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ABSTRACT

Incorporating watermarking techniques into large language models (LLMs) is a
promising solution for determining whether text is generated by a specific LLM.
Existing green-red list-based methods embed watermarks by roughly adding bias
to the logits of all tokens in the green list, leading to distorted output due to the dis-
turbance of the original generative distribution. To move towards distortion-free
watermarking, we propose p-Mark, an adaptive scheme to derive potential green
tokens that can add bias by leveraging the Beta Distribution to dynamically adjust
the sampling threshold in Top-p Sampling. This essentially ensures the diversity of
text watermarks while preserving the quality of text output during the watermark-
ing process. Experiments on various LLMs show that our p-Mark improves the
quality of text generation while showing superior watermark detectability com-
pared to existing baselines.

1 INTRODUCTION

Large language models (LLMs) have undergone a meteoric rise in recent years, rapidly becoming
a dominant force at the forefront of Al research (Guo et al., 2025; |/Achiam et al., 2023} |Dubey
et al.} 2024). The growing development of LLMs has endowed them with powerful text generation
capabilities. However, this rapid technological evolution has also raised ethical, security, and le-
gal concerns, including plagiarism, fake news, misinformation, and malicious content (Fang et al.,
2024; Zellers et al.|, 2019; [Pan et al., [2023; Weidinger et al 2022} [Liu et al. 2024b; Lim et al.,
2023; |Augenstein et al., [2024). Therefore, mitigating the potential harms of LLMs necessitates the
development of reliable methods to distinguish machine-generated texts from human-written texts,
serving as a critical safeguard for security, ethics, and trust.

Incorporating identifiable watermarks into the outputs of LLMs is a promising technology to track
machine-generated content effectively (Kirchenbauer et al.,[2023;|{Zhao et al.,|2023). One prominent
and effective watermarking strategy involves injecting bias into the model’s logits via a partitioned
“green-red” list (Kirchenbauer et al., [2023)). Specifically, they randomly divide the vocabulary into
a green/red list based on the prefix token, and then augment the choosing probabilities of “green”
words in text generation. This method provides an effective and straightforward approach for detect-
ing LLM-generated texts by leveraging the biased distribution of green words. However, it operates
by increasing the logit probabilities of green words across the entire vocabulary, which is vulnerable
to unintended selection of semantically inappropriate tokens, thereby introducing distortions and
reducing the coherence of the generated text.

In this paper, to balance text quality and watermark detectability, we get inspiration from top-p
sampling (nucleus sampling) (Holtzman et al.| |2020) and propose a novel watermarking method
for LLMs via an adaptive truncation strategy for top-p sampling, called p-Mark. To be specific,
following existing studies, we first randomly divide the vocabulary into a “green list” and a “red list”
based on the prefix token. To mitigate the introduction of incoherent tokens and preserve text quality,
we then apply top-p sampling to this green list to select the candidate words whose logit probabilities
will be increased. This confines the bias addition to the appropriate green tokens selected by top-p
sampling, rather than the entire vocabulary, thereby reducing the risk of nonsensical or incoherent
word choices and improving the quality of generated text.
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While increasing probabilities only within the top-p set helps reduce distortions caused by over-
promoting inappropriate green-list words, the inherent uncertainty of sampling can still exclude
certain appropriate green tokens, thereby limiting their selection during text generation, leading to
insufficient watermarks. To address this issue, we propose an adaptive adjustment of the sampling
threshold to facilitate the inclusion of more green-list tokens into the top-p token set. Conceptually,
the inclusion of a token in the top-p set is a binary outcome, which can therefore be naturally
modeled using a binomial distribution. We thus employ the beta distribution (McDonald & Xu,
1995) to model the probability that a token will be included in the top-p set, given its sampling
probability and the current top-p sampling threshold. Specifically, for each token, the probability is
used to model the number of successes and failures for parameterizing the shape parameters o and
5, and the sampling threshold is treated as the target variable for the beta distribution. In this way,
tokens with near-threshold probabilities can be incorporated into the top-p set while excluding those
from the long-tail distribution. This essentially encourages LLMs to explore diverse watermarks
in cases of uncertainty and retain only high-confidence tokens when assured, thereby effectively
balancing quality and diversity during the watermarking process.

We evaluate the proposed p-Mark on a series of LLMs. Experimental results demonstrate that
p-Mark outperforms existing baselines in both text quality and watermark detectability. Further,
our p-Mark not only reduces generation perplexity compared to strategies that increase green-word
probabilities across the entire vocabulary, but also enhances the coverage and diversity of water-
marks compared to vanilla top-p sampling.

Our main contributions are summarized as follows:

* We are the first to explore Top-p sampling in watermarking for LLMs, which effectively
enhances the quality of generated text by confining the introduction of bias to a refined set
of green tokens.

* We propose p-Mark, a novel adaptive sampling method that dynamically adjusts the top-p
set to incorporate a wider range of green tokens that should be considered, thus effectively
balancing text quality and watermark diversity.

» Experiments on various LLMs demonstrate the outstanding performance of our p-Mark,
which significantly enhances text quality while ensuring watermark detectability.

2 RELATED WORKS

Watermarking on Texts The watermarks that are injected directly into texts can be divided into
two categories. (1) Inject watermarks by special tokens. Samsudin & Rahman|(2016) introduced
a robust digital text watermarking scheme that embeds information by selectively inserting Unicode
extended characters according to a pre-agreed lookup table. |Sato et al.| (2023)) proposes Easymark,
which embeds watermarks by replacing specific characters in the text with other visually indistin-
guishable Unicode characters. WASA (Wang et al., 2023)) trains the generative model to generate
text containing special invisible Unicode tokens. (2) Inject watermarks by transformation. |Yang
et al.[(2022) propose a context-aware lexical substitution method using BERT to embed and extract
watermarks in natural language text while preserving its original semantic meaning. [He et al.|(2022)
proposes a conditional watermarking framework called CATER, which optimizes watermark rules
and adjusts word selection under specific language conditions without significantly changing the
overall word distribution.

Watermarking for Large Language Models Existing injecting watermarks by modifying the
generation process can be roughly divided into two categories. (1) Design the mechanism through
dedicated theories or extra models. |Aaronson & Kirchner| (2022) designed an Exponential water-
mark based on the GumbelMax trick. GumbelSoft (Fu et al.,[2024) further developed sampling with
softmax-based Gumbel noise. |Kuditipudi et al.| (2024) proposes a distortion-free and robust text
watermarking method based on inverse transform sampling and exponential minimum sampling.
SIR (Liu et al., 2024a) introduces an auxiliary model to extract the semantic embeddings, and trains
a lightweight model to map the semantic embeddings into logits. (2) Increase the probability of
some tokens called green list tokens. Kirchenbauer et al.|(2023)) first proposed the algorithm called
KGW, which is based on dividing red-green lists and using bias on logits to improve the probabil-
ity of green list token generation. This work established the paradigm, but was plagued by severe
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text distortion caused by the bias. NS-Watermark (Takezawa et al., 2023)) minimally embeds de-
tectable green-word patterns into LLM outputs via adaptive constrained optimization, preserving
text quality while guaranteeing detectability. [Zhao et al|(2024) proposed a robust watermarking
method called Unigram, which divides the vocabulary into a fixed green-red list. [Lee et al.|(2024)
proposed a code watermarking method SWEET, which devises a selective strategy through the en-
tropy to avoid disrupting code functionality. WatME (Chen et al.| [2024) exploits lexical redundancy
and applies mutual exclusion rules to prevent quality loss while maintaining the detectability. [Hou
et al.| (2023) proposes SEMSTAMP, a sentence-level semantic watermarking algorithm that uses
Locality-sensitive hashing to partition the semantic space into regions and obtain the new sentences
by reject sampling. Unlike existing work, we propose to introduce an adaptive method to dynami-
cally select appropriate green tokens for adding bias during watermarking, thereby reducing the risk
of nonsensical or incoherent text generation.

3 PRELIMINARY

Language Model Let M denote an auto-regressive language model and V denote its vocabulary.
For an input prompt X = {s_x, 41, -, S0} with length N,,, model M generates a response S =
{s1, 82, -+, s7} with length T'. For the ¢-th step of the generation process, M derives the logits ;
over V with the prior tokens s, = {s,NpH, -+ ,80,81, " ,St—1} Then the logits transform into
a probability distribution via the softmax function. The language model M samples the next token
from the distribution as s; ~ P;.

The Watermarking Task The green-red-list-based watermarking technique of LLMs includes
two steps: 1) injecting a specific mechanism in the generation process to embed the watermark (wa-
termarking generation), and 2) identifying the watermark among raw texts (watermark detection).
As introduced in [Kirchenbauer et al.| (2023)), first randomly partition the vocabulary V' randomly
into a green list G of size y|V| and a red list R; of size (1 — +)|V|, where 7 is the ratio of green
list. Then, add a constant bias J to the logits I; computed by M and apply the softmax operator to
these modified logits to get the renewed probability distribution. The next token is sampled from
this updated distribution, where tokens from the green list G; are softly promoted by §.

Watermark detection is typically constructed as a hypothesis testing process. It generally involve
the null hypothesis Hy: The text sequence is generated with no knowledge of the green/red list rule.
For a token sequences S = {s1, 82, -, 87}, it use a one-sided z-test with a z-score calculated as
z = (sl =7T")/+/T~v(1 — ), where |s|g denotes the count of green list tokens in sequences S.
If the calculated z exceeds the threshold 7, then reject the null hypothesis.

Trade-off between Text Quality and Water-

marking The green-red list-based watermarking 45 I I I I
paradigm is designed to add bias to green tokens I I
across the entire vocabulary, aiming to make the
model inclined to choose green tokens during de- ~ Original distribution Modificd distribution

coding. However, as shown in Figure [I] roughly

adding bias to green tokens in the entire vocabu- Figure 1: Add bias to green tokens across the
lary may enhance the probability of generating con- entire vocabulary.

textually unsuitable words, ultimately impairing the

coherence and quality of the text. Therefore, developing more sophisticated strategies to effectively
balance watermark strength with text quality remains a critical challenge in LLM watermarking.

Top-p v.s. Top-k In autoregressive language models, generating the next token involves sam-
pling from a probability distribution over the vocabulary. Two common methods for this are Top-k
sampling and Top-p sampling. Both techniques aim to truncate the full vocabulary to prevent the
generation of low-probability tokens. In addition, watermarking for LLMs typically involves sam-
pling for two scenarios: low-entropy and high-entropy. The low-entropy scenario indicates the
presence of a few high-confidence tokens during decoding. To preserve text quality, the model’s se-
lection should be from these tokens, rather than reluctantly embedding watermarks outside of them.
In this case, Top-k sampling risks incorporating low-probability tokens for watermarking, as a fixed
k is challenging to set optimally for all contexts, which may be too large for a narrow distribution.
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Figure 2: Illustration of the comparison in adding bias between top-p and our p-Mark.

This inevitably compromises textual coherence. In contrast, Top-p sampling inherently maintains
coherence by dynamically adapting the candidate set to include only tokens within a high-confidence
cumulative probability threshold. For the high-entropy scenario, both top-k and top-p may exclude
tokens whose probabilities are close to some of the tokens in the candidate set. However, compared
to top-k, which is based on quantity to determine the threshold, top-p is based on probability to
determine the threshold, making it easier to dynamically adjust the threshold. Detailed description
of why we choose top-p for adaptive sampling is shown in Appendix

Beta Distribution The beta distribution is a family of continuous probability distributions defined
on the interval [0, 1]. It is parameterized by two positive parameters « and 3. The probability density
function of a random variable X which follows the beta distribution is given by:

(1 - x)ﬁ’l
B(«, 8) ’

where B(q, 8) = fol t®~1(1 — ¢)#~1dt is the beta function. The beta distribution holds a pivotal
position in Bayesian inference, primarily due to its status as the conjugate prior for the Bernoulli
and binomial likelihood functions. This conjugacy property ensures that if the prior distribution
for a success probability p is modeled by a beta distribution, the posterior distribution will also
belong to the beta family after observing a set of Bernoulli trials. This characteristic provides a
clear and interpretable mechanism for updating beliefs. The shape parameters o and 3 can be
conceptualized as prior observations, representing . — 1 pseudo-successes and 5 — 1 pseudo-failures.
The beta distribution naturally incorporates new evidence, thereby enabling a robust and transparent
framework for sequential learning and probabilistic reasoning.

f(@;0,8) = 0<z<1 (D

4  WATERMARKING WITH ADAPTIVE TOP-p SAMPLING

In this section, we provide a detailed introduction to the proposed p-Mark, an adaptive sampling
threshold truncation scheme to derive more appropriate green tokens for watermarking of LLMs.
Our objective is to achieve distortion-free watermarking, i.e., select as many appropriate tokens
as possible to act as watermarks while preserving text quality, then design a detection algorithm
that identifies distributional shifts caused specifically by this bias. Specifically, the proposed p-Mark
mainly consists of three components: 1) Green list derivation based on top-p sampling. 2) Green list
expansion based on adaptive sampling. 3) Watermark detection.

4.1 GREEN LIST DERIVATION BASED ON TOP-p SAMPLING

Based on this insight, and following the methodology of green-red list-based watermarking stud-
ies, we proceed as follows: For each current prefix s, the language model’s (M) vocabulary
V is randomly partitioned into a green list G? and a red list R according to a pre-defined size
ratio . Formally, V = G? U R?. Let P denote the probability distribution over the vocab-
ulary V = {v1,v,...,vn} for the current prefix. To reduce the risk of unintended selection
of semantically inappropriate tokens, we employ top-p sampling to get a subset V), for vocabu-
lary V based on the sorted probability distribution P = {P(v;) > P(v2) > --- > P(un)}:
Vp = {v; € V: 32 P(v;) < p}. Then the truncated green list tokens G; = G7 (1| V), which
contains more appropriate green tokens selected by top-p.
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4.2 GREEN LIST EXPANSION BASED ON ADAPTIVE SAMPLING

Although top-p sampling is a simple and effective method for removing long tails, there are two
remaining problems when applying it to the watermark algorithm.

1) The dynamic adaptation of the threshold p. Traditional Top-p sampling typically employs
a fixed probability threshold. However, this threshold setting is often determined heuristically or
based on empirical observation, lacking a principled foundation. A static threshold inherently strug-
gles to adapt to dynamic operational factors, such as variations in model types (M) and desired
watermark strengths (). This inflexibility can lead to suboptimal performance in both watermark
embedding and subsequent detection. Furthermore, as illustrated in Figure 2] (a), a static Top-p
threshold may inadvertently exclude tokens that share similar probabilities, thereby restricting the
potential diversity of the resulting watermarks.

2) The robustness of Top-p sampling. While Top-p sampling is effective for pruning low-
probability tokens, this truncation process can inadvertently compromise both the strength and ro-
bustness of the embedded watermark. On the one hand, overly aggressive pruning (i.e., a small p)
risks removing tokens otherwise acceptable for watermark encoding; specifically, in cases of low
entropy, it might only retain the highest-probability token, while in high-entropy scenarios, many
suitable tokens are inevitably discarded even if their probability values are closely aligned with those
retained in V,. On the other hand, an excessively large p might retain too many tokens, primarily
serving to supplement the deficiency in the cumulative probability mass by including tokens with
notably low probabilities in V,,, which degrades the overall quality and detectability.

To solve the problems above, as shown in Figure [2] (b), we propose a novel watermark approach
that dynamically adjusts the top-p set to incorporate a wider range of green tokens that should be
considered, which contains the following components:

Get rid of the stable threshold. We do not consider the stable threshold p for truncating the dis-
tribution as the gold standard, but only as a reference for determining whether a token is appropriate
for the current position. If a token is suitable enough, it must have a high confidence to reach the
minimum probability of the tokens in V.

How to determine whether a green list token is suitable? Given an input prefix s-; and a token
v € V, the most direct way to determine whether v is appropriate for s, is through the probability
P(v|s<¢). For each token v at position ¢, it is either sampled or not with P(v|s<;). Therefore, there
is a potential Beta distribution f,(z;«, 3) for each token v. f,(x; «, 3) reveals all possibilities of
2 = P(v|s<), where o and (8 denote the parameters of the Beta distribution. We use the original
distribution P, as prior knowledge to estimate the successful and failed sampling trials as the values
of o and 3, formulated as

o =100P;[v] + 1, 8 = 100(1 — P;[v]) + 1 )

Here we use a Python-like notation P;[v] to denote the probability of token v in distribution P;.
Based on the distribution f,(z;a, 8), the confidence ¢, that the probability of v reaches the mini-
mum probability of the tokens in V), is calculated as

cvzlfFv(pm)v pngeli‘gipt[v} 3)

where F,(-) represents the Cumulative Distribution Function (CDF) of f, (z; «, 3).

Do reliable selection with confidence. Based on the preceding computation, a token v € GY
is deemed suitable for bias application without compromising text quality if it satisfies a two-part
criterion: first, its probability P;[v] must exceed a minimum probability threshold p,,; and second,
its confidence ¢, must be greater than the predefined confidence threshold cy. We thus expand the
initial green list G to form the final set G by including all tokens that satisfy this confidence
condition. Finally, the watermark is embedded by promoting the logits of all tokens v € G with an
additive bias §. The complete procedure of p-Mark is formally depicted in Algorithm([I] In addition,
we provide the theoretical analysis of p-Mark, which is detailed in Appendix
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Algorithm 1: Watermarked Text Generation with p-Mark

Input: Prompt X = {s_n,+1,- -, s0}; Language model M with vocabulary V; Green list size ratio
~ € (0,1); Response length T'; Green list token bias d; Top-p sampling threshold p; Beta
distribution confidence threshold co.

fort < 1toT do

Compute a hash of the previous token s;—1 and use it as the seed for a random number generator;

Using this random number generator, randomly partition the vocabulary V into a green list G¢ (of size

~|V]) and a red list R{ (of size (1 — 7)|V|);

Apply M to prior tokens to compute the logits [; over V;

Compute the probability distribution P; = softmax(l;);

Truncate the distribution P; using top-p sampling with threshold p to get V,, C V;

Pm 4 mingey, Pi[v];

Initialize the set of suitable green list tokens with top-p strategy as G¢ < G? [ Vp;

for v € GY do

if P,[v] > pm, thenc, = 1;

else
ao < Pi[v], Bo + 1 — Piv];
Construct a Beta distribution f,(z; «, 8), where @ = 1000 + 1, 8 = 10080 + 1;
Compute the confidence ¢, = 1 — Fy,(pm ), where F, is the CDF of f,(a, 8);

if ¢, > co then Gy + G ({v};

for v € G: do update logit of v in l; as I:[v] + l:[v] + &;
Compute the probability distribution P = softmax(l;);
Sample s; from P;

Algorithm 2: Watermark Detection

Input: Text S = {s1,s2,--- , s7}; Detection threshold 7; Green list size ratio y € (0, 1).

Output: Whether S is watermarked or not.

Initialize the number of biased tokens |s|g < 0;

fort < 1to 7 do
Compute a hash of the previous token s;—1 and use it as the seed for a random number generator;
Using the random number generator, randomly partition the vocabulary V into a green list G¢ (of size

~|V|) and a red list R{ (of size (1 — ~)|V]);

Compute the probability distribution P; over V and construct G following the generation algorithm;
if s; € Gy then |s|g + |s|a + 1;

Calculate the probability of biased token v, = > Pi(v);

vEA:
Calculate the expectation p = Zthl ~¢ and variation ¢ = Zthl V(1 — y);
Compute the z-statistic:

z=(Isle —n)/o
if z > 7 then return True;
else return False;

4.3 WATERMARK DETECTION

To accommodate the truncated green list G resulting from our selection process, we derive a more
general z-test method for watermark detection. Specifically, during the decoding stage for a given
prefix s;, we model the event of sampling a watermark-biased token as a random variable X;, which
follows a Bernoulli distribution. X; is formulated as

X; ~ Bernoulli(v), = Z P, t=1,2,---,T 4
veEG

where G denotes the set of biased token, ; denotes the probability of sampling a token from G,
calculated by the summation of all the probabilities of v € G;.

Let X represent the number of green-list token in response .S. Following Kirchenbauer et al.|(2023),
we simply consider X7, Xo,--- , X7 asii.d. variables. Thus X = X; 4+ X5 + .- + X7, with the
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Table 1: Performance comparison of our p-Mark and baseline models. For text quality evaluation,
perplexity (PPL) is reported. For watermark detection, F1 score, and AUC are reported. The best
and second-best results are highlighted in red and blue, respectively. Vanilla represents the original
LLMs without watermarking.

Quality [ Detection (7 = 2.0) Detection (7 = 4.0)
PPL| | AUC? FIt | AUCt F1 1

Model Method

Vanilla 13.8218 - - - -
KGW 15.5253 0.9715 0.9714 0.9495 0.9468
OPT-13B Unigram 14.7300 0.9705 0.9700 0.9125 0.9042
’ SWEET 14.4978 0.9580 0.9568 0.8890 0.8751
DiPmark 14.1725 0.9760 0.9760 0.9560 0.9540
p-Mark 14.1133 0.9715 0.9715 0.9535 0.9512
Vanilla 11.2474 - - - -
KGW 12.7840 0.9725 0.9723 0.9354 0.9310
OPT-6.7B Unigram 12.0542 0.9550 0.9535 0.8713 0.8526
) SWEET 11.6789 0.9480 0.9461 0.8650 0.8439
DiPmark 11.5236 0.9713 0.9715 0.9485 0.9457
p-Mark 11.4063 0.9735 0.9735 0.9600 0.9583
Vanilla 7.4424 - - - -
KGW 8.1000 0.9770 0.9772 0.9495 0.9468
Llama2-7B Unigram 7.9730 0.9575 0.9571 0.9095 0.9006
SWEET 7.7983 0.9520 0.9529 0.9425 0.9390
DiPmark 7.5563 0.9735 0.9734 0.9356 0.9311
p-Mark 7.3513 0.9840 0.9840 0.9655 0.9643
Vanilla 12.9772 - - - -
KGW 13.7518 0.9790 0.9792 0.9545 0.9523
Qwen3-SB Unigram 13.8118 0.9785 0.9785 0.9300 0.9247
SWEET 13.5662 0.9720 0.9723 0.9605 0.9589
DiPmark 12.3622 0.9790 0.9790 0.9595 0.9577
p-Mark 12.0890 0.9830 0.9830 0.9670 0.9660

expectation  and variation o2 as

T T
p=Y w o’=Y ul-mn) (5)
t=1 t=1

Then the z-score is rewritten as z = (|s|¢ — p)/o, where |s|¢ now denotes the count of biased
tokens in S. Therefore, we rewrite the detection algorithm as Algorithm

5 EXPERIMENTS

In this section, we conduct experiments to demonstrate the effectiveness of our proposed p-Mark,
including evaluating the performance on text quality and watermark detectability. Then, we provide
various insightful experiments and analyses to demonstrate why the sampling strategy in p-Mark
works well. Finally, we provide the robustness of p-Mark against attacks compared to the baselines.

5.1 EXPERIMENT SETTING

Datasets and Metrics. Following Kirchenbauer et al. (2023)), we randomly select a subset from C4
dataset (Raffel et al.| [2020) to conduct the experiments. Perplexity (PPL) is used to evaluate the
quality of generated text. F1 score and AUC are used to measure watermark detection.

Language Models. We conduct experiments with four LLMs: OPT-1.3B and OPT-6.7B (Zhang
et al., 2022), Llama2-7B (Touvron et al.l [2023) which is following Kirchenbauer et al.| (2023) and
Zhao et al.[(2024); Qwen3-8B (Yang et al., [2025)), which is the recent popular model.

Baselines. We compare our proposed method with various baselines that follows the green-red list
watermarking paradigm, including KGW (Kirchenbauer et al., 2023)), Unigram (Zhao et al.,|2024),
SWEET (Lee et al.} 2024), and DiPmark (Wu et al.,|2024). Further details are in Appendix [E
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5.2 MAIN RESULTS

Table |1| demonstrates the performance on text quality and watermark detection of our proposed p-
Mark and the baselines. The watermarked text generated by p-Mark consistently outperforms all
baseline methods on text quality across four LLMs and achieves competitive performance compared
to the vanilla LLMs. This indicates that our proposed adaptive sampling scheme can ensure the
quality of the generated text during watermarking, achieving distortion-free watermarking. In terms
of watermark detection performance, p-Mark achieves the best performance on three LLMs, and is
only slightly inferior to DiPmark on OPT-1.3B. This demonstrates the effectiveness of watermarking
in our p-Mark.

150-

In addition, to vividly show the effectiveness of
our p-Mark in watermarking, we provide the
histograms of z-score distributions to compare
p-Mark with KGW based on OPT-1.3B in Fig-
ure |3} From the histogram and statistics, our ~ *| *

proposed method can obtain higher z-values. Soe e A
Due to the higher z-values, the two distribu- (a) KGW (b) p-Mark (ours)

tions are further apart. Thus, our proposed p- Figure 3: Histograms of z-score distributions of

Mal..l? achle\.les better detectability anq exhibits our method and KGW. The dotted line in the mid-
stability at different thresholds. The histograms s e

. dle indicates the mean value of each distribution.
based on other models are presented in Ap-

pendix [A]

125

5.3 ANALYSIS OF OUR p-MARK

We investigate the impact of various sam-  * § i

p-Mark
Top-p

pling strategies to demonstrate the superi- ™2 e Top
ority of our p-Mark. 0s7

Analysis of sampling strategy To ana-

lyze how the adaptive sampling benefits =~ " orrism orfom e quessn "7 Torrim oriem L2 Quentsn
the performance of p_Mark’ we conduct (a) Detectability at T = 2.0 (b) Detectability at T = 4.0
experiments with sampling methods deter-
mined by adaptive and fixed parameters.
We compare the detectability among p-
Mark, Top-p, and Top-k sampling. We set
parameters p = 0.9 and k = 10, the results are shown in Figure[f] We can see that our adaptive strat-
egy outperforms the other two strategies with fixed parameters on most situations except OPT-1.3B
at 7 = 4.0. This indicates that our adaptive sampling is better than that with fixed parameters.

Figure 4: The detectability among p-Mark, Top-p and
Top-k sampling.

Analysis of sampling expansion Con-
sidering that the distribution may be un-
reliable when the model is uncertain, we
conduct experiments to analyze whether £ g
sampling multiple times is beneficial to
construct the set of candidate green list
tokens. We compare the detectablhty 095 T0PT1I3B  OPT67B  Llami27B  Quend8B ' OPTI3B  OPT67B  Lhm27B  Quend-SB
among four construction strategies: p- (a) Detectability at 7 = 2.0 (b) Detectability at 7 = 4.0

Mark, sample N times with Top-p then )
union these candidates, sample K times Figure 5: The performance comparison of watermark

detection among other sampling expansion strategies.

with Top-p then decide the candidates by
voting, and Min-p (Minh et al.,[2025). We
set the parameters p = 0.9, K = 3, and ppase = 0.1 for Min-p. As shown in Figure [5} sampling
multiple times brings no performance improvement but involves extra costs. This proves that a sin-
gle sampling is sufficient, and the introduction of multiple sampling will lead to a decrease in the
generation of green list tokens.
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Figure 6: Detectability between using confidence for weights or to truncate. p-Mark denotes using
confidence to truncate, and ¢, d denotes using confidence as a weight of bias (left). Distribution of
the fraction of green list tokens |s|g /T of Top-p and our p-Mark with Llama2-7B (right).

Analysis of the use of confidence We further explored whether to use confidence for weights or
to truncate. We modify the use of confidence as a weight of § for green list tokens, i.e., update the
logit of v as I; [v] <= I4[v] + ¢, 8. As shown in Figure|[6] (left), the OPT family models show different
results under the two thresholds, but our method performs better under the other two models. This
indicates that the confidence as a truncation method used in our approach is more stable.

We further compare the fraction of green list tokens |s|c /T generated with p-Mark and Top-p. The
result of Llama2-7B is shown in Figure[6](right), and the results of the other models are presented in
Appendix [B] The contents generated with p-Mark contain more green list tokens. This also indicates
that our adaptive sampling method can generate more green list tokens.

5.4 ROBUSTNESS AGAINST ATTACKS

Table 2: The robustness of our proposed
Watermarks should be able to resist attacks. To investi- method against attacks.

gate the robustness of the watermarking method we pro-

posed, we subjected the watermark to different types of Attack AUC F1
attacks: copy-paste attack (Kirchenbauer et al., [2023)), KGW p-Mark KGW p-Mark
paraphrase attack and DIPPER attack (Krishna et al. Coriginall g-gg;g 8-22‘7‘8 g-gg;é 8-22‘6‘?
0 Opy-paste B . . .
2023). We perform the paraphrase attack with GPT-4- G e 06191 06249 04020 0.4249
turbo. We report the detection performance of KGW and DIPPER  0.7687 0.8034 0.7071 0.7590

our method under the attacks above with Llama2-7B and
7 = 2.0 in Table[2] Our proposed algorithm is slightly weaker than KGW in terms of robustness
under copy-paste attack, and outperforms KGW under paraphrase attack and DIPPER attack.

5.5 ANALYSIS OF THE NEW WATERMARK DETECTION ALGORITHM

We investigate the impact of the Table 3: Impact of the detection algorithm. “w/o detect”

detection algorithm we proposed. indicates detecting with the original detection algorithm.
We compared the original detection

method of KGW with our modified
method on the models above. We Model Method
report the results of Llama2-7B, as

Detection (7 = 2.0) Detection (7 = 4.0)
AUC 1 F11 AUC 1 F11

; ! Top-p 09830 09830 09550  0.9529
shown in Table[3] The remaining re- | p-Mark 09840 09840 09655  0.9643
sults can be viewed in the Appendix Top-p, wio detect 09570 09563 07720  0.7047

p-Mark, w/o detect  0.9685 0.9684 0.8565 0.8325

[Cl The results proved the effective-
ness of our modifications.

6 CONCLUSION

In this paper, we explore the text watermark of LLMs and propose a novel adaptive sampling method
p-Mark that dynamically adjusts the top-p set to incorporate a wider range of green tokens. To be
specific, we first derive the original green list via Top-p sampling to reduce the risk of unintended
token selection. Then, we expand the truncated green list based on the confidence computed by the
Beta distribution constructed by the probability of the token. Finally, we derive a more general z-test
method to satisfy the modification of the green list. Experiments on a series of LLMs demonstrate
the outstanding performance of our proposed p-Mark.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have open-sourced the code for our proposed
method. The code is available at https://anonymous.4open.science/r/p-Mark-647D. All experiments
conducted as a part of this study utilized publicly available datasets and models.
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A OMITTED RESULTS OF THE DETECTION STABILITY
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Figure 7: Histograms of z-score distributions of our method and KGW based on Llama2-7B.
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Figure 8: Histograms of z-score distributions of our method and KGW based on OPT-6.7B.
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Figure 9: Histograms of z-score distributions of our method and KGW based on Qwen3-8B.
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B OMITTED RESULTS OF THE IMPACT OF RELIABLE SELECTION STRATEGY
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Figure 13: The distributions of the fraction of green list tokens |s|g /7 with Qwen3-8B.

C OMITTED RESULTS OF THE IMPACT OF THE NEW DETECTION

ALGORITHM
Table 4: Impact of the detection algorithm.
Model Method Detection (z = 2.0) Detection (z = 4.0)
AUC 1 F1 1 AUC T F17
Top-p 0.9715 0.9715 0.9595 0.9577
OPT-13B p-Mark 0.9715 0.9715 0.9535 0.9512

Top-p w/o detect  0.9620 0.9614 0.8685 0.8486
p-Mark w/o detect  0.9645 0.9640 0.9180 0.9107

Top-p 0.9705 0.9702 0.9430 0.9396

OPT-6.7B p-Mark 0.9735 0.9735 0.9600 0.9583
’ Top-p w/o detect ~ 0.9530 0.9518 0.8135 0.7707
p-Mark w/o detect  0.9640 0.9634 0.8815 0.8656

Top-p 0.9820 0.9820 0.9470 0.9440

Qwen3-8B p-Mark 0.9830 0.9830 0.9670 0.9660

Top-p w/o detect ~ 0.9560 0.9553 0.8730 0.8542
p-Mark w/o detect  0.9675 0.9674 0.9245 0.9183

D WHY CHOOSE TOP-p SAMPLING?

Consider the definitions of Top-p sampling and Top-k sampling. We assume the probability distri-
bution P over the vocabulary ¥V = {v1, v, ,vy} is ordered such that P(vy) > P(vg) > -+ >
P(vy). Let p and k be the truncation thresholds for Top-p and Top-k sampling, respectively.

D.1 Top-p SAMPLING

Top-p sampling selects the smallest set of most probable tokens whose cumulative probability ex-
ceeds the threshold p.

1. Construct the token pool V,,: Select tokens whose cumulative probability is less than p.

V,={vi €V:> P(v;) <p} (6)

j=1
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2. Sample the next token: The next token is sampled from the pool V, after normalizing its
probabilities.

vev, )

D.2 Top-k SAMPLING
Top-k sampling selects the & most probable tokens from the vocabulary.

1. Construct the token pool V;;: Select the £ most probable tokens.

Vi ={v;, €V:i<k} (8)
2. Sample the next token: The next token is sampled from the pool V), after normalizing its
probabilities.
P
P)= ey, ©)

b
Z?)’Evk P(’U’)
D.3 ANALYSIS FROM AN ENTROPY PERSPECTIVE

The effectiveness of these methods can be considered from the perspective of the entropy of the
distribution P. The distribution P typically falls into two categories:

D.3.1 HIGH ENTROPY DISTRIBUTION

When P has a high entropy, tokens in V all have relatively similar probabilities of being sampled.
If we truncate P using either Top-k or Top-p, the differences in probability values between the
selected tokens will not become significantly more pronounced after normalization. In this context,
if an external mechanism (like partitioning into “green” and “red” lists) introduces a uniform bias ¢§
to a subset of tokens, boosting the likelihood of those tokens is generally acceptable, as the original
probabilities are already close.

D.3.2 Low ENTROPY DISTRIBUTION

When P has a low entropy, there are significant differences in the probabilities of tokens in V,
usually with a few tokens dominating the probability mass.

» Top-p Strategy: This strategy is typically effective because it naturally excludes tokens
with relatively low probabilities (which might be considered “noise”) unless a very high
threshold p is set. Even if a few low-probability tokens are included in V,, and happen to
belong to an externally preferred set, their small individual probabilities will not substan-
tially impact the quality of the generated text.

» Top-k Strategy: This strategy is often suboptimal because k is a fixed constant. It’s dif-
ficult to know how many reasonable candidate tokens exist at any given decoding step.
Consequently, an inappropriate setting of k£ might uncontrollably include tokens with very
low probabilities as candidates, potentially distorting the text quality.

E THEORETICAL ANALYSIS OF p-MARK

E.1 ANALYSIS OF THE CANDIDATE SET

Theorem 1. Let G, be the biased token set in p-Mark at the t-th decoding step, V,, be the subset of
V which is truncated with Top-p strategy, and G be the current original green list. The cardinality
of the set A satisfies |V, N GY| < |G| < |GY|.

Proof. According to Algorithm|[T} we set the confidence ¢, of token v € G to 1 if its probability at
the current step P;[v] is greater than the minimum probability among the tokens in V,. Therefore,
there must be at least |V, N G¢| tokens in set G;.
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Since the threshold of confidence ¢ is a hyperparameter, the worst case is that ¢o = 0. Then all
the tokens of the current green list satisfy the constraint of confidence value. Therefore, the upper
bound of |G| is |GY7|. Thus we have |V, N G| < |G| < |Gyl O

E.2 ANALYSIS OF THE TEXT QUALITY
Theorem 2. The expectation of the perplexity of the generation with KGW is higher than that of the

text generated by the vanilla model. The expectation of the perplexity of the generation with p-Mark
is not greater than that of the text with KGW.

Proof. Consider a sentence S = {s1, 83, , 7} generated by an LLM M by a prompt X =

{s-N,+1,"-- ,50}. The perplexity of S could be calculated as
_ 1
T T
_1
PPL(S) = P(517 8§92, 75T) T = (H P(St‘817 89, 7st1)> (10)
t=1

Let S now be the text generated by the vanilla model M, and Sy, S}, be the texts generated by KGW

and p-Mark, separately. We will first prove the increase of the expectation of PPL with KGW, i.e.,
E[PPL(Sy)] > E[PPL(S)].

The formulation of PPL could be rewritten with the negative log-likelihood (NLL):

S

T
PPL(S) = (H P(s¢|s1, 52, - 75261))

— 2*% S log P(s¢|s1,82, ,8¢—1)

(11)
— 9NLL(S)

According to Jensen’s Inequality, for a convex function f(z), we have
E[f(x)] = f(E[z]) (12)

When f(x) = 2%, we have E[27] > 2Fl#]. Therefore, E[PPL(S)] > 2FINLL(S)] We could transform
the comparison of the PPL expectation to the NLL expectation, which could be dealt with more
easily. Now we’re going to prove that E[NLL(Sy)] > E[NLL(S)]. The formulation of E[NLL(S)]
could be rewritten as:

T
E[NLL(S)] = E[—% > log P(sils1, 52, 81-1)]

t=1

13)
1

el

T
> Ellog P(s]s1, 52, , 51-1)]
t=1

Therefore, the problem is further transformed into proving the relationship between the expectations
of each decoding step, i.e., E[log Py (s¢|s1,S2,-* ,st—1)] < E[log P(s¢|s1,82," - ,St—1)], where
P represents the original distribution of the vocabulary and Py represents the distribution modified
by the bias § in KGW.

Since we use the polynomial sampling in the decoding stage, the expectation of the ¢-th step is
formulated as

E[logP(StLSlaSQa‘ o ;St—l)] = ZP(U|817‘927 e ast—l)logp(v|81352,' o ;St—l) (14)

veY
and for KGW we have
E[log Px(s¢]s1, 82, ,81-1)] = Z Py (v|s1, 82, -, 8¢-1)log P(v]s1, 82, -+ ,8.—1) (15)
veY
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According to the definition of entropy, given two distributions P and (), their entropy H(-) and
cross-entropy H (P, Q) are as follows:

ZP )log P(x ZQ )log Q( (16)
ZP )log Q(x (17)
According to the information theory, we have
H(P,Q) = H(P) + Dk.(P||Q) (18)
where D 1,(P||Q) = ), P(z)log QE g is the Kullback-Leibler Divergence. Therefore, we have
E[log P(s¢|s1, 82, - ,8t-1)] = —H(P) (19)
E[log Pk(8t|81, S0, 0, Stfl)] = —.[T[(.P]€7 P) = —H(Pk) — DKL(Pk||P) (20)
Since we have
Pk(UlSl, e 7St71)
Dk (P:||P) Py( cee Sy
KL k:H ,UEZV k ‘817 , St 1) P('U‘517"‘ ,St_l)
Pk;(’U|81, e ast—l)
= P DY _
U;t k(v|81’ o 1) P('U|81,-~- 7St71) (21)

Pr(v|sy, -, si—
£ Pulofsn, oo gy oo s

P P(ols1, - 51-1)

and forv € Gy, Py(v|s1,-++ ,8.—1) > P(v|s1, -+, st—1) since the bias 0 increase the probability of
green list tokens, then Dgr,(Py||P) > 0. Similarly, we have H(Py) > H(P). Therefore, we prove
that E[log P (st|s1, 82, - ,st—1)] < E[log P(s¢|s1, 82, ,8t—1)], and we have E[NLL(Sy)] >
E[NLL(S)]. Thus we finally have E[PPL(S))] > E[PPL(S)].

Next, we will prove that the expectation of the perplexity of the generation with p-Mark is lower
than that of the text with KGW. Similar to the above, we could transform this problem into proving
the relationship between the expectations of each decoding step. The expectation of p-Mark at the
t-th step could be rewritten as

Ellog Py(si|s1, 82, -+, s1-1)] = —=H(Pp, P) = —H(Pp) — Dx1(F||P) (22)
Since | A| < |G|, we have the following two inequations:
H(Pg) > H(Pp) (23)
Dk r(Pg, P) > Drr(Pp, P) (24)
Therefore, we have E[log Py(s¢|s1,52, - ,85-1)] < E[log P,(s¢|s1,82,---,8—1)]. Then
E[NLL(Sy)] > E[NLL(S,)]. Thus we have E[PPL(S},)] > E[PPL(S,)]. O
F IMPLEMENTATION DETAILS Table 5: The details of the oracle model.
Following |Kirchenbauer et al.| (2023), all Generation Model Oracle Model
the model applies polynomial sampling OPT-13B OPT27B

during the decoding stage. The hyperpa-

OPT-6.7B OPT-13B
rameters of the watermark v = 0.5 and
5 = 2.0. The detection threshold T is set Llama2-7B Llama2-13B
Qwen3-8B Qwen3-14B

to 2.0 and 4.0, respectively. For each in-
put prompt, the language model is asked
to generate 7' = 200 tokens. The perplexity is computed by a larger oracle model. The details of the
generation and oracle models are shown in Table[5] For the experimental settings of the baseline,
we set the hyperparameters according to the original paper.
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G THE USE OF LARGE LANGUAGE MODELS

This manuscript was refined for clarity and grammar using LLM. The LLM was used exclusively
for improving the language and style of the text and did not contribute to the content, research, or
conclusions of the paper. All ideas, data, experiments, and findings are the original work of the
authors.
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