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Abstract

We study reinforcement learning (RL) in the agnostic policy learning setting,
where the goal is to find a policy whose performance is competitive with the
best policy in a given class of interest Π—crucially, without assuming that Π
contains the optimal policy. We propose a general policy learning framework
that reduces this problem to first-order optimization in a non-Euclidean space,
leading to new algorithms as well as shedding light on the convergence properties
of existing ones. Specifically, under the assumption that Π is convex and satisfies
a variational gradient dominance (VGD) condition—an assumption known to be
strictly weaker than more standard completeness and coverability conditions—we
obtain sample complexity upper bounds for three policy learning algorithms: (i)
Steepest Descent Policy Optimization, derived from a constrained steepest descent
method for non-convex optimization; (ii) the classical Conservative Policy Iteration
algorithm [Kakade and Langford, 2002] reinterpreted through the lens of the Frank-
Wolfe method, which leads to improved convergence results; and (iii) an on-policy
instantiation of the well-studied Policy Mirror Descent algorithm. Finally, we
empirically evaluate the VGD condition across several standard environments,
demonstrating the practical relevance of our key assumption.

1 Introduction

Policy Optimization (PO) algorithms are a class of methods in Reinforcement Learning (RL; Sutton
and Barto, 2018, Mannor et al., 2022) in which an agent’s policy is iteratively updated to minimize
long-term cost, as defined by the environment’s value functions. Modern applications of PO methods
[e.g., Lillicrap, 2015, Schulman et al., 2015, Akkaya et al., 2019, Ouyang et al., 2022] often involve
large-scale environments that lack well-defined structure, and by that require function approximation
techniques in order to learn efficiently. Typically, PO algorithms represent the agent’s policy using
neural network models—commonly referred to as actor networks. Notably, these setups are inherently
agnostic: the learner searches for an assignment of network parameters that is competitive with the
best achievable under the model, without any guarantee that the optimal policy is expressible by the
actor architecture.

Motivated by this, we consider the problem of agnostic policy learning in the general function approx-
imation setup [Kakade, 2003, Krishnamurthy et al., 2025], where the learner is given optimization
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oracle access to a policy class Π and is required to find a policy that performs nearly as well as
the best in-class policy. It is well known that Π-completeness and coverage conditions allow for
sample efficient policy learning [Agarwal et al., 2019, 2021, Bhandari and Russo, 2024],1 however,
completeness implies realizability, and both conditions are generally deemed too strong to hold in
practice. Furthermore, the extent to which they hold or not is hard to measure empirically.

Realizable RL Agnostic RL

Completeness Coverage

VGD

Figure 1: Completeness + coverage allows for
sample efficient policy learning [Kakade and Lang-
ford, 2002]. These conditions imply in particular,
realizability. VGD allows for sample efficient
learning, and in particular accommodates agnostic
(non-realizable) setups.

In this work, we adopt instead the assumption that
Π satisfies a variational gradient dominance condi-
tion [Agarwal et al., 2021, Xiao, 2022, Bhandari and
Russo, 2024], which is known to be strictly weaker
than completeness and coverage, and in particular,
may accommodate non-realizable setups [Bhandari
and Russo, 2024, Sherman et al., 2025] (see Fig. 1,
and Appendix A for further details). Furthermore,
the VGD parameters are to a degree measurable in
practice, and appear better suited to characterize con-
vergence of first-order policy learning algorithms.
Indeed, the empirically observed parameters are rea-
sonable compared to the theoretical, hard to measure
ones associated completeness and coverage; and the
VGD assumption pinpoints the precise properties re-
quired in convergence analysis under completeness
and coverage.

1.1 Our contributions

In this work, we make the following contributions.

Policy learning framework. We introduce a natural policy learning framework that reduces Agnos-
tic RL to first order optimization in a constrained non-convex non-Euclidean setup. Consequently, we
obtain practical, sample efficient2 policy learning algorithms, and along the way also improvements
in state-of-the-art iteration complexity upper bounds. Importantly, our framework and reduction are
completely independent of the choice of policy class parametrization. In the function approximation
policy learning setup, the primary way by which policies are produced is by constructing an objective
function Φ̂𝑘 : Π → ℝ, and invoking an optimization oracle to compute an approximate minimizer:

𝜋𝑘+1 ← arg min𝜋∈Π Φ̂𝑘 (𝜋). (1)

Roughly speaking, our reduction makes use of the policy gradient theorem [Sutton et al., 1999] in the
direct parametrization case, along with an on-policy estimation scheme and a standard concentration
argument to yield that with a suitable choice of Φ̂𝑘 , Eq. (1) produces a gradient step w.r.t. the value
function in policy (i.e., state-action, functional) space. This, combined with the local-smoothness
property of the value function [Sherman et al., 2025], implies the algorithm may be cast as a first-order
method taking gradient steps on a smooth objective. Crucially, unlike Euclidean smoothness used in
prior work [e.g., Agarwal et al., 2021], this leads to rates that are independent of the size of the state
space. Furthermore, it is substantially different than operating in the parameter space of the policy
parametrization [e.g., Mei et al., 2020, Yuan et al., 2022, Bhandari and Russo, 2024].

Non-Euclidean smooth constrained optimization. We highlight smooth constrained non-convex
optimization in a non-Euclidean space as the principal setting to which agnostic RL reduces to. In
this context, we provide novel analyses that, to our knowledge, have not appeared in the literature
previously, including (i) a steepest descent method for smooth non-convex constrained optimization,
and (ii) an analysis for an approximate Frank-Wolfe that holds for VGD objectives (a weaker condition
compared to convexity). The constrained steepest descent method which we analyze here is a natural
generalization of gradient descent to objectives smooth w.r.t. a non-Euclidean norm. Kelner et al.

1Roughly speaking, Π-completeness is defined as closure to policy improvement steps, and coverage as
a constant upper bound on the worst case ratio between the initial state distribution and the optimal policy
occupancy measure.

2By sample efficient, we refer to methods with convergence bounds that scale with the log-covering number
of the policy class, but not with the cardinality of the state space.
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Method Rate GP Ag NC AOE

CPI a

[Kakade and Langford, 2002]
𝐷∞√
𝐾
+ E(Π) 𝐷∞ ✓ ✗ ✓ ✗

Log-linear NPG b

[Agarwal et al., 2021]
1√
𝐾
+

√︁
𝜅𝜀 + 𝐷∞𝜀approx ✗ ✗ ✓ ✓

Log-linear NPG c

[Yuan et al., 2023]

(
1 − 1

𝐷∞

)𝐾
+ 𝐷∞

√︃
𝐶𝑣 (𝜀 + 𝜀approx) ✗ ✗ ✓ ✓

PMD d

[Alfano et al., 2023] (1 − 1
𝐷∞)

𝐾 + 𝐷∞
√︃
𝐶𝑣 𝜀pmdc ✗✓ ✗ ✓ ✓

PMD
[Sherman et al., 2025]

𝜈2

𝐾2/3 + (𝜈 + 𝐾1/6) 𝜀1/4 + 𝜀vgd ✓ ✓ ✗✓ ✓

SDPO
(This Work)

𝜈2

𝐾2/3 + 𝜈𝐾1/6 √𝜀 + 𝜀vgd ✓ ✓ ✗ ✓

CPI e

(This Work)
𝜈2

𝐾
+ 𝜈 𝜀 + 𝜀vgd ✓ ✓ ✓ ✗

DA-CPI
(This Work)

𝜈2

𝐾2/3 + 𝜈2𝜀2/3𝐾2/3 + 𝜀vgd ✓ ✓ ✗ ✓

Table 1: Comparison of different policy optimization algorithms. Rate: Gives the suboptimality after 𝐾
iterations, as a function of error terms. 𝜀 denotes the value fitting error under the relevant sampling distribution,
and 𝐷∞ the distribution mismatch coefficient.

{
E(Π), 𝜀approx, 𝜀pmdc

}
all measure some form of “completeness

error”; refer to Appendix A for further details. GP: Whether the method applies for general parameterizations
of Π; Ag: Whether it gives meaningful guarantees in an agnostic setting under the VGD assumption (replace
𝜈 → 𝐷∞ to compare with non-agnostic bounds, error floors are similar); NC: Whether it applies for Non-Convex
Π; AOE: Whether it is actor-oracle efficient. [a, b, c, d, e]: [a] The dependence on the completeness error
is given in [Scherrer and Geist, 2014]. [b] 𝜅 relates to an eigenvalue condition of the state-action features
covariance under the learning distribution. [b+c] Both works also provide bounds in terms of a bias error which
we do not include here. [c+d] These rates require geometrically increasing step sizes, for constant step sizes
sub-linear rates exist. [e] Our version of CPI makes a different choice of step sizes.

[2014] appear to be the first to analyze the method for convex functions in the unconstrained setting,
while Xiao [2022] provides an analysis for VGD objectives in the constrained Euclidean setup.
Our work is the first to further extend the method to the constrained, non-Euclidean setup, using
a non-standard notion of steepest descent direction w.r.t. a constrained set of potential gradient
mappings. The optimization setup and our analyses naturally accommodate also local smoothness of
the objective function, which is crucial for the interesting cases of the reduction mentioned in the
preceding paragraph.

Iteration and sample complexity for policy learning algorithms. Combining the elements above,
and assuming the policy class satisfies a VGD condition and is convex, we obtain upper bounds
on the sample complexity of several algorithms within our proposed framework. In particular, we
propose a sample efficient Steepest Descent Policy Optimization (SDPO) method, based on a
constrained steepest descent method for non-convex, non-Euclidean optimization which we analyze
in this work for the first time. We then revisit the classic Conservative Policy Iteration (CPI;
Kakade and Langford, 2002) algorithm, and cast it as an instance of the well-known Frank-Wolfe
[Frank and Wolfe, 1956] algorithm, leading to (i) improved iteration complexity, and (ii) a variant
of CPI—Doubly Approximate CPI (DA-CPI)—which is sample efficient and more practical, as we
explain shortly in the discussion that follows. Finally, we establish polynomial sample complexity for
the well studied Policy Mirror Descent [Tomar et al., 2020, Xiao, 2022, Lan, 2023] algorithm. To
the best of our knowledge, our work is the first to obtain sample complexity upper bounds for PMD
that are independent of the policy class parametrization.

Table 1 gives a detailed comparison between several algorithms of interest. In particular, our SDPO
bound provides a substantial improvement over PMD in the agnostic setting [Sherman et al., 2025], by
obtaining

√
𝜀 error dependence rather than 𝜀1/4. When converting the result to a sample complexity

upper bound this becomes significant. Furthermore, SDPO obtains better dependence on the action
set cardinality 𝐴 when applied with the 𝐿1 action norm, thereby lifting one of the two barriers left in
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Sherman et al. [2025] to obtain rates for large action spaces (rates that scale at most logarithmically
with 𝐴). The same is true for DA-CPI, which also improves upon the guarantee of PMD in the
agnostic setting in a similar fashion.

While our new bound for CPI provides an even sharper improvement, it is important to note that CPI
in its original form is not as practical as the other algorithms we consider, in the following sense. Let
us call a policy obtained by an invocation to the optimization oracle, such as 𝜋𝑘+1 in Eq. (1), an actor.
We say a policy learning algorithm is actor-oracle efficient (AOE) if the following two conditions
hold. (i) The objective functions Φ̂𝑘 given to the optimization oracle can be evaluated in time that is
independent of the size of the state space, and polynomial in other problem parameters.3 (ii) The
actor space complexity—i.e., the maximal number of actors the algorithm requires to maintain in
memory at any given time—is 𝑂 (1). Actor-oracle inefficient algorithms are generally not feasible (at
least at the present time) for practical applications; for example, actor-memory linear in the number
of iterations requires maintaining a prohibitively large amount of separate neural network models in
memory. As we discuss further in Section 4.2, CPI requires linear actor memory, while PMD, SDPO,
and DA-CPI are all actor efficient, requiring at most two actor models at any given time.

1.2 Related work

There is a rich line of work that studies the PMD algorithm [Agarwal et al., 2021, Xiao, 2022,
Lan, 2023, Alfano et al., 2023, Ju and Lan, 2022], however these, including Sherman et al. [2025],
either focus only on the optimization setup, or consider sample complexity subject to specific
parametrization choices. The CPI algorithm was originally introduced by [Kakade and Langford,
2002], and its guarantees in terms of a completeness error was derived in [Scherrer and Geist, 2014]
(see also Agarwal et al., 2019). Our work is directly inspired by Sherman et al. [2025], where the
connection of PMD to a constrained non-Euclidean optimization setup was recently established. Here,
we take a more problem-centric view of agnostic RL and establish a broader connection between
policy learning and optimization. Due to space constraints, we defer additional discussion of related
work to Appendix A.1.

2 Preliminaries

Discounted MDPs. A discounted MDPM is defined by a tupleM = (S,A,ℙ, 𝑟, 𝛾, 𝜌0), where S
denotes the state-space, A the action set, ℙ : S × A → Δ(S) the transition dynamics, 𝑟 : S × A →
[0, 1] the regret (i.e., cost) function, 0 < 𝛾 < 1 the discount factor, and 𝜌0 ∈ Δ(S) the initial
state distribution. We assume the action set is finite with 𝐴 := |A|, and identify ℝ𝐴 with ℝA . We
additionally assume, for clarity of exposition and in favor of simplified technical arguments, that the
state space is finite with 𝑆 := |S|, and identify ℝS with ℝ𝑆 . We further denote the effective horizon
by 𝐻 := 1

1−𝛾 . We emphasize that all our arguments may be extended to the infinite state-space
setting with additional technical work. An agent interacting with the MDP is modeled by a policy
𝜋 : S → Δ(A), for which we let 𝜋𝑠 ∈ Δ(A) ⊂ ℝ𝐴 denote the action probability vector at 𝑠 and
𝜋𝑠,𝑎 ∈ [0, 1] denote the probability of taking action 𝑎 at 𝑠. We denote the value and Q-function by:

𝑉 (𝜋) := 𝔼

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0 ∼ 𝜌0, 𝜋

]
; 𝑄 𝜋𝑠,𝑎 := 𝔼

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋

]
.

We further denote the discounted state-occupancy measure of 𝜋 by 𝜇𝜋 :

𝜇𝜋 (𝑠) := (1 − 𝛾)
∞∑︁
𝑡=0

𝛾𝑡 Pr(𝑠𝑡 = 𝑠 | 𝑠0 ∼ 𝜌0, 𝜋).

It is easily verified that 𝜇𝜋 ∈ Δ(S) is indeed a state probability measure.

Learning objective. We consider the problem of learning an approximately optimal policy within
a given policy class Π ⊂ Δ(A)S :

arg min
𝜋∈Π

𝑉 (𝜋). (2)

3The intention is that for any fixed 𝜋, Φ̂𝑘 (𝜋) is computable in poly time (that is independent of the state
space cardinality).
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To avoid ambiguity, we denote the optimal value attainable by an in-class policy (a solution to Eq. (2))
by 𝑉★(Π), and the optimal value attainable by any policy by 𝑉★:

𝑉★(Π) := arg min
𝜋★∈Π

𝑉 (𝜋★); 𝑉★ := arg min
𝜋★∈Δ(A)S

𝑉 (𝜋★). (3)

Throughout this paper, we let 𝜋★ = arg min𝜋∈Π 𝑉 (𝜋), and 𝜇★ := 𝜇𝜋★ . The policy class Π will always
be clear from context. When we are in need to refer to the optimal policy / occupancy measure w.r.t.
Πall := Δ(A)S , we will say so explicitly.

2.1 Problem setup

We consider agnostic policy learning in the standard offline optimization oracle model. Given an
objective function 𝜙 : Π → ℝ an approximate minimizer may be produced by invoking the oracle.
We will use the following notation for approximate minimization. For any set X and objective
𝜙 : X → ℝ, we denote the set of 𝜖-approximate minimizers by:

arg min𝜖𝑥∈X {𝜙(𝑥)} :=
{
𝑥 ∈ X | 𝜙(𝑥) ≤ min

𝑥′
𝜙(𝑥′) + 𝜖

}
. (4)

When the agent decides to initiate a rollout episode in the environment, she starts at an initial
state 𝑠0 ∼ 𝜌0, then for 𝑡 = 0, . . . , chooses action 𝑎𝑡 given 𝑠𝑡 , incurs 𝑟 (𝑠𝑡 , 𝑎𝑡 ), and transitions to
𝑠𝑡+1 ∼ ℙ(·|𝑠𝑡 , 𝑎𝑡 ), until she decides to terminate the episode. The sample complexity of a learning
algorithm is the number of interaction time steps required to reach an 𝜖-approximate optimal policy,
i.e., a policy 𝜋̂ such that 𝑉 (𝜋̂) −𝑉★(Π) ≤ 𝜖 . As mentioned in the introduction, our key assumption is
that Π satisfies the following variational gradient dominance condition.
Definition 1 (Variational Gradient Dominance). We say that Π satisfies a (𝜈, 𝜀vgd)-variational
gradient dominance (VGD) condition w.r.t. a value function 𝑉 : Δ(A)S → ℝ, if there exist constants
𝜈, 𝜀vgd > 0, such that for any policy 𝜋 ∈ Π:

𝑉 (𝜋) − min
𝜋★∈Π

𝑉 (𝜋★) ≤ 𝜈max
𝜋̃∈Π
⟨∇𝑉 (𝜋), 𝜋 − 𝜋̃⟩ + 𝜀vgd. (5)

We conclude this section by repeating notations used throughout.

𝜇𝑘 := 𝜇𝜋
𝑘

, 𝑄𝑘 := 𝑄 𝜋
𝑘

, 𝑆 := |S|, 𝐴 := |A|, 𝐻 :=
1

1 − 𝛾 .

3 Policy learning via Non-Euclidean smooth constrained optimization

In this section, we present our policy learning framework, and explain the reduction to first order
optimization in a constrained, smooth non-Euclidean optimization setup. The reduction consists of
the following three ingredients;

(i) Agnostic policy learning is cast as a first-order optimization problem over the policy (sometimes
referred to as “functional”) space Π that, crucially—is constrained and exhibits non-Euclidean
geometry.

(ii) Smoothness of the value function function is established w.r.t. a (non-Euclidean) norm that
measures distance between policies in a manner that is independent of the size of the state
space. The choice of norm can be global (e.g., ∥·∥∞,1), or a local norm induced by the on-policy
occupancy measure.

(iii) By the policy gradient theorem and a standard uniform concentration argument, we have that a
gradient step on the value function may be approximated through on-policy sampling.

In more detail, consider that a standard template for first order optimization in policy space may be
framed as iterating through minimization problems of the form:

𝜋𝑘+1 ← arg min
𝜋∈Π

〈
∇𝑉 (𝜋𝑘), 𝜋

〉
+ 1
𝜂
𝔇Π

(
𝜋, 𝜋𝑘

)
, (6)

where 𝜋1 ∈ Π is a given initialization and 𝜂 > 0 a learning rate. When Π is a convex set and
𝔇Π is a distance-like function that is compatible with the geometry of the objective function 𝑉 —
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e.g., informally, when 𝑉 is smooth w.r.t. 𝔇Π — some form of convergence may be established. In
what follows, by a direct application of the policy gradient theorem [Sutton et al., 1999] and the
recently established local smoothness property [Sherman et al., 2025], we will demonstrate how
policy learning may be reduced to first order optimization in the form of Eq. (6). Let 𝜋𝑘 is the agent’s
policy on iteration 𝑘 , and let 𝜇𝑘 , 𝑄𝑘 be it’s occupancy measure and action-value function. By the
policy gradient theorem [Sutton et al., 1999], we have that for any policy 𝜋:

𝔼𝑠∼𝜇𝑘
[
𝐻

〈
𝑄𝑘𝑠 , 𝜋𝑠

〉]
=

〈
∇𝑉 (𝜋𝑘), 𝜋

〉
.

Thus, using a proper sampling mechanism while interacting with the environment, we may obtain
a dataset D𝑘 consisting of states 𝑠 ∼ 𝜇𝑘 := 𝜇𝜋

𝑘

, and unbiased action-value estimates 𝑄𝑘𝑠 . This
gives an empirical version of the linearization 𝐻

𝑁

∑
𝑠∈D𝑘

〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
that concentrates about the true

gradient as 𝑁 grows. Conveniently, given a distance-like function 𝔇 : ℝA × ℝA → ℝ over the
action space, taking an expectation w.r.t. the on-policy distribution gives a policy distance-like
function 𝔇𝑘 (𝜋, 𝜋′) := 𝔼𝑠∼𝜇𝑘𝔇

(
𝜋𝑠 , 𝜋

′
𝑠

)
w.r.t. which the value function is smooth [Sherman et al.,

2025]. Importantly, in order to enjoy this smoothness, we must incorporate 𝜀ex-greedy exploration.
To that end, we define the exploratory verion of Π as follows:

Π𝜀ex :=
{
(1 − 𝜀ex)𝜋 + 𝜀ex𝑢 | 𝜋 ∈ Π, 𝑢𝑠,𝑎 ≡ 1/𝐴 ∀𝑠, 𝑎

}
(7)

With this in mind, we consider on-policy algorithms, all of which hinge on optimizing empirical
surrogates to the full gradient objective function. Concretely, the update step in each algorithm is of
the form:

𝜋𝑘+1 ← arg min
𝜋∈Π𝜀ex

{
Φ̂𝑘 (𝜋) :=

𝐻

𝑁

∑︁
𝑠∈D𝑘

〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝔇

(
𝜋𝑠 , 𝜋

𝑘
𝑠

)}
. (8)

The preceding discussion implies that, when 𝑁 is sufficiently large, Eq. (8) is an approximate version
of Eq. (6) with a distance measure DΠ that is adapted to local-smoothness of the objective, and as
such Eq. (8) is an instance of smooth non-convex optimization in a non-Euclidean space. Primarily,
the algorithms we consider in Section 4 differ in the choice of 𝔇. For the formal definition of the
optimization setup our reduction leads to, we refer the reader to Appendix C. Finally, we note that
while our algorithms SDPO, DA-CPI, and PMD operate over the 𝜀ex-exploratory version of Π, their
output policies may be transformed back into Π with negligible loss of the objective, hence they are
in fact proper agnostic learning algorithms.

4 Policy learning algorithms

In this section, we present our policy learning algorithms in their idealized form. Given the discussion
from Section 3, sample complexity of each algorithm follows through the same algorithmic template
and argument; we provide the full details in Appendix E.

4.1 Steepest Descent Policy Optimization

In this section, we present our first algorithm, which we derive from a generalization of gradient
descent to non-Euclidean norms. Given a differentiable objective 𝑓 : ℝ𝑑 → ℝ, an unconstrained,
Euclidean gradient descent step can be written as:

𝑥+ = 𝑥 − 𝜂∇ 𝑓 (𝑥) = arg min
𝑦∈ℝ𝑑

⟨∇ 𝑓 (𝑥), 𝑦⟩ + 1
2𝜂
∥𝑦 − 𝑥∥22 .

When the objective 𝑓 is smooth w.r.t. ∥·∥2 and the step size is chosen appropriately, it is guaranteed
that the step decreases the objective value, which can by harnessed to obtain convergence to a
stationary point in a non-convex setting. A natural generalization of the gradient descent step to
accommodate non-Euclidean geometries consists of simply replacing the proximity term ∥𝑦 − 𝑥∥22
with any other norm ∥·∥:

𝑥+ = arg min
𝑦∈ℝ𝑑

⟨∇ 𝑓 (𝑥), 𝑦⟩ + 1
2𝜂
∥𝑦 − 𝑥∥2 .
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Algorithm 1 Steepest Descent Policy Optimization (SDPO)

Input: 𝐾 ≥ 1, 𝜂 > 0, 𝜀 > 0, 𝜀ex > 0,Π ∈ Δ(A)S , and action norm ∥·∥◦ : ℝA → ℝ.
Initialize 𝜋1 ∈ Π𝜀ex

for 𝑘 = 1 to 𝐾 do
Update 𝜋𝑘+1 ← arg min𝜀𝜋∈Π𝜀ex 𝔼𝑠∼𝜇𝑘

[
𝐻

〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1

2𝜂


𝜋𝑠 − 𝜋𝑘𝑠 

2

◦

]
end for
return 𝜋̂ := 𝜋𝐾+1

As in the Euclidean case, when 𝑓 is smooth w.r.t. ∥·∥ and the step size is chosen appropriately,
the step decreases the objective value, which leads to convergence when applied iteratively over 𝐾
steps. A relatively straightforward argument can be employed to establish 𝑂 (1/

√
𝐾) convergence

to an approximate stationary point. The work of Kelner et al. [2014] appears to be the first to prove
convergence of 𝑂 (1/𝐾) assuming convexity of 𝑓 , at least in this general form, as noted by the
authors. In this work, we analyze for the first time the constrained version of the steepest descent
method, which requires some care and extra machinery to cope simultaneously with constraints and
the non-Euclidean nature of the updates. We obtain a 𝑂 (1/𝐾) upper bound for VGD functions (a
condition weaker than convexity) and 𝑂 (1/

√
𝐾) for general non-convex functions. To the best of

our knowledge, this method was not considered by any prior work in the constrained setting, for any
class of objective functions.

The iteration complexity given by Theorem 1 below, follows by our reduction explained in Section 3
(excluding the probabilistic part). The 𝜀 parameter passed to Algorithm 1 should be understood as the
sum of the generalization error, originating in the noisy estimates of the objective, and optimization
error, originating from the error of the optimization oracle.
Theorem 1. Let Π be a convex policy class that satisfies (𝜈, 𝜀vgd)-VGD w.r.t.M. Suppose that SDPO
(Algorithm 1) is executed with the 𝐿1 action norm ∥·∥1. Then, after 𝐾 iterations, with appropriately
tuned 𝜂 and 𝜀ex, the output of SDPO satisfies:

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴𝐻4

𝐾2/3 + 𝜈𝐻
3√𝐴𝐾1/6√𝜀 + 𝜀vgd

)
.

As mentioned in the introduction, SDPO improves upon the previous guarantees of PMD [Sherman
et al., 2025] in two regards; (i) dependence on the error 𝜀1/4 → 𝜀1/2, and (ii) dependence on 𝐴.
Further, for the case of Euclidean action geometry, the SDPO analysis can be seen as a tighter analysis
for PMD with Euclidean action-regularization case (note that the space the algorithms operate in is
still non-Euclidean, only the action space is).

4.2 Conservative Policy Iteration

In this section, we present our results relating to the CPI algorithm (Kakade and Langford, 2002;
see also Agarwal et al., 2019). We first consider CPI in its original form, presented in Algorithm 2.
Kakade and Langford [2002] established, that when the step sizes 𝜂𝑘 are chosen “greedily” so as to
maximize the observed advantage gain, an𝑂 (1/𝜀2) iteration complexity follows, as long as the policy
class is complete and the distribution mismatch is bounded (see our introduction and Appendix A).

Algorithm 2 Conservative Policy Iteration (CPI; Kakade and Langford, 2002)

input: Initial policy 𝜋1 ∈ Π, Error tolerance 𝜀 > 0
for 𝑘 = 1, 2, . . . , do

Update 𝜋̃𝑘+1 ← arg min𝜀𝜋∈Π 𝔼𝑠∼𝜇𝑘
〈
𝐻𝑄𝑘𝑠 , 𝜋𝑠 − 𝜋𝑘𝑠

〉
Set 𝜋𝑘+1 = (1 − 𝜂𝑘)𝜋𝑘 + 𝜂𝑘 𝜋̃𝑘+1

end for

However, as it turns out, this is not the optimal step size choice. The following two observations imply
that CPI is (an approximate version of) the Frank-Wolfe [Frank and Wolfe, 1956] algorithm applied in
state-action space, with policies as the optimization variables and the value function as the objective.
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Indeed, we have that (i) 𝔼𝑠∼𝜇𝑘
〈
𝑄𝑘𝑠 , 𝜋𝑠 − 𝜋𝑘𝑠

〉
= 1
𝐻

〈
∇𝑉 (𝜋𝑘), 𝜋 − 𝜋𝑘

〉
, and further that (ii) the value

function is (2𝐻3)-smooth w.r.t. the ∥·∥∞,1 norm — a property which we prove in Appendix D.3.
Given (i) and (ii), it follows that convergence of CPI may be established through a standard FW
analysis, where indeed, greedily choosing the step sizes gives 𝑂 (1/𝜀2) iteration complexity, while
the choice of 𝜂𝑘 ≈ 1

𝑘
gives 𝑂 (1/𝜀) iteration complexity.

Theorem 2. Let Π be a policy class that satisfies (𝜈, 𝜀vgd)-VGD w.r.t. M. Suppose that CPI
(Algorithm 2) is executed with the step size choices 𝜂𝑘 = 2𝜈

𝑘+2 for 𝑘 = 1, . . . , 𝐾. Then, we have the
guarantee that:

𝑉 (𝜋𝐾 ) −𝑉★(Π) ≤ 8(2𝜈2 + 1)𝐻3

𝐾
+ 2𝜈𝜀 + 𝜀vgd

As mentioned, completeness and coverage imply VGD (see Appendix A for the full details), hence
Theorem 2 is a strict improvement over the classically known 𝑂 (1/

√
𝐾) guarantees established in

Kakade and Langford [2002]. Also in Appendix A, we show our bounds subject to VGD subsume
those with the completeness error E(Π) [Scherrer and Geist, 2014]. Finally, we note that in this
version of the algorithm, convexity of Π is not required (see Scherrer and Geist, 2014 for additional
discussion), nor does our analysis require it.

Doubly Approximate CPI: An actor-oracle efficient algorithm. In the function approximation
setup, the convex combination step cannot be computed as is, and therefore CPI turns out as
actor-oracle inefficient. Indeed, the algorihtm requires keeping all policies 𝜋1, . . . , 𝜋𝐾 throughout
execution. A possible remedy for this issue is to approximate the convex combination step with
a second oracle invocation, thereby allowing to dispose of actors computed in previous rounds.
However, a-priori, extending the analysis is far from immediate, as the convex combination step needs
to be approximated through samples and it is unclear how to control the propagation of errors in the
analysis. Fortunately, the local-smoothness framework together with a local-norm based analysis of
FW (which in itself is straightforward) allows to control on-policy estimation errors and arrive at a
convergence rate upper bound.

Algorithm 3 Doubly-Approximate CPI (DA-CPI)

input: 𝜂1, . . . , 𝜂𝐾 > 0; 𝜀 > 0, 𝜀ex > 0, action norm ∥·∥◦.
for 𝑘 = 1, . . . , 𝐾 do

Update 𝜋̃𝑘+1 ← arg min𝜀𝜋∈Π𝜀ex 𝔼𝑠∼𝜇𝑘
〈
𝐻𝑄𝑘𝑠 , 𝜋𝑠 − 𝜋𝑘𝑠

〉
Update 𝜋𝑘+1 ← arg min𝜀𝜋∈Π𝜀ex 𝔼𝑠∼𝜇𝑘



𝜋𝑠 − ((1 − 𝜂𝑘)𝜋𝑘𝑠 + 𝜂𝑘 𝜋̃𝑘+1𝑠 )


2
◦

end for
return 𝜋̂ = 𝜋𝐾+1

Theorem 3. Let Π be a convex policy class that satisfies (𝜈, 𝜀vgd)-VGD w.r.t. M. Suppose that
DA-CPI (Algorithm 3) is executed with the 𝐿1 action norm ∥·∥1. Then, for an appropriate setting of
𝜂1, . . . , 𝜂𝐾 and 𝜀ex, we have that the DA-CPI output satisfies:

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴𝐻3

(
1

𝐾2/3 + 𝜀
1/3 + 𝜀2/3𝐾2/3

))
.

4.3 Policy Mirror Descent

Convergence of PMD in the optimization setting similar to the one we consider here was recently
established in Sherman et al. [2025]. With moderate additional work, we obtain the following iteration
complexity upper bound that may be directly translated to a sample complexity guarantee. Since
there are no changes in the algorithm, we defer its presentation to Appendix D.4.
Theorem 4. Let Π be a convex policy class that satisfies (𝜈, 𝜀vgd)-VGD w.r.t. M. Suppose that
PMD (see Algorithm 6 in Appendix D.4) is executed with the 𝐿2 action regularizer. Then, with an
appropriate tuning of 𝜂, 𝜀ex, we have that the output of PMD satisfies:

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴3/2𝐻3

𝐾2/3 +
(
𝜈 + 𝐻2𝐴𝐾1/6

)
𝜀1/4

)
.
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Theorem 4 above, along with our reduction (see Section 3 and Appendix E), to our best knowledge
lead to the first sample complexity upper bounds for PMD in the agnostic setting, which are completely
independent of the policy class parametrization.

5 Experimental evaluation of the VGD condition

In this section, we present proof-of-concept experiments (Fig. 2), demonstrating the empirically
observed parameters of 𝐿2-SDPO (equivalently, 𝐿2-PMD) executed in four environments: Cartpole-
v1 and Acrobot-v1 [Brockman et al., 2016], and SpaceInvaders-MinAtar and Breakout-MinAtar
[Young and Tian, 2019]. Code was written on top of the Gymnax framework [Lange, 2022], and
parts of it were based off purejaxrl [Lu et al., 2022].

Figure 2: Training plots for all environments. In each experiment, a single set of minimally tuned hyper-
parameters was run with 10 difference seeds. Error bars indicate maximum and minimum values. VGD Ratio
(𝜈): An estimate of the 𝜈 parameter observed at each iteration 𝑘 ∈ [𝐾] of the algorithm. Grad VGD: An
estimate of max 𝜋̃∈Π

〈
∇𝑉 (𝜋𝑘), 𝜋𝑘 − 𝜋̃

〉
. Sub Optimality: Sub optimality of iteration 𝑘 w.r.t. the minimum

value the algorithm converged to. This should be interpreted as 𝑉 (𝜋𝑘) − (𝑉★(Π) + 𝜀vgd).

As can be seen in Fig. 2, the estimates of the 𝜈-VGD parameter coefficient remain moderate throughout
execution, and in fact decrease to around 1 or below as the algorithm approaches convergence.

We maintain two neural network models in the algorithm implementation, one for the original SDPO
actor model, the other (a “VGD actor”) we use to estimate the VGD parameter. In each iteration, we
compute the SDPO step to obtain 𝜋𝑘+1, and in addition optimize the advantage function with the
VGD actor in order to estimate max 𝜋̃∈Π

〈
∇𝑉 (𝜋𝑘), 𝜋𝑘 − 𝜋̃

〉
. Since the algorithm may converge to a

local optimal (which the 𝜀vgd parameter accounts for) we take the minimum value of each execution
as the error floor 𝑉★(Π) + 𝜀vgd, and define the sub optimality as 𝑉 (𝜋𝑘) −

(
𝑉★(Π) + 𝜀vgd

)
. We then

report an estimate of 𝜈 by computing:
𝑉 (𝜋𝑘) −

(
𝑉★(Π) + 𝜀vgd

)
max 𝜋̃∈Π

〈
∇𝑉 (𝜋𝑘), 𝜋𝑘 − 𝜋̃

〉 = 𝜈𝑘 . (9)

In practice, for Cartpole and Acrobot the algorithm always converged to the global minimum; local
optima only plays a role in the two more challenging environments. Given we believe the error floor,
our reported 𝜈𝑘 are overestimates of the true parameter at 𝜋𝑘 , as we find an actual policy 𝜋̃ that
gives an upper bound on the LHS of Eq. (9). We provide further details on the experimental setup in
Appendix F.
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A Comparison with prior art

In this section, we provide additional details regarding related work and relation between different
assumptions mentioned in the introduction. We begin with formal definitions for Π-completeness and
coverage. Completeness is also sometimes referred to as closure [Bhandari and Russo, 2024, Sherman
et al., 2025], and coverage is a general term we use here to refer to bounded distribution-mismatch
coefficient [Agarwal et al., 2019].
Definition 2 (Completness). We say a policy class Π is complete if for any 𝜋 ∈ Π, there exists a
policy 𝜋+ ∈ Π such that for all 𝑠 ∈ S, 𝜋+𝑠 = 𝑒𝑎, where 𝑎 ∈ arg max𝑎∈A 𝑄 𝜋𝑠,𝑎. In words, Π contains a
policy 𝜋+ that acts greedily w.r.t. the 𝑄-function of 𝜋.
Definition 3 (Coverage / counded distribution-mismatch coefficient). We say the environment
satisfies coverage if

𝐷∞ :=




 𝜇★𝜌0






∞
= max
𝑠∈S

𝜇★(𝑠)
𝜌0 (𝑠)

< ∞, (10)

where 𝜇★ = 𝜇𝜋
★

and 𝜋★ = arg min𝜋∈Δ(A)S 𝑉 (𝜋).

We note that while it makes sense to consider coverage subject to the best-in-class policy, it is usually
considered in conjunction with completeness and therefore in the realizable setting. The following is
a notion of approximate completeness that has appeared in e.g., Scherrer and Geist [2014], Bhandari
and Russo [2024].
Definition 4 (Approximate completeness / approximate closure). The completeness error of a policy
class Π is defined by:

E(Π) := max
𝜋∈Π

{
max

𝜋+∈Δ(A)S
𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋+𝑠

〉
−max
𝜋̃∈Π

𝔼𝑠∼𝜇𝜋
〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋̃𝑠

〉}
. (11)

We note that as long as we consider strictly stochastic policies with occupancy measures that have
full support, E(Π) = 0 implies Π is complete. We have the following relation between (approximate)
completeness, coverage, and the VGD condition. For proof see Sherman et al. [2025], which in itself
is based on [Agarwal et al., 2021, Bhandari and Russo, 2024].
Lemma 1. Let Π be a policy class and suppose coverage holds, i.e., 𝐷∞ < ∞. Then Π satisfies
(𝜈, 𝜀vgd)-VGD with 𝜈 = 𝐻𝐷∞ and 𝜀vgd = E(Π)𝐻2𝐷∞. In particular, if Π is complete it satisfies
(𝐻𝐷∞, 0)-VGD.

We note that the VGD error floor in the above lemma is identical to the error floor in the convergence
guarantees of CPI subject to approximate completeness (Scherrer and Geist, 2014, see also Agarwal
et al., 2019). (Recall that 𝐻 := 1

1−𝛾 denotes the effective horizon.)
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Comparison with algorithms of interest. In what follows, we discuss some features of the
algorithms listed in Table 1.

• CPI [Kakade and Langford, 2002]. As discussed in the introduction and Section 4.2, CPI
is not actor-oracle efficient. The bound with the completeness-error error floor does not
capture non-realizable setups where best-in-class convergence is possible, subject to the
VGD condition (see Sherman et al., 2025 for a simple example).

• Log-linear NPG [Agarwal et al., 2021]. In the log-linear NPG setup the policy class
is parametrized by softmax-over-linear functions, where linear is w.r.t. given state-action
features. When the linear function class can represent all action-value functions with zero-
error, the policy class is essentially complete (formally, it is approximately complete with
any desired non-zero error.). 𝜀approx stands for a bound on the least-squares error of the
approximation. The relative condition number 𝜅 is defined in Assumption 6.2. Theorem
20 in their work gives a sample complexity upper bound for Q-NPG, which is a version of
PMD with linear function approximation suited for the approximately-complete Π learning
setup.

• Log-linear NPG [Yuan et al., 2022]. 𝜀approx is as in the work of Agarwal et al. [2021],
𝐶𝑣 is a concentrability coefficient that is generally stronger than 𝐷∞, and relates to how
well are occupancy measures of policies chosen by the algorithm supported on the optimal
policy. Their sample complexity for Q-NPG requires an additional relative condition number
assumption similar to 𝜅 that is not present in the iteration complexity upper bound.

• PMD [Alfano and Rebeschini, 2022]. Here, the policy class is composed from a general
parametrization of the PMD dual variables, and an exact mirror-and-project function. 𝜀pmdc
quantifies the least-square error in approximating the dual variables of policies chosen by
the exact PMD step. Roughly speaking, this is a generalization of the 𝜀approx of Agarwal
et al. [2019] to the more general parametrization setup they consider. A sample complexity
result is given for the specific case of a shallow neural network parametrization.

• PMD [Sherman et al., 2025]. Here, the policy class parametrization is completely general.
Sample complexity follows by arguments we present in Appendix E. The analysis of
Sherman et al. [2025] applies for non-convex policy classes, but only subject to PMD
completeness (i.e., with dependence on 𝜀pmdc).

A.1 Additional Related work

Policy learning in the tabular or function approximation setups. Prototypical policy optimiza-
tion methods in the tabular setup include variants of the PMD algorithm [Tomar et al., 2020, Xiao,
2022, Lan, 2023], most commonly negative-entropy regularized PMD which is also known to be
equivalent to the Natural Policy Gradient (NPG; Kakade, 2001). Additional works that study PMD in
the tabular setup include Geist et al. [2019], Lan [2023], Johnson et al. [2023], Zhan et al. [2023].
The modern analyses of PMD build on the early work of Even-Dar et al. [2009] and online mirror
descent [Beck and Teboulle, 2003, Nemirovskij and Yudin, 1983] and as such require some form of
completeness of the policy class. An exception is the recent work of Sherman et al. [2025] where
PMD is instead cast as a Bregman proximal point method, thus relaxing completeness conditions by
relying instead on the VGD assumption.

The majority of recent works into policy optimization with function approximation focus on PMD
variants [e.g., Ju and Lan, 2022, Grudzien et al., 2022, Alfano et al., 2023, Yuan et al., 2023] or
policy gradients in parameter space [e.g., Zhang et al., 2020, Mei et al., 2020, 2021, Yuan et al.,
2022, Mu and Klabjan, 2024]. The influential works of Bhandari and Russo [2024], Agarwal et al.
[2021] set the stage for modern research works both into PMD and policy gradients. The notion of
variational gradient dominance (or variants thereof) has appeared in several works in the context of
policy learning, mostly in relation to policy gradient methods in parameter space or in the tabular
setup [Mei et al., 2020, Agarwal et al., 2021, Xiao, 2022, Bhandari and Russo, 2024].

The recent works of Jia et al. [2023], Krishnamurthy et al. [2025] study the boundaries of PAC learn-
ability of policy learning, focusing on forms of environment access, refined policy class conditions,
and / or specific structural environment models such as the Block MDP [Krishnamurthy et al., 2016].
Notably, works on agnostic policy learning are comparatively scarce, and mostly focus on specific
environment structures [Sekhari et al., 2021]. More generally, there exist a myriad of works that
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study RL with function approximation (some of which may be classified as studies of policy learning)
subject to particular environment structure, which we briefly review below.

Approximate policy iteration methods. Another class of prototypical policy learning algorithms
directly to related our work are approximate policy iteration methods, which in particular include CPI
[Kakade and Langford, 2002], as well as, for example, API [Bertsekas and Tsitsiklis, 1996] and PSDP
[Bagnell et al., 2003]. Scherrer and Geist [2014] provide performance bounds for CPI subject to the
completeness error (see also Agarwal et al., 2019). To our knowledge, all results for approximate
policy iteration methods require completeness of the policy class either directly or indirectly (by
quantifying the error w.r.t. to completeness). In particular, this is true for the algorithms presented
in the work of Scherrer [2014], which provides a thorough comparison of different approximate
policy iteration schemes, as well as additional convergence bounds. These include an infinite horizon
version of PSDP, and a faster rate for a variant of CPI based on line search and / or subject to stronger
concentrability assumptions. A bounded distribution mismatch coefficient 𝐷∞ is the weakest among
forms of concentrability [Munos, 2003, 2005, Chen and Jiang, 2019], and it too, as mentioned priorly,
is deemed too strong to hold in large scale problems. Notably, the infinite horizon version of PSDP
requires non-stationary policies and therefore does not fit into the policy learning model we consider
here. In addition, the improved rates obtained for CPI require stronger concentrability assumptions
and are therefore in applicable in the setting we consider here.

RL with function approximation more generally. There is a rich literature on RL with function
approximation that focuses on setups where the environment exhibits some form of inherent structure
[Jiang et al., 2017, Dong et al., 2020, Jin et al., 2020, 2021, Du et al., 2021]. One popular variant
for which statistical and computational efficient policy learning is possible is the Linear MDP Yang
and Wang [2019, 2020], Jin et al. [2020], and more generally the low-rank MDP [Jiang et al., 2017,
Agarwal et al., 2020] where the state-action feature are not given to the learner. Our line of inquiry in
this work aims at having no explicit structural assumptions on the environment. We adopt instead an
optimization flavored assumption on the relation of the policy class to the landscape of the objective
function, which turns out to be weaker than the standard completeness and coverage. As such, our
work is better understood as extending the lines of work mentioned in the two preceding paragraphs.

B Additional preliminaries

Discounted MDPs. A discounted Markov Decision Process (MDP; Puterman [1994])M is defined
by a tupleM = (S,A,ℙ, 𝑟, 𝛾, 𝜌0). For notational convenience, for 𝑠, 𝑎 ∈ S ×A we let ℙ𝑠,𝑎 := ℙ(· |
𝑠, 𝑎) ∈ Δ(S) denote the next state probability measure. We denote the value of 𝜋 when starting from
a state 𝑠 ∈ S by 𝑉𝑠 (𝜋):

𝑉𝑠 (𝜋) := 𝔼

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0 = 𝑠, 𝜋

]
,

and more generally for any 𝜌 ∈ Δ(S), 𝑉𝜌 (𝜋) := 𝔼𝑠∼𝜌𝑉𝑠 (𝜋). When the subscript is omitted, 𝑉 (𝜋)
denotes value of 𝜋 when starting from the initial state distribution 𝜌0:

𝑉 (𝜋) := 𝑉𝜌0 (𝜋) = 𝔼

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0 ∼ 𝜌0, 𝜋

]
.

For any state action pair 𝑠, 𝑎 ∈ S × A, the action-value function of 𝜋, or 𝑄-function, measures the
value of 𝜋 when starting from 𝑠, taking action 𝑎, and then following 𝜋 for the reset of the interaction:

𝑄 𝜋𝑠,𝑎 := 𝔼

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋

]
We further denote the discounted state-occupancy measure of 𝜋 induced by any start state distribution
𝜌 ∈ Δ(S) by 𝜇𝜋𝜌 :

𝜇𝜋𝜌 (𝑠) := (1 − 𝛾)
∞∑︁
𝑡=0

𝛾𝑡 Pr(𝑠𝑡 = 𝑠 | 𝑠0 ∼ 𝜌, 𝜋).
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It is easily verified that 𝜇𝜋 ∈ Δ(S) is indeed a state probability measure. In the sake of brevity, we
take the MDP true start state distribution 𝜌0 as the default in case one is not specified:

𝜇𝜋 := 𝜇𝜋𝜌0 . (12)

Problem setup. We consider an infinite horizon environment interaction model (see Protocol 1)
similar to that of, e.g., Agarwal et al. [2021].

Protocol 1 Infinite horizon environment rollout
Environment resets 𝑠0 ∼ 𝜌0
for 𝑡 = 0, . . . : do

Agent observes 𝑠𝑡 , chooses 𝑎𝑡 , incurs 𝑟 (𝑠𝑡 , 𝑎𝑡 )
Environment transitions 𝑠𝑡+1 ∼ ℙ(·|𝑠𝑡 , 𝑎𝑡 )
Agent decides whether to terminate episode

end for

Additional notation. For a given set X, we let N(𝜖,X, ∥·∥) denote the 𝜖-covering number of X
w.r.t. the norm ∥·∥. The convex closure of X is denoted by conv(X). We recall our definition for an
𝜀ex-greedy exploratory version of a policy class Π (see Eq. (7)):

Π𝜀ex :=
{
(1 − 𝜀ex)𝜋 + 𝜀ex𝑢 | 𝜋 ∈ Π, 𝑢𝑠,𝑎 ≡ 1/𝐴 ∀𝑠, 𝑎

}
We conclude by recalling the following notations used throughout:

𝜇𝑘 := 𝜇𝜋
𝑘

, 𝑄𝑘 := 𝑄 𝜋
𝑘

, 𝑆 := |S|, 𝐴 := |A|, 𝐻 :=
1

1 − 𝛾 .

C First Order Methods for non-Euclidean Optimization

In this section, we consider the smooth non-convex optimization problem:

min
𝑥∈X

𝑓 (𝑥), (13)

where 𝑓 : X → ℝ and X ⊂ ℝ𝑑 is a compact convex set. Our reduction detailed in Section 3 leads
to the optimization setup described next. All algorithms presented in Section 4 are instances of the
algorithms we analyze in this section. Before introducing the problem setup, we give the following
definitions.

Definition 5 (Variational Gradient Dominance). We say 𝑓 : X → ℝ satisfies the variational gradient
dominance condition with parameters (𝜈, 𝜀vgd), or that 𝑓 is (𝜈, 𝜀vgd)-VGD, if here exist constants
𝜈, 𝜀vgd > 0, such that for any 𝑥 ∈ X, it holds that:

𝑓 (𝑥) − arg min
𝑥★∈X

𝑓 (𝑥★) ≤ 𝜈max
𝑥̃∈X
⟨∇ 𝑓 (𝑥), 𝑥 − 𝑥⟩ + 𝜀vgd.

Definition 6 (Local Norm). We define a local norm over a set X ⊆ ℝ𝑑 by a mapping 𝑥 ↦→ ∥·∥𝑥 such
that ∥·∥𝑥 is a norm for all 𝑥 ∈ X. We may denote a local norm by ∥·∥ ( ·) or by 𝑥 ↦→ ∥·∥𝑥 .

Definition 7 (Local Smoothness). We say 𝑓 : X → ℝ is 𝛽-locally smooth w.r.t. a local norm
𝑥 ↦→ ∥·∥𝑥 if for all 𝑥, 𝑦 ∈ X:

| 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩| ≤ 𝛽

2
∥𝑦 − 𝑥∥2𝑥 .

Definition 8 (Local Lipschitz continuity). We say 𝑓 : X → ℝ is 𝑀-locally Lipschitz w.r.t. a local
norm 𝑥 ↦→ ∥·∥𝑥 if for all 𝑥 ∈ X:

∥∇ 𝑓 (𝑥)∥∗𝑥 ≤ 𝑀.
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Problem Setup. We consider the problem of computing an approximate global minimum of the
objective Eq. (13), under the following conditions.
Assumption 1. The local norm 𝑥 ↦→ ∥·∥𝑥 , decision set X, and objective 𝑓 satisfy:

• 𝑓 is 𝛽-locally smooth and 𝑀-locally Lipschitz w.r.t. 𝑥 ↦→ ∥·∥𝑥 for 𝑀 ≥ 1,

• 𝑓 is (𝜈, 𝜀vgd)-VGD over X with 𝜈 ≥ 1,

• 𝑓 is bounded from below; 𝑓★ = min𝑥 𝑓 (𝑥) > −∞,

• X has a bounded diameter w.r.t. 𝑥 ↦→ ∥·∥; 𝐷 ≥ max{1,max𝑥,𝑦,𝑧∈X ∥𝑧 − 𝑦∥𝑥}.

The assumption that 𝐷, 𝑀, 𝜈 ≥ 1 is solely for simplicity of presentation; if for example the objective
𝑓 is 𝑀-Lipschitz for 𝑀 < 1, our results still hold with 𝑀 → max{1, 𝑀}.

C.1 Constrained steepest descent method

In this section, we consider the constrained steepest descent method; given an initialization 𝑥1 ∈ X,
step size 𝜂 > 0, and step error 𝜀 > 0:

∀𝑘 = 1, . . . , 𝐾, 𝑥𝑘+1 ∈ arg min𝜀𝑥∈X

{
⟨∇ 𝑓 (𝑥𝑘), 𝑥⟩ +

1
2𝜂
∥𝑥 − 𝑥𝑘 ∥2𝑥𝑘

}
. (14)

For this method, we prove the following theorem.
Theorem 5. Under Assumption 1, the constrained steepest descent method Eq. (14) guarantees, as
long as 𝜂 ≤ 1/𝛽:

𝑓 (𝑥𝐾+1) − 𝑓★ ≤
8 (𝜈𝑀𝐷)2

𝜂𝐾
+ 4𝜈𝑀𝐷
√
𝜂

√
𝜀 + 𝜀vgd

To prove Theorem 5, we will first establish an analysis framework that connects the algorithm with a
notion of constrained steepest descent magnitude. As a general note, the fact that the norm used in
Eq. (14) to compute the steepest descent direction is local makes only a syntactic difference in the
analysis. Wherever it is convenient we make a claim about a general norm (which may be local and
depend on some point), like in Lemma 2 below.

Let 𝜂 > 0 be a fixed step size. Given 𝑥 ∈ X, we define the set of potential gradient mappings from 𝑥
by:

G𝑥 :=
{

1
𝜂
(𝑥 − 𝑦) | 𝑦 ∈ X

}
, (15)

and the steepest descent magnitude by:

𝛿𝑥 := max
𝑔∈G𝑥

{
⟨∇ 𝑓 (𝑥), 𝑔⟩ − 1

2
∥𝑔∥2𝑥

}
. (16)

Lemma 2. For any norm ∥·∥, It holds that

𝑥+ ∈ arg min𝜀𝑦∈X

{
⟨∇ 𝑓 (𝑥), 𝑦⟩ + 1

2𝜂
∥𝑥 − 𝑦∥2

}
⇐⇒ 1

𝜂
(𝑥 − 𝑥+) ∈ arg max(𝜀/𝜂)

𝑔∈G𝑥

{
⟨∇ 𝑓 (𝑥), 𝑔⟩ − 1

2
∥𝑔∥2

}
.

Proof. Observe:

arg min𝜀𝑦∈X

{
⟨∇ 𝑓 (𝑥), 𝑦⟩ + 1

2𝜂
∥𝑥 − 𝑦∥2

}
= arg min𝜀𝑦∈X

{
⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩ + 1

2𝜂
∥𝑦 − 𝑥∥2

}
= arg min(𝜀/𝜂)

𝑦∈X

{〈
∇ 𝑓 (𝑥), 1

𝜂
(𝑦 − 𝑥)

〉
+ 1

2





1
𝜂
(𝑦 − 𝑥)





2
}
.
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Further, for any 𝑦 ∈ X, letting 𝑔 = 1
𝜂
(𝑥 − 𝑦), we have〈

∇ 𝑓 (𝑥), 1
𝜂
(𝑥 − 𝑦)

〉
+ 1

2





1
𝜂
(𝑥 − 𝑦)





2
= ⟨∇ 𝑓 (𝑥),−𝑔⟩ + 1

2
∥𝑔∥2 .

Hence, the gradient mapping 𝑦 ↦→ 1
𝜂
(𝑥 − 𝑦) is a bijection between X and G𝑥 that gives the same

value for the LHS and RHS objectives in the above display. Thus,

𝑥+ ∈ arg min𝜀𝑦∈X

{
⟨∇ 𝑓 (𝑥), 𝑦⟩ + 1

2𝜂
∥𝑥 − 𝑦∥2

}
⇐⇒ 1

𝜂
(𝑥 − 𝑥+) ∈ arg min(𝜀/𝜂)

𝑔∈G𝑥

{
⟨∇ 𝑓 (𝑥),−𝑔⟩ + 1

2
∥𝑔∥2

}
.

Finally,

arg min𝜀𝑔∈G𝑥

{
⟨∇ 𝑓 (𝑥),−𝑔⟩ + 1

2
∥𝑔∥2

}
= arg max(𝜀/𝜂)

𝑔∈G𝑥

{
⟨∇ 𝑓 (𝑥), 𝑔⟩ − 1

2
∥𝑔∥2

}
,

which completes the proof. □

Lemma 3. For all 𝑥 ∈ X, 𝜂 > 0, we have:

max
𝑦∈X
⟨∇ 𝑓 (𝑥), 𝑥 − 𝑦⟩ ≤ 2 max {𝐷, 1}max

{
𝛿𝑥 ,
√
𝛿𝑥

}
.

Proof. Let 𝑦 ∈ X, and note that

⟨∇ 𝑓 (𝑥), 𝑥 − 𝑦⟩ = 𝜂
〈
∇ 𝑓 (𝑥), 1

𝜂
(𝑥 − 𝑦)

〉
,

hence

max
𝑦∈X
⟨∇ 𝑓 (𝑥), 𝑥 − 𝑦⟩ = 𝜂 max

𝑔∈G𝑥
⟨∇ 𝑓 (𝑥), 𝑔⟩ . (17)

In what follows, we consider the set of gradient mappings restricted to direction 𝑢 and the correspond-
ing descent quantity in direction 𝑢:

G𝑥 (𝑢) := G𝑥 ∩ {𝛼𝑢 : 𝛼 ≥ 0}; 𝛿𝑥 (𝑢) := max
𝑔∈G𝑥 (𝑢)

⟨∇ 𝑓 (𝑥), 𝑔⟩ − 1
2
∥𝑔∥2𝑥 .

By Lemma 4, we have:{
𝛿𝑥 (𝑢) = 1

2 ⟨∇ 𝑓 (𝑥), 𝑢⟩
2 ⟨∇ 𝑓 (𝑥), 𝑢⟩ 𝑢 ∈ G𝑥 ,

𝛿𝑥 (𝑢) ≥ 1
2 max𝑔∈G𝑥 (𝑢) ⟨∇ 𝑓 (𝑥), 𝑔⟩ ⟨∇ 𝑓 (𝑥), 𝑢⟩ 𝑢 ∉ G𝑥 .

Now, since

𝛿𝑥 = max
𝑔∈G𝑥

{
⟨∇ 𝑓 (𝑥), 𝑔⟩ − 1

2
∥𝑔∥2𝑥

}
= max
∥𝑢∥𝑥=1

𝛿𝑥 (𝑢),

it follows that:

max
𝑔∈G𝑥

⟨∇ 𝑓 (𝑥), 𝑔⟩ = max
𝑢:∥𝑢∥𝑥=1

max
𝑔∈G𝑥 (𝑢)

⟨∇ 𝑓 (𝑥), 𝑔⟩

≤ max
𝑢:∥𝑢∥𝑥=1

max
{
2𝛿𝑥 (𝑢),

𝐷

𝜂

√︁
2𝛿𝑥 (𝑢)

}
= max

{
2𝛿𝑥 ,

𝐷

𝜂

√︁
2𝛿𝑥

}
≤ 2
𝜂

max{𝐷, 1}max
{
𝛿𝑥 ,

√︁
𝛿𝑥

}
.

Combining the above with Eq. (17), the result follows. □
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Lemma 4. Let 𝑥 ∈ X, 𝑢 ∈ ℝ𝑑 , ∥𝑢∥𝑥 = 1, and define:

G𝑥 (𝑢) := G𝑥 ∩ {𝛼𝑢 : 𝛼 ≥ 0}; 𝛿𝑥 (𝑢) := max
𝑔∈G𝑥 (𝑢)

⟨∇ 𝑓 (𝑥), 𝑔⟩ − 1
2
∥𝑔∥2𝑥 .

Then, {
𝛿𝑥 (𝑢) = 1

2 ⟨∇ 𝑓 (𝑥), 𝑢⟩
2 ⟨∇ 𝑓 (𝑥), 𝑢⟩ 𝑢 ∈ G𝑥 ,

𝛿𝑥 (𝑢) ≥ 1
2 max𝑔∈G𝑥 (𝑢) ⟨∇ 𝑓 (𝑥), 𝑔⟩ ⟨∇ 𝑓 (𝑥), 𝑢⟩ 𝑢 ∉ G𝑥 .

Proof. We have, by definition of 𝛿𝑥 (𝑢):

𝛿𝑥 (𝑢) = max
𝛼≥0:𝛼𝑢∈G𝑥

{
⟨∇ 𝑓 (𝑥), 𝛼𝑢⟩ − 1

2
∥𝛼𝑢∥2𝑥

}
,

and we note that without constraining 𝛼𝑢 ∈ G𝑥 , we have

arg max
𝛼≥0

{
⟨∇ 𝑓 (𝑥), 𝛼𝑢⟩ − 1

2
∥𝛼𝑢∥2𝑥

}
= arg max

𝛼≥0

{
𝛼 ⟨∇ 𝑓 (𝑥), 𝑢⟩ − 𝛼

2

2

}
= ⟨∇ 𝑓 (𝑥), 𝑢⟩ .

Now, set 𝐴 := {𝛼 : 𝛼𝑢 ∈ G𝑥}, and 𝛼0 := sup{𝛼 : 𝛼𝑢 ∈ G𝑥}. Observe that since G𝑥 is closed and
convex, we have 𝛼0 = ∞ =⇒ 𝐴 = [0,∞), and 𝛼0 < ∞ =⇒ 𝐴 = [0, 𝛼0]. Proceeding, we now
consider the two cases from the lemma statement.

Assume first that ⟨∇ 𝑓 (𝑥), 𝑢⟩ 𝑢 ∈ G𝑥 . Then 𝛼0 ≥ ⟨∇ 𝑓 (𝑥), 𝑢⟩, and by since 𝛼 = ⟨∇ 𝑓 (𝑥), 𝑢⟩ ∈ 𝐴
minimizes the unconstrained problem, it also minimizes the constrained one, hence

𝛿𝑥 (𝑢) =
1
2
⟨∇ 𝑓 (𝑥), 𝑢⟩2 ,

as required.

Assume now that ⟨∇ 𝑓 (𝑥), 𝑢⟩ 𝑢 ∉ G𝑥 . Then 𝛼0 < ⟨∇ 𝑓 (𝑥), 𝑢⟩, and since

𝛼 ↦→
{
⟨∇ 𝑓 (𝑥), 𝛼𝑢⟩ − 1

2
∥𝛼𝑢∥2𝑥 = 𝛼 ⟨∇ 𝑓 (𝑥), 𝑢⟩ −

𝛼2

2

}
is monotonically increasing for 𝛼 ∈ [0, ⟨∇ 𝑓 (𝑥), 𝛼𝑢⟩], we obtain

𝛿𝑥 (𝑢) = ⟨∇ 𝑓 (𝑥), 𝛼0𝑢⟩ −
1
2
∥𝛼0𝑢∥2𝑥 = 𝛼0

(
⟨∇ 𝑓 (𝑥), 𝑢⟩ − 𝛼0

2

)
≥ 𝛼0

(
⟨∇ 𝑓 (𝑥), 𝑢⟩ − ⟨∇ 𝑓 (𝑥), 𝑢⟩

2

)
=

1
2
⟨∇ 𝑓 (𝑥), 𝛼0𝑢⟩

=
1
2

max
0≤𝛼∈G𝑥

⟨∇ 𝑓 (𝑥), 𝛼𝑢⟩

=
1
2

max
𝑔∈G𝑥 (𝑢)

⟨∇ 𝑓 (𝑥), 𝑔⟩ .

This completes the proof. □

We are now ready for the proof of our main theorem.

Proof of Theorem 5. For ease of presentation, we prove for the case that 𝜀vgd = 0; the general
case follows immediately by replacing 𝑓★ with the error floor 𝑓★ + 𝜀vgd everywhere in the proof.
Throughout the proof we denote G𝑘 := G𝑥𝑘 and 𝛿𝑘 := 𝛿𝑥𝑘 . We recall these are the set of potential
gradient mappings and steepest descent magnitude Eqs. (15) and (16). For convenience:

G𝑡 =
{

1
𝜂
(𝑥𝑘 − 𝑦) | 𝑦 ∈ X

}
; 𝛿𝑘 = max

𝑔∈G𝑡

{
⟨∇ 𝑓 (𝑥𝑘), 𝑔⟩ −

1
2
∥𝑔∥2𝑥𝑘

}
.
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By Lemma 2, we have that for all 𝑘 , 𝑔𝑘 := 1
𝜂
(𝑥𝑘 − 𝑥𝑘+1) satisfies

𝑔𝑘 ∈ arg max(𝜀/𝜂)
𝑔∈G𝑘

{
⟨∇ 𝑓 (𝑥𝑘), 𝑔⟩ −

1
2
∥𝑔∥2𝑥𝑘

}
.

Hence, by smoothness of 𝑓 :

𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘) + ⟨∇ 𝑓 (𝑥𝑘), 𝑥𝑡=𝑘+1 − 𝑥𝑘⟩ +
𝛽

2
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑥𝑘

= 𝑓 (𝑥𝑘) − 𝜂 ⟨∇ 𝑓 (𝑥𝑘), 𝑔𝑘⟩ +
𝜂2𝛽

2
∥𝑔𝑘 ∥2𝑥𝑘

≤ 𝑓 (𝑥𝑘) − 𝜂 ⟨∇ 𝑓 (𝑥𝑘), 𝑔𝑘⟩ +
𝜂

2
∥𝑔𝑘 ∥2𝑥𝑘 (𝜂 ≤ 1/𝛽)

= 𝑓 (𝑥𝑘) − 𝜂
(
⟨∇ 𝑓 (𝑥𝑘), 𝑔𝑘⟩ −

1
2
∥𝑔𝑘 ∥2𝑥𝑘

)
≤ 𝑓 (𝑥𝑘) − 𝜂 (𝛿𝑘 − 𝜀/𝜂) ,

which implies

𝜂𝛿𝑘 ≤ 𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘+1) + 𝜀. (18)

Further, by the VGD assumption and Lemma 3:
1
𝜈

(
𝑓 (𝑥𝑘) − 𝑓★

)
≤ max
𝑦∈X
⟨∇ 𝑓 (𝑥𝑘), 𝑥𝑘 − 𝑦⟩ ≤ 2𝐷max

{
𝛿𝑘 ,
√
𝛿𝑘

}
,

hence, with 𝐸𝑘 := 𝑓 (𝑥𝑘) − 𝑓★ the above implies
1

(2𝐷𝜈)2
𝐸2
𝑘 ≤ max

{
𝛿2
𝑘 , 𝛿𝑘

}
. (19)

In addition, we have

𝛿𝑘 = max
𝑔∈G𝑘

{
⟨∇ 𝑓 (𝑥𝑘), 𝑔⟩ −

1
2
∥𝑔∥2𝑥𝑘

}
≤ max
𝑔∈ℝ𝑑

{
⟨∇ 𝑓 (𝑥𝑘), 𝑔⟩ −

1
2
∥𝑔∥2𝑥𝑘

}
= max
∥𝑢∥𝑥𝑘=1

⟨∇ 𝑓 (𝑥𝑘), 𝑢⟩2 =
(
∥∇ 𝑓 (𝑥𝑘)∥∗𝑥𝑘

)2 ≤ 𝑀2,

=⇒ max
{
𝛿2
𝑘 , 𝛿𝑘

}
≤ max

{
𝑀2𝛿𝑘 , 𝛿𝑘

}
= 𝑀2𝛿𝑘 . (𝑀 ≥ 1)

Combining with Eq. (19) we obtain
1

(2𝐷𝜈)2
𝐸2
𝑘 ≤ 𝑀

2𝛿𝑘 =⇒ (2𝑀𝜈𝐷)−2 𝐸2
𝑘 ≤ 𝛿𝑘 .

Further combining the above display with Eq. (18), we obtain:

𝜔0𝐸
2
𝑘 ≤ 𝜂𝛿𝑘 ≤ 𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘+1) + 𝜀 = 𝐸𝑘 − 𝐸𝑘+1 + 𝜀

⇐⇒ 𝜔0

(
𝐸2
𝑘 − 𝜀/𝜔0

)
≤ 𝐸𝑘 − 𝐸𝑘+1.

for 𝜔0 := 𝜂 (2𝜈𝑀𝐷)−2. We now consider two cases. In the first, the algorithm converges to the error
floor determined by 𝜀, in the second, 𝐸2

𝑘
≥ 2𝜀/𝜔0 for all 𝑘 .

Case 1 (Convergence to error floor). Suppose that 𝐸2
𝑘0
≤ 2𝜀/𝜔0 for some 𝑘0 ∈ [𝐾]. By our

previous display, it holds that for all 𝑘 ,

𝐸𝑘+1 ≤ 𝐸𝑘 − 𝜔0

(
𝐸2
𝑘 − 𝜀/𝜔0

)
,

which implies that whenever 𝐸2
𝑘
≥ 2𝜀/𝜔0, 𝐸𝑘+1 ≤ 𝐸𝑘 . Further, since 𝐸𝑘 ≥ 0, we also have that in

any case, 𝐸𝑘+1 ≤ 𝐸𝑘 + 𝜀. Now suppose by contradiction that 𝐸𝐾+1 >
√︁

2𝜀/𝜔0 + 𝜀. This implies that
the last iteration was a descent iteration, hence 𝐸𝐾 >

√︁
2𝜀/𝜔0 + 𝜀. Proceeding with this argument

inductively contradicts our assumption that 𝐸2
𝑘0
≤ 2𝜀/𝜔0. Thus, we obtain

𝐸𝐾+1 ≤
√︁

2𝜀/𝜔0 + 𝜀 ≤
4𝜈𝑀𝐷
√
𝜂

√
𝜖 .
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Case 2 (Descent throughout). Suppose that “Case 1” does not occur, then 𝐸2
𝑘
≥ 2𝜀/𝜔0 for all 𝑘 ,

which implies 𝜂𝛿𝑘 − 𝜖 ≥ 𝜂𝛿𝑘/2, and for 𝜔 := 𝜔0/2:

𝜔𝐸2
𝑘 ≤ 𝐸𝑡 − 𝐸𝑡+1.

Now, divide both sides of the previous display by 𝐸𝑘𝐸𝑘+1 and use that 𝐸𝑘 ≥ 𝐸𝑘+1,

𝜔 ≤ 𝜔𝐸𝑘

𝐸𝑘+1
≤ 1
𝐸𝑘+1

− 1
𝐸𝑘
,

and sum over 𝑘 , telescoping the RHS to obtain

𝜔𝐾 ≤ 1
𝐸𝐾+1

− 1
𝐸1

=⇒ 𝜔𝐾 (𝐸𝐾+1𝐸1) ≤ 𝐸1 − 𝐸𝐾+1

=⇒ 𝐸𝐾+1 ≤ 𝐸1 − 𝜔(𝐸𝐾+1𝐸1)𝐾.

Finally,

0 ≤ 𝐸𝐾+1 ≤ 𝐸1 (1 − 𝜔𝐸𝐾+1𝐾) ,

and dividing by 𝐸1 (if 𝐸1 = 0, there is nothing to prove), we obtain

0 ≤ 1 − 𝜔𝐸𝐾+1𝐾 =⇒ 𝐸𝐾+1 ≤
1
𝜔𝐾

=
2 (2𝜈𝑀𝐷)2

𝜂𝐾
,

and which completes the proof. □

Next, we additionally provide a proof for convergence to an approximate stationary point without the
VGD assumption. Here we prove for the error free case

Theorem 6. Assume that 𝑓 : X → ℝ is 𝛽-smooth w.r.t. a norm ∥·∥ over X and attains a minimum
𝑓★ = min𝑥∈X 𝑓 (𝑥). Then the constrained steepest descent method Eq. (14) with step size 𝜂 ≤ 1/𝛽
guarantees that after 𝐾 ≥ 1 iterations, we have that for some 𝑘 ∈ [𝐾], 𝑥𝑘 is an approximate
stationary point:

min
𝑦∈X
⟨∇ 𝑓 (𝑥𝑘), 𝑦 − 𝑥𝑘⟩ ≥ −2𝐷max

{
𝐸1
𝜂𝐾
+ 𝜀/𝜂,

√︄
𝐸1
𝜂𝐾
+ 𝜀/𝜂

}
,

where 𝐸1 := 𝑓 (𝑥1) − 𝑓★.

Proof. Similar to the proof of Theorem 5, we obtain for all 𝑘:

𝜂𝛿𝑘 ≤ 𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘+1) + 𝜀. (20)

Summing over 𝑘 and rearranging,

𝑇∑︁
𝑡=1

𝛿𝑘 ≤
𝑓 (𝑥1) − 𝑓 (𝑥𝑇+1)

𝜂
+ 𝐾𝜀
𝜂
,

which implies that for some 𝑘 ,

𝛿𝑘 ≤
𝑓 (𝑥1) − 𝑓 (𝑥★)

𝜂𝐾
+ 𝜀
𝜂
.

By Lemma 3, we have

max
𝑦∈X
⟨∇ 𝑓 (𝑥𝑘), 𝑥𝑘 − 𝑦⟩ ≤ 2𝐷max

{
𝛿𝑘 ,
√
𝛿𝑘

}
≤ 2𝐷max

{
𝐸1
𝜂𝐾
+ 𝜀/𝜂,

√︄
𝐸1
𝜂𝐾
+ 𝜀/𝜂

}
,

which proves our claim. □
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Algorithm 4 Approximate Frank-Wolfe

input: 𝜂1, . . . , 𝜂𝐾 ; error tolerance 𝜖 > 0.
for 𝑘 = 1, . . . , 𝐾 do

Compute 𝑥𝑘+1 ∈ arg min𝜖𝑥∈X ⟨𝑥,∇ 𝑓 (𝑥𝑘)⟩
Set 𝑥𝑘+1 = (1 − 𝜂𝑘)𝑥𝑘 + 𝜂𝑘𝑥𝑘+1.

end for

C.2 Frank-Wolfe method

We first present the guarantee of the standard FW [Frank and Wolfe, 1956] method subject to the
VGD condition, without local norms and without a second approximation step. The analysis is fairly
standard, but uses the VGD condition where convexity is normally used.
Theorem 7. Let ∥·∥ be a norm, andX ⊂ ℝ𝑑 be a set of bounded diameter 𝐷 ≥ max𝑥,𝑦∈X ∥𝑥 − 𝑦∥. As-
sume that 𝑓 : X → ℝ is 𝛽-smooth w.r.t. ∥·∥ over conv(X) and attains a minimum 𝑓★ = min𝑥∈X 𝑓 (𝑥).
Assume further that X, 𝑓 satisfy a (𝜈, 𝜀vgd)-VGD condition. Then the FW method (Algorithm 4)
guarantees for all 𝑘:

𝑓 (𝑥𝑘+1) − 𝑓★ ≤
𝑘∏
𝑠=1
(1 − 𝜂𝑠/𝜈)

(
𝑓 (𝑥1) − 𝑓★

)
+ 1

2

𝑘∑︁
𝑠=1

𝑘∏
𝑠′=𝑠+1

(1 − 𝜂𝑠′/𝜈)
(
𝜂2
𝑠𝛽𝐷

2 + 2𝜂𝑠𝜖
)
+ 𝜀vgd.

Furthermore, with 𝜂𝑘 = 2𝜈
𝑘+2 , we obtain after 𝐾 iterations:

𝑓 (𝑥𝐾+1) − 𝑓★ ≤
𝑓 (𝑥1) − 𝑓★ + 2𝜈2𝛽𝐷2

𝐾 + 2
+ 2𝜈𝜖 + 𝜀vgd.

Proof. For ease of presentation, we prove for the case that 𝜀vgd = 0; the general case follows
immediately by replacing 𝑓★ with the error floor 𝑓★ + 𝜀vgd everywhere in the proof. Observe,

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ ∇ 𝑓 (𝑥𝑘)⊤ (𝑥𝑘+1 − 𝑥𝑘) +
𝛽

2
∥𝑥𝑘+1 − 𝑥𝑘 ∥2 (𝛽-smoothness)

= 𝜂𝑘∇ 𝑓 (𝑥𝑘)⊤ (𝑥𝑘+1 − 𝑥𝑘) +
𝛽𝜂2
𝑘

2
∥𝑥𝑘+1 − 𝑥𝑘 ∥2 (𝑥𝑘+1 − 𝑥𝑘 = 𝜂𝑘 (𝑥𝑘+1 − 𝑥𝑘))

≤ 𝜂𝑘∇ 𝑓 (𝑥𝑘)⊤ (𝑥𝑘+1 − 𝑥𝑘) +
𝜂2
𝑘
𝛽𝐷2

2
.

Further by definition of the algorithm,

𝜂𝑘∇ 𝑓 (𝑥𝑘)⊤ (𝑥𝑘+1 − 𝑥𝑘) ≤ 𝜂𝑘 min
𝑥̃∈X
∇ 𝑓 (𝑥𝑘)⊤ (𝑥 − 𝑥𝑘) + 𝜖𝜂𝑘

=
𝜂𝑘

𝜈
𝜈min
𝑥̃∈X
∇ 𝑓 (𝑥𝑘)⊤ (𝑥 − 𝑥𝑘) + 𝜖𝜂𝑘

≤ 𝜂𝑘
𝜈

(
𝑓★ − 𝑓 (𝑥𝑘)

)
+ 𝜖𝜂𝑘 ,

where the last inequality follows by the VGD assumption. Combining this with our previous display
now yields,

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤
𝜂𝑘

𝜈

(
𝑓★ − 𝑓 (𝑥𝑘)

)
+ 𝜂𝑘𝜖 + 𝛽𝜂2

𝑘𝐷
2/2,

hence, letting 𝐸𝑘 := 𝑓 (𝑥𝑘) − 𝑓★ we have,

𝐸𝑘+1 ≤
(
1 − 𝜂𝑘

𝜈

)
𝐸𝑘 + 𝜂2

𝑘𝛽𝐷
2/2 + 𝜂𝑘𝜖 .

Now, apply the above inequality recursively to obtain

𝐸𝑘+1 ≤
𝑘∏
𝑠=1
(1 − 𝜂𝑠/𝜈)𝐸1 +

1
2

𝑘∑︁
𝑠=1

𝑘∏
𝑠′=𝑠+1

(1 − 𝜂𝑠′/𝜈)
(
𝜂2
𝑠𝛽𝐷

2
)

+
𝑘∑︁
𝑠=1

𝑘∏
𝑠′=𝑠+1

(1 − 𝜂𝑠′/𝜈)𝜂𝑠𝜖,
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which proves the first part. For the second part, note that choosing 𝜂𝑡 = 2𝜈
𝑡+2 gives

𝑘∏
𝑠=1
(1 − 𝜂𝑠/𝜈) =

𝑘∏
𝑠=1

𝑠

𝑠 + 2
=

1
(𝑘 + 1) (𝑘 + 2) ,

and,
𝑘∏

𝑠′=𝑠+1
(1 − 𝜂𝑠′/𝜈)𝜂𝑠 =

(𝑠 + 1) (𝑠 + 2)
(𝑘 + 1) (𝑘 + 2)

2𝜈
(𝑠 + 2) ≤

2𝜈
𝑘 + 1

𝑘∏
𝑠′=𝑠+1

(1 − 𝜂𝑠′/𝜈)𝜂2
𝑠 =
(𝑠 + 1) (𝑠 + 2)
(𝑘 + 1) (𝑘 + 2)

4𝜈2

(𝑠 + 2)2
≤ 4𝜈2

(𝑘 + 1) (𝑘 + 2) .

Plugging this back into our bound on 𝐸𝑘+1 = 𝑓 (𝑥𝑘+1) − 𝑓★, we obtain:

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥★) ≤
𝑓 (𝑥1) − 𝑓★
(𝑘 + 1) (𝑘 + 2) +

1
2

𝑘∑︁
𝑠=1

4𝜈2𝛽𝐷2

(𝑘 + 1) (𝑘 + 2) +
𝑘∑︁
𝑠=1

2𝜈𝜖
𝑘 + 1

≤ 𝑓 (𝑥1) − 𝑓★
(𝑘 + 1) (𝑘 + 2) +

2𝜈2𝛽𝐷2

𝑘 + 2
+ 2𝜈𝜖

≤ 𝑓 (𝑥1) − 𝑓★ + 2𝜈2𝛽𝐷2

𝑘 + 2
+ 2𝜈𝜖,

as claimed. □

Next, we present the guarantee for the doubly approximate version of FW with local norms.

Algorithm 5 Doubly Approximate Frank-Wolfe

input: 𝜂1, . . . , 𝜂𝐾 ; error tolerances 𝜖, 𝜖 > 0.
for 𝑘 = 1, . . . , 𝐾 do

Compute 𝑥𝑘+1 ∈ arg min𝜖𝑥∈X ⟨𝑥,∇ 𝑓 (𝑥𝑘)⟩
Compute 𝑥𝑘+1 ∈ arg min𝜖𝑥∈X

{
∥𝑥 − ((1 − 𝜂𝑘)𝑥𝑘 + 𝜂𝑘𝑥𝑘+1))∥2𝑥𝑘

}
.

end for

Theorem 8. Under Assumption 1, the Doubly Approximate FW Algorithm 5 guarantees, for all 𝑘:

𝑓 (𝑥𝑘+1) − 𝑓★ ≤
𝑘∏
𝑠=1
(1 − 𝜂𝑠/𝜈)

(
𝑓 (𝑥1) − 𝑓★

)
+ 1

2

𝑘∑︁
𝑠=1

𝑘∏
𝑠′=𝑠+1

(1 − 𝜂𝑠′/𝜈)
(
𝜂2
𝑠𝛽𝐷

2 + 2𝜂𝑠
(
𝜖 + 𝛽

√
𝜖

)
+ 𝜖 (2𝑀 + 𝛽)

)
+ 𝜀vgd.

Furthermore, with 𝜂𝑘 = 2𝜈
𝑘+2 , we obtain after 𝐾 iterations:

𝑓 (𝑥𝐾+1) − 𝑓★ ≤
(2𝜈2 + 1)𝛽𝐷2

𝐾 + 2
+ 2𝜈

(
𝜖 + 𝛽

√
𝜖

)
+ 𝜖 (𝑀 + 𝛽) 𝐾 + 𝜀vgd.

Proof. For ease of presentation, we prove for the case that 𝜀vgd = 0; the general case follows
immediately by replacing 𝑓★ with the error floor 𝑓★ + 𝜀vgd everywhere in the proof. For all 𝑘 , let

𝑥★𝑘+1 = (1 − 𝜂𝑘)𝑥𝑘 + 𝜂𝑡𝑥𝑘+1.
We have,
𝛽

2
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑥𝑘 =

𝛽

2


𝑥★𝑘+1 − 𝑥𝑘 + (

𝑥𝑘+1 − 𝑥★𝑘+1
)

2
𝑥𝑘

≤ 𝛽

2


𝑥★𝑘+1 − 𝑥𝑘

2

𝑥𝑘
+ 𝛽



𝑥★𝑘+1 − 𝑥𝑘

 

𝑥𝑘+1 − 𝑥★𝑘+1

𝑥𝑘 + 𝛽2 

𝑥𝑘+1 − 𝑥★𝑘+1

2
𝑥𝑘

=
𝛽𝜂2
𝑘

2
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑥𝑘 + 𝛽𝜂𝑘 ∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑥𝑘



𝑥𝑘+1 − 𝑥★𝑘+1

𝑥𝑘 + 𝛽2 

𝑥𝑘+1 − 𝑥★𝑘+1

2
𝑥𝑘

≤
𝛽𝜂2
𝑘

2
𝐷2 + 𝛽𝜂𝑘

√
𝜖 + 𝛽

2
𝜖 .
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Hence,

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ ∇ 𝑓 (𝑥𝑘)⊤ (𝑥𝑘+1 − 𝑥𝑘) +
𝛽

2
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑥𝑘

≤ ∇ 𝑓 (𝑥𝑘)⊤ (𝑥★𝑘+1 − 𝑥𝑘) + 𝜖𝑀 +
𝛽

2
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑥𝑘

= 𝜂𝑘∇ 𝑓 (𝑥𝑘)⊤ (𝑥𝑘+1 − 𝑥𝑘) + 𝜖𝑀 +
𝛽

2
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑥𝑘

≤ 𝜂𝑘∇ 𝑓 (𝑥𝑘)⊤ (𝑥𝑘+1 − 𝑥𝑘) + 𝜖𝑀 + 𝛽𝜂2
𝑘𝐷

2/2 + 𝛽𝜂𝑘
√
𝜖 + 𝛽𝜖/2

Now, note that by definition of the algorithm,

𝜂𝑘∇ 𝑓 (𝑥𝑘)⊤ (𝑥𝑘+1 − 𝑥𝑘) ≤ 𝜂𝑘 min
𝑥̃∈X
∇ 𝑓 (𝑥𝑘)⊤ (𝑥 − 𝑥𝑘) + 𝜖𝜂𝑘

=
𝜂𝑘

𝜈
𝜈min
𝑥̃∈X
∇ 𝑓 (𝑥𝑘)⊤ (𝑥 − 𝑥𝑘) + 𝜖𝜂𝑘

≤ 𝜂𝑘
𝜈

(
𝑓★ − 𝑓 (𝑥𝑘)

)
+ 𝜖𝜂𝑘 ,

where the last inequality follows by the VGD assumption. Combining this with our previous display
now yields,

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤
𝜂𝑘

𝜈

(
𝑓★ − 𝑓 (𝑥𝑘)

)
+ 𝜂𝑘𝜖 + 𝜖𝑀 + 𝛽𝜂2

𝑘𝐷
2/2 + 𝛽𝜂𝑘

√
𝜖 + 𝛽𝜖/2

=
𝜂𝑘

𝜈

(
𝑓★ − 𝑓 (𝑥𝑘)

)
+ 𝜂2

𝑘𝛽𝐷
2/2 + 𝜂𝑘

(
𝜖 + 𝛽

√
𝜖

)
+ 𝜖 (𝑀 + 𝛽/2) ,

hence, letting 𝐸𝑘 := 𝑓 (𝑥𝑘) − 𝑓★ we have,

𝐸𝑘+1 ≤
(
1 − 𝜂𝑘

𝜈

)
𝐸𝑘 + 𝜂2

𝑘𝛽𝐷
2/2 + 𝜂𝑘

(
𝜖 + 𝛽

√
𝜖

)
+ 𝜖 (𝑀 + 𝛽/2) .

Now, apply the above inequality recursively to obtain

𝐸𝑘+1 ≤
𝑘∏
𝑠=1
(1 − 𝜂𝑠/𝜈)𝐸1 +

1
2

𝑘∑︁
𝑠=1

𝑘∏
𝑠′=𝑠+1

(1 − 𝜂𝑠′/𝜈)
(
𝜂2
𝑠𝛽𝐷

2
)

+
𝑘∑︁
𝑠=1

𝑘∏
𝑠′=𝑠+1

(1 − 𝜂𝑠′/𝜈)𝜂𝑠
(
𝜖 + 𝛽

√
𝜖

)
+

𝑘∑︁
𝑠=1

𝑘∏
𝑠′=𝑠+1

(1 − 𝜂𝑠′/𝜈)𝜖 (𝑀 + 𝛽/2) ,

which proves the first part. For the second part, note that choosing 𝜂𝑡 = 2𝜈
𝑡+2 gives

𝑘∏
𝑠=1
(1 − 𝜂𝑠/𝜈) =

𝑘∏
𝑠=1

𝑠

𝑠 + 2
=

1
(𝑘 + 1) (𝑘 + 2) ,

and,

𝑘∏
𝑠′=𝑠+1

(1 − 𝜂𝑠′/𝜈) =
(𝑠 + 1) (𝑠 + 2)
(𝑘 + 1) (𝑘 + 2) ,

𝑘∏
𝑠′=𝑠+1

(1 − 𝜂𝑠′/𝜈)𝜂𝑠 =
(𝑠 + 1) (𝑠 + 2)
(𝑘 + 1) (𝑘 + 2)

2𝜈
(𝑠 + 2) ≤

2𝜈
𝑘 + 1

𝑘∏
𝑠′=𝑠+1

(1 − 𝜂𝑠′/𝜈)𝜂2
𝑠 =
(𝑠 + 1) (𝑠 + 2)
(𝑘 + 1) (𝑘 + 2)

4𝜈2

(𝑠 + 2)2
≤ 4𝜈2

(𝑘 + 1) (𝑘 + 2) .
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Plugging this back into our bound on 𝐸𝑘+1 = 𝑓 (𝑥𝑘+1) − 𝑓★, we obtain, for any 𝑥★ ∈ arg min𝑥∈X 𝑓 (𝑥),

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥★) ≤
𝑓 (𝑥1) − 𝑓 (𝑥★)
(𝑘 + 1) (𝑘 + 2) +

1
2

𝑘∑︁
𝑠=1

4𝜈2𝛽𝐷2

(𝑘 + 1) (𝑘 + 2) +
𝑘∑︁
𝑠=1

2𝜈
(
𝜖 + 𝛽

√
𝜖

)
𝑘 + 1

+ 𝜖 (𝑀 + 𝛽) 𝑘

≤ 𝑓 (𝑥1) − 𝑓 (𝑥★)
(𝑘 + 1) (𝑘 + 2) +

2𝜈2𝛽𝐷2

𝑘 + 2
+ 2𝜈

(
𝜖 + 𝛽

√
𝜖

)
+ 𝜖 (𝑀 + 𝛽) 𝑘

≤
𝛽 ∥𝑥1 − 𝑥★∥2𝑥★

2(𝑘 + 1) (𝑘 + 2) +
2𝜈2𝛽𝐷2

𝑘 + 2
+ 2𝜈

(
𝜖 + 𝛽

√
𝜖

)
+ 𝜖 (𝑀 + 𝛽) 𝑘

(⟨∇ 𝑓 (𝑥★), 𝑥1 − 𝑥★⟩ ≥ 0)

≤ (2𝜈
2 + 1)𝛽𝐷2

𝑘 + 2
+ 2𝜈

(
𝜖 + 𝛽

√
𝜖

)
+ 𝜖 (𝑀 + 𝛽) 𝑘,

as claimed. □

C.3 Bregman proximal point method

We first recall the algorithm as presented in Sherman et al. [2025]. Given any convex regularizer
ℎ : ℝ𝑑 → ℝ, we define the set of 𝜖-approximate Bregman proximal point update solutions with
step-size 𝜂 > 0 by:

T 𝜖𝜂 (𝑥; ℎ) :=
{
𝑥+ ∈ X | ∀𝑧 ∈ X :

〈
∇ 𝑓 (𝑥) + 1

𝜂
∇𝐵ℎ (𝑥+, 𝑥), 𝑧 − 𝑥+

〉
≥ −𝜖

}
. (21)

The approximate Bregman proximal point update of Sherman et al. [2025] is defined by:

𝑘 = 1, . . . , 𝐾 : 𝑥𝑘+1 ∈ T 𝜖𝜂 (𝑥𝑘 ; 𝑅𝑥𝑘 ). (22)

Theorem 9 (Sherman et al. [2025]). Consider Assumption 1, and suppose further that the local
regularizer 𝑅𝑥 is 1-strongly convex and has an 𝐿-Lipschitz gradient w.r.t. ∥·∥𝑥 for all 𝑥 ∈ X. Then,
for the Bregman proximal point update Eq. (22) we have following guarantee, for 𝜂 ≤ 1/(2𝛽):

𝑓 (𝑥𝐾+1) − 𝑓★ = 𝑂

(
𝜈2𝐿2𝑐2

1
𝜂𝐾

+ 𝜈𝜖 + 𝑐1𝐿𝜂
− 1

2
√
𝜖 + 𝜀vgd

)
where 𝑐1 := 𝐷 + 𝜂𝑀 .

We now consider the Bregman proximal point algorithm that operates with iterates that are approxi-
mate minimizers in terms of function values:

𝑘 = 1, . . . , 𝐾 : 𝑥𝑘+1 ← arg min𝜀𝑥∈X

{
⟨∇ 𝑓 (𝑥𝑘), 𝑥⟩ +

1
𝜂
𝐵𝑅𝑥𝑘 (𝑥, 𝑥𝑘)

}
(23)

We will use the following lemma to translate objective sub-optimality to approximate optimality
conditions.
Lemma 5. Let ∥·∥ be a norm, and suppose 𝐷 ≥ max

{
1,max𝑥,𝑦∈X ∥𝑥 − 𝑦∥

}
. Let 𝜙 : X → ℝ be

1-strongly convex and 𝐿-smooth w.r.t.∥·∥. Then, for any 𝜖 ≤ 1 if 𝑥 ∈ arg min𝜖𝑥∈X 𝜙(𝑥), we have:

⟨𝜙(𝑥), 𝑦 − 𝑥⟩ ≥ −2𝐿𝐷
√

2𝜖 .

Proof. Let 𝑥★ = arg min𝑥∈X 𝜙(𝑥). By 1-strong convexity and our assumption,

1
2



𝑥 − 𝑥★

2 ≤ 𝜙(𝑥) − 𝜙(𝑥★) ≤ 𝜖 =⇒


𝑥 − 𝑥★

 ≤ √2𝜖 .

Hence, for any 𝑦 ∈ X, by 𝐿-smoothness:

⟨𝜙(𝑥), 𝑥 − 𝑦⟩ =
〈
𝜙(𝑥★), 𝑥 − 𝑦

〉
+

〈
𝜙(𝑥) − 𝜙(𝑥★), 𝑥 − 𝑦

〉
≤

〈
𝜙(𝑥★), 𝑥 − 𝑦

〉
+ 𝐿𝐷

√
2𝜖

25



Further by our assumption and optimality conditions at 𝑥★,〈
𝜙(𝑥★), 𝑥 − 𝑦

〉
=

〈
𝜙(𝑥★), 𝑥★ − 𝑦

〉
+

〈
𝜙(𝑥★), 𝑥 − 𝑥★

〉
≤

〈
𝜙(𝑥★), 𝑥★ − 𝑦

〉
+ 𝜙(𝑥) − 𝜙(𝑥★)

≤
〈
𝜙(𝑥★), 𝑥★ − 𝑦

〉
+ 𝜖

≤ +𝜖 .

Hence, we have for all 𝑦 ∈ X:

⟨𝜙(𝑥), 𝑥 − 𝑦⟩ ≤ 𝐿𝐷
√

2𝜖 + 𝜖 ≤ 2𝐿𝐷
√

2𝜖,

which completes the proof. □

We are now in position to tprove the following.

Theorem 10. In the same setting of Theorem 9, we have that the Bregman proximal method Eq. (23)
with 𝜖 ≤ 1 guarantees, for 𝜂 ≤ 1/(2𝛽):

𝑓 (𝑥𝐾+1) − 𝑓★ = 𝑂

(
𝜈2𝐿2𝑐2

1
𝜂𝐾

+ 𝜈𝐿𝐷
√
𝜖 + 𝑐1

√
𝐿3𝐷
√
𝜂

𝜖1/4 + 𝜀vgd

)
where 𝑐1 := 𝐷 + 𝜂𝑀 .

Proof. By Lemma 5 applied with the norm ∥·∥𝑥𝑘 and 𝜙(𝑥) = ⟨∇ 𝑓 (𝑥𝑘), 𝑥⟩ + 1
𝜂
𝐵𝑅𝑥𝑘 (𝑥, 𝑥𝑘), we have

that 𝑥𝑘+1 from Eq. (23) satisfies:

∀𝑧 ∈ X :
〈
∇ 𝑓 (𝑥𝑘) +

1
𝜂
∇𝐵𝑅𝑥𝑘 (𝑥𝑘+1, 𝑥𝑘), 𝑧 − 𝑥𝑘+1

〉
≥ −2𝐿𝐷

√
2𝜖 .

This implies that 𝑥𝑘+1 ∈ T 𝜖𝜂 (𝑥𝑘 ; 𝑅𝑥𝑘 ) for 𝜖 = 2𝐿𝐷
√

2𝜖 . This proves the claimed result be substituting
𝜖 → 2𝐿𝐷

√
2𝜖 in the bound of Theorem 9. □

D Proofs for Section 4

In this section, we provide the proofs of convergence for our algorithms in their idealized versions.
All proofs build on casting our algorithms as instances of those presented in the pure optimization
setup, in Appendix C. We note that we did not make particular effort in optimizing dependence on
problem parameters other than 𝐾 , and in some cases intentionally opted for slightly worse dependence
in favor of cleaner bounds.

D.1 Analysis preliminaries

Given a state probability measure 𝜇 ∈ Δ(S), and an action space norm ∥·∥◦ : ℝ𝐴 → ℝ, we define
the induced state-action weighted 𝐿 𝑝 norm ∥·∥𝐿𝑝 (𝜇) ,◦ : ℝ𝑆𝐴→ ℝ:

∥𝑢∥𝐿𝑝 (𝜇) ,◦ :=
(
𝔼𝑠∼𝜇 ∥𝑢𝑠 ∥ 𝑝◦

)1/𝑝
. (24)

For any norm ∥·∥, we let ∥·∥∗ denote its dual. When discussing a generic norm and there is no risk of
confusion, we may use ∥·∥∗ to refer to its dual. In addition, for 𝜇 ∈ ℝ𝑆 , 𝑄 ∈ ℝ𝑆𝐴, we define the state
to state-action element-wise product 𝜇 ◦𝑄 ∈ ℝ𝑆𝐴:

(𝜇 ◦𝑄)𝑠,𝑎 := 𝜇(𝑠)𝑄𝑠,𝑎 . (25)

Below, we collect a number of results that will be used repeatedly in the analyses.

Lemma 6 (Value difference; Kakade and Langford, 2002). For any 𝜌 ∈ Δ(S),

𝑉𝜌 (𝜋̃) −𝑉𝜌 (𝜋) =
1

1 − 𝛾𝔼𝑠∼𝜇
𝜋
𝜌

〈
𝑄 𝜋̃𝑠 , 𝜋̃𝑠 − 𝜋𝑠

〉
.
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Lemma 7 (Policy gradient theorem; Sutton et al., 1999). For any 𝜌 ∈ Δ(S),(
∇𝑉𝜌 (𝜋)

)
𝑠,𝑎

=
1

1 − 𝛾 𝜇
𝜋
𝜌 (𝑠)𝑄 𝜋𝑠,𝑎,〈

∇𝑉𝜌 (𝜋), 𝜋̃ − 𝜋
〉
=

1
1 − 𝛾𝔼𝑠∼𝜇

𝜋
𝜌

〈
𝑄 𝜋𝑠 , 𝜋̃𝑠 − 𝜋𝑠

〉
.

Lemma 8 (Sherman et al., 2025). Let 𝜋 : S → Δ(A) be any policy such that 𝜀ex := min𝑠,𝑎 {𝜋𝑠𝑎} > 0.
Then, for any 𝜋̃ ∈ S → Δ(A), we have:

|𝑉 (𝜋̃) −𝑉 (𝜋) − ⟨∇𝑉 (𝜋), 𝜋̃ − 𝜋⟩| ≤ min
{
𝐻3
√
𝜖
∥𝜋̃ − 𝜋∥2

𝐿2 (𝜇𝜋 ) ,1 ,
𝐴𝐻3
√
𝜖
∥𝜋̃ − 𝜋∥2

𝐿2 (𝜇𝜋 ) ,2

}
.

Lemma 9 (Sherman et al., 2025). Assume Π is (𝜈, 𝜀vgd)-VGD w.r.t.M, and consider the 𝜀ex-greedy
exploratory version of Π, Π𝜀ex := {(1 − 𝜀ex)𝜋 + 𝜀ex𝑢 | 𝜋 ∈ Π}, where 𝑢𝑠,𝑎 ≡ 1/𝐴. Then Π𝜀ex is
(𝜈, 𝜀vgd)-VGD with 𝜀vgd := 𝜀vgd + 12𝜈𝐻2𝐴𝜀ex.

The next lemmas follow from standard arguments, for proofs refer to Sherman et al. [2025].
Lemma 10. For any strictly positive measure 𝜇 ∈ ℝ𝑆++, the dual norm of ∥·∥𝐿2 (𝜇) ,◦ is given by

∥𝑧∥∗
𝐿2 (𝜇) ,◦ =

√︄∫
𝜇(𝑠)−1 (

∥𝑧𝑠 ∥∗◦
)2 d𝑠 (26)

Lemma 11. Let 𝜇 ∈ Δ(S), and consider the state-action norm ∥·∥𝐿2 (𝜇) ,◦. For any 𝑊 ∈ ℝ𝑆𝐴, we
have

∥𝜇 ◦𝑊 ∥∗
𝐿2 (𝜇) ,◦ =

√︃
𝔼𝑠∼𝜇

(
∥𝑊𝑠 ∥∗◦

)2

Lemma 12. For any policy 𝜋 ∈ Δ(A)S and action norm ∥·∥◦ : ℝA → ℝ, if max𝑠∈S


𝑄 𝜋𝑠 

∗◦ ≤ 𝐺,

then it holds that: ∥∇𝑉 (𝜋)∥∗
𝐿2 (𝜇𝜋 ) ,◦ ≤ 𝐻𝐺.

Proof. Observe, by Lemma 11:

∥∇𝑉 (𝜋)∥∗
𝐿2 (𝜇𝜋 ) ,◦ = 𝐻 ∥𝜇

𝜋 ◦𝑄 𝜋 ∥∗
𝐿2 (𝜇𝜋 ) ,◦ = 𝐻

√︃
𝔼𝑠∼𝜇𝜋

(
∥𝑄 𝜋𝑠 ∥∗◦

)2 ≤ 𝐻𝐺.

□

D.2 SDPO

Theorem (Restatement of Theorem 1). Let Π be a convex policy class that satisfies (𝜈, 𝜀vgd)-VGD
w.r.t.M. Suppose that SDPO (Algorithm 1) is executed with the 𝐿1 action norm ∥·∥1. Then, after 𝐾
iterations, with appropriately tuned 𝜂 and 𝜀ex, the output of SDPO satisfies:

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴𝐻4

𝐾2/3 + 𝜈𝐻
3√𝐴𝐾1/6√𝜀 + 𝜀vgd

)
.

Proof of Theorem 1. By the policy gradient theorem (Lemma 7), the update step in Algorithm 1 may
be equivalently written as:

𝜋𝑘+1 ∈ arg min𝜀𝜋∈Π𝜀ex

〈
∇𝑉 (𝜋𝑘), 𝜋

〉
+ 1

2𝜂


𝜋 − 𝜋𝑘

2

𝐿2 (𝜇𝑘 ) ,1 (27)

We now verify a number of conditions that place us in the setup of Assumption 1.

• Local smoothness. By Lemma 8 and the definition of Π𝜀ex , the value function is
(2
√
𝐴𝐻3/√𝜀ex) locally smooth w.r.t. the local norm 𝜋 ↦→ ∥·∥𝐿2 (𝜇𝜋 ) ,1.

• VGD condition for Π𝜀ex . By Lemma 9, we have that Π𝜀ex satisfies (𝜈, 𝜀vgd) with 𝜀vgd :=
𝜀vgd + 12𝜈𝐻2𝐴𝜀ex.
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• Local Lipschitz property. By Lemma 12, the value function is 𝐻2-local Lipschitz w.r.t. the
local norm 𝜋 ↦→ ∥·∥𝐿2 (𝜇𝜋 ) ,1.

• Diameter bound. We have that ∥𝜋′ − 𝜋̃∥𝐿2 (𝜇𝜋 ) ,1 ≤ max𝑝,𝑞∈Δ(A) ∥𝑝 − 𝑞∥1 ≤ 2, for all
𝜋, 𝜋′, 𝜋̃ ∈ Δ(A)S .

The above imply we are in the setting of Theorem 5 with 𝛽 = 2
√
𝐴𝐻3/√𝜀ex, 𝑀 = 𝐻2, 𝐷 = 2. Thus,

setting 𝜂 =
√
𝜀ex/(2𝐻3√𝐴), ensures that after 𝐾 iterations of Eq. (27), it is guaranteed that:

𝑉 (𝜋𝐾+1) −𝑉★(Π) ≲
(
𝜈𝐻2)2

𝜂𝐾
+ 𝜈𝐻

2
√
𝜂

√
𝜀 + 𝜀vgd

≲
𝜈2√𝐴𝐻7
√
𝜀ex𝐾

+ 𝜈𝐻
5𝐴1/4

𝜀ex1/4
√
𝜀 + 𝜈𝐴𝐻2𝜀ex + 𝜀vgd,

where ≲ hides only universal constant factors. Now set 𝜀ex = 𝐻2

𝐾2/3 , then

𝑉 (𝜋𝐾+1) −𝑉★(Π) ≲ 𝜈2𝐴𝐻6

𝐾2/3 +
𝜈𝐻5𝐴1/4

𝜀ex1/4
√
𝜀 + 𝜀vgd

≤ 𝜈
2𝐴𝐻6

𝐾2/3 + 𝜈𝐻
5√𝐴𝐾1/6√𝜀 + 𝜀vgd,

as required. □

D.3 CPI and DA-CPI

In this section, we provide the analysis for CPI and DA-CPI. For CPI, we can make an argument
using a non-local norm owed to the usage of the exact convex combination policy obtained in the
second step if each iteration in Algorithm 2. Our first lemma below establishes smoothnes of the
value function w.r.t. the global ∥·∥∞,1 norm.

Lemma 13. The value function is (2𝐻3)-smooth w.r.t. the ∥·∥∞,1 norm; for any 𝜋, 𝜋̃ ∈ S → Δ(A),
we have:

|𝑉 (𝜋̃) −𝑉 (𝜋) − ⟨∇𝑉 (𝜋), 𝜋̃ − 𝜋⟩| ≤ 2𝐻3

2
∥𝜋̃ − 𝜋∥2∞,1 .

Proof. We have by value difference Lemma 6 and the policy gradient theorem Lemma 7:

|𝑉 (𝜋̃) −𝑉 (𝜋) − ⟨∇𝑉 (𝜋), 𝜋̃ − 𝜋⟩| =
��𝐻𝔼𝑠∼𝜇𝜋 〈

𝑄 𝜋̃𝑠 , 𝜋̃𝑠 − 𝜋𝑠
〉
− 𝐻𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋𝑠 , 𝜋̃𝑠 − 𝜋𝑠

〉��
=

��𝐻𝔼𝑠∼𝜇𝜋 〈
𝑄 𝜋̃𝑠 −𝑄 𝜋𝑠 , 𝜋̃𝑠 − 𝜋𝑠

〉��
≤ 𝐻𝔼𝑠∼𝜇𝜋

[��〈𝑄 𝜋̃𝑠 −𝑄 𝜋𝑠 , 𝜋̃𝑠 − 𝜋𝑠〉��]
≤ 𝐻𝔼𝑠∼𝜇𝜋

[

𝑄 𝜋̃𝑠 −𝑄 𝜋𝑠 

∞ ∥𝜋̃𝑠 − 𝜋𝑠 ∥1] . (28)

Further, again by value difference Lemma 6, for any 𝑠, 𝑎 ∈ S × A:

𝑄 𝜋̃𝑠,𝑎 −𝑄 𝜋𝑠,𝑎 = 𝛾𝔼𝑠′∼ℙ𝑠,𝑎 [𝑉𝑠′ (𝜋̃) −𝑉𝑠′ (𝜋)]

= 𝛾𝐻𝔼𝑠′∼ℙ𝑠,𝑎

[
𝔼𝑠′′∼𝜇𝜋

𝑠′

〈
𝑄 𝜋̃𝑠′′ , 𝜋̃𝑠′′ − 𝜋𝑠′′

〉]
= 𝛾𝐻

∑︁
𝑠′

ℙ(𝑠′ |𝑠, 𝑎)
∑︁
𝑠′′
𝜇𝜋𝑠′ (𝑠′′)

〈
𝑄 𝜋̃𝑠′′ , 𝜋̃𝑠′′ − 𝜋𝑠′′

〉
= 𝛾𝐻

∑︁
𝑠′′

∑︁
𝑠′

ℙ(𝑠′ |𝑠, 𝑎)𝜇𝜋𝑠′ (𝑠′′)
〈
𝑄 𝜋̃𝑠′′ , 𝜋̃𝑠′′ − 𝜋𝑠′′

〉
= 𝛾𝐻

∑︁
𝑠′′
𝜇𝜋ℙ𝑠,𝑎 (𝑠

′′)
〈
𝑄 𝜋̃𝑠′′ , 𝜋̃𝑠′′ − 𝜋𝑠′′

〉
= 𝛾𝐻𝔼𝑠′′∼𝜇𝜋

ℙ𝑠,𝑎

〈
𝑄 𝜋̃𝑠′′ , 𝜋̃𝑠′′ − 𝜋𝑠′′

〉
.
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This implies that for any 𝑠,

𝑄 𝜋̃𝑠 −𝑄 𝜋𝑠 

∞ = 𝛾𝐻max
𝑎

���𝔼𝑠′∼𝜇𝜋
ℙ𝑠,𝑎

〈
𝑄 𝜋̃𝑠′ , 𝜋̃𝑠′ − 𝜋𝑠′

〉���
≤ 𝛾𝐻2 max

𝑎
𝔼𝑠′∼𝜇𝜋

ℙ𝑠,𝑎
∥𝜋̃𝑠′ − 𝜋𝑠′ ∥1

≤ 𝛾𝐻2 ∥𝜋̃ − 𝜋∥∞,1
Plugging the above back into Eq. (28), we obtain��𝑉 𝜋̃ −𝑉 𝜋 − ⟨∇𝑉 𝜋 , 𝜋̃ − 𝜋⟩�� ≤ 𝛾𝐻3 ∥𝜋̃ − 𝜋∥∞,1 𝔼𝑠∼𝜇𝜋 ∥𝜋̃𝑠 − 𝜋𝑠 ∥1

≤ 𝛾𝐻3 ∥𝜋̃ − 𝜋∥2∞,1 ,

which completes the proof up to a trivial computation. □

We are now ready to prove the guarantee for CPI (Algorithm 2), by means of reducing it to a
non-Euclidean instance of FW Algorithm 4.
Theorem (Restatement of Theorem 2). Let Π be a policy class that satisfies (𝜈, 𝜀vgd)-VGD w.r.t.M.
Suppose that CPI (Algorithm 2) is executed with the step size choices 𝜂𝑘 = 2𝜈

𝑘+2 for 𝑘 = 1, . . . , 𝐾.
Then, we have the guarantee that:

𝑉 (𝜋𝐾 ) −𝑉★(Π) ≤ 8(2𝜈2 + 1)𝐻3

𝐾
+ 2𝜈𝜀 + 𝜀vgd

Proof of Theorem 2. By the policy gradient theorem (Lemma 7), the update step in CPI (Algorithm 2)
may be equivalently written as:

𝜋𝑘+1 ∈ arg min𝜀𝜋∈Π
〈
∇𝑉 (𝜋𝑘), 𝜋 − 𝜋𝑘

〉
.

We now verify conditions that place us in the setting of Theorem 7.

• Global smoothness. By Lemma 13, the value function is (2𝐻3)-smooth w.r.t. the ∥·∥∞,1
norm.

• VGD condition. By assumption, Π satisfies (𝜈, 𝜀vgd) -VGD.

• Diameter bound. We have that ∥𝜋 − 𝜋̃∥∞,1 ≤ max𝑝,𝑞∈Δ(A) ∥𝑝 − 𝑞∥1 ≤ 2 for all 𝜋, 𝜋̃ ∈
Δ(A)S .

The above imply we are in the setting of Theorem 7 with 𝛽 = 2𝐻3 and 𝐷 = 2. Thus, our step size
choice ensures that after 𝐾 iterations, it is guaranteed that:

𝑉 (𝜋𝐾+1) −𝑉★(Π) ≤ 𝐻 + 16𝜈2𝐻3

𝐾
+ 2𝜈𝜀 + 𝜀vgd ≤

(16𝜈2 + 1)𝐻3

𝐾
+ 2𝜈𝜀 + 𝜀vgd,

as required. □

Next, we provide the proof for the guarantees of DA-CPI, which relies on the use of local norms and
is actor-oracle efficient.
Theorem (Restatement of Theorem 3). Let Π be a convex policy class that satisfies (𝜈, 𝜀vgd)-VGD
w.r.t.M. Suppose that DA-CPI (Algorithm 3) is executed with the 𝐿1 action norm ∥·∥1. Then, for an
appropriate setting of 𝜂1, . . . , 𝜂𝐾 and 𝜀ex, we have that the DA-CPI output satisfies:

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴𝐻3

(
1

𝐾2/3 + 𝜀
1/3 + 𝜀2/3𝐾2/3

))
.

Proof of Theorem 3. By the policy gradient theorem (Lemma 7), the first update step in Algorithm 3
may be equivalently written as:

𝜋𝑘+1 ∈ arg min𝜀𝜋∈Π𝜀ex

〈
∇𝑉 (𝜋𝑘), 𝜋 − 𝜋𝑘

〉
.

We now verify a number of conditions that place us in the setup of Assumption 1.
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Algorithm 6 Policy Mirror Descent (PMD)

Input: 𝐾 ≥ 1, 𝜂 > 0, 𝜀 > 0, 𝜀ex > 0,Π ∈ Δ(A)S , and action regularizer 𝑅 : ℝA → ℝ.
Initialize 𝜋1 ∈ Π𝜀ex

for 𝑘 = 1 to 𝐾 do
Update 𝜋𝑘+1 ← arg min𝜀𝜋∈Π𝜀ex 𝔼𝑠∼𝜇𝑘

[
𝐻

〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝐵𝑅

(
𝜋𝑠 , 𝜋

𝑘
𝑠

) ]
end for
return 𝜋̂ := 𝜋𝐾+1

• Local smoothness. By Lemma 8 and the definition of Π𝜀ex , the value function is
(2
√
𝐴𝐻3/√𝜀ex) locally smooth w.r.t. the local norm 𝜋 ↦→ ∥·∥𝐿2 (𝜇𝜋 ) ,1.

• VGD condition for Π𝜀ex . By Lemma 9, we have that Π𝜀ex satisfies (𝜈, 𝜀vgd) with 𝜀vgd :=
𝜀vgd + 12𝜈𝐻2𝐴𝜀ex.

• Local Lipschitz property. By Lemma 12, the value function is 𝐻2-local Lipschitz w.r.t. the
local norm 𝜋 ↦→ ∥·∥𝐿2 (𝜇𝜋 ) ,1.

• Diameter bound. We have that ∥𝜋′ − 𝜋̃∥𝐿2 (𝜇𝜋 ) ,1 ≤ max𝑝,𝑞∈Δ(A) ∥𝑝 − 𝑞∥1 ≤ 2, for all
𝜋, 𝜋′, 𝜋̃ ∈ Δ(A)S .

The above imply we are in the setting of Theorem 8 with 𝛽 = 2
√
𝐴𝐻3/√𝜀ex, 𝑀 = 𝐻2, 𝐷 = 2, and

𝜖 = 𝜖 = 𝜀. Thus, with step sizes set according to the statement of Theorem 8, we have that after 𝐾
iterations:

𝑉 (𝜋𝐾+1) −𝑉★(Π) ≲ 𝜈2√𝐴𝐻3
√
𝜀ex𝐾

+ 𝜈
√
𝐴𝐻3
√
𝜀ex

√
𝜀 +
√
𝐴𝐻3
√
𝜀ex

𝜀𝐾 + 𝜈𝐴𝐻2𝜀ex + 𝜀vgd

≤ 𝜈
2√𝐴𝐻3
√
𝜀ex

(
1
𝐾
+
√
𝜀 + 𝜀𝐾

)
+ 𝜈𝐴𝐻2𝜀ex + 𝜀vgd

where ≲ hides only universal constant factors. Now, set 𝜀ex =

(
1
𝐾
+
√
𝜀 + 𝜀𝐾

)2/3
, and use the fact

that (𝑎 + 𝑏)2/3 ≤ 𝑎2/3 + 𝑏2/3 to immediately obtain the stated bound. □

D.4 PMD

The PMD method [Tomar et al., 2020, Xiao, 2022, Lan, 2023] make use of an action regularizer, and
more specifically the Bregman divergence w.r.t. the chosen regularizer, which we define below.
Definition 9 (Bregman divergence). Given a convex differentiable regularizer 𝑅 : ℝA → ℝ, the
Bregman divergence w.r.t. 𝑅 is:

𝐵𝑅 (𝑢, 𝑣) := 𝑅(𝑢) − 𝑅(𝑣) − ⟨∇𝑅(𝑣), 𝑢 − 𝑣⟩ .

We will make use of the following elementary lemma, which follows from standard arguments; for
proof see Sherman et al. [2025].
Lemma 14. Assume ℎ : ℝ𝐴 → ℝ is 1-strongly convex and has 𝐿-Lipschitz gradient w.r.t. ∥·∥. Let
𝜇 ∈ Δ(S), and define 𝑅𝜇 (𝜋) := 𝔼𝑠∼𝜇 [ℎ(𝜋𝑠)]. Then

1. 𝐵𝑅𝜇 (𝜋, 𝜋̃) = 𝔼𝑠∼𝜇𝐵𝑅 (𝜋𝑠 , 𝜋̃𝑠).

2. 𝑅𝜇 is 1-strongly convex and has an 𝐿-Lipschitz gradient w.r.t. ∥·∥𝐿2 (𝜇) ,◦.

Below we restate and prove the guarantee for the PMD method detailed in Algorithm 6.
Theorem (Restatement of Theorem 4). Let Π be a convex policy class that satisfies (𝜈, 𝜀vgd)-VGD
w.r.t.M. Suppose that PMD (see Algorithm 6) is executed with the 𝐿2 action regularizer. Then, with
an appropriate tuning of 𝜂, 𝜀ex, we have that the output of PMD satisfies:

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴3/2𝐻3

𝐾2/3 +
(
𝜈 + 𝐻2𝐴𝐾1/6

)
𝜀1/4

)
.
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Algorithm 7 Action-value estimation

Input: 𝜋
Begin rollout at 𝑠0 ∼ 𝜌0

For each timestep 𝑡 = 0, . . ., act 𝑎𝑡 ∼ 𝜋𝑠𝑡 , and
{
continue w.p. 𝛾
accept 𝑠𝑡 w.p. 1 − 𝛾

After accepting 𝑠𝑡 , sample 𝑎𝑡 ∼ Unif (A) and continue the rollout, terminating at each step
w.p. 1 − 𝛾.
Assume the rollout terminated at iteration 𝑇 . Define 𝑄 𝜋𝑠𝑡 ∈ ℝ

A by

∀𝑎 ∈ A : 𝑄 𝜋𝑠𝑡 ,𝑎 = 𝕀 {𝑎 = 𝑎𝑡 } 𝐴
𝑇∑︁
𝑡 ′=𝑡

𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′ ).

return 𝑠𝑡 , 𝑄
𝜋
𝑠𝑡

Proof of Theorem 4. We now verify a number of conditions that place us in the setup of Assumption 1.

• Local smoothness. By Lemma 8 and the definition of Π𝜀ex , the value function is
(2𝐴3/2𝐻3/√𝜀ex) locally smooth w.r.t. the local norm 𝜋 ↦→ ∥·∥𝐿2 (𝜇𝜋 ) ,2.

• VGD condition for Π𝜀ex . By Lemma 9, we have that Π𝜀ex satisfies (𝜈, 𝜀vgd) with 𝜀vgd :=
𝜀vgd + 12𝜈𝐻2𝐴𝜀ex.

• Local Lipschitz property. By Lemma 12 and the fact that


𝑄 𝜋𝑠 

2 ≤

√
𝐴𝐻 for all 𝜋, 𝑠, the

value function is (
√
𝐴𝐻2)-local Lipschitz w.r.t. the local norm 𝜋 ↦→ ∥·∥𝐿2 (𝜇𝜋 ) ,2.

• Diameter bound. We have that ∥𝜋′ − 𝜋̃∥𝐿2 (𝜇𝜋 ) ,2 ≤ max𝑝,𝑞∈Δ(A) ∥𝑝 − 𝑞∥2 ≤ 2, for all
𝜋, 𝜋′, 𝜋̃ ∈ Δ(A)S .

• Regularizer smoothness. The euclidean action norm 𝑅(𝑝) = 1
2 ∥𝑝∥

2
2 is 1-smooth.

The above imply we are in the setting of Theorem 10 with 𝛽 = 2𝐴3/2𝐻3/√𝜀ex, 𝑀 =
√
𝐴𝐻2, 𝐷 =

2, 𝐿 = 1. Thus, setting 𝜂 =
√
𝜀ex/(2𝐻3𝐴3/2), we have 𝑐1 = 𝐷 + 𝜂𝑀 = 𝑂 (1), and the guarantee that

(≲ suppresses constant numerical factors):

𝑉 (𝜋𝐾+1) −𝑉★(Π) ≲ 𝜈2

𝜂𝐾
+ 𝜈
√
𝜀 + 𝜀

1/4
√
𝜂
+ 𝜀vgd

≲
𝜈2𝐴3/2𝐻3
√
𝜀ex𝐾

+ 𝜈
√
𝜀 +
√
𝐻3𝐴3/2

𝜀ex1/4 𝜀1/4 + 𝜈𝐴𝐻2𝜀ex + 𝜀vgd

≲
𝜈2𝐴3/2𝐻3
√
𝜀ex𝐾

+ 𝜀1/4
(
𝜈 + 𝐻2𝐴

𝜀ex1/4

)
+ 𝜈𝐴𝐻2𝜀ex + 𝜀vgd.

Choosing 𝜀ex = 𝐾−2/3, we immediately obtain the stated bound. □

E Sample complexity upper bounds

In this section, we demonstrate how our iteration complexity upper bounds may be translated to
sample complexity upper bounds. The sampling scheme Algorithm 7 we employ to estimate the full
gradient step is based on importance sampling and in itself is fairly standard. A similar algorithm can
be found in e.g., Agarwal et al. [2021]. Throughout this section we adopt the assumption that 𝛾 ≤ 1/2
in sake of simplified presentation. In terms of the effective horizon this implies 𝐻 ≥ 2, which is the
interesting regime. The first lemma given below, provides the connection between optimizing the
empirical and population objectives.

Lemma 15. Let Π̃ be a policy class and suppose 𝛾 ≤ 1/2. Assume 𝔇 : ℝA × ℝA → ℝ+ is a
non-negative function that satisfies:
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Algorithm 8 SDPO in the learning letup

Input: 𝐾 ≥ 1, 𝑁 ≥ 1, 𝜂 > 0, 𝜀ex > 0, 𝜀erm > 0,Π ∈ Δ(A)S , and action norm ∥·∥◦ : ℝA → ℝ.
Initialize 𝜋1 ∈ Π𝜀ex

for 𝑘 = 1 to 𝐾 do

Rollout 𝜋𝑘 for 𝑁 episodes via Algorithm 7, obtain D𝑘 =
{
𝑠𝑘
𝑖
, 𝑄𝑘

𝑠𝑘
𝑖

}𝑁
𝑖=1

.

Update 𝜋𝑘+1 ← arg min𝜀erm
𝜋∈Π𝜀ex

{
Φ̂𝑘 (𝜋) := 1

𝑁

∑
𝑠∈D𝑘

〈
𝐻𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1

2𝜂


𝜋𝑠 − 𝜋𝑘𝑠 

2

◦

}
end for
return 𝜋̂ := 𝜋𝐾+1

• Boundedness: 𝐷 ≥ 𝔇(𝑝, 𝑞) for all 𝑝, 𝑞 ∈ Δ(A).

• Lipschitz continuity w.r.t. the 1-norm: |𝔇(𝑝, 𝑝0) −𝔇(𝑞, 𝑝0) | ≤ 𝐿 ∥𝑝 − 𝑞∥1 for all 𝑝, 𝑞, 𝑝0 ∈
Δ(A).

Let 𝜋1 ∈ Π̃, suppose 𝜋𝑘+1 ∈ Π̃ satisfy for all 𝑘 ∈ [𝐾], for a given learning rate 0 < 𝜂 ≤ 1,

𝜋𝑘+1 ∈ arg min𝜀erm
𝜋∈Π̃

{
Φ̂𝑘 (𝜋) :=

1
𝑁

∑︁
𝑠∈D𝑘

〈
𝐻𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝔇

(
𝜋𝑠 , 𝜋

𝑘
𝑠

)}
, (29)

where D𝑘 are a (state, action-value) datasets of size 𝑁 obtained by invoking Algorithm 7. Then, for
any 𝛿 > 0, w.p. ≥ 1 − 𝛿, it holds that for all 𝑘 ∈ [𝐾],

𝜋𝑘+1 ∈ arg min𝜀
𝜋∈Π̃

{
Φ𝑘 (𝜋) := 𝔼𝑠∼𝜇𝑘

[〈
𝐻𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝔇

(
𝜋𝑠 , 𝜋

𝑘
𝑠

)]}
, (30)

where 𝜀 = 𝜀erm+𝜀gen, 𝜀gen := 𝐶0𝐴𝐻
2𝐷

𝜂

√︂
log

𝐾𝑁N(𝜀net ,Π̃,∥·∥∞,1 )
𝛿

𝑁
, 𝐶0 > 0 is an absolute numerical constant,

and 𝜀net ≥ 𝐶0𝐴𝐻
2𝐷

6
√
𝑁 (𝐴𝐻2 log(2𝐾𝑁/𝛿 )+𝐿) . Furthermore, the number of time steps of each episode rolled out

by Algorithm 7 is ≤ 2𝐻 log (2𝐾𝑁/𝛿).

We defer the proof of Lemma 15 to Appendix E.3. We now turn to apply the lemma in conjunction
with the iteration complexity guarantee of SDPO (Theorem 1) to obtain a sample complexity upper
bound for SDPO in the learning setup (Algorithm 8). Afterwards, we present sample complexity
upper bounds for the other algorithms in Appendices E.1 and E.2. We note that there are a number of
places where we expect the analysis can be tightened subject to future work; primarily, the greedy
exploration required by the current local-smoothness analysis. Hence, the actual rate obtained is not
the primary focus of our work. Furthermore, we did not make a notable effort in obtaining optimal
dependence on all problem parameters, and expect these can be easily tightened by a more careful
choice analysis and choice of algorithm input-parameters.
Theorem 11. Let Π be a convex policy class that satisfies (𝜈, 𝜀vgd)-VGD w.r.t. M, and assume
𝛾 ≤ 1/2. Then for any 𝑛 ≥ 1, there exists a choice of parameters 𝐾, 𝑁, 𝜂, 𝜀ex such that Algorithm 8
executed with the 𝐿1 action norm guarantees for any 𝛿 > 0, that w.p. ≥ 1 − 𝛿 the total number of
environment time steps ≤ 𝑛, and the output policy satisfies

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
©­­«
𝜈2𝐴2𝐻7

√︃
log 𝑛C(Π)

𝛿

𝑛2/15 + 𝜈𝐻3√𝐴𝑛1/30√𝜀erm + 𝜀vgd
ª®®¬ ,

where C(Π) := N(𝜀net,Π, ∥·∥∞,1) is the 𝜀net-covering number of Π and 𝜀net = Ω

(
1

log(𝑛/𝛿 )𝑛

)
.

Proof. Note that for any 𝑝, 𝑞 ∈ Δ(A), 1
2 ∥𝑝 − 𝑞∥

2
1 ≤ 2, and

1
2
∥𝑝 − 𝑝0∥21 −

1
2
∥𝑞 − 𝑝0∥21 =

1
2
(∥𝑝 − 𝑝0∥1 + ∥𝑞 − 𝑝0∥1) (∥𝑝 − 𝑝0∥1 − ∥𝑞 − 𝑝0∥1)

≤ 2 (∥𝑝 − 𝑝0∥1 − ∥𝑞 − 𝑝0∥1)
≤ 2 ∥𝑝 − 𝑞∥1 .

32



Thus, when executing Algorithm 8 over 𝐾 iterations, we are in the setting of Lemma 15 with 𝐷 =

2, 𝐿 = 2. Suppose we run the algorithm for 𝐾 iterations with 𝜂 =
√
𝜀ex/(2𝐻3√𝐴), 𝜀ex = 𝐻2/𝐾2/3,

and 𝑁 (and 𝐾) to be chosen later on. For any 𝛿 > 0, we have by Lemma 15 that w.p. ≥ 1 − 𝛿, for all
𝑘 ∈ [𝐾] it holds that:

𝜋𝑘+1 ∈ arg min𝜀𝜋∈Π𝜀ex

{
Φ𝑘 (𝜋) := 𝔼𝑠∼𝜇𝑘

[〈
𝐻𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1

2𝜂


𝜋𝑠 − 𝜋𝑘𝑠 

2

1

]}
, (31)

with 𝜀 = 𝜀erm + 𝜀gen, where

𝜀gen = 𝑂
©­­«
𝐴𝐻2

𝜂

√︄
log 𝐾𝑁 C(Π)

𝛿

𝑁

ª®®¬ ,
C(Π) := N(𝜀net,Π, ∥·∥∞,1), and 𝜀net = Ω

(
1

log(𝐾𝑁/𝛿 )
√
𝑁

)
. Now, Eq. (31) implies Algorithm 8 is an

instance of the idealized SDPO Algorithm 1 with the error 𝜀 defined above. Hence, by Theorem 1,
we have that

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴𝐻4

𝐾2/3 + 𝜈𝐻
3√𝐴𝐾1/6√𝜀 + 𝜀vgd

)
= 𝑂

(
𝜈2𝐴𝐻4

𝐾2/3 + 𝜈𝐻
3√𝐴𝐾1/6√𝜀gen + 𝜈𝐻3√𝐴𝐾1/6√𝜀erm + 𝜀vgd

)
. (32)

We focus on the first two terms to choose 𝐾, 𝑁 as a function of 𝑛. Observe:

𝜈2𝐴𝐻4

𝐾2/3 + 𝜈𝐻
3√𝐴𝐾1/6√𝜀gen ≈

𝜈2𝐴𝐻4

𝐾2/3 + 𝜈𝐻
3√𝐴𝐾1/6

√
𝐴𝐻
√
𝜂

log1/4 𝐾𝑁 C(Π)
𝛿

𝑁1/4

=
𝜈2𝐴𝐻4

𝐾2/3 +
𝜈𝐴𝐻4𝐾1/6𝜄
√
𝜂𝑁1/4

with 𝜄 := log1/4 𝐾𝑁 C(Π)
𝛿

. Further, by our choice of 𝜂, 𝜀ex, 𝜂 = 𝐻/(2𝐻3√𝐴𝐾1/3), hence

𝜈2𝐴𝐻4

𝐾2/3 +
𝜈𝐴𝐻4𝐾1/6𝜄
√
𝜂𝑁1/4 ≈ 𝜈

2𝐴𝐻4

𝐾2/3 +
𝜈𝐴𝐻4𝐾1/6𝜄

√︁
𝐻3
√
𝐴𝐾1/3

√
𝐻𝑁1/4

≤ 𝜈
2𝐴𝐻6

𝐾2/3 +
𝜈𝐴2𝐻5𝜄

𝑁1/4 𝐾1/3.

Choosing 𝑁 = 𝐾4 gives

𝜈2𝐴𝐻6

𝐾2/3 +
𝜈𝐴2𝐻5𝜄

𝑁1/4 𝐾1/3 ≲
𝜈2𝐴2𝐻6𝜄

𝐾2/3 ,

with 𝑛 ≤ 𝐾𝑁𝐻 = 𝐾5𝐻 with 𝐻 = 𝐻 log(2𝐾𝑁/𝛿) by Lemma 15. Hence 𝐾 ≥ 𝑛1/5/𝐻1/5, and

𝜈2𝐴2𝐻6𝜄

𝐾2/3 ≤ 𝜈
2𝐴2𝐻6𝐻2/15𝜄

𝑛2/15 .

Now substitute 𝐻2/15 ≲ 𝐻1/2 log1/4 (𝑛/𝛿), and 𝜄 = log1/4 𝐾𝑁 C(Π)
𝛿

≲ log1/4 𝑛C(Π)
𝛿

to obtain

𝜈2𝐴2𝐻6𝐻2/15𝜄

𝑛2/15 ≲
𝜈2𝐴2𝐻7

√︃
log 𝑛C(Π)

𝛿

𝑛2/15 .

Finally, using that and plugging our upper bound back into Eq. (32) and using that 𝐾 ≤ 𝑛1/5:

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
©­­«
𝜈2𝐴2𝐻7

√︃
log 𝑛C(Π)

𝛿

𝑛2/15 + 𝜈𝐻3√𝐴𝐾1/6√𝜀erm + 𝜀vgd
ª®®¬

= 𝑂
©­­«
𝜈2𝐴2𝐻7

√︃
log 𝑛C(Π)

𝛿

𝑛2/15 + 𝜈𝐻3√𝐴𝑛1/30√𝜀erm + 𝜀vgd
ª®®¬ ,

with 𝜀net = Ω

(
1

log(𝐾𝑁/𝛿 )
√
𝑁

)
= Ω

(
1

log(𝑛/𝛿 )
√
𝑁

)
= Ω

(
1

log(𝑛/𝛿 )𝑛2/5

)
. □
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E.1 CPI and DA-CPI

In this section we present the learning versions of CPI (Algorithm 9) and DA-CPI (Algorithm 10)
and their sample complexity guarantees. We first state two lemmas which play the same role of
Lemma 15. The proofs follow from identical arguments as those of Lemma 15, and are thus omitted.

Algorithm 9 CPI in the learning setup

input: Initial policy 𝜋1 ∈ Π, {𝜂𝑘}𝐾𝑘=1 , 𝑁 ≥ 1, 𝜀erm > 0
for 𝑘 = 1, 2, . . . , 𝐾 do

Rollout 𝜋𝑘 for 𝑁 episodes via Algorithm 7, obtain D𝑘 =
{
𝑠𝑘
𝑖
, 𝑄𝑘

𝑠𝑘
𝑖

}𝑁
𝑖=1

.

Update 𝜋̃𝑘+1 ← arg min𝜀erm
𝜋∈Π

{
Φ̂𝑘 (𝜋) := 1

𝑁

∑
𝑠∈D𝑘

〈
𝐻𝑄𝑘𝑠 , 𝜋𝑠 − 𝜋𝑘𝑠

〉}
Set 𝜋𝑘+1 = (1 − 𝜂𝑘)𝜋𝑘 + 𝜂𝑘 𝜋̃𝑘+1

end for
return 𝜋̂ = 𝜋𝐾+1

Algorithm 10 DA-CPI in the learning setup

input: 𝜂1, . . . , 𝜂𝐾 > 0; 𝑁 ≥ 1, 𝜀ex > 0, 𝜀erm > 0, action norm ∥·∥◦.
for 𝑘 = 1, . . . , 𝐾 do

Rollout 𝜋𝑘 for 𝑁 episodes via Algorithm 7, obtain D𝑘 =
{
𝑠𝑘
𝑖
, 𝑄𝑘

𝑠𝑘
𝑖

}𝑁
𝑖=1

.

Update 𝜋̃𝑘+1 ← arg min𝜀erm
𝜋∈Π𝜀ex

{
Φ̂𝑘 (𝜋) := 1

𝑁

∑
𝑠∈D𝑘

〈
𝑄𝑘𝑠 , 𝜋𝑠

〉}
Rollout 𝜋𝑘 for another 𝑁 episodes via Algorithm 7, obtain D̃𝑘 .
Update 𝜋𝑘+1 ← arg min𝜀erm

𝜋∈Π𝜀ex

{
𝜓𝑘 (𝜋) := 1

𝑁

∑
𝑠∈D̃𝑘



𝜋𝑠 − ((1 − 𝜂𝑘)𝜋𝑘𝑠 + 𝜂𝑘 𝜋̃𝑘+1𝑠 )


2
◦)

}
end for
return 𝜋̂ = 𝜋𝐾+1

Lemma 16. For 𝛾 ≤ 1/2, upon execution of Algorithm 9, for any 𝛿 > 0, w.p. ≥ 1 − 𝛿, it holds that
for all 𝑘 ∈ [𝐾],

𝜋̃𝑘+1 ∈ arg min𝜀𝜋∈Π 𝔼𝑠∼𝜇𝑘
[〈
𝐻𝑄𝑘𝑠 , 𝜋𝑠 − 𝜋𝑘𝑠

〉]
,

where 𝜀 = 𝜀erm + 𝜀gen, 𝜀gen := 𝐶0𝐴𝐻
2𝐷

√︂
log

𝐾𝑁N(𝜀net ,Π̃,∥·∥∞,1 )
𝛿

𝑁
, 𝐶0 > 0 is an absolute numerical

constant, and 𝜀net ≥ 𝐶0
6
√
𝑁 (log(2𝐾𝑁/𝛿 ) . Furthermore, the number of time steps of each episode rolled

out by Algorithm 7 is ≤ 2𝐻 log (2𝐾𝑁/𝛿).
Lemma 17. For 𝛾 ≤ 1/2, upon execution of Algorithm 10, for any 𝛿 > 0, w.p. ≥ 1 − 𝛿, it holds that
for all 𝑘 ∈ [𝐾],

𝜋̃𝑘+1 ∈ arg min𝜀𝜋∈Π𝜀ex 𝔼𝑠∼𝜇𝑘
[〈
𝐻𝑄𝑘𝑠 , 𝜋𝑠 − 𝜋𝑘𝑠

〉]
𝜋𝑘+1 ∈ arg min𝜀𝜋∈Π𝜀ex 𝔼𝑠∼𝜇𝑘



𝜋𝑠 − ((1 − 𝜂𝑘)𝜋𝑘𝑠 + 𝜂𝑘 𝜋̃𝑘+1𝑠 )


2

1 ,

where 𝜀 = 𝜀erm + 𝜀gen, 𝜀gen := 𝐶0𝐴𝐻
2𝐷

√︂
log

𝐾𝑁N(𝜀net ,Π̃,∥·∥∞,1 )
𝛿

𝑁
, 𝐶0 > 0 is an absolute numerical

constant, and 𝜀net ≥ 𝐶0
6
√
𝑁 (log(2𝐾𝑁/𝛿 ) . Furthermore, the number of time steps of each episode rolled

out by Algorithm 7 is ≤ 2𝐻 log (2𝐾𝑁/𝛿).

We now give the sample complexity guarantees of CPI and DA-CPI; for simplicity, we present the
bounds assuming 𝜀erm = 0.

Theorem 12. Let Π be a policy class that satisfies (𝜈, 𝜀vgd)-VGD w.r.t.M, and assume 𝛾 ≤ 1/2.
Then for any 𝑛 ≥ 1, there exists a choice of parameters 𝐾, 𝑁, {𝜂𝑘} such that Algorithm 9 executed
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with 𝜀erm = 0 and the 𝐿1 action norm, guarantees for any 𝛿 > 0, that w.p. ≥ 1 − 𝛿 the total number
of environment time steps ≤ 𝑛, and the output policy satisfies

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴𝐻4 log(𝑛C(Π)/𝛿)

𝑛1/3 + 𝜀vgd

)
,

where C(Π) := N(𝜀net,Π, ∥·∥∞,1) is the 𝜀net-covering number of Π and 𝜀net = Ω

(
1

log(𝑛/𝛿 )𝑛

)
.

Proof. By Lemma 16, we have that w.p. ≥ 1 − 𝛿, for all 𝑘 ∈ [𝐾] it holds that:

𝜋𝑘+1 ∈ arg min𝜀𝜋∈Π
{
Φ𝑘 (𝜋) := 𝔼𝑠∼𝜇𝑘

[〈
𝐻𝑄𝑘𝑠 , 𝜋𝑠 − 𝜋𝑘𝑠

〉]}
,

with 𝜀 = 𝜀erm + 𝜀gen, where

𝜀gen = 𝑂
©­­«𝐴𝐻2

√︄
log 𝐾𝑁 C(Π)

𝛿

𝑁

ª®®¬ ,
C(Π) := N(𝜀net,Π, ∥·∥∞,1), and 𝜀net = Ω( 1

log(𝐾𝑁/𝛿 )
√
𝑁
). Hence, Algorithm 9 is an instance of the

idealized CPI Algorithm 2 with the error 𝜀 defined above. Now, by Theorem 2, we have that

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐻3

𝐾
+ 𝜈𝜀 + 𝜀vgd

)
= 𝑂

©­­«
𝜈2𝐻3

𝐾
+ 𝜈𝐴𝐻2

√︄
log 𝐾𝑁 C(Π)

𝛿

𝑁
+ 𝜀vgd

ª®®¬ .
Choosing 𝑁 = 𝐾2, and noting that 𝑛 ≲ 𝑁3/2𝐻 log(𝑛/𝛿), we obtain

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴𝐻4 log(𝑛C(Π)/𝛿)

𝑛1/3 + 𝜀vgd

)
,

which completes the proof. □

Theorem 13. Let Π be a policy class that satisfies (𝜈, 𝜀vgd)-VGD w.r.t.M, and assume 𝛾 ≤ 1/2.
Then for any 𝑛 ≥ 1, there exists a choice of parameters 𝐾, 𝑁, 𝜀ex, {𝜂𝑘} such that Algorithm 10
executed with with 𝜀erm = 0 and the 𝐿1 action norm, guarantees for any 𝛿 > 0, that w.p. ≥ 1 − 𝛿 the
total number of environment time steps ≤ 𝑛, and the output policy satisfies

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴2𝐻5

√︁
log(𝑛C(Π)/𝛿)
𝑛2/15 + 𝜀vgd

)
,

where C(Π) := N(𝜀net,Π, ∥·∥∞,1) is the 𝜀net-covering number of Π and 𝜀net = Ω

(
1

log(𝑛/𝛿 )𝑛

)
.

Proof. By Lemma 17, we have that w.p. ≥ 1 − 𝛿, sub-optimality 𝜀 holds for all 𝑘 ∈ [𝐾] and for both
update steps with 𝜀 = 𝜀erm + 𝜀gen, where

𝜀gen = 𝑂
©­­«𝐴𝐻2

√︄
log 𝐾𝑁 C(Π)

𝛿

𝑁

ª®®¬ ,
C(Π) := N(𝜀net,Π, ∥·∥∞,1), and 𝜀net = Ω( 1

log(𝐾𝑁/𝛿 )
√
𝑁
). Hence, Algorithm 10 is an instance of the

idealized DA-CPI Algorithm 2 with the error 𝜀 defined above. Now, by Theorem 2, we have that

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴𝐻3

(
1

𝐾2/3 + 𝜀
1/3 + 𝜀2/3𝐾2/3

)
+ 𝜀vgd

)
.
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We focus on the first two terms; when balancing them, the third will be of the same order. Let
𝜄 :=

√︁
log(𝐾𝑁C(Π)/𝛿), and we have:

1
𝐾2/3 + 𝜀

1/3 ≲
1

𝐾2/3 +
(𝐴𝐻2𝜄)1/3

𝑁1/6

≲
(𝐴𝐻2𝜄)1/3

𝐾2/3 (𝑁 = 𝐾4)

≲
𝐴𝐻2𝜄

𝑛2/15 . (𝑛 ≲ 𝐾5𝐻 log(𝐾𝑁/𝛿))
This implies

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
(
𝜈2𝐴2𝐻5𝜄

𝑛2/15 + 𝜀vgd

)
,

which completes the proof. □

E.2 PMD

PMD in the learning setup is given in Algorithm 11. Since 𝐿2-PMD and 𝐿2-SDPO coincide (they
are the exact same algorithm), the sample complexity of PMD with the Euclidean action regularizer
follows form arguments identical to those given for SDPO in the proof of Theorem 11, but with the
𝐿2-action norm instead of the 𝐿1-norm. This leads to slightly worse dependence on the action set
cardinality 𝐴, but otherwise to the same guarantee.
Theorem 14. Let Π be a convex policy class that satisfies (𝜈, 𝜀vgd)-VGD w.r.t. M, and assume
𝛾 ≤ 1/2. Then for any 𝑛 ≥ 1, there exists a choice of parameters 𝐾, 𝑁, 𝜂, 𝜀ex such that Algorithm 11
executed with 𝜀erm = 0 and the 𝐿2 action regularizer guarantees for any 𝛿 > 0, that w.p. ≥ 1 − 𝛿 the
total number of environment time steps ≤ 𝑛, and the output policy satisfies

𝑉 (𝜋̂) −𝑉★(Π) = 𝑂
©­­«
𝜈2𝐴3𝐻7

√︃
log 𝑛C(Π)

𝛿

𝑛2/15 + 𝜀vgd
ª®®¬ ,

where C(Π) := N(𝜀net,Π, ∥·∥∞,1) is the 𝜀net-covering number of Π and 𝜀net = Ω

(
1

log(𝑛/𝛿 )𝑛

)
.

Notably, the analysis of 𝐿2-PMD through the SDPO perspective gives better sample complexity
than we would have obtained through the Bregman-proximal method analysis Theorem 10; roughly
speaking this is the case because analysis based on the Bregman divergence hinges on approximate
optimality conditions rather than sub-optimality in function values. This leads to dependence of
𝜀gen

1/4 rather than √𝜀gen, which further leads to inferior sample complexity. For action regularizers
other than 𝐿2, sample complexity of PMD may be derived again using similar arguments to those
of Theorem 11 but now combined with Theorem 10. A little more care is needed in the choice of
parameters, as smoothness of the action regularizer (needed both in Theorem 10 and in Lemma 15) is
commonly inversely related to 𝜀ex. As a result, with the currently known techniques for the iteration
complexity upper bound, the sample complexity upper bounds for essentially any action regularizer
other than 𝐿2, will be worse than those of the 𝐿2 case w.r.t. dependence on both 𝑛 and 𝐴.

E.3 Proof of Lemma 15

Lemma 18. Algorithm 7 returns 𝑠𝑡 , 𝑄 𝜋𝑠𝑡 that satisfy (i) 𝑠𝑡 ∼ 𝜇𝜋; (ii) 𝔼
[
𝑄 𝜋𝑠𝑡 | 𝑠𝑡

]
= 𝑄 𝜋𝑠𝑡 . Furthermore,

for any 𝛿 > 0, w.p. ≥ 1 − 𝛿, the algorithm terminates after no more than 2
1−𝛾 log 2

𝛿
time steps and it

holds that
���𝑄 𝜋𝑠𝑡 ,𝑎𝑡 ��� ≤ 𝐻𝐴 log(2/𝛿).

Proof of Lemma 18. First, note that (i) follows directly from the definition of the discounted occu-
pancy measure Eq. (12). Indeed, by definition of Algorithm 7, for any 𝑠 ∈ S:

Pr(𝑠 is accepted by Algorithm 7 on step 𝑡) = 𝛾𝑡 (1 − 𝛾) Pr(𝑠𝑡 = 𝑠 | 𝜋, 𝑠0 ∼ 𝜌0)

=⇒ Pr(𝑠 is accepted by Algorithm 7) = (1 − 𝛾)
∞∑︁
𝑡=0

𝛾𝑡 Pr(𝑠𝑡 = 𝑠 | 𝜋, 𝑠0 ∼ 𝜌0) = 𝜇𝜋 (𝑠).
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Algorithm 11 PMD in the learning setup

Input: 𝐾 ≥ 1, 𝑁 ≥ 1, 𝜂 > 0, 𝜀ex > 0, 𝜀erm > 0,Π ∈ Δ(A)S , and action regularizer 𝑅 : ℝA → ℝ.

Initialize 𝜋1 ∈ Π𝜀ex

for 𝑘 = 1 to 𝐾 do

Rollout 𝜋𝑘 for 𝑁 episodes via Algorithm 7, obtain D𝑘 =
{
𝑠𝑘
𝑖
, 𝑄𝑘

𝑠𝑘
𝑖

}𝑁
𝑖=1

.

Update 𝜋𝑘+1 ← arg min𝜀erm
𝜋∈Π𝜀ex

{
Φ̂𝑘 (𝜋) := 1

𝑁

∑
𝑠∈D𝑘

〈
𝐻𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝐵𝑅𝜋𝑠 , 𝜋

𝑘
𝑠

}
end for
return 𝜋̂ := 𝜋𝐾+1

Further, let alg denote Algorithm 7, and then

𝔼alg

[
𝑄 𝜋𝑠𝑡 ,𝑎𝑡 | 𝑠𝑡 , 𝑎𝑡

]
= 𝐴𝔼alg

[
𝑇∑︁
𝑡 ′=𝑡

𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′ ) | 𝑠𝑡 , 𝑎𝑡

]
= 𝐴

∞∑︁
𝑡 ′=𝑡

𝛾𝑡−𝑡
′
𝔼𝜋 [𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′ ) | 𝑠𝑡 , 𝑎𝑡 ]

= 𝐴

∞∑︁
𝑡 ′=𝑡

𝛾𝑡−𝑡
′
𝔼𝜋 [𝑟 (𝑥ℎ, 𝑢ℎ) | 𝑥0 = 𝑠𝑡 , 𝑢0 = 𝑎𝑡 ] ,

where in the last expression, expectation is w.r.t. 𝑥ℎ+1 ∼ ℙ(·|𝑥ℎ, 𝑢ℎ) for ℎ ≥ 1, and 𝑢ℎ ∼ 𝜋(·|𝑥ℎ) for
ℎ ≥ 2. Now,

∞∑︁
𝑡 ′=𝑡

𝛾𝑡−𝑡
′
𝔼𝜋 [𝑟 (𝑥ℎ, 𝑢ℎ) | 𝑥0 = 𝑠𝑡 , 𝑢0 = 𝑎𝑡 ] =

∞∑︁
ℎ=0

𝛾ℎ𝔼𝜋 [𝑟 (𝑥ℎ, 𝑢ℎ) | 𝑥0 = 𝑠𝑡 , 𝑢0 = 𝑎𝑡 ]

= 𝔼𝜋

[ ∞∑︁
ℎ=0

𝛾ℎ𝑟 (𝑥ℎ, 𝑢ℎ) | 𝑥0 = 𝑠𝑡 , 𝑢0 = 𝑎𝑡

]
= 𝑄 𝜋𝑠𝑡 ,𝑎𝑡 ,

hence for all 𝑎 ∈ A,

𝔼alg

[
𝑄 𝜋𝑠𝑡 ,𝑎 | 𝑠𝑡

]
= Pr(𝑎𝑡 = 𝑎)𝔼alg

[
𝑄 𝜋𝑠𝑡 ,𝑎𝑡 | 𝑠𝑡 , 𝑎𝑡 = 𝑎

]
= Pr(𝑎𝑡 = 𝑎)𝐴𝑄 𝜋𝑠𝑡 ,𝑎 = 𝑄 𝜋𝑠𝑡 ,𝑎,

which proves (ii).

For the second part, observe that the acceptance event occurs w.p.1 − 𝛾 at each time step, therefore
the probability for acceptance to not occur in the first 𝑡 times steps is 𝛾𝑡 , and hence probability of
acceptance by time 𝑡 is 1 − 𝛾𝑡 . We have 𝛾𝑡 ≤ 𝑒−(1−𝛾)𝑡 ≤ 𝛿 for 𝑡 ≥ 1

1−𝛾 log 1
𝛿

, hence, w.p. ≥ 1 − 𝛿/2
acceptance occurs before time step 𝑡𝛿 := 1

1−𝛾 log 2
𝛿

. Same goes for the termination event, hence, the
episode terminates after 2𝑡𝛿 time steps w.p. ≥ 1 − 𝛿.

Finally, the bound on
��𝑄 𝜋𝑠𝑡 ,𝑎𝑡 �� follows from the termination event and definition of 𝑄 𝜋𝑠𝑡 ,𝑎𝑡 in the

algorithm. □

Our proof makes use of the notion of sub-exponential norm [Vershynin, 2018] of a random variable
𝑋:

∥𝑋 ∥𝜓1
:= inf

{
𝛼 > 0 : 𝔼𝑒 |𝑋 |/𝛼 ≤ 2

}
. (33)

Lemma 19. Assume 𝑇 is a geometric random variable, 𝑇 ∼ Geom(p), i.e., Pr(𝑇 = 𝑡) = (1 − 𝑝)𝑡−1𝑝
for 1 ≤ 𝑡 ∈ ℕ. Then, for 𝑞 := max {𝑝, 1 − 𝑝}:

∥𝑇 ∥𝜓1 ≤ 1/ln
(
1 + 1−𝑞

4𝑞

)
.
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Proof. We have:

𝔼𝑒𝑇/𝛼 =

∞∑︁
𝑡=1
(1 − 𝑝)𝑡−1𝑝𝑒𝑡/𝛼

= 𝑝𝑒1/𝛼
∞∑︁
𝑡=1
(1 − 𝑝)𝑡−1𝑒 (𝑡−1)/𝛼

= 𝑝𝑒1/𝛼
∞∑︁
𝑡=0

(
(1 − 𝑝)𝑒1/𝛼

) 𝑡
Let 𝑞 := max {𝑝, 1 − 𝑝}, and set 𝛼 = 1/ln

(
1 + 1−𝑞

4𝑞

)
, then,

𝑒1/𝛼 = 1 + 1 − 𝑞
4𝑞

.

Now,

(1 − 𝑝)𝑒1/𝛼 = 1 − 𝑝 + (1 − 𝑝) 1 − 𝑞
4𝑞
≤ 1 − 𝑝 + 1 − 𝑞

4
≤ 1 − 𝑝 + 𝑝

4
,

hence
∞∑︁
𝑡=0

(
(1 − 𝑝)𝑒1/𝛼

) 𝑡
≤ 1

1 −
(
1 − 𝑝 + 𝑝

4
) =

4
3𝑝
.

Combining with our previous derivation, we obtain

𝔼𝑒𝑇/𝛼 ≤ 𝑝𝑒1/𝛼 4
3𝑝

=
4
3

(
1 + 1 − 𝑞

4𝑞

)
≤ 4

3

(
1 + 1

4

)
=

5
3
≤ 2.

□

Lemma 20. Assume 𝑋 is a random variable that satisfies ∥𝑋 ∥𝜓1 ≤ 𝑅. Then for 𝑁 independent
samples of 𝑋1, . . . , 𝑋𝑁 , we have for any 𝜖 ≤ 𝑅:

Pr

(����� 1
𝑁

𝑁∑︁
𝑖=1
𝑇𝑖 − 𝔼𝑇

����� ≥ 𝜖
)
≤ 2𝑒−𝑐

𝑁𝜖 2
𝑅2 ,

where 𝑐 > 0 is an absolute numerical constant.

Centering only costs an absolute constant factor [Vershynin, 2018], thus ∥𝑋 − 𝔼𝑥∥𝜓1 ≤ 𝑅̃ for
𝑅̃ = 𝑐0𝑅. Now, the Bernstein inequality for sums of independent sub-exponential random variables
(Theorem 2.8.1 of Vershynin, 2018) yields:

Pr

(����� 1
𝑁

𝑁∑︁
𝑖=1

𝑋𝑖 − 𝔼𝑋
����� ≥ 𝜖

)
≤ 2 exp

[
−𝑐1 min

(
𝑁2𝜖2

𝑁𝑅̃2
,
𝑁𝜖

𝑅̃

)]
= 2 exp

[
−𝑐1𝑁 min

(
𝜖2

𝑅̃2
,
𝜖

𝑅̃

)]
= 2 exp

[
−(𝑐1/𝑐0)

𝜖2𝑁

𝑅2

]
where we use the assumption that 𝜖 ≤ 𝑅 ≤ 𝑅̃.
Lemma 21 (Empirical objective concentration). For a given fixed 𝑘 and a given fixed policy 𝜋, we
have that for any 𝛿′ > 0, w.p. ≥ 1 − 𝛿′ it holds that:���Φ𝑘 (𝜋) − Φ̂𝑘 (𝜋)��� ≤ 𝐶𝐴𝐻2𝐷

𝜂

√︄
log 2

𝛿′

𝑁
,

where 𝐶 > 0 is a universal numerical constant and Φ𝑘 , Φ̂𝑘 are defined in Eqs. (29) and (30) of
Lemma 18.
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Proof. Denote:

ℓ̂𝑘 (𝜋; 𝑠) := 𝐻
〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝔇

(
𝜋𝑠 , 𝜋

𝑘
𝑠

)
,

and note that by Lemma 18, we have

Φ𝑘 (𝜋) = 𝔼(𝑠,𝑄𝑘𝑠 )∼sampler(𝜋𝑘 )
[
ℓ̂𝑘 (𝜋; 𝑠)

]
,

where “sampler” denotes Algorithm 7. Now, for (𝑠, 𝑄𝑘𝑠 ) ∼ sampler(𝜋𝑘), we consider the RV

𝑋 =

〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝔇(𝜋𝑠 , 𝜋𝑘𝑠 ).

The divergence term is bounded by 𝐷/𝜂, hence



 1
𝜂
𝔇(𝜋𝑠 , 𝜋𝑘𝑠 )





𝜓1
≤ 𝐷/𝜂 follows immediately.

Further, the RV 1
𝐴
𝑄𝑘𝑠,𝑎 for the action 𝑎 accepted in Algorithm 7 is dominated by a geometric RV

𝑇 ∼ Geom(p = 1 − 𝛾), therefore



𝐻𝑄𝑘𝑠,𝑎




𝜓1
≤ 𝐻𝐴 ∥𝑇 ∥𝜓1 . By Lemma 19 and our assumption that

𝛾 ≤ 1/2,

∥𝑇 ∥𝜓1 ≤
1

ln
(
1 + 1−𝛾

4𝛾

) ≤ 1
1−𝛾
8𝛾

≤ 8
1 − 𝛾 = 8𝐻.

Now, again using that ∥·∥𝜓1 is a norm, we obtain:



𝐻 〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝔇(𝜋𝑠 , 𝜋𝑘𝑠 )






𝜓1

≤ 𝐷/𝜂 + 8𝐻2𝐴.

Now, by Lemma 20, we have

Pr
(���Φ̂𝑘 (𝜋) −Φ𝑘 (𝜋)��� ≥ 𝜖 ) ≤ 2𝑒−𝑐

′ 𝑁𝜖 2
𝐴2𝐻4+𝐷2/𝜂2 ≤ 2𝑒−𝑐

′ 𝑁𝜖 2𝜂2

𝐴2𝐻4𝐷2 .

for an appropriate universal constant 𝑐′. Letting 𝛿 = 2𝑒−𝑐
′ 𝑁𝜖 2𝜂2

𝐴2𝐻4𝐷2 , the result follows. □

We are now ready for the proof of Lemma 15.

Proof of Lemma 15. Consider the “good event” described next. Let 𝛿 > 0 and denote

𝐻 := 𝐻 log(2𝐾𝑁/𝛿),

𝜀net :=
𝐶𝐴𝐻2𝐷

√
𝑁 (𝐴𝐻𝐻 + 𝐿/𝜂)

,

where 𝐶 is specified by Lemma 21. Further, let Net(𝜀net, Π̃) := Net(𝜀net, Π̃, ∥·∥∞,1) be an 𝜀net-cover
of Π̃ w.r.t. ∥·∥∞,1 of size N(𝜀net, Π̃) := N(𝜀net, Π̃, ∥·∥∞,1). Consider the following events:

1. For all 𝑘 ∈ [𝐾], 𝑖 ∈ [𝑁] : 𝑄𝑘
𝑠𝑘
𝑖
,𝑎𝑘
𝑖

≤ 𝐻𝐴, and the corresponding episode length ≤ 𝐻

2. For all 𝑘 ∈ [𝐾]:

∀𝜋 ∈ Net(𝜀net, Π̃) : |Φ̂𝑘 (𝜋) −Φ𝑘 (𝜋) | ≤
𝐶𝐴𝐻2𝐷

𝜂

√︄
log 2𝐾𝑁N(𝜀net ,Π̃)

𝛿

𝑁

By Lemma 18 and the union bound, event (1) holds w.p. ≥ 1 − 𝛿/2, and by Lemma 21 and the union
bound, event (2) holds w.p. ≥ 1 − 𝛿/2. Hence, the good event holds w.p. ≥ 1 − 𝛿. Proceeding, we
assume the good event holds. We have that for any 𝜋, 𝜋′,

|Φ𝑘 (𝜋) −Φ𝑘 (𝜋′) | =
����𝔼𝑠∼𝜇𝜋𝑘 [

𝐻
〈
𝑄𝑘𝑠 , 𝜋𝑠 − 𝜋′𝑠

〉
+ 1
𝜂

(
𝔇(𝜋𝑠 , 𝜋𝑘𝑠 ) −𝔇(𝜋′𝑠 , 𝜋𝑘𝑠 )

)] ����
≤ 𝔼𝑠∼𝜇𝑘

[(
𝐻2 + 𝐿/𝜂

) 

𝜋𝑠 − 𝜋′𝑠

1

]
=

(
𝐻2 + 𝐿/𝜂

)
∥𝜋 − 𝜋′∥𝐿1 (𝜇𝑘 ) ,1 .
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By a similar argument, using the good event (1):���Φ̂𝑘 (𝜋) − Φ̂𝑘 (𝜋′)��� ≤ (
𝐴𝐻𝐻 + 𝐿/𝜂

)
∥𝜋 − 𝜋′∥𝐿1 (𝜇𝑘 ) ,1 .

Further,

∥𝜋 − 𝜋′∥𝐿1 (𝜇𝑘 ) ,1 ≤ ∥𝜋 − 𝜋′∥∞,1 ,

hence, we have that for any 𝜋 ∈ Π̃, there exists 𝜋′ ∈ Net(𝜀gen, Π̃) such that:���Φ𝑘 (𝜋) − Φ̂𝑘 (𝜋)��� ≤ |Φ𝑘 (𝜋) −Φ𝑘 (𝜋′) | + ���Φ𝑘 (𝜋′) − Φ̂𝑘 (𝜋′)��� + ���Φ̂𝑘 (𝜋′) − Φ̂𝑘 (𝜋)���
≤ 𝐶𝐴𝐻

2𝐷
√
𝑁

+
���Φ𝑘 (𝜋′) − Φ̂𝑘 (𝜋′)��� + 𝐶𝐴𝐻2𝐷

√
𝑁

≤ 3𝐶𝐴𝐻2𝐷

𝜂

√︄
log 2𝐾𝑁N(𝜖 ,Π̃)

𝛿

𝑁
=: 𝜀gen/2.

Now, let 𝜋̂𝑘+1★ = arg min
𝜋∈Π̃ Φ̂𝑘 (𝜋) and 𝜋𝑘+1★ = arg min

𝜋∈Π̃ Φ𝑘 (𝜋), then we have:

Φ𝑘 (𝜋𝑘+1) ≤ Φ̂𝑘 (𝜋𝑘+1) + 𝜀gen/2
≤ Φ̂𝑘 (𝜋̂𝑘+1★ ) + 𝜀gen/2 + 𝜀erm

≤ Φ̂𝑘 (𝜋𝑘+1★ ) + 𝜀gen/2 + 𝜀erm

≤ Φ𝑘 (𝜋𝑘+1★ ) + 𝜀gen + 𝜀erm

= min
𝜋∈Π̃

Φ𝑘 (𝜋) + 𝜀gen + 𝜀erm.

This completes the proof. □

F Experiments implementation details

In this section, we provide further details on the experimental setup where we evaluate the VGD
condition parameters. The pseudocode used for the experiments is give in Algorithm 12. The
environments we tested on consider rewards and not cost functions, therefore the code and discussion
below should be understood as having the negative reward as the cost function (we opt to maintain
the cost formulation here to better align with our original setup). Additionally, the environments
considered are finite-horizon and the objective is undiscounted.

Evaluating “Sub Optimality” at iteration 𝑘 . For each (seed, environment) combination, after
the execution was concluded, we take the maximum value attained by the actor iterates, 𝑉★ =

min𝑘∈𝐾 𝑉 (𝜋𝑘), where 𝑉 (𝜋𝑘) is estimated using rollouts during experiment execution. We made sure
to run the experiments for long enough (i.e., for large enough 𝐾) so that the algorithm converges. Sub
optimality of iteration 𝑘 is then given by 𝑉 (𝑘) −𝑉★.

Evaluating “VGD Ratio” at iteration 𝑘; 𝜈𝑘 . Given the sub-optimality evaluated as described in
the previous paragraph, we report 𝜈𝑘 by computing the following:

𝜈𝑘 :=
𝑉 (𝜋𝑘) −𝑉★〈

∇̂𝑉 (𝜋𝑘), 𝜋𝑘 − 𝜋̃𝑘+1
〉 .

Local optima. As mentioned in Section 5, local optima was only an issue (i.e., the case that
𝑉★ ≠ 𝑉★(Πactor)) in the MinAtar environments. We note that our analysis holds just the same under
the assumption the VGD condition is satisfied for (𝜈, 0) w.r.t. a given target value 𝑉★ which is
not necessarily the in-class optimal one. This may be interpreted as an execution specific value of
𝜀vgd = 𝑉★ − 𝑉★(Πactor). Thus, while the environments in question may not satisfy VGD globally,
it seems convergence behavior may nonetheless be governed by the effective VGD parameters
encountered during execution.
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Algorithm 12 Pseudocode for VGD parameter evaluation

Initialize two actor neural networks Πactor,Πvgd
Initialize 𝜋1 ∈ Πactor
for 𝑘 = 1 to 𝐾 do

// Gradient estimation phase:
Rollout 𝜋𝑘 to collect 𝑁 environment timesteps D𝑘 =

{
𝑠𝑘
𝑖

}𝑁
𝑖=1

for 𝑠 ∈ D𝑘 , 𝑎 ∈ A do
Rollout 𝑛rep episodes of 𝜋𝑘 starting from 𝑠, 𝑎.
Set 𝑄𝑘𝑠,𝑎 ← average of returns from the previous step.

end for
// (Note: we treat each state as if it were an independent sample from 𝜇𝑘 , even though it is not.)

// Update actor:
Train 𝜋𝑘+1 for 𝑛epochs epochs, with 𝑛mbs mini-batches in each epoch:

𝜋𝑘+1 ≈ arg min
𝜋∈Πactor

1
𝑁

∑︁
𝑠∈D𝑘

〈
𝑄𝑘𝑠 , 𝜋𝑠 − 𝜋𝑘𝑠

〉
+ 1

2𝜂


𝜋𝑠 − 𝜋𝑘𝑠 

2

2

// Evaluate VGD:
Initialize 𝜋̃𝑘+1 ← 𝜋𝑘+1

for 𝑛vgd
epochs epochs, with 𝑛vgd

mbs mini-batches in each epoch:

𝜋̃𝑘+1 ≈ arg max
𝜋∈Πvgd

1
𝑁

∑︁
𝑠∈D𝑘

〈
𝑄𝑘𝑠 , 𝜋

𝑘
𝑠 − 𝜋𝑠

〉
Estimate 𝐻𝑘 the average episode length of 𝜋𝑘

Report GradVGD𝑘 = 1
𝑁

∑
𝑠∈D𝑘

〈
𝐻𝑘𝑄𝑘𝑠 , 𝜋

𝑘
𝑠 − 𝜋̃𝑘+1𝑠

〉
=:

〈
∇̂𝑉 (𝜋𝑘), 𝜋𝑘 − 𝜋̃𝑘+1

〉
end for
return 𝜋̂ := 𝜋𝐾+1

Hyperparameters. For the VGD actor, we used the AdamW optimizer with stepsize 5𝑒 − 4,
𝑛

vgd
epochs = 100, 𝑛vgd

mbs = 4 accross all experiments. Below, 𝑁 = 𝑁envs × 𝑁steps means 𝑁steps where
executed in 𝑁envs in parallel. For the actor optimizer we used the Adam optimizer with step size 𝜂opt
(this is the step size of the “inner” optimization).

• Cartpole: 𝐾 = 40, 𝑁 = 4 × 500, 𝑛epochs = 100, 𝑛mbs = 4, 𝑛rep = 5, 𝜂opt = 2𝑒 − 4, 𝜂 = 0.01.
• Acrobot: 𝐾 = 100, 𝑁 = 8×500, 𝑛epochs = 100, 𝑛mbs = 4, 𝑛rep = 20, 𝜂opt = 4𝑒−4 with linear

annealing, 𝜂 = 0.1.
• SpaceInvaders-MinAtar: 𝐾 = 600, 𝑁 = 16 × 1000, 𝑛epochs = 4, 𝑛mbs = 8, 𝑛rep = 5, 𝜂opt =

5𝑒 − 3 with linear annealing, 𝜂 = 0.1.
• Breakout-MinAtar: 𝐾 = 200, 𝑁 = 16 × 1000, 𝑛epochs = 100, 𝑛mbs = 8, 𝑛rep = 5, 𝜂opt =

5𝑒 − 3 with linear annealing, 𝜂 = 0.1.

Additional comments.

• The architecture of both actor models is identical to that of the purejaxrl implementation
[Lu et al., 2022].

• For Breakout-MinAtar and SpaceInvaders-MinAtar, execution took approximately 90-120
minutes per seed, on an NVIDIA-RTX-A5000 GPU. The experiments for Cartpole and
Acrobot were run on similar hardware and took under 20 minutes for all 10 seeds.
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