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Privacy-Preserving and Fairness-Aware Federated Learning for
Critical Infrastructure Protection and Resilience
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ABSTRACT
The energy industry is undergoing significant transformations as it
strives to achieve net-zero emissions and future-proof its infrastruc-
ture, where every participant in the power grid has the potential
to both consume and produce energy resources. Federated learn-
ing – which enables multiple participants to collaboratively train
a model without aggregating the training data – becomes a viable
technology. However, the global model parameters that have to be
shared for optimization are still susceptible to training data leak-
age. In this work, we propose Confined Gradient Descent (CGD)
that enhances the privacy of federated learning by eliminating the
sharing of global model parameters. CGD exploits the fact that a
gradient descent optimization can start with a set of discrete points
and converges to another set in the neighborhood of the global
minimum of the objective function. As such, each participant can
independently initiate its own private global model (referred to
as the confined model), and collaboratively learn it towards the
optimum. The updates to their own models are worked out in a
secure collaborative way during the training process. In such a
manner, CGD retains the ability of learning from distributed data
but greatly diminishes information sharing. Such a strategy also al-
lows the proprietary confined models to adapt to the heterogeneity
in federated learning, providing inherent benefits of fairness. We
theoretically and empirically demonstrate that decentralized CGD
(i) provides a stronger differential privacy (DP) protection; (ii) is
robust against the state-of-the-art poisoning privacy attacks; (iii)
results in bounded fairness guarantee among participants; and (iv)
provides high test accuracy (comparable with centralized learning)
with a bounded convergence rate over four real-world datasets.

1 INTRODUCTION
Federated learning (FL) enables participants to jointly train a global
model without the necessity of sharing their datasets [33, 34, 67],
demonstrating the potential promise of communication efficiency
and protecting proprietary user data. It has been incorporated by
popular machine learning frameworks such as TensorFlow [1]
and PyTorch [51], and the burgeoning development of FL vari-
ance renders it promising to be deployed across various indus-
tries [14, 19, 37, 40, 42, 52, 64], including critical infrastructure such
as energy sector [14, 19, 37, 40, 42, 52, 64]. With the widespread
adoption of distributed renewable energy resources such as electric
cars, battery storage, wind turbines, and solar panels, managing the
distributed network through leveraging FL technology has become
a complex challenge. Every participant in the network now has the
potential to both consume and produce energy resources, making it
crucial to maintain security and privacy, equitability, and resilience
in the distributed network.
Challenges. Standard FL approaches, however, have been shown
vulnerable to privacy leakage which stems from its paralleliza-
tion of the gradient descent optimization [46, 50, 72]. During the

Photovoltaics
Storage Batteries

Electric Vehicles

Communication

Client Devices

      Challenges


Privacy breach stems from
gradient descent
optimization
Fairness issues raised by
inherently asset-driven and
statistically heterogeneous
FL applicaitons

Pull parameters from global model


Push parameters to global model


Collect local data from devices


Local Model

for Client 1

Local Model

for Client 2

Local Model

for Client 3

P2P Protocol

Figure 1: An example of federated learning application in the context
of critical infrastructure.

(a) (b)

(a) Gradient descent in traditional federated learning in which participants jointly work on the same
global model; (b) Confined Gradient Descent. Each participant strictly confines their own global
models throughout the learning process. When the optimization algorithms converge, they reach the
neighbourhood of the centralized model that was to learn centrally on the gathered data.

Figure 2: The optimization process of the traditional FL and CGD on
MNIST [36] (both with three participants for illustration)

training process, each participant obtains the current global model
parameters, works out a local gradient based on the local data, and
disseminates it for others to update the global model. This para-
digm guarantees data locality, but the shared local models/gradients
imply sensitive attributes of local training samples, as revealed by
recent studies [20, 59]. In addition, many FL applications are in-
herently asset-driven and statistically heterogeneous, resulting in
fairness challenges. For example, without reconciliation of privacy
and fairness in the context of sustainable critical infrastructure, i.e.,
peer-to-peer (P2P) energy network (see Figure 1), privileged indi-
viduals, groups and organizations can have advantageous access
to the power grid and benefit at the cost of underserved groups,
substantiated by the fact that merely implementing differential pri-
vacy techniques may lead to disproportionate impact on minority
communities [3, 55].
Solution. To ensure private and equitable participation of commu-
nity members and responsible use of their data in providing secure,
reliable, and sustainable energy services through FL, this work aims
to enhance the privacy preservation with bounded fairness guar-
antee in FL by eliminating the explicit sharing of the centralized
global model to decrease the dependency among participants. We
therefore propose a new optimization algorithm named Confined
Gradient Descent (CGD) that enables each participant to learn its
own private “global” model. The CGD participants initiate their
own global models locally, and then strictly confine these models
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within themselves throughout the whole training process. The up-
dates to their own models are operated in a secure collaborative
way during the training process. In such a manner, CGD retains
the merit of federation but greatly diminishes information leakage.
In the remaining of this paper, we refer to these localized and pri-
vate global models as confined models, to distinguish them from
the global model in traditional FL. In addition, CGD guarantees
that each confined model, when CGD converges, is at the neighbor-
hood of the centralized model. This property, in principle, retains
desirable model accuracy. Furthermore, this strategy allows the
proprietary confined models to further adapt to the heterogeneity
in locality, which provides inherent benefits of fairness.
Observation and Motivation. CGD is inspired by an observation
on the surface of the typical cost function. The steepness of the
first derivative decreases slower when approaching the minimum
of the function, due to the small values in the Hessian (i.e., the
second derivative) near the optimum [9]. This gives the function,
when plotted, a flat valley bottom. As such, a gradient descent algo-
rithmA, when applied on an objective function 𝐹 , could start with
a set of discrete points. Iteratively descending the set using their
joint gradient would lead A to the neighborhood of 𝐹 ’s minimum
in the “flat valley bottom”. Those points would also end up with
similar losses that are close to the loss of the minimum.

From a high-level view,1 we visualize in Figure 2 a comparison
between the optimization process of CGD and that of a gradient
decent in traditional FL on the MNIST dataset [36]. In traditional FL
(Figure 2(a), every participant updates the same global model using
their local gradients, while in CGD (Figure 2(b)), each participant
learns its own confined model and hides its confined model from
each other throughout the training process. CGD allows its partici-
pants to choose their own randomization strategy to initialize their
confined models. For example, they can decide their own interval
range of initial weights. In every training iteration, each participant
independently computes the local gradient from its current con-
fined model and local data, and then securely works out aggregated
gradients so as to update their confined models. The optimization
process of CGD endows FL with the capability of advantageous
privacy-utility tradeoff and bounded fairness among participants.
Contributions. We summarize our main contributions as follows.
• Confined Gradient Descent for Privacy-enhancing Feder-

ated Learning. We propose a new optimization algorithm CGD
for privacy-preserving decentralized FL. CGD eliminates the ex-
plicit sharing of the global model and lets each participant learn
a proprietary confined model. Therefore, it can easily accommo-
date any FL scheme regardless of their underlying machine/deep
learning algorithms. It also eliminates the necessity of a central
coordinating server, such that the optimization can be conducted
in a fully decentralized manner.

• Enhanced Privacy Preservation over Traditional FL. CGD
further enhances the privacy in FL. First, we prove that CGD
provides a stronger privacy guarantee (i.e., in CGD, less noise is
required) than the existing differentially private federated learn-
ing frameworks [2, 63]. We also experimentally demonstrate the

1For the visualization purpose, we follow the techniques proposed in [26, 38] to plot
2D loss landscape, including using principal component analysis (PCA) to get two
principle directions as projection axis, and filter normalization to mitigate the loss
value drifting caused by norm deviation.

Table 1: A summary of CGD and related privacy-preserving FL meth-
ods.

Techniques

Methodology Desired Properties

Local Model
Heterogeneity

Bounded Loss
(Local Model)

Advantageous
Privacy-Utility

Tradeoff

Robustness Convergence
Guarantee

Bounded
Fairness

Bounded
Asynchronyagainst

Passive MIA
against

Active MIA

Plain FL [10, 54]
FL via Secure Aggrega-
tion [8, 43, 44, 48, 57, 69]
FL via Differential Pri-
vacy [2, 16, 29, 58, 61, 70]

1

CGD (Ours)
: The corresponding item is supported; : The corresponding item is partially supported; : The corresponding item is not supported.

1 Additive noise (in most cases) affects the model accuracy [16].

advantages of CGD. For example, given test accuracy around
95% on the MNIST dataset, CGD achieves (0.41, 10−5)-DP, which
is tighter than the existing methods reaching the same accuracy,
e.g., (0.95, 10−5)-DP in Bayesian DP [63], and (2.0, 10−5)-DP in
Abadi et al. [2]. In addition, we also demonstrate CGD’s robust-
ness against the state-of-the-art poisoning membership inference
attacks in FL [46, 50, 68]. Such attacks typically aim to infer the
training samples’ membership by injectingmalicious attributions
against the victim samples. CGD enables each local participant
to examine its confined model’s loss value and test accuracy with
respect to its training samples. By doing this, the participant can
effectively detect suspicious privacy attack against its training
samples and thus determine whether to set the new iterate using
the current updates.

• Bounded Fairness. CGD enables a more fair solution for each
participant through heterogeneous confined model and bounded
asynchronous optimization, i.e., participants are off synchrony
up to a certain bounded delay. We first provide a proof to CGD
fairness-convergence theorem to demonstrate that the distance
between any of the confined models and the centralized model is
bounded when CGD converges. Furthermore, we empirically
show that CGD decreases the variance of the test accuracy
across participants compared to the state-of-the-art fairness-
aware FL [39].

• Functional Evaluations. We implement CGD and conduct ex-
periments on four benchmark datasets. The results demonstrate
that CGD consistently achieves superior privacy, accuracy and
fairness performance in all settings. The performance also re-
mains stable even with a relatively large number of participants
(e.g., 112,000 participants on the MNIST dataset and 32,000 par-
ticipants on the CIFAR-10 dataset).

Open Science. To the best of our knowledge, the paper presents
the first practical privacy-preserving and fairness-aware feder-
ated learning against malicious clients for critical infrastructure
protection and resilience. We release the source code of CGD at
https://github.com/CGD-release/cgd to foster further research.

2 BACKGROUND AND RELATEDWORK
In this section, we introduce the background and recent works that
are related to our study.

2.1 Privacy-preserving Federated Learning
In FL, each local participant 𝑙 ∈ L holds a subset of the training
samples, denoted by 𝜉𝑙 . Taking FedSGD [33, 34, 67] as an example, at
each iteration, a random subset 𝜉𝑙,𝑘 ⊆ 𝜉𝑙 from a random participant
𝑙 is selected. The participant 𝑙 then computes the gradient with
respect to 𝜉𝑙,𝑘 , which can be written as ∇𝑙

𝑘
, and shares the gradient
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with the aggregator (server). All participants (or the aggregator)
can thus take a gradient descent step by

𝑤𝑘+1 ← 𝑤𝑘 − 𝛼𝑘
1
|𝜉𝑙,𝑘 |
∇𝑙
𝑘
. (1)

The existing privacy-preserving methods for FL mainly fall into
two broad categories, i.e., secure aggregation and differential privacy.
Secure Aggregation. Secure aggregation typically employs cryp-
tographic mechanisms such as homomorphic encryption (HE) [13,
44, 57] and/or secure multiparty computation (MPC) [8, 21, 22, 43,
48, 69] to securely work out the gradient ∇𝐹 (𝑤𝑘 , 𝜉𝑙,𝑘 ) without re-
vealing local gradients. Each participant obtains the ∇𝐹 (𝑤𝑘 , 𝜉𝑙,𝑘 )
only, rather than the local gradient of any other participant, and
then all participants take a gradient descent step by Equation 1.

Existing FL frameworks employing HE/MPC are mainly based on
federated SGD [8, 69]. All their participants share and update one
plain global model, which may incur high overhead. In CGD, we
utilize MPC to securely calculate the sum of local updates, each of
which is computed based on a private and different confined model.
This ensures the secrecy of individual updates while devolving the
computational complexity to the local gradients.
Learning with Differential Privacy (DP). One of the strongest
privacy standards that can protect FL models from a variety of
privacy attacks is differential privacy [2, 16, 23, 27, 29, 58, 61, 70, 71].
Here we employ the notion of (𝜖, 𝛿)-differential privacy which is
commonly used in machine learning.

Definition 1. (𝜖, 𝛿)-differential privacy. A randomized mech-
anismM : D → R with domain D and range R satisfies (𝜖, 𝛿)-
differential privacy if for any two adjacent inputs 𝑑 , 𝑑′ ∈ D and for
any subset of outputs 𝑆 ⊆ R it holds that

𝑃𝑟 [M(𝑑) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [M(𝑑′) ∈ 𝑆] + 𝛿. (2)

The definition permits the possibility that plain 𝜖-differential pri-
vacy can be broken with a preferably subpolynomially small proba-
bility 𝛿 when applying the Gaussian noise mechanism [2, 16]. The
common practice of achieving differential privacy in FL is to add
noise calibrated to the local updates, i.e., ∇𝐹 ’s sensitivity S2∇𝐹 . As
such, a differentially private learning framework can be achieved
by updating parameters with perturbed local gradients at each
iteration, for example, to update parameters as

𝑤𝑘+1 ← 𝑤𝑘 − 𝛼𝑘
1
|𝜉𝑙,𝑘 |

(∇𝐹 (𝑤𝑘 , 𝜉𝑙,𝑘 ) + N (0,S2∇𝐹 · 𝜎
2)), (3)

whereN(0,S2∇𝐹 · 𝜎
2) is the Gaussian distribution with mean 0 and

standard deviation S∇𝐹 · 𝜎 .
Recent studies introduced user-level differential privacy in feder-

ated learning [5, 45], which ensures an adversary cannot distinguish
the presence/absence of all the data belonging to a particular partic-
ipant. The guarantee is based on a specific notion of user-adjacent
datasets, i.e., two datasets are user-adjacent if one can be formed by
adding or removing all of the examples associated with a single user
from the other [45]. In this study, the privacy analysis framework
follows the traditional notion of differential privacy with respect to
a single example, incorporating a more generic learning scenario.

2.2 Fairness in FL
In the FL scenario, many factors can affect the fairness of the client,
e.g., the accuracy performance in the presence of high data hetero-
geneity. For example, one common approach to mitigating the strag-
gler problem (FL training progress moves at the pace of the slowest
clients) in synchronous federated learning is to begin training on a
larger number of clients than necessary and subsequently remove
the slowest clients from the round [7]. However, this may inherently
cause a fairness problem, as the data from the straggler clients is
not fully involved in the training phase. Recent research [56] looks
into network-level attacks against FL models, such as packet drop
attacks, where an attacker controls over the network traffic of mul-
tiple clients and further impacts the accuracy of the global model.
We argue that such a network-level availability attack also poses a
threat to the fairness of federated learning models by preventing
data communication between victim clients and the model.

To mitigate this, personalized FL is an emerging line of research
that aims to improve fairness in federated learning. The paradigm
allows participants to adapt the local models to fit their specific
data distribution. Commonly used approaches of personalized FL in-
clude meta-learning (i.e., training a global model while fine-tuning,
regularizing, and/or interpolating the local models) [17, 39, 41]
and partially local methods (i.e., partitioning the model to a shared
backbone component and the adaptive personal ones) [15, 53, 60].
Recently, Li et al. [39] propose Ditto, which is a scalable federated
multi-task learning framework towards fairness in FL. It encourages
the personalized models to be close to the optimal global model
through local training with regularization. Following this work, we
provide a formal definition of fairness in FL.

Definition 2. 𝛾-Fairness. A federated learning system satisfies
𝛾-fairness, if 𝑠𝑡𝑑{𝐹𝑙 (𝑤)}𝑙∈L ≤ 𝛾 , where 𝐹𝑙 (·) denotes the test loss on
participant 𝑙 ∈ L, and 𝑠𝑡𝑑{·} denotes the standard deviation.

Our work fundamentally differs from these approaches by elimi-
nating the shared global model in FL. Our strategy instead allows
the proprietary confined models to further adapt to the heterogene-
ity in locality and push up the peer-to-peer communication layer
away from locality detailed as bounded asynchrony in § 5.1, which
provides inherent benefits of fairness.

3 CONFINED GRADIENT DESCENT
In this section, we formalize this problem and present CGD’s archi-
tecture, threat model, and the optimization algorithm.

3.1 Problem Formulation
Consider a centralized dataset 𝜉 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1 consisting of 𝑛
training samples. The goal of machine learning is to find a model
parameter𝑤 such that the overall loss, which is measured by the
distance between the model prediction ℎ(𝑤, 𝑥𝑖 ) and the label 𝑦𝑖 for
each (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝜉 , is minimized. This is reduced to solving the follow-
ing optimization problem: argmin𝑤 1

𝑛

∑𝑛
𝑖=1 𝐹 (𝑤 ; 𝜉) +𝛽𝑧 (𝑤), where

𝐹 (𝑤 ; 𝜉) stands for the loss function, and 𝑧 (𝑤) is the regularizer.
In the context of FL, we have a system of𝑚 local participants,

each of which holds a private dataset 𝜉𝑙 ⊆ 𝜉 (𝑙 ∈ [1,𝑚]) consisting
of a part of the training dataset. The part could be a part of training
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samples (i.e., the horizontal partition), a part of features that have
common entries (i.e., the vertical partition), or both.
Optimization Objective of CGD. CGD starts with a set of discrete
points {𝑤𝑙

1}. Assume the training takes 𝑇 iterations, and let 𝑤𝑙
𝑘

denote the confined model of participant 𝑙 at the 𝑘𝑡ℎ iteration,
where 𝑘 ∈ [1,𝑇 ]. Let

𝑔𝑙 (𝑤𝑙
𝑘
, 𝜉𝑙 ) =

1
|𝜉𝑙 |
∇𝐹 (𝑤𝑙

𝑘
, 𝜉𝑙 ) (4)

represent the local gradient with respect to 𝜉𝑙 . The objective of
CGD is to learn a separate confined model for each participant,
by synthesizing the local gradients in a secure way. When CGD
converges, participant 𝑙 derives its own final confined model𝑤𝑙

∗. We
use𝑤∗ to denote the optimal solution of centralized training (i.e., the
centralized model). CGD aims to make𝑤𝑙

∗ located at a neighborhood
of𝑤∗ within a bounded gap.

3.2 CGD Architecture
As shown in Figure 3(a), in traditional FL, every participant holds
its local training dataset, and all of them update the same global
model𝑤𝑘 via a parameter server using their local models/gradients.
The local gradients ∇𝐹 (𝑤𝑘 , 𝜉𝑙,𝑘 ) can be protected via either secure
aggregation [8, 43, 44, 48, 57, 69] or differential privacy mecha-
nisms [2, 16, 29, 58, 61, 70].

As seen in CGD (Figure 3(b)), each participant learns its own
confined model (represented by different colors), i.e., each 𝑤𝑙

𝑘
is

different and private. The model updating in CGD synthesizes the
aggregated information by summing up the local gradients from a
subset of participants. To better position CGD, we summarize and
compare existing privacy-preserving federated learning approaches
with our CGD in Table 1.
Desired properties. CGD should have the following properties:
• Advantageous privacy-utility tradeoff. CGD should not degrade

the utility (e.g., accuracy) while preserving the privacy of par-
ticipants. Concretely, CGD pursues an advantageous tradeoff
between privacy and model utility via the secrecy of the confined
models (as detailed in Section 4).

• Robustness against membership inference attacks. Considering
the emerging privacy threats introduced by membership infer-
ence attacks (MIAs), as a novel and practical federated learning
approach, CGD guarantees its robustness against MIAs, includ-
ing passive MIA and active MIA, through the participant-side
detect-then-drop strategy (as detailed in Section 4).

• Fairness-awareness. CGD should provide a practical approach to
achieving a uniform utility distribution, minimizing the standard
deviation of test loss across participants. CGD guarantees that
each confined model, when CGD converges, is at the neighbor-
hood of the centralized model. This property retains desirable
model accuracy and fairness according to Definition 2 (as proved
in Section 5).

• Asynchronous federated learning enabled. In traditional syn-
chronous FL, progress moves at the synchronous pace. In CGD,
we enable a mechanism to allow bounded asynchronous opti-
mization, i.e., slow participants can upload data in later rounds,
and such asynchrony is up to a bounded delay for the fairness
guarantee.

3.3 Threat Model of Privacy and Fairness
Attacks

Threat model of privacy attacks. We consider a membership
inference adversary who aims to infer whether a given data record
was used to train the model. We include two representative modes
of privacy attacks in CGD, i.e., passive mode and active mode. In
the passive mode, the adversary makes observations of the genuine
computations during the federated learning; while in the active
mode, the adversary can further actively modify its local updates
with respect to the victim samples for the inference attack [46, 50,
68]. In both modes, the adversary has white-box access to the local
model, following the existing privacy-preserving federated learning
frameworks [2, 46, 50, 58]. The attack participants can collude with
each other, but we assume that there are at most𝑚 − 2 out of𝑚
participants controlled by the attacker.
Threat model of fairness attacks. Regarding model fairness,
we focus on network-level packet drop threats. They can arise
from various methods, which have been studied in the context of
network-level adversaries who carry out physical-layer attacks or
transport-layer attacks [4, 31]. Adapted from Severi et al. [56], in
the network-level packet drop threat, the attacker aims to decrease
the accuracy of the FL model on a particular group of clients.

In this research, we particularly focus on the privacy and fair-
ness attacks. The general poisoning attacks that aim to corrupt the
overall model prediction are beyond the scope of this study.

3.4 CGD Algorithm
Algorithm 1 outlines the optimization process, which consists of
the following steps.

• Initialization (Line 3). Each participant 𝑙 randomizes its own
𝑤𝑙
1 with an initialization function 𝑖𝑛𝑖𝑡 () which takes three argu-

ments:𝑤𝑎𝑛𝑐ℎ𝑜𝑟 denotes an anchor matrix that is shared among
participants (e.g., a zero matrix); 𝑅𝑎𝑛𝑑𝑙 denotes the randomiza-
tion distribution (a typical one is a Gaussian distribution); and 𝜆𝑙
is to control the distance of the initial points to the anchor, and
CGD allows each participant to choose their own 𝜆𝑙 . On the other
hand, 𝑖𝑛𝑖𝑡 () also represents the tradeoff of privacy and accuracy.
Intuitively, higher degree of randomness leads to differing con-
fined models, but may undermine the accuracy performance of
the confined models. In the following, we define a procedure
called balanced initialization which balance out the randomness.

Definition 3. (Balanced initialization). Given an initialization
scheme Rand, each CGD participant uses an initialization param-
eter 𝜆𝑙 to initialize its confined model𝑤𝑙 in the way of

𝑤𝑙
1 = 𝑤𝑎𝑛𝑐ℎ𝑜𝑟 + 𝜆𝑙 · Rand𝑙 for all 𝑙 ∈ (1,𝑚). (5)

The key idea of the balanced initialization is to let each partic-
ipant determines its own Rand𝑙 and 𝜆𝑙 independently to avoid
leaking the average distance among the confined models.

• Step 1: Compute local gradients (Line 6). Every participant
computes the local gradient 𝑔𝑙

𝑘
with respect to its current con-

fined model𝑤𝑙
𝑘
and local dataset 𝜉𝑙 using Equation 4. We high-

light that in traditional FL, each participant’s local gradient is
4
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Figure 3: Architectural comparison of CGD and the traditional federated learning.

Algorithm 1 Confined Gradient Descent Optimization
Input: A set of participants 𝑙 ∈ 𝐿, the local training data 𝜉𝑙 , fraction of selected
participants𝐶 , the number of training iterations𝑇 , and the loss threshold LRR.
Output: Confined model for each participant 𝑤𝑙

∗ .
1: 𝑘 ← 1
2: for each 𝑙 do
3: 𝑤𝑙

1 ← 𝑖𝑛𝑖𝑡 (𝑤𝑎𝑛𝑐ℎ𝑜𝑟 , 𝑅𝑎𝑛𝑑
𝑙 , 𝜆𝑙 )

4: while 𝑘 ≤ 𝑇 do
5: for participants 𝑙 ∈ 𝐿 do
6: 𝑔𝑙

𝑘
← 𝐹 (𝑤𝑙

𝑘
, 𝜉𝑙 )

7: 𝑔𝑙
𝑘
← 𝑎𝑑𝑑𝑁𝑜𝑖𝑠𝑒 (𝑔𝑙

𝑘
, 𝜆𝑙 )

8: 𝑆 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (𝐶, 𝐿)
9: 𝑔𝑘 ←

∑
𝑠∈𝑆

𝑔𝑠
𝑘

10: 𝛼𝑘 = 𝑐ℎ𝑜𝑜𝑠𝑒𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 ( )
11: 𝑤 ← 𝑤𝑙

𝑘
− 𝛼𝑘𝑔𝑘

12: LRR𝑘 ← 𝐹 (𝑤, 𝜉𝑙 ) − 𝑔𝑙𝑘
13: if LRR𝑘 ≤ LRR then
14: 𝑤𝑙

𝑘+1 ← 𝑤

15: else
16: 𝑤𝑙

𝑘+1 ← 𝑤𝑙
𝑘

17: 𝑘 ← 𝑘 + 1

computed based on the same global model at the current itera-
tion. In contrast, the local gradients in CGD are computed from
private confined models which are different among participants.

• Step 2: Add noise (Line 7). In this step, CGD allows each partic-
ipant to add noise to its local gradients with an 𝑎𝑑𝑑𝑁𝑜𝑖𝑠𝑒 (𝑔𝑙

𝑘
, 𝜆𝑙 )

function. The perturbed local gradient is denoted as 𝑔𝑙
𝑘
. This step

aims to facilitate the comparison of privacy preservation between
CGD and the traditional DP mechanism. We show that less noise
is required for the same level of privacy guarantee, resulting in
better privacy-accuracy tradeoff (detailed in Section 4).

• Step 3: Secure addition of gradients (Line 9). A subset of
participants 𝑆 (randomly selected with the fraction parameter𝐶)
jointly compute the aggregated gradient 𝑔𝑘 , which is later used
for loss bound checking. In order to preserve the secrecy of the
confined models, we employ the additive secret sharing [6] for
securely evaluating the sum of a set of secret values to avoid

releasing the addends in plain text. In Appendix G, we prove that
the secrecy of the confined models is guaranteed.

• Step 4: Confined model pre-step (Lines 10 to 11). Every partic-
ipant in the current iteration computes its own𝑤 with learning
rate 𝛼𝑘 as a pre-step, which will be applied to the update of the
confined model (or dropped) after the local loss bound check.

• Step 5: Local loss bound checking (Lines 12 to 16). Every
participant compute loss LRR𝑘 in this round if𝑤 is applied, i.e.,
the change of model’s prediction performance in terms of the loss
function value, and takes a descent step on𝑤 if the performance
degradation is less than the local loss threshold 𝐿𝑅𝑅.

3.5 Implementation and Benchmarks
Datasets. We implement and evaluate CGD’s performance on
four benchmark datasets, i.e.,, MNIST [36], CIFAR-10 [35], Loca-
tion30 [66] and Hourly Energy Consumption (HEC) [49]. We give
the details of the datasets and models in Appendix A.
Benchmarks. We compare CGD’s performance in terms of privacy
and fairness with the benchmarks in the following.
i) Differentially private benchmarks. We compare CGD with FL
with DP mechanisms, i.e., local updates perturbation. Specifically,
we take the following two state-of-the-art differentially private FL
schemes in our experiments. The settings of all benchmarks are
listed below.
• SDP [2]. The standard Gaussian mechanism is based on the

moment accountant proposed by Abadi et al. [2].
• BDP [63]. We also compare the state-of-the-art Bayesian Dif-

ferential Privacy (BDP) which takes into account that training
samples in ML are typically drawn from the same distribution,
and it thus calibrates noise to the data distribution and provides
tight privacy guarantees.
We further compare the performance of CGD with Centralized

training (i.e., training on aggregated data), Local training (i.e.,
training on each participant’s local data only), and FedAvg [34].
ii) Preserving privacy against poisoning MIA in the active
mode.We implement the state-of-the-art poisoning membership

5



inference attack against FL [46, 50, 68], in which the adversary
pushes updates towards ascending the gradients of the global model.
iii) Fairness benchmark. For fairness benchmarking, we compare
with Ditto [39], which is the state-of-the-art towards fairness in
FL. It is a personalization add-on that encourages the personalized
models to be close to the optimal global model through local training
with regularization.
Default FL setting. CGD is trained using Algorithm 1 on the
dataset which is partitioned and distributed to𝑚 participants, where
𝑚 = (𝑚ℎ ×𝑚𝑣). By default, the initialization parameter 𝜆 is set
to 0.1, and𝑚 is set to (4 × 4) in our experiments of privacy and
fairness analysis.

4 PRIVACY ANALYSIS
In this section, we first analyze CGD’s privacy preservation within
the framework of DP in Sections 4.1. We then conduct experimental
evaluation to demonstrate privacy-utility performance of CGD as
well as its capacity in defending MIA (Section 4.2).

4.1 Privacy Bound in CGD
In our analysis, we let the privacy cost be:

P = log
(
𝑃𝑟 (M(𝑑 ) = 𝑆 )
𝑃𝑟 (M(𝑑 ′ ) = 𝑆 )

)
.

We use the Chernoff bound, which is widely adopted in various
privacy accounting techniques [2, 47, 63], to convert the Inequality 2
as

𝑃𝑟 (P ≥ 𝜖 ) ≤ E[𝑒
𝑐P ]

𝑒𝑐𝜖
. (6)

The inequality holds for any 𝑐 , and it determines the tightness of
the bound (i.e., minimizes 𝛿 and/or 𝜖). We then define

L(M)𝑐 = E
[
𝑒𝑐P

]
= E

[(
𝑃𝑟 (M(𝑑 ) = 𝑆 )
𝑃𝑟 (M(𝑑 ′ ) = 𝑆 )

)𝑐 ]
. (7)

Inspired by themoments accountant [2], we aim to boundL(M)𝑐 ,
and we can then use the Chernoff inequality to transform the bound
to (𝜖, 𝛿)-differential privacy. To bound L(M)𝑐 , we first analyze the
relationship of the randomness in CGD and the traditional noise in
DP framework based on Gaussian mechanism [16].

Existing DP framework adds noise to the local gradients which
are computed from the same global model. The noise, which we
refer to as the standard noise, denoted as 𝜎𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 is required to
be added in each single training iteration [2, 16]. In contrast, the
randomness in the confined models, which is protected by additive
secret sharing scheme, is incorporated to the local gradient’s calcula-
tion (In Appendix G, we provide a security analysis to demonstrate
that the confidentiality of the confinedmodels is guaranteed against
an honest-but-curious white-box adversary who may control 𝑡 out
of𝑚 participants, where 𝑡 ≤ 𝑚− 2). This fact can be utilized to save
the amount of additive noise in each iteration to reach the same
𝜖 . Intuitively, such randomness can be regarded as inherent noise
which allows the standard additive noise 𝜎𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 to be reduced.

In CGD, each participant conducts computation based on differ-
ent models with the randomness ofN(0, 𝜆𝑙 ). Thus, each𝑤𝑙 satisfies
(𝜖′, 𝛿)-differential privacy, where 𝜖′ ≥

√︃
2 ln 1.25

𝛿𝜆𝑙
by standard ar-

guments (Theorem 3.22 in [16]). We then have 𝑔𝑙 satisfying (𝜖′,
𝛿)-differential privacy based on the post-processing property of

Table 2: Comparison of privacy bounds between CGD and DP-FL.
MNIST CIFAR-10 Location30 Energy HEC

Test Acc (𝜖, 𝛿)-DP Test Acc (𝜖, 𝛿)-DP Test Acc (𝜖, 𝛿)-DP MSE (𝜖, 𝛿)-DP
CGD 95.00% (0.41, 10−5) 73.00% (0.35, 10−5) 75.80% (0.75, 10−5) 0.0062 (0.80, 10−5)

BDP [63] 95.00% (0.95, 10−5) 73.00% (0.76, 10−5) 56.04% (329.12, 10−5) 0.0082 (1.46, 10−5)
SDP [2] 95.00% (2.00, 10−5) 70.00% (4.00, 10−5) 56.04% (329.29, 10−5) 0.0082 (1.46, 10−5)

DP. We thus can construct 𝑔𝑙 (clipped) as the sum of a 𝑔𝑙
𝑎𝑛𝑐ℎ𝑜𝑟

and
N(0, 𝜆𝑙 ), and rewrite Line 7 in Algorithm 1 as

𝑔𝑙 = 𝑔𝑙 /max(1, ∥𝑔𝑙1 ∥2 ) + N(0, 𝜎2 )
= 𝑔𝑙

𝑎𝑛𝑐ℎ𝑜𝑟
+ N(0, 𝜆𝑙 ) + N(0, 𝜎2 ) = 𝑔𝑙

𝑎𝑛𝑐ℎ𝑜𝑟
+ N(0, 𝜆𝑙 + 𝜎2 )

(8)

Therefore, we have

𝑔 =

𝑚∑︁
𝑙=1

𝑔𝑙 =

𝑚∑︁
𝑙=1

𝑔𝑙
𝑎𝑛𝑐ℎ𝑜𝑟

+
𝑚∑︁
𝑙=1
N(0, 𝜆𝑙 + 𝜎2 )

=

𝑚∑︁
𝑙=1

𝑔𝑙
𝑎𝑛𝑐ℎ𝑜𝑟

+ N(0,
𝑚∑︁
𝑙=1

𝜆𝑙 +𝑚𝜎2 )
(9)

With this, we give the following lemma.

Lemma 1. For any positive integer 𝑐 ≥ 1, CGD with an 𝑎𝑑𝑑𝑁𝑜𝑖𝑠𝑒

function defined as 𝑔𝑙
𝑘
= 𝑔𝑙

𝑘
/max(1, ∥𝑔𝑙

𝑘
∥2) + N (0, 𝜎2) satisfies

log L(M)𝑐 ≤
𝑐 (𝑐 + 1)∑𝑚

𝑙=1 𝜆
𝑙 +𝑚𝜎2 + O(

𝑐3

(∑𝑚
𝑙=1 𝜆

𝑙 +𝑚𝜎2 )3/2
) (10)

We give the proof in Appendix B.

Theorem 1. Given the number of training iteration𝑇 , there exists
a constant 𝑎 such that CGD is (𝜖 , 𝛿)-differentially private for any
𝛿 > 0 if we choose

𝜎 ≥ 2

√︄
𝑇𝑎 log 1

𝛿

𝑚𝜖2
− E[𝜆𝑙 ] (11)

We give the proof in Appendix C.
We remark that the result of Theorem 1 does not take into con-

sideration the privacy amplification via sub-sampling because the
selection of the training samples at each iteration can be non-IID
in the federated learning. As such, the result can be regarded as
the worst case in which the batch gradient descent is conducted.
In Appendix D, we also provide a tighter bound of CGD’s privacy
preservation with IID data.

4.2 Empirical Results on Privacy
Privacy Utility vs. Accuracy Performance. Table 2 summarizes
the privacy bounds in CGD, BDP [63] and SDP [2] respectively,
when they reach the same accuracy level. CGD retains a lower
𝜖 when reaching the same accuracy level as others. It achieves
(0.41, 10−5)-DP on MNIST, (0.35, 10−5) on CIFAR-10, (0.75, 10−5)
on Location30, and (0.80, 10−5) on Energy HEC, all stronger than
BDP and SDP.

Figure 4 illustrates the performance of CGD on the test accuracy
compared to the FedAvg and local training. For MNIST, with the
privacy bounds at (0.54, 10−5), CGD achieves 96.9% in test accu-
racy, which is close to 97.54% of FedAvg and outperforms of 71.77%
of the local training. For CIFAR-10, FedAvg reaches the test accu-
racy of 75.75%, which is taken as our baseline.2 In line with the
performance on MNIST, with the privacy bounds at (0.36, 10−5),
2We note that by making the network deeper or using other advanced techniques,
better accuracy can be obtained, given the state-of-the-art being 99.37% [32].
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Figure 4: CGD’s test accuracy compared to FedAvg and local training.
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Figure 5: The variation of test accuracy among participants in CGD.

Table 3: CGD’s performance against active MIA.

MNIST CIFAR Location30 Energy HEC

Active MIA
Success Rate

CGD 51.30% 50.00% 55.10% 50.10%
FedAvg 54.30% 60.30% 88.30% 72.87%

Model Performance CGD 92.00% 66.90% 68.82% 0.94
FedAvg 86.80% 45.60% 33.33% 1.14

Table 4: CGD’s performance of fairness (Definition 2): Standard de-
viation of test accuracy on MNIST, CIFAR, Location30, and standard
deviation of MSE on Energy HEC among participants.

MNIST CIFAR Location30 Energy HEC

Clean
(honest-but-curious)

CGD 0.0013 0.0043 0.0023 0.0001
Ditto 0.0082 0.1223 0.0698 0.0051

Active MIA CGD 0.0043 0.1370 0.0523 0.0005
Ditto 0.1974 0.1720 0.1657 0.0103

CGD achieves 74.30% in test accuracy, while the local training only
reaches 53.67%. For Location30 and Energy HEC, CGD achieves
75.8% of test accuracy with (0.75, 10−5)-DP and 0.0062% of MSE
with (0.80, 10−5), respectively, outperforming the test accuracy of
73.27%, 0.0072 in FedAvg, and 42.80%, 0.007 in the local training.
Robustness against Active MIA. We set 𝑚 = (8 × 4), i.e., 32
participants in the experiments and 20% of them are controlled by
the poisoning adversary, following the standard setting in the liter-
ature [11, 18, 30]. Table 3 summarizes CGD’s performance against
the active membership inference attack. In general, CGD signif-
icantly mitigates the attack, reducing the attack success rate to
around 50% (i.e., random guess of member and non-member) across
all datasets. It also retains the model prediction performance: it
achieves 92.00%, 66.90%, 68.82% of test accuracy, and 0.94 of MSE
on MNIST, CIFAR-10, Location30, and Energy HEC, respectively,

whereas the test accuracy in FedAvg (without the protection of
CGD) reduces significantly due to the poisoning.

5 FAIRNESS ANALYSIS
In this section, we first conduct a formal analysis on the bound
of the distance between an arbitrary confined model 𝑤𝑙

∗ learned
by CGD and the centralized model𝑤∗, demonstrating the fairness-
convergence guarantee (Sections 5.1- 5.2). We then conduct experi-
ments to demonstrate CGD’s fairness on real-world datasets, com-
paring with the state-of-the-art fair FL method [39] (Section 5.3).

5.1 Bounded Asynchrony in CGD
In CGD, a participant does not take the descent step when detecting
any suspicious updates against it. This results in the asynchronous
optimization, indicating that any two participants may be at dif-
ferent iteration rounds. For any participant 𝑙 at iteration 𝑘 , the
confined model𝑤𝑙

𝑘
is updated as

𝑤𝑙
𝑘+1 = 𝑤𝑙

𝑘
− 𝛼𝑘

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ), (12)

where 𝜏 𝑗
𝑘
denotes the staleness, i.e., how many iterations of a delay

between the participants 𝑗 and 𝑙 at 𝑘𝑡ℎ iteration. We show that,
when𝐶 ≤ 1−𝑃A (recall𝐶 is a fraction parameter of𝑚 participants,
A denotes the set of malicious participants, and 𝑃A denotes the
malicious proportion, i.e., 𝑃A = |A|/𝑚), the staleness in CGD is
bounded (i.e., 𝜏 𝑗

𝑘
≤ 𝜏), with a preferably subpolynomially small

probability being broken (see Appendix H).
Thus, the bounded staleness of 𝜏 can also be utilized to make

CGD resistant to network-level attacks against FL models, such as
a packet drop attack, i.e., CGD is tolerant to the drop up to 𝜏 .
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5.2 Fairness-Convergence Theorem
We now give an upper bound of the distance between any partic-
ipant’s 𝑤𝑙

∗ and 𝑤∗, demonstrating the convergence rate and the
fairness guarantee in CGD. Our analysis investigates a regret func-
tion R, which represents the difference between the CGD’s loss and
the loss of the centralized model. R is defined as

R =
1
𝑇

𝑇∑︁
𝑘=1
(𝐹 (𝑤𝑙

𝑘
) − 𝐹 (𝑤∗ ) ) . (13)

Using it, we present our Fairness-Convergence Theorem below,
establishing the guarantee of CGD converging to the neighbor-
hood of the global optimum, where the loss against the optimum is
bounded.

We first present the assumption on a bounded solution space
which is widely used in related studies [10, 29].

Assumption 1. (Bounded solution space). The set of {𝑤𝑙
𝑘
}|𝑘∈[1,𝑇 ]

is contained in an open set over which 𝐹 is bounded below a scalar
𝐹𝑖𝑛𝑓 , such that (i) there exists a 𝐷 > 0, s.t., ∥𝑤𝑙

𝑘
−𝑤∗∥22 ≤ 𝐷2 for all

𝑘 , and , and (ii) there exists a 𝐺 > 0, s.t., ∥𝑔𝑙 (𝑤𝑙
𝑘
, 𝜉𝑙 )∥22 ≤ 𝐺2 for all

𝑤𝑙
𝑘
⊂ R𝑑 .

We also follow prior works [29, 62, 65] in which Lipschitz conti-
nuity and convexity are applied. Such assumptions are based on the
observation that a trainable deep neural network, e.g., ResNets-110
(containing 110 layers) with shortcut/skip connections, requires
flat minima and wide regions of apparent convexity, while chaotic
loss surfaces, with dramatic non-convexities where the gradients
are uninformative, are hard to train [38]. For a detailed discussion
on Lipschitz continuity used in the following theorem, we refer
readers to Chaudhuri et al. [12].

Theorem 2. For any cost function that is L-lipschitz and satisfies
convexity and Assumption 1, assuming that the learning rate meets
𝛼𝑘 = 𝛼

(𝑘+𝜇𝑇 )2 (0 < 𝜇 < 1), and a bounded staleness of 𝜏 , the CGD
optimization gives the regret R

R = 𝑂 (𝛾 + 1
𝜇𝑇 + 1 +

ln |𝜇𝑇 + 1 |
𝑇

+ 1
𝑇 (1 − 𝜏 +𝑇 ) ), (14)

where 𝛾 =𝑚∥ E
𝑗∈𝑚
[𝑤𝑙

1 −𝑤
𝑗

1] ∥.

Below we discuss the implications of the theorem, and leave its
proof to Appendix E.
Implication #1: Convergence rate. 1

𝜇𝑇+1 ,
ln |𝜇𝑇+1 |

𝑇
and ln |𝜇𝑇+1 |

𝑇
+

1
𝑇 (1−𝜏+𝑇 ) approach 0 as 𝑇 increases, implying that CGD will con-
verge toward the optimum. The convergence rate is affected by the
staleness bound 𝜏 , i.e., a larger 𝜏 will lead to a slower rate. It can
also be adjusted by the parameter 𝜇, named diminishment factor.
Implication #2: Bounded optimality gap. When CGD converges,
the gap between the confined models and the centralized model is
bounded by 𝛾 , implying the fairness guarantee. The gap is affected
by the variance of𝑤 𝑗

1 . We show that, CGD keeps robust (in terms of
test accuracy) even when the participants’ 𝜆𝑙 s differ by two orders
of magnitude.

5.3 Empirical Results on Fairness
Figure 5 shows the fairness performance of CGD during the training
iterations. When CGD converges, the standard deviation (SD) of

test accuracy across participants achieves 0.0013, 0.0043, 0.0023,
and 0.0001 on MNIST, CIFAR-10, Location30, and Energy HEC in
the honest-but-curious scenario, and 0.0043, 0.1370, 0.0523, and
0.0005 on these datasets against active membership inference.

In Table 4, we compare the performance of CGD with Ditto [39].
In the passive scenario (which is in line with the “clean data” set-
ting in Ditto), CGD reduces the standard deviation of test accuracy
across participants by 0.0069, 0.1180, 0.0675, and 0.0050 (MSE) on
MNIST, CIFAR-10, Location30, and Energy HEC, respectively. In
the active scenario (which is in line with the “data poisoning at-
tack” setting in Ditto), CGD reduces the standard deviation of test
accuracy by 0.1931, 0.0350, 0.1134, and 0.0098 on these datasets.

6 ABLATION STUDIES OF PERFORMANCE
6.1 Scalability
In this section, we investigate how the number of participants
affects CGD’s privacy and accuracy performance. CGD’s perfor-
mance remains relatively stable as the participant number grows,
even with a large number of participants. With 112,000 partici-
pants (i.e.,𝑚 = (1000 × 112)) for MNIST, CGD still achieves 95.78%
in test accuracy, close to 97.54% of the centralized baseline. With
32,000 participants (i.e.,𝑚 = (1000 × 32)) for CIFAR, CGD achieves
67.67% in test accuracy, which is also close to the centralized base-
line (75.72%). We give more experimental results in Appendix I.1.

6.2 Effect of the Initialization
We conduct experiments to investigate the effect of initialization
parameter 𝜆. We let each participant randomly select its own 𝜆

based on the uniform distribution within the range from 0.001 to
0.1. The performance of CGD is still comparable with the centralized
mode. For example, with𝑚 = (1000 × 112) participants on MNIST
and𝑚 = (1000× 32) on CIFAR, CGD achieves 97.07% and 71.01% in
the test accuracy respectively. This suggests that CGD keeps robust
when the 𝜆s of its participants differ by two orders of magnitude.
This provides sufficient randomness in the balanced initialization
strategy. More results of the investigate on the parameter 𝜆 is given
in Appendix I.2.

In Appendix I.3, we also provide additional results of the effect
of the diminishment factor 𝜇.

7 CONCLUSION
We have presented CGD, a novel optimization algorithm for learn-
ing confined models to enhance privacy and fairness for federated
learning. It achieves tighter differential privacy bounds than the
state-of-the-art DP-FL frameworks. CGD is also effective in defend-
ing against poisoning MIA in the active mode, reducing the attack
accuracy to 50%. We also formally prove the convergence-fairness
of CGD optimization. Since we focus on the privacy and fairness of
malicious clients or local models, security attacks such as intention-
ally injecting poisoned data and uploading backdoored local models
on CGD provide avenues for our future research.We hope that CGD
developed in this paper could be steadily leaving its infancy for
building protection and resilience for critical infrastructure.
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APPENDIX
A DATASETS AND MODELS
In the following, we give the details of the datasets and models.
• MNIST [36]. It is a benchmark dataset for handwritten digit

recognition. It has 60, 000 training samples and 10, 000 test sam-
ples, each with 784 features representing 28 × 28 pixels in the
image. We use a convolutional neural network (CNN) with ReLU
of 256 units and cross-entropy loss.

• CIFAR-10 [35]. The dataset consists of 60,000 32 × 32 colour
images in 10 classes (e.g., airplane, bird, and cat). We follow the
settings of Abadi et al. [2], which treats the CIFAR-10 as the
private dataset and CIFAR-100 as a public dataset. CIFAR-100
has the same image types as CIFAR-10, and it has 100 classes
containing 600 images each.We use CIFAR-100 to train a network
with the ResNet-56 architecture [28], and freeze the parameters
of the convolutional layers and retrain only the last FC layer on
CIFAR-10.

• Location30 [66]. This dataset contains mobile users’ “check-in”
data in the Foursquare social network. In our experiments, we
use the processed dataset created by Shokri et al. [59] which
contains 30 classes and 5,010 user profiles, each with 446 bi-
nary features. The model architecture is a FCN with layer sizes
{446, 512, 128, 30}.

• Hourly Energy Consumption (HEC) [49]. The dataset con-
tains 121,275 historical hourly energy consumption records (in
MegaWatts) of several major electricity distribution companies
in the United States over 10 years. It is used for time-series fore-
casting tasks, i.e., to use early sequences of energy consumption
values and predict the future value for sequences of length 𝑇 .
The model architecture is LSTM, where we use Mean Squared
Error (MSE) to measure the accuracy of regression prediction.

B PROOF OF LEMMA 1
Proof. Let 𝑣0 denote the pdf of N(0, 𝜎′2) and let 𝑣1 denote the

pdf of N(1, 𝜎′2) , where 𝜎′2 =
∑𝑚
𝑙=1 𝜆

𝑙 + 𝑚𝜎2. Without loss of
generality, we have:

M(𝑑 ) ∼ 𝑣0,M(𝑑 ′ ) ∼ 𝑣1

.We aim to demonstrate the bound of

max
(
E𝑥∼𝑣1

[
(𝑣1 (𝑥)/𝑣0 (𝑥))𝑐

]
,E𝑥∼𝑣0

[
(𝑣0 (𝑥)/𝑣1 (𝑥))𝑐

] )
.

We will prove one case and the method of proving the other case is
similar.

E𝑥∼𝑣1 [ (𝑣1 (𝑥 )/𝑣0 (𝑥 ) )
𝑐 ] = E𝑥∼𝑣0

[
(𝑣1 (𝑥 )/𝑣0 (𝑥 ) )𝑐+1

]
= E𝑥∼𝑣0

[(
1 + 𝑣1 (𝑥 ) − 𝑣0 (𝑥 )

𝑣0 (𝑥 )

)𝑐+1]
=

𝑐+1∑︁
𝑖=0

(
𝑐 + 1
𝑖

)
E𝑥∼𝑣0

[(
𝑣1 (𝑥 ) − 𝑣0 (𝑥 )

𝑣0 (𝑥 )

)𝑖 ]
=

(
𝑐 + 1
0

)
E𝑥∼𝑣0

[(
𝑣1 (𝑥 ) − 𝑣0 (𝑥 )

𝑣0 (𝑥 )

)0]
+
(
𝑐 + 1
1

)
E𝑥∼𝑣0

[(
𝑣1 (𝑥 ) − 𝑣0 (𝑥 )

𝑣0 (𝑥 )

)1]
+
(
𝑐 + 1
2

)
E𝑥∼𝑣0

[(
𝑣1 (𝑥 ) − 𝑣0 (𝑥 )

𝑣0 (𝑥 )

)2]
+ ...

(15)
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The first term of the binomial expansion is 1, and the second term
is

E𝑥∼𝑣1

[(
𝑣0 (𝑥 ) − 𝑣1 (𝑥 )

𝑣1 (𝑥 )

)1]
=

∫ ∞

−∞
𝑣1 (𝑥 )

𝑣0 (𝑥 ) − 𝑣1 (𝑥 )
𝑣1 (𝑥 )

d𝑥

=

∫ ∞

−∞
𝑣0 (𝑥 ) − 𝑣1 (𝑥 ) d𝑥 = 1 − 1 = 0

The third term is

E𝑥∼𝑣0

[(
𝑣1 (𝑥 ) − 𝑣0 (𝑥 )

𝑣0 (𝑥 )

)2]
= E𝑥∼𝑣0

[(
𝑣1 (𝑥 )
𝑣0 (𝑥 )

− 1
)2]

= E𝑥∼𝑣0


©­­­«

1
𝜎 ′
√
2𝜋 𝑒

− 1
2
(
𝑥−1
𝜎 ′

)2
1

𝜎 ′
√
2𝜋 𝑒

− 1
2
(
𝑥
𝜎 ′

)2 − 1
ª®®®¬
2

= E𝑥∼𝑣0

[(
exp

(
2𝑥 − 1
2𝜎 ′2

)
− 1

)2]
= E𝑥∼𝑣0

[
exp

(
4𝑥 − 2
2𝜎 ′2

)]
− 2E𝑥∼𝑣0

[
exp

(
2𝑥 − 1
2𝜎 ′2

)]
+ 1

= exp
(
−2
2𝜎 ′2

) ∫ ∞

−∞

1
𝜎 ′
√
2𝜋

𝑒
− 1
2
(
𝑥
𝜎 ′

)2
𝑒

(
4𝑥

2𝜎 ′2

)
d𝑥

− 2 exp
(
−1
2𝜎 ′2

) ∫ ∞

−∞

1
𝜎 ′
√
2𝜋

𝑒
− 1
2
(
𝑥
𝜎 ′

)2
𝑒

(
2𝑥

2𝜎 ′2

)
d𝑥 + 1

= exp
(
−2
2𝜎 ′2

)
exp

(
4

2𝜎 ′2

) ∫ ∞

−∞

1
𝜎 ′
√
2𝜋

𝑒
− 1
2
(
𝑥−2
𝜎 ′

)2
d𝑥

− 2 exp
(
−1
2𝜎 ′2

)
exp

(
1

2𝜎 ′2

) ∫ ∞

−∞

𝑒
− 1
2
(
𝑥−1
𝜎 ′

)2
𝜎 ′
√
2𝜋

d𝑥 + 1

= exp
(

1
𝜎 ′2

)
− 1

Therefore, the sum of the first three terms is

1 +
(
𝑐 + 1
2

) (
exp

(
1
𝜎 ′2

)
− 1

)
< exp

(
𝑐 (𝑐 + 1)∑𝑚

𝑙=1 𝜆
𝑙 +𝑚𝜎2

)
(with 𝑐 ≥ 1)

The remaining terms is dominated by the 𝑖 = 3, which is

O( 𝑐3

(∑𝑚
𝑙=1 𝜆

𝑙 +𝑚𝜎2)3/2
) .

We omit the derivation as it can be easily obtained by the standard
calculus. □

C PROOF OF PRIVACY THEOREM
(THEOREM 1)

Proof. The accumulated privacy cost with𝑇 training iterations
is

logL(M)𝑇𝑐 = 𝑇 logL(M)𝑐 (16)

< 𝑇
𝑎𝑐 (𝑐 + 1)∑𝑚
𝑙=1 𝜆

𝑙 +𝑚𝜎2
(17)

Equation 16 follows the Composability (i.e., Theorem 2.1 in [2]).
To make CGD (𝜖 , 𝛿)-differentially private, according to Chernoff

inequality (Theorem 2.2 in [2]), it suffices that

𝑇
𝑎𝑐 (𝑐 + 1)∑𝑚
𝑙=1 𝜆

𝑙 +𝑚𝜎2
≤ 𝑐𝜖

2 ,

exp
(−𝑐𝜖

2

)
≤ 𝛿

Therefore,

𝑚∑︁
𝑙=1

𝜆𝑙 +𝑚𝜎2 ≥ 2𝑇𝑎(𝑐 + 1)
𝜖

(18)

≥ 4𝑇𝑎
log 1

𝛿

𝜖2
(19)

Inequation 19 is from 𝑐 ≥ 2 log 1
𝛿
/𝜖 . Therefore, we have

𝜎 ≥ 2

√︄
𝑇𝑎 log 1

𝛿

𝑚𝜖2
− E[𝜆𝑙 ] (20)

□

D PRIVACY BOUNDWITH IID DATA
In this section, we give CGD’s privacy bound with IID data.

Corollary 1. Given the number of training iteration 𝑇 , the
fraction of selected participants 𝐶 there exists a constant 𝑎 so that
CGD is (𝜖 , 𝛿)-differentially private for any 𝛿 > 0 if we choose

𝜎 ≥ 2

√︄
𝐶2𝑇𝑎 log 1

𝛿

𝑚𝜖2
− E[𝜆𝑙 ] (21)

We omit the proof as it can be easily obtained using similar
methods in Lemma 1 and Theorem 1.

E PROOF OF FAIRNESS-CONVERGENCE
THEOREM (THEOREM 2)

Our proof aims to identify an upper bound of R. To this end, we
consider the trend of the distance from 𝑤𝑙

𝑘
to 𝑤∗, which shrinks

as 𝑘 increases, if there exists a bound. Since 𝑤𝑙
𝑘
is updated using

𝑆𝑡∑
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗

𝑘

, 𝜉 𝑗 ) (i.e., the descent in CGD according to Equation 12

where 𝜏 𝑗
𝑘
≤ 𝜏), and 𝑤∗ is obtained by ∇𝐹 (i.e., the descent in the

centralized training), the trend of the distance therefore should be
related to the deviation between these two. Exploring this leads to
the following lemma which describes this relationship.

Lemma 2. (Optimization trajectory). Let 𝑆𝑘+1 =
1
2 ∥𝑤

𝑙
𝑘+1 −𝑤∗∥

2
2

and 𝑆𝑘 = 1
2 ∥𝑤

𝑙
𝑘
−𝑤∗∥22. Let ∇𝐹 (·) =

1
𝑛

∑𝑛
𝑖=1 ∇𝐹 (·, 𝜉𝑖 ). We have

𝑆𝑘+1 − 𝑆𝑘 =
1
2 ∥𝛼𝑘

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) ∥22

− 𝛼𝑘 ⟨𝑤𝑙
𝑘
− 𝑤∗, ∇𝐹 (𝑤𝑙

𝑘
) ⟩ − 𝛼𝑘 ⟨𝑤𝑙

𝑘
− 𝑤∗,

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) − ∇𝐹 (𝑤𝑙
𝑘
) ⟩.
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Proof.

𝑆𝑘+1 − 𝑆𝑘 =
1
2

(
∥𝑤𝑙

𝑘+1 − 𝑤∗ ∥22 − ∥𝑤𝑙
𝑘
− 𝑤∗ ∥22

)
=

1
2

(
∥𝑤𝑙

𝑘
− 𝛼𝑘

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) − 𝑤∗ ∥22 − ∥𝑤𝑙
𝑘
− 𝑤∗ ∥22

)
=

1
2 ∥𝛼𝑘

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) ∥22 − 𝛼𝑘 ⟨𝑤𝑙
𝑘
− 𝑤∗,

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) ⟩

=
1
2 ∥𝛼𝑘

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) ∥22

− 𝛼𝑘 ⟨𝑤𝑙
𝑘
− 𝑤∗,

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) + ∇𝐹 (𝑤𝑙
𝑘
) − ∇𝐹 (𝑤𝑙

𝑘
) ⟩

=
1
2 ∥𝛼𝑘

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) ∥22 − 𝛼𝑘 ⟨𝑤𝑙
𝑘
− 𝑤∗, ∇𝐹 (𝑤𝑙

𝑘
) ⟩

− 𝛼𝑘 ⟨𝑤𝑙
𝑘
− 𝑤∗,

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) − ∇𝐹 (𝑤𝑙
𝑘
) ⟩

(22)

Dividing the above equation by 𝛼𝑘 , we can prove the lemma. □

Overview of the Proof of Theorem 2. The optimization trajec-
tory facilitates the proof of ourmain convergence theorem, in which
we calculate a function that is greater than R based on the convex-
ity of the objective function (Inequation 23). The function can be
decomposed into three terms (see Equation 24) based on Lemma
2. We name the first two terms as overall updates, representing the
sum of all model updates throughout the entire optimization. The
third term is named as gradients margin since it measures the gap of
the gradients between CGD and the centralized training. We then
explore the boundedness of each term, and taking these bounds
together concludes the proof.

Proof. By the definition of the regret function (Equation 13)
and convexity, we have

R =
1
𝑇

𝑇∑︁
𝑘=1
(𝐹 (𝑤𝑙

𝑘
) − 𝐹 (𝑤∗ ) ) ≤

1
𝑇

𝑇∑︁
𝑘=1
⟨𝑤𝑙

𝑘
− 𝑤∗, ∇𝐹 (𝑤𝑙

𝑘
) ⟩ (23)

Applying Lemma 2 to Inequation 23 and multiplying it by 𝑇 , we
have

𝑇 · 𝑅 ≤
𝑇∑︁
𝑘=1

(
1
2𝛼𝑘 ∥

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) ∥22

− 1
𝛼𝑘
(𝑆𝑘+1 − 𝑆𝑘 ) − ⟨𝑤𝑙

𝑘
− 𝑤∗,

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) − ∇𝐹 (𝑤𝑙
𝑘
) ⟩
)

≤
𝑇∑︁
𝑘=1

1
2𝛼𝑘 ∥

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) ∥22 −
𝑇∑︁
𝑘=1

1
𝛼𝑘
(𝑆𝑘+1 − 𝑆𝑘 )

−
𝑇∑︁
𝑘=1
⟨𝑤𝑙

𝑘
− 𝑤∗,

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) − ∇𝐹 (𝑤𝑙
𝑘
) ⟩

(24)

Inequation 24 can be decomposed into three terms, i.e.,∑𝑇
𝑘=1

1
2𝛼𝑘 ∥

𝑆𝑡∑
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗

𝑘

, 𝜉 𝑗 )∥22 and −
∑𝑇
𝑘=1

1
𝛼𝑘
(𝑆𝑘+1 −𝑆𝑘 ) are over-

all updates, and−∑𝑇
𝑘=1⟨𝑤

𝑙
𝑘
−𝑤∗,

𝑆𝑡∑
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗

𝑘

, 𝜉 𝑗 )−∇𝐹 (𝑤𝑙
𝑘
)⟩ is gra-

dients margin. Next, we explore the boundedness of each term. For

the overall updates, we have

𝑇∑︁
𝑘=1

1
2𝛼𝑘 ∥

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) ∥22 ≤
𝑇∑︁
𝑘=1

1
2

𝛼

(𝑘 + 𝜇𝑇 )2𝐶
2𝑚2𝐺2 (25)

=
𝛼𝐶2𝑚2𝐺2

2

𝑇∑︁
𝑘=1

1
(𝑘 + 𝜇𝑇 )2 < 𝛼𝐶2𝑚2𝐺2 . (26)

Inequation 25 is based on Assumption 11, and Inequation 26 is
based on the solution to the Basel problem that

∑∞
𝑥=1

1
𝑥2 < 2.

−
𝑇∑︁
𝑘=1

1
𝛼𝑘
(𝑆𝑘+1 − 𝑆𝑘 ) =

𝑇∑︁
𝑘=1

1
𝛼𝑘
(𝑆𝑘 − 𝑆𝑘+1 ) (27)

=

𝑇∑︁
𝑘=1

1
𝛼𝑘

(
1
2 ∥𝑤

𝑙
𝑘
− 𝑤∗ ∥22 −

1
2 ∥𝑤

𝑙
𝑘+1 − 𝑤∗ ∥22

)
(28)

≤
𝑇∑︁
𝑘=1

1
2𝛼𝑘
∥ (𝑤𝑙

𝑘
− 𝑤∗ ) − (𝑤𝑙

𝑘+1 − 𝑤∗ ) ∥22 (29)

=

𝑇∑︁
𝑘=1

1
2𝛼𝑘
∥𝑤𝑙

𝑘
− 𝑤𝑙

𝑘+1 ∥
2
2 =

𝑇∑︁
𝑘=1

1
2𝛼𝑘
∥𝛼𝑘

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) ∥22 (30)

=

𝑇∑︁
𝑘=1

1
2𝛼𝑘 ∥

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) ∥22 < 𝛼𝐶2𝑚2𝐺2 (31)

Inequation 29 follows reverse triangle inequality, and Inequation
31 reuses the result of the first term (Equation 26).

As determining the bound of gradients margin is slightly complex,
we list it as the following claim and prove it in Appendix F.

Claim 1. (Gradients margin).

−
𝑇∑︁
𝑘=1
⟨𝑤𝑙

𝑘
− 𝑤∗,

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 ) − ∇𝐹 (𝑤𝑙
𝑘
) ⟩

<𝐷𝐿∥𝑇
𝑆𝑡∑︁
𝑗=1
(𝑤𝑙

1 − 𝑤
𝑗

1 ) ∥ + 2𝛼𝐶
2𝑚2𝐺𝐷𝐿 ( 𝑇

𝜇𝑇 + 1 + ln |𝜇𝑇 + 1 | )

+𝐷𝐿𝐶𝑚𝐺𝛼𝜏 ( 1
1 − 𝜏 +𝑇 )

(32)

Combining Inequations 24, 26, 31 and Claim 1, and dividing by
𝑇 we obtain

R <
2𝛼𝑚2𝐺2

𝑇
+𝐷𝐿∥

𝑚∑︁
𝑗=1
(𝑤𝑙

1 − 𝑤
𝑗

1 ) ∥

+ 2𝛼𝐶2𝑚2𝐺𝐷𝐿 ( 1
𝜇𝑇 + 1 +

ln |𝜇𝑇 + 1 |
𝑇

)

+𝐷𝐿𝐶𝑚𝐺𝛼𝜏 ( 1
𝑇 (1 − 𝜏 +𝑇 ) )

= 𝑂 (𝛾 + 1
𝜇𝑇 + 1 +

ln |𝜇𝑇 + 1 |
𝑇

+ 1
𝑇 (1 − 𝜏 +𝑇 ) )

□
F PROOF OF CLAIM 1

Proof.

−
𝑇∑︁
𝑘=1
⟨𝑤𝑙

𝑘
−𝑤∗,

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗

𝑘

, 𝜉 𝑗 ) − ∇𝐹 (𝑤𝑙
𝑘
)⟩
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= ⟨𝑤𝑙
𝑘
− 𝑤∗,

𝑇∑︁
𝑘=1

(
∇𝐹 (𝑤𝑙

𝑘
) −

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 )
)
⟩ (33)

≤ ∥𝑤𝑙
𝑘
− 𝑤∗ ∥ · ∥

𝑇∑︁
𝑘=1

(
∇𝐹 (𝑤𝑙

𝑘
) −

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘−𝜏 𝑗
𝑘

, 𝜉 𝑗 )
)
∥ (34)

≤ ∥𝑤𝑙
𝑘
− 𝑤∗ ∥ · 𝐿∥

𝑇∑︁
𝑘=1

𝑆𝑡∑︁
𝑗=1
(𝑤𝑙

𝑘
− 𝑤

𝑗

𝑘−𝜏 𝑗
𝑘

) ∥ (35)

≤ 𝐷𝐿∥
𝑆𝑡∑︁
𝑗=1
(𝑤𝑙

1 − 𝑤
𝑗

1−𝜏 𝑗1
) + ... +

𝑆𝑡∑︁
𝑗=1
(𝑤𝑙

𝑇 − 𝑤
𝑗

𝑇 −𝜏 𝑗
𝑇

) ∥ (36)

= 𝐷𝐿∥
𝑆𝑡∑︁
𝑗=1
(𝑤𝑙

1 − 𝑤
𝑗

1 ) + ... +
𝑆𝑡∑︁
𝑗=1
(𝑤𝑙

𝑇 − 𝑤
𝑗

𝑇
)

+
𝑇∑︁
𝑘=1

𝑆𝑡∑︁
𝑗=1

𝑞=𝑘−1∑︁
𝑞=𝑘−𝜏 𝑗

𝑘

(𝑤 𝑗

𝑞+1 − 𝑤
𝑗
𝑞 ) ∥

(37)

= 𝐷𝐿∥𝑇
𝑆𝑡∑︁
𝑗=1
(𝑤𝑙

1 − 𝑤
𝑗

1 )

−
𝑇 −1∑︁
𝑘=1

𝑆𝑡∑︁
𝑗=1

𝛼 (𝑇 −𝑘 )𝑘
(
∇𝐹 (𝑤𝑙

(𝑇 −𝑘 ) ) −
𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

(𝑇 −𝑘 ) , 𝜉 𝑗 )
)

+
𝑇∑︁
𝑘=1

𝑆𝑡∑︁
𝑗=1

𝑞=𝑘−1∑︁
𝑞=𝑘−𝜏 𝑗

𝑘

(𝑤 𝑗

𝑞+1 − 𝑤
𝑗
𝑞 ) ∥

(38)

≤ 𝐷𝐿

(
∥𝑇

𝑆𝑡∑︁
𝑗=1
(𝑤𝑙

1 − 𝑤
𝑗

1 ) ∥

+ ∥
𝑇 −1∑︁
𝑘=1

𝑆𝑡∑︁
𝑗=1

𝛼 (𝑇 −𝑘 )𝑘
(
∇𝐹 (𝑤𝑙

(𝑇 −𝑘 ) ) −
𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

(𝑇 −𝑘 ) , 𝜉 𝑗 )
)
∥

+ ∥
𝑇∑︁
𝑘=1

𝑆𝑡∑︁
𝑗=1

𝑞=𝑘−1∑︁
𝑞=𝑘−𝜏 𝑗

𝑘

(𝑤 𝑗

𝑞+1 − 𝑤
𝑗
𝑞 ) ∥

) (39)

≤ 𝐷𝐿∥𝑇
𝑆𝑡∑︁
𝑗=1
(𝑤𝑙

1 − 𝑤
𝑗

1 ) ∥ +𝐷𝐿 · 2𝐶2𝑚2𝐺
𝑇 −1∑︁
𝑘=1

𝛼 (𝑇 −𝑘 )𝑘

+𝐷𝐿𝐶𝑚𝐺

𝑇∑︁
𝑘=1

𝑞=𝑘−1∑︁
𝑞=𝑘−𝜏 𝑗

𝑘

𝛼𝑞

(40)

≤ 𝐷𝐿∥𝑇
𝑆𝑡∑︁
𝑗=1
(𝑤𝑙

1 − 𝑤
𝑗

1 ) ∥ + 2𝐶
2𝑚2𝐺𝐷𝐿

𝑇 −1∑︁
𝑘=1

𝛼𝑘

( (1 + 𝜇 )𝑇 − 𝑘 )2

+𝐷𝐿𝐶𝑚𝐺

𝑇∑︁
𝑘=1

𝛼𝜏

(𝑘 − 𝜏 +𝑇 )2

(41)

< 𝐷𝐿∥𝑇
𝑆𝑡∑︁
𝑗=1
(𝑤𝑙

1 − 𝑤
𝑗

1 ) ∥ + 2𝛼𝐶
2𝑚2𝐺𝐷𝐿 ( 𝑇

𝜇𝑇 + 1 + ln |𝜇𝑇 + 1 | )

+𝐷𝐿𝐶𝑚𝐺𝛼𝜏 ( 1
1 − 𝜏 +𝑇 )

(42)

Inequations 34 and 39 are from triangle inequality. Inequation
35 is from the fact ∇𝐹 (𝑤𝑙

𝑘
) = 1

𝑛

𝑛∑
𝑖=1
∇𝐹 (𝑤𝑙

𝑘
, 𝜉𝑖 ) =

𝑚∑
𝑗=1

𝑔 𝑗 (𝑤𝑙
𝑘
, 𝜉 𝑗 ) and

blockwise Lipschitz-continuity. Inequation 36 is from Assumption

1.1 and represents
𝑇∑
𝑘=1
(·) by a summand sequence.

Equation 37 comes from the fact

𝑤𝑙
𝑘
− 𝑤

𝑗

𝑘−𝜏 𝑗

𝑘

= (𝑤𝑙
𝑘
− 𝑤

𝑗

𝑘
) +

𝑞=𝑘−1∑︁
𝑞=𝑘−𝜏 𝑗

𝑘

(𝑤 𝑗

𝑞+1 − 𝑤
𝑗
𝑞)

Equation 38 comes from the fact

𝑤𝑙
𝑘
−𝑤 𝑗

𝑘
= (𝑤𝑙

1 − 𝛼1∇𝐹 (𝑤
𝑙
1) − ... − 𝛼𝑘∇𝐹 (𝑤

𝑙
𝑘
))

− (𝑤 𝑗

1 − 𝛼1
𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

1 , 𝜉 𝑗 ) − ... − 𝛼𝑘
𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘
, 𝜉 𝑗 ))

= (𝑤𝑙
1 −𝑤

𝑗

1) − 𝛼1 (∇𝐹 (𝑤
𝑙
1) −

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

1 , 𝜉 𝑗 ))

− ... − 𝛼𝑘 (∇𝐹 (𝑤𝑙
𝑘
) −

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

𝑘
, 𝜉 𝑗 )) .

Inequation 40 follows Assumption 1.1 from which we obtain

∥∇𝐹 (𝑤𝑙
(𝑇−𝑘 ) )−

𝑆𝑡∑︁
𝑗=1

𝑔 𝑗 (𝑤 𝑗

(𝑇−𝑘 ) , 𝜉 𝑗 )∥ ≤ 2𝐶𝑚𝐺,

and,

∥𝑤 𝑗

𝑞+1 − 𝑤
𝑗
𝑞 ∥ = ∥𝛼𝑞𝑔 𝑗 (𝑤 𝑗

𝑞, 𝜉 𝑗 )∥ ≤ 𝛼𝑞𝐺

Equation 41 is obtained by applying 𝛼 (𝑇−𝑘 ) = 𝛼
(𝑇−𝑘+𝜇𝑇 )2 , and

𝑞=𝑘−1∑
𝑞=𝑘−𝜏 𝑗

𝑘

𝛼𝑞 ≤ 𝛼𝜏
(𝑘−𝜏+𝑇 )2 .

Inequation 42 is from the following fact:
Since ∫ 𝑏

𝑎

𝑘

(𝑐 − 𝑘 )2 𝑑𝑘 =
𝑏

𝑐 − 𝑏 + ln |𝑐 − 𝑏 | −
𝑎

𝑐 − 𝑎 − ln |𝑐 − 𝑎 |,

we have∫ 𝑇 −1

1

𝑘

( (1 + 𝜇 )𝑇 − 𝑘 )2 𝑑𝑘 =
𝑇 − 1

(1 + 𝜇 )𝑇 − (𝑇 − 1)

+ ln | (1 + 𝜇 )𝑇 − (𝑇 − 1) | − 1
(1 + 𝜇 )𝑇 − 1 − ln | (1 + 𝜇 )𝑇 − 1 |

<
𝑇 − 1

(1 + 𝜇 )𝑇 − (𝑇 − 1) + ln | (1 + 𝜇 )𝑇 − (𝑇 − 1) |(with𝑇 ≥ 2)

<
𝑇

𝜇𝑇 + 1 + ln |𝜇𝑇 + 1 |

and ∫ 𝑇

1

1
(𝑘 − 𝜏 +𝑇 )2 𝑑𝑘 =

1
1 − 𝜏 +𝑇 −

1
𝑇 − 𝜏 +𝑇

<
1

1 − 𝜏 +𝑇
□

G THE SECRECY OF 𝑔𝑙
𝑘

Recall that the involved parties are a setL of𝑚 participants denoted
with logical identities 𝑙 ∈ [1,𝑚], and 𝑡 is the adversarial threshold
(𝑡 ≤ 𝑚− 2). Let 𝑐 be any subset of L that includes the compromised
and colluding parties.

We demonstrate that, during optimization in CGD, given only
the sum of the local gradients which are computed on different
confined models, the adversary can learn no information other
than their own inputs and the sum of the local gradients from other
honest parties, i.e.,

∑
𝑔𝑙
𝑘
(𝑤𝑙

𝑘
, 𝜉𝑙 ) |𝑙∈L\𝑐 .

Our analysis is based on the simulation paradigm [25]. It com-
pares what an adversary can do in a real protocol execution to what
it can do in an ideal scenario, which is secure by definition. The
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adversary in the ideal scenario, is called the simulator. An indistin-
guishability between adversary’s view in real and ideal scenarios
guarantees that it can learn nothing more than their own inputs
and the information required by the simulator for the simulation.

To facilitate the understanding on our analysis, we first present
the used notations. Denote 𝑔L

′

𝑘
= {𝑔𝑙

𝑘
(𝑤𝑙

𝑘
, 𝜉𝑙 )}𝑙∈L′ as the local

gradients of any subset of participants L′ ⊆ L at 𝑘𝑡ℎ iteration.
Let 𝑉 𝐼𝐸𝑊𝑟𝑒𝑎𝑙 (𝑔L𝑘 , 𝑡,P, 𝑐) denote their combined views from the
execution of a real protocol P. Let𝑉 𝐼𝐸𝑊𝑖𝑑𝑒𝑎𝑙 (𝑔𝑐𝑘 , 𝑧, 𝑡, F𝑝 , 𝑐) denote
the views of 𝑐 from an ideal execution that securely computes a
function F𝑝 , where 𝑧 is the information required by the simulator
S in the ideal execution for simulation.

The following theorem shows that when executing CGDwith the
threshold 𝑡 , the joint view of the participants in 𝑐 can be simulated
by their own inputs and the sum of the local gradients from the
remaining honest nodes, i.e.,

∑
𝑔𝑙
𝑘
|𝑙∈L\𝑐 . Therefore,

∑
𝑔𝑙
𝑘
|𝑙∈L\𝑐

is the only information that the adversary can learn during the
execution.

Theorem 3. When executing CGD with the threshold 𝑡 , there
exists a simulator S such that for L and 𝑐 , with 𝑐 ⊆ L and |𝑐 |≤ 𝑡 ,
the output of S from 𝑉 𝐼𝐸𝑊𝑖𝑑𝑒𝑎𝑙 is perfectly indistinguishable from
the output of 𝑉 𝐼𝐸𝑊𝑟𝑒𝑎𝑙 , namely

𝑉 𝐼𝐸𝑊𝑟𝑒𝑎𝑙 (𝑔L𝑘 , 𝑡,P, 𝑐) ≡ 𝑉 𝐼𝐸𝑊𝑖𝑑𝑒𝑎𝑙 (𝑔𝑐𝑘 , 𝑧, 𝑡, F𝑝 , 𝑐)
where

𝑧 =
∑︁

𝑔𝑙
𝑘
(𝑤𝑙

𝑘
, 𝜉𝑙 ) |𝑙∈L\𝑐 .

Proof. We define S through each training iteration as:
SIM1: 𝑆𝐼𝑀1 is the simulator for the first training iteration.
Since the inputs of the parties in 𝑐 do not depend on the inputs of

the honest parties inL\𝑐 , 𝑆𝐼𝑀1 can produce a perfect simulation by
running 𝑐 on their true inputs, and L \ 𝑐 on a set of pseudorandom
vectors 𝜂L\𝑐1 = {𝜂𝑙1}𝑙∈L\𝑐 in a way that∑︁

𝜂
L\𝑐
1 =

∑︁
𝜂𝑙1 |𝑙 ∈L\𝑐=

∑︁
𝑔L1 −

∑︁
𝑔𝑐1 =

∑︁
𝑔𝑙1 |𝑙 ∈L\𝑐 .

Since each 𝑔𝑙1 (𝑤
𝑙
1, 𝜉𝑙 ) is computed from its respective confined

model𝑤𝑙
1 which is randomized in the initialization, the pseudoran-

dom vectors 𝜂𝑚\𝑐1 generated by 𝑆𝐼𝑀1 for the inputs of all parties
in L \ 𝑐 , and the joint view of 𝑐 in 𝑉 𝐼𝐸𝑊𝑖𝑑𝑒𝑎𝑙 , will be identical to
that in 𝑉 𝐼𝐸𝑊𝑟𝑒𝑎𝑙 , namely

(
∑︁

𝜂
L\𝑐
1 +

∑︁
𝑔𝑐1 ) ≡

∑︁
𝑔L1 ,

and the information required by 𝑆𝐼𝑀1 is 𝑧 =
∑
𝑔𝑙1 |𝑙∈L\𝑐 .

SIM𝑘+1 (𝑘 ≥ 1): 𝑆𝐼𝑀𝑘+1 is the simulator for the (𝑘+1)𝑡ℎ training
iteration.

In 𝑅𝑒𝑎𝑙 execution,
∑
𝑔L
𝑘+1 is computed as∑︁

𝑔L
𝑘+1 =

∑︁
𝑔𝑙
𝑘+1 (𝑤

𝑙
𝑘+1, 𝜉𝑙 ) |𝑙 ∈L=

∑︁
𝑔𝑙
𝑘+1 (𝑤

𝑙
𝑘
− 𝛼𝑘

∑︁
𝑔L
𝑘
, 𝜉𝑙 ) |𝑙 ∈L

=
∑︁

𝑔𝑙
𝑘+1

(
𝑤𝑙
1 −

𝑘∑︁
𝑖=1
(𝛼𝑖

∑︁
𝑔L
𝑖
), 𝜉𝑙

)
|𝑙 ∈L .

(43)

In 𝐼𝑑𝑒𝑎𝑙 execution, since each 𝑔𝑙
𝑘+1 (𝑤

𝑙
𝑘+1, 𝜉𝑙 ) |𝑙∈L is also computed

from randomized 𝑤𝑙
1, 𝑆𝐼𝑀𝑘+1 can produce a perfect simulation

by running the parties L \ 𝑐 on a set of pseudorandom vectors
𝜂
L\𝑐
𝑘+1 = {𝜂𝑙

𝑘+1}𝑙∈L\𝑐 in a way that∑︁
𝜂
L\𝑐
𝑘+1 =

∑︁
𝜂𝑙
𝑘+1 |𝑙 ∈L\𝑐=

∑︁
𝑔L
𝑘+1 −

∑︁
𝑔𝑐
𝑘+1 =

∑︁
𝑔𝑙
𝑘+1 |𝑙 ∈L\𝑐 .

As such, the joint view of 𝑐 in 𝑉 𝐼𝐸𝑊𝑖𝑑𝑒𝑎𝑙 , will be identical to that
in 𝑉 𝐼𝐸𝑊𝑟𝑒𝑎𝑙

(
∑︁

𝜂
L\𝑐
𝑘+1 +

∑︁
𝑔𝑐
𝑘+1 ) ≡

∑︁
𝑔L
𝑘+1,

and the information required by 𝑆𝐼𝑀𝑘+1 is 𝑧 =
∑
𝑔𝑙
𝑘+1 |𝑙∈L\𝑐 .

By summarizing 𝑆𝐼𝑀1 and 𝑆𝐼𝑀𝑘+1, the output of the simulator
𝑉 𝐼𝐸𝑊𝑖𝑑𝑒𝑎𝑙 of each training iteration is perfectly indistinguishable
from the output of 𝑉 𝐼𝐸𝑊𝑟𝑒𝑎𝑙 , and knowledge of 𝑧 is sufficient for
the simulation.

□

H BOUNDED ASYNCHRONY
Let 𝑆𝑡 denote a random set of 𝐶 ·𝑚 participants, and A denote
the set of malicious participants, and 𝑃A denote the malicious
proportion, i.e., 𝑃A = |A|/𝑚. Given a participant 𝑙 at 𝑘𝑡ℎ iteration,
the probability of any participant 𝑗 being at 𝑡𝑡ℎ iteration where
𝑡 ≤ 𝑘 − 𝜏 is

𝑃𝑟 (𝑡 ≤ 𝑘 − 𝜏 ) ≤ 𝑃𝑟𝜏 (𝑆𝑡 ∩ A ≠ ∅) = (1 − 𝑃𝑟 (𝑆𝑡 ∩ A = ∅) )𝜏

= (1 −
(
(1 − 𝑃A )𝑚

𝐶𝑚

)
/
(
𝑚

𝐶𝑚

)
)𝜏 (with𝐶 < 1 − 𝑃A )

(44)

For example, with 𝑃A = 0.2 and𝑚 = 30, which is the commonly
used setting in the existing FL literature [11, 18, 30], with 𝐶 = 0.2,
the probability of the staleness exceeding 𝜏 = 30 is 1.33 × 10−5,
which is subpolynomially small.

I DETAILS OF ABLATION STUDIES
I.1 Scalability
In this section, we investigate how the number of participants
affects CGD’s privacy and accuracy performance. Figure 6 sum-
marizes its performance with varying participant number. In gen-
eral, CGD stays close to the centralized baseline in both validation
loss and accuracy in all settings. As expected, CGD significantly
outperforms the local training. For MNIST, in the worst case of
𝑚 = (1000 × 112) when CGD contains the greatest number of par-
ticipants, i.e., each participant owns a small proportion consisting of
60 samples with 7 features, CGD still achieves 0.191 and 95.78% in
test loss and accuracy respectively, close to 0.081 and 97.54% of the
centralized baseline. In contrast, the performance of local training
declines to 2.348 and 11.64%. For CIFAR, the results on the test loss
and accuracy are generally in line with that on the MNIST dataset.
In the worst case of 𝑚 = (1000 × 32), CGD achieves 1.271 and
67.67% in test loss and accuracy respectively, which significantly
outperform 2.434 and 16.19% of the local training, and are close
to the centralized baseline (0.675 and 75.72%). Table 5 and Table
6 list the detailed performance comparison with both centralized
and local trainings. In all settings, the privacy bound (𝜖, 𝛿) of CGD
remains lower than (0.36, 10−5), and no significant difference is
observed with varying number of participants. Table 7 shows the
performance of CGD against active MIA with various number of
participants. The results demonstrate that CGD effectively miti-
gates the threat, suppressing the attack accuracy around 50% in all
settings. Table 8 shows the fairness performance of CGD on CIFAR
with various number of participants. The standard deviation of test
accuracy slightly increases with the growing number of partici-
pants, while retaining the superior performance. For example, CGD
achieves 7.46% even with a large number of participants (i.e., 32,000
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(a) MNIST with m = (10*7) (b) MNIST with m = (100*49)

(d) CIFAR with m = (10*2) (e) CIFAR with m = (100*16) (f) CIFAR with m = (1000*32)

(c) MNIST with m = (1000*112)

Figure 6: Results on the test accuracy for different number of partic-
ipants in the honest-but-curious setting with privacy bounds (𝜖, 𝛿 )
at (0.359, 10−5 ) on MNIST and (0.350, 10−5 ) on CIFAR.

Table 5: Performance comparison on MNIST for various number of
participants with CGD’s privacy bounds (𝜖, 𝛿 ) at (0.359, 10−5 ) .

Training Methods # of Participants Test Loss Test Accuracy

Centralized Training N/A 0.081 97.54%

Local Training
10 × 7 1.283 54.39%

100 × 49 2.076 23.53%
1000 × 112 2.348 11.64%

CGD
10 × 7 0.145 97.00%

100 × 49 0.164 96.19%
1000 × 112 0.191 95.78%

Table 6: Performance comparison on CIFAR for various number of
participants with CGD’s privacy bounds (𝜖, 𝛿 ) at (0.350, 10−5 ) .

Training Methods # of Participants Test Loss Test Accuracy

Centralized Training N/A 0.675 75.72%

Local Training
10 × 2 0.980 65.30%

100 × 16 2.008 26.25%
1000 × 32 2.434 16.19%

CGD
10 × 2 0.821 72.45%

100 × 16 0.959 69.13%
1000 × 32 1.271 67.67%

Table 7: Performance of CGD against active MIA with various num-
ber of participants.

Datasets # of Participants Attack Accuracy

MNIST
10 × 7 50.76%

100 × 49 51.46%
1000 × 112 50.57%

CIFAR
10 × 2 50.00%

100 × 16 50.18%
1000 × 32 50.06%

participants), outperforming Ditto [39] which achieves 12.23% with
16 participants (see Table 4).

Table 8: Fairness performance of CGD with various number of par-
ticipants on CIFAR.

# of Participants Standard Deviation of
Test Accuracy

10 × 2 4.97%
100 × 16 5.18%
1000 × 32 7.46%

Table 9: Performance on validation accuracy with different initial-
ization parameter 𝜆.

Datasets # of Participants 𝜆 = 0.1 𝜆 = 0.06 𝜆 = 0.01 𝜆 = 0.001 Random

MNIST 1000 × 112 95.78% 97.04% 97.74% 97.76% 97.07%
CIFAR 1000 × 32 67.59% 70.17% 73.99% 69.43% 71.01%

I.2 Effect of the Initialization
We conduct two experiments to investigate the effect of 𝜆. We vary
𝜆 while keeping other settings unchanging (i.e., 𝜇 = 0 and𝑇 = 2000).
In the first experiment, we let all participants use the same 𝜆 from
0.1, 0.06, 0.01, to 0.001, as they are around 1√

𝑛
(where𝑛 is the sample

size). In the other experiment, we let each participant randomly
select its own 𝜆 based on the uniform distribution within the range
from 0.001 to 0.1.

The results of our first experiment are shown in Figure 7 and
the first five columns in Table 9. In general, as 𝜆 decreases, CGD
achieves better performance. This confirms our expectation: de-
creasing 𝜆 would reduce the value of ∥ E

𝑗∈𝑚ℎ
(𝑤𝑙

1 −𝑤
𝑗

1)∥, such that

the confined models are closer to the centralized optimum. We
have not observed significant difference from 𝜆 = 0.1, 0.06 and
0.01. However, 𝜆 cannot be set too small, in order to maintain the
numerical stability in neural network [24]. For example, when we
lower 𝜆 to 0.001, the performance on CIFAR starts decreasing.

(a) MNIST (b) CIFAR

Figure 7: Test accuracy for different 𝜆with𝑚 = (1000×112) onMNIST
and𝑚 = (1000 × 32) on CIFAR.

(a) MNIST (b) CIFAR

Figure 8: Test accuracy with 𝜆 selected uniformly at random.
15



The results of our second experiment are shown in Figure 8
and the last column in Table 9. When the participants uniformly
randomize their 𝜆s from 0.001 to 0.1, the performance of CGD
is still comparable with the centralized mode. For example, with
𝑚 = (1000 × 112) participants on MNIST and 𝑚 = (1000 × 32)
on CIFAR, CGD achieves 97.07% and 71.01% in the test accuracy
respectively. This suggests that CGD keeps robust when the 𝜆s of
its participants differ by two orders of magnitude.

In Appendix I.3, we provide additional results of the effect of the
diminishment factor 𝜇.

I.3 Effect of diminishment factor 𝜇
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a) m=(100 × 49)
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b) m=(1000 × 112)
Figure 9: Test accuracy with different 𝜇 on the MNIST.

In this experiment, we tune 𝜇 while keeping 𝜆 fixed as 0.1. For the
step size (𝛼𝑘 ), we run CGD with a fixed 𝛼 till it (approximately)
reaches a preferred point, and then continue our experiment with
𝛼1 = 𝛼 . This is to keep CGD practical, as each time the stepsize is
diminished, more iterations are required. Therefore, the first 6, 000
iterations is run with 𝛼 = 0.01, and then 𝛼𝑘 decreases in each of
the following 8, 000 iterations.

Figure 9 demonstrates the results with varying 𝜇 for𝑚 = (100 ×
49) and𝑚 = (1000 × 112). For the case of𝑚 = (100 × 49), 𝜇 ≥ 0.01
gives a slightly faster speed. CGD reaches the test accuracy of 95.9%
at 11401𝑡ℎ iteration, 2, 340 iterations (16.7% less) faster than training
with 𝜇 < 0.01. For the case of𝑚 = 1000×112), 𝜇 > 0.05 gives a faster
speed. CGD reaches the test accuracy 95.68% at 11821𝑡ℎ iteration,
2, 140 iterations (15.28% less) faster than training with 𝜇 ≤ 0.05.
Even though such slight difference is observed, our experiment
suggests that the effect of tuning 𝜇 is relatively limited. The gain
of the test accuracy is only within 0.2% in the cost of around 2, 000
iterations.
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