(
T∏

t=1

P (st|s1, s2, · · · , st−1)

)− 1
T

(10)

Let S now be the text generated by the vanilla modelM, and Sk, Sp be the texts generated by KGW
and p-Mark, separately. We will first prove the increase of the expectation of PPL with KGW, i.e.,
E[PPL(Sk)] > E[PPL(S)].

The formulation of PPL could be rewritten with the negative log-likelihood (NLL):

PPL(S) =

(
T∏

t=1

P (st|s1, s2, · · · , st−1)

)− 1
T

= 2−
1
T

∑T
t=1 logP (st|s1,s2,··· ,st−1)

= 2NLL(S)

(11)

According to Jensen’s Inequality, for a convex function f(x), we have

E[f(x)] ≥ f(E[x]) (12)

When f(x) = 2x, we have E[2x] ≥ 2E[x]. Therefore, E[PPL(S)] ≥ 2E[NLL(S)]. We could transform
the comparison of the PPL expectation to the NLL expectation, which could be dealt with more
easily. Now we’re going to prove that E[NLL(Sk)] > E[NLL(S)]. The formulation of E[NLL(S)]
could be rewritten as:

E[NLL(S)] = E[− 1

T

T∑
t=1

logP (st|s1, s2, · · · , st−1)]

= − 1

T

T∑
t=1

E[logP (st|s1, s2, · · · , st−1)]

(13)

Therefore, the problem is further transformed into proving the relationship between the expectations
of each decoding step, i.e., E[logPk(st|s1, s2, · · · , st−1)] < E[logP (st|s1, s2, · · · , st−1)], where
P represents the original distribution of the vocabulary and Pk represents the distribution modified
by the bias δ in KGW.

Since we use the polynomial sampling in the decoding stage, the expectation of the t-th step is
formulated as

E[logP (st|s1, s2, · · · , st−1)] =
∑
v∈V

P (v|s1, s2, · · · , st−1) logP (v|s1, s2, · · · , st−1) (14)

and for KGW we have

E[logPk(st|s1, s2, · · · , st−1)] =
∑
v∈V

Pk(v|s1, s2, · · · , st−1) logP (v|s1, s2, · · · , st−1) (15)
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According to the definition of entropy, given two distributions P and Q, their entropy H(·) and
cross-entropy H(P,Q) are as follows:

H(P ) = −
∑
x

P (x) logP (x), H(Q) = −
∑
x

Q(x) logQ(x) (16)

H(P,Q) = −
∑
x

P (x) logQ(x) (17)

According to the information theory, we have

H(P,Q) = H(P ) +DKL(P ||Q) (18)

where DKL(P ||Q) =
∑

x P (x) log P (x)
Q(x) is the Kullback-Leibler Divergence. Therefore, we have

E[logP (st|s1, s2, · · · , st−1)] = −H(P ) (19)
E[logPk(st|s1, s2, · · · , st−1)] = −H(Pk, P ) = −H(Pk)−DKL(Pk||P ) (20)

Since we have

DKL(Pk||P ) =
∑
v∈V

Pk(v|s1, · · · , st−1)
Pk(v|s1, · · · , st−1)

P (v|s1, · · · , st−1)

=
∑
v∈Rt

Pk(v|s1, · · · , st−1)
Pk(v|s1, · · · , st−1)

P (v|s1, · · · , st−1)

+
∑
v∈Gt

Pk(v|s1, · · · , st−1)
Pk(v|s1, · · · , st−1)

P (v|s1, · · · , st−1)

(21)

and for v ∈ Gt, Pk(v|s1, · · · , st−1) > P (v|s1, · · · , st−1) since the bias δ increase the probability of
green list tokens, then DKL(Pk||P ) > 0. Similarly, we have H(Pk) > H(P ). Therefore, we prove
that E[logPk(st|s1, s2, · · · , st−1)] < E[logP (st|s1, s2, · · · , st−1)], and we have E[NLL(Sk)] >
E[NLL(S)]. Thus we finally have E[PPL(Sk)] > E[PPL(S)].

Next, we will prove that the expectation of the perplexity of the generation with p-Mark is lower
than that of the text with KGW. Similar to the above, we could transform this problem into proving
the relationship between the expectations of each decoding step. The expectation of p-Mark at the
t-th step could be rewritten as

E[logPp(st|s1, s2, · · · , st−1)] = −H(Pp, P ) = −H(Pp)−DKL(Pp||P ) (22)

Since |A| ≤ |Gt|, we have the following two inequations:

H(Pk) ≥ H(Pp) (23)
DKL(Pk, P ) ≥ DKL(Pp, P ) (24)

Therefore, we have E[logPk(st|s1, s2, · · · , st−1)] ≤ E[logPp(st|s1, s2, · · · , st−1)]. Then
E[NLL(Sk)] ≥ E[NLL(Sp)]. Thus we have E[PPL(Sk)] ≥ E[PPL(Sp)].

F IMPLEMENTATION DETAILS Table 5: The details of the oracle model.

Generation Model Oracle Model
OPT-1.3B OPT-2.7B
OPT-6.7B OPT-13B

Llama2-7B Llama2-13B
Qwen3-8B Qwen3-14B

Following Kirchenbauer et al. (2023), all
the model applies polynomial sampling
during the decoding stage. The hyperpa-
rameters of the watermark γ = 0.5 and
δ = 2.0. The detection threshold τ is set
to 2.0 and 4.0, respectively. For each in-
put prompt, the language model is asked
to generate T = 200 tokens. The perplexity is computed by a larger oracle model. The details of the
generation and oracle models are shown in Table 5. For the experimental settings of the baseline,
we set the hyperparameters according to the original paper.
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G THE USE OF LARGE LANGUAGE MODELS

This manuscript was refined for clarity and grammar using LLM. The LLM was used exclusively
for improving the language and style of the text and did not contribute to the content, research, or
conclusions of the paper. All ideas, data, experiments, and findings are the original work of the
authors.
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