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Abstract
The classical static Schrödinger Bridge (SSB)
problem, which seeks the most likely stochastic
evolution between two marginal probability mea-
sures, has been studied extensively in the optimal
transport and statistical physics communities, and
more recently in machine learning communities in
the surge of generative models. The standard ap-
proach to solve SSB is to first identify its Kan-
torovich dual and use Sinkhorn’s algorithm to find
the optimal potential functions. While the orig-
inal SSB is only a strictly convex minimization
problem, this approach is known to warrant lin-
ear convergence under mild assumptions. In this
work, we consider a generalized SSB allowing
any strictly increasing divergence functional, far
generalizing the entropy functional x log x in the
standard SSB. This problem naturally arises in a
wide range of seemingly unrelated problems in en-
tropic optimal transport, random graphs/matrices,
and combinatorics. We establish Kantorovich du-
ality and linear convergence of Sinkhorn’s algo-
rithm for the generalized SSB problem under mild
conditions. Our results provide a new rigorous
foundation for understanding Sinkhorn-type iter-
ative methods in the context of large-scale gener-
alized Schrödinger bridges.

1. Introduction
Fix an m ×n real nonnegative matrix W = (wi j ). A pair of
vectors (r,c) ∈ Rm ×Rn is called a margin if we have the
same total sum: 〈r,1〉 = 〈c,1〉. Fix a twice-differentiable
strictly convex function f :R→R∪{∞}1. Our central inter-
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1By Jensen’s inequality, the domain of f , dom( f ) := {x ∈
R | | f (x)| < ∞} is an interval. We understand differentiability of

est in this work is to solve the following matrix optimiza-
tion problem:

Zr,c := argmin
X=(xi j )∈Rm×n

[
g (X) :=∑

i , j
f (xi j )Wi j

]
(1)

subject to
n∑

j=1
xi j Wi j = r(i ),

m∑
i=1

xi j Wi j = c( j ) ∀i , j .

We call the optimal matrix Zr c above the (generalized)
static Schrödinger bridge (SSB) for margin (r,c) w.r.t.
weight W and divergence f . The entries of Zr,c are taken
to be arbitrary where wi j = 0. We call the set TW(r,c)
of all real m ×n matrices X = (xi j ) satisfying the margin
constraint in (1) the (W-weighted) transportation polytope
with margin (r,c). The matrix optimization problem above
enjoys a rich connection to (discrete instances of) a wide
range of important problems.

First, our SSB problem (1) is exactly the f -divergence SSB
problem formulated in terms of the relative density (Carlier
et al., 2017; Lorenz & Mahler, 2022; Terjék & González-
Sánchez, 2022). Suppose r and c give probability mass
functions on [m] := {1, . . . ,m} and [n] and W gives a joint
probability mass function on the lattice [m]× [n]. Then f -
divergence SSB between the margins r and c w.r.t. W is the
probability measure H solving the following constrained
minimization problem

min
H ∈Π(r,c)

[
D f (H ∥W ) :=

∫
f

(
dH

dW

)
dW

]
, (2)

where the minimum is for all probability measures H on
[m] × [n] that is absolutely continuous w.r.t. W and has
marginal density (r,c). Rewriting the above in terms of the
relative density X = dH

dW ∈ Rm×n gives exactly our SSB
problem (1). Specializing to the KL-divergence by tak-
ing f (x) = x log x, it further becomes the classical SSB be-
tween marginal densities r and c w.r.t. the reference mea-
sure W (see, e.g., (Fortet, 1940; Pavon et al., 2021)).

Second, if we take the KL-divergence and W in the follow-
ing form

Wi j ∝ e−ci j /εr(i )c( j ) (3)

f for f restricted on the interior of its domain.
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for some cost matrix C = (ci j ) ∈ Rm×n
≥0 and regularization

parameter ε > 0, then (1) becomes the entropic optimal
transport (EOT) problem with marginal densities (r,c) and
cost matrix C (Villani, 2021).

Third, if we take the KL-divergence and uniform marginals
are r = m−11m and c = n−11n , then (1) becomes the clas-
sical matrix scaling problem, which is to find the doubly
stochastic matrix that minimizes the KL-divergence from
W (Sinkhorn, 1964). Indeed, such a doubly stochastic ma-
trix is given by Zr,c⊙W, where Zr,c is the SSB in (1) for the
uniform margin and ⊙ denotes the entrywise product.

Fourth, (1) is also connected to the typical table problem
in the combinatorics literature (Barvinok, 2010), which is
central to the enumeration of integer-valued nonnegative
matrices with prescribed row sum r column sum c (con-
tingency tables with margin (r,c)). For this, we may take
W = 1m 1⊤

n and f (x) = −(x + 1)log(x + 1)+ x log x, which
is the negative of the entropy of the geometric distribu-
tion with mean x. The solution of the corresponding in-
stance of (1) is called the typical table for margin (r,c) and
it is known that a uniformly random contingency table with
margin (r,c) is sharply concentrated around the typical ta-
ble (Barvinok, 2010; Lyu & Mukherjee, 2024).

Fifth, if we take r = c = d, a sequence of degrees of an
n-node simple graph and f (x) = x log x + (1− x) log(1− x)
(negative entropy of the Bernoulli distribution with mean x)
with W = 1m 1⊤

n , then the adjacency matrix of a uniformly
random n-node graph with degree sequence d is concen-
trated to the solution of (1) in the cut metric (Chatterjee
et al., 2011).

Lastly, (1) is also connected to a problem in random matrix
theory. Namely, the m ×n random matrix with i.i.d. entry
with entry-wise distribution µ conditioned to have row sum
r and column sum c is known to be concentrated around
the solution of (1) (a.k.a. generalized typical table) in cut-
norm, in which we take W = 1m 1⊤

n and f (x) is the KL-
divergence from µ to the exponential tilting of µ to have
mean x (Lyu & Mukherjee, 2024).

The overarching goal in this work is to propose a Sinkhorn-
style algorithm that solves a ‘Kantorovich dual’ of (1). For
a gentle introduction, consider writing down the multivari-
ate Lagrange multiplier equations for (1). There are m +n
linear equations (in fact one of them is redundant due to the
consistency condition 〈r,1〉 = 〈c,1〉) for the (weighted) row
sum (m) and column sum (n) constraints. Since the objec-
tive of (1) is strictly convex, existence of a solution implies
that the solution Zr,c = (zi j ) is uniquely determined by

f ′(zi j ) =α(i )+β( j ) whenever wi j ̸= 0, (4)

where (α,β) ∈Rm×Rn are vectors of Lagrange multipliers.
We call α and β the row potential and column potential,

respectively. Since the SSB Zr,c is assumed to satisfy the
margin constraint Zr,c ∈TW(r,c), necessarily the potentials
need to solve the (generalized) Schrödinger system:{∑n

j=1 Wi j · ( f ′)−1(α(i )+β( j )) = r(i ) ∀1 ≤ i ≤ m∑m
i=1 Wi j · ( f ′)−1(α(i )+β( j )) = c( j ) ∀1 ≤ j ≤ n.

(5)

Note that since f is twice-differentiable and strictly convex,
f ′′ > 0 so f ′ is strictly increasing, so it admits a strictly
increasing inverse ( f ′)−1.

In order to solve (5), we propose the following Sinkhorn-
type iterative algorithm where for given potentials
(αk−1,βk−1) at iteration k, one first finds the new column
potential αk that satisfies the Schrödinger system for the
column sums using the current row potential αk−1, and
then updates the row potential using the updated column
potential βk similarly:

GSA:


∀1 ≤ j ≤ n, βk ( j ) ← unique β ∈R s.t.

c( j ) =∑m
i=1( f ′)−1(αk−1(i )+β)Wi j ,

∀1 ≤ i ≤ m, αk (i ) ← unique α ∈R s.t.
r(i ) =∑n

j=1( f ′)−1(α+βk ( j ))Wi j .

(6)

Since ( f ′)−1 is strictly increasing, the solution to (6) for
each iteration k is unique if it exists.

We call the above the generalized Sinkhorn algorithm
(GSA). Indeed, notice that when f (x) = x log x so that our
main problem (1) reduces to the classical static Schrödinger
bridge and entropic optimal transport, f ′(x) = 1+ log x so
( f ′)−1(θ) = exp(θ−1). In this case, (6) reduces to the cel-
ebrated Sinkhorn’s algorithm (SA) (a.k.a. iterative pro-
portional fitting procedure) used to solve various classical
problems such as matrix scaling, static Schrödinger bridge,
and entropic optimal transport (Franklin & Lorenz, 1989;
Cuturi, 2013):

SA:

∀1 ≤ i ≤ n, βk ( j ) ← log c( j )∑m
i=1 Wi j exp(αk−1(i )) ,

∀1 ≤ i ≤ m, αk (i ) ← log r(i )∑n
j=1 Wi j exp(βk ( j )) .

(7)

Convergence of SA (7) has been studied extensively in the
literature. Franklin and Lorenz showed that the conver-
gence rate is exponential (linear in the log scale) in the
space of margins endowed with Hilbert’s projective met-
ric (Franklin & Lorenz, 1989). A similar result was ob-
tained for the continuous setting by Chen and Pavon (Chen
et al., 2016a). Rüschendorf (Ruschendorf, 1995) estab-
lished asymptotic convergence of Sinkhorn algorithm in the
continuous case from the perspective of information pro-
jection. Marino and Gerolin extended a similar result to
the multi-marginal case (Marino & Gerolin, 2020). Carlier
established linear convergence of multi-marginal Sinkhorn
algorithm in the Euclidean metric (Carlier, 2022).
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All of the convergence results mentioned above concern
the KL divergence ( f (x) = x log x) with there being no
known convergence results for other divergence measures
and weight matrices. Below in Theorem 2.6, we establish
that the generalized Sinkhorn algorithm (6) for arbitrary di-
vergence and weight matrix converges at a linear rate in the
sense that the objective value gap decays exponentially fast.

1.1. Contributions

• We show that any potential functions (α,β) charac-
terizing the generalized static Schrödinger bridge Zr,c

solve a dual problem, which is the Kantorovich dual to
(1). See Theorem 2.4 for details.

• Under mild conditions on the divergence f , weight
W, and margin (r,c), we establish that the generalized
Sinkhorn algorithm (6) decreases the dual objective at
a linear rate. This rate may or may not be dimension
independent depending on how fast the margins grow
with the dimension. Theorem 2.6 covers the linear
convergence result in detail.

• In order to arrive at dimension independent linear con-
vergence, we show sufficient conditions for the bound-
edness of the iterates of our generalized Sinkhorn algo-
rithm. These sufficient conditions ensure that the tame-
ness parameter (see Def. 2.5) for the given problem
margins are dimension independent. Consequently, di-
mension independent linear convergence of our gen-
eralized Sinkhorn algorithm ensues, making our algo-
rithm particularly attractive for high dimensional prob-
lems. This result assumes uniformly bounded cost
function. For more details, see Theorems 2.7 and 2.8.

Recently, Lyu and Mukherjee (Lyu & Mukherjee, 2024)
established linear convergence of the generalized Sinkhorn
algorithm (6) for the generalized typical table problem in a
random matrix theory context. This is a special case of (1)
where W = 1m 1⊤

n and f (x) is the KL-divergence from µ to
the exponential tilting of µ to have mean x (see Appendix
A for details). Our analysis in this work is inspired by their
approach and we generalize it to the abstract setting (1).

1.2. Related works

1.2.1. SCHRÖDINGER BRIDGE IN MACHINE LEARNING

The Schrödinger Bridge (SB) problem has gained increas-
ing attention in the machine learning community due to its
connections with probabilistic modeling and optimal trans-
port. Starting from the seminal work of Fortet (Fortet,
1940) and more recent expositions by Léonard (Léonard,
2013), the SB problem has been reinterpreted as an entropic
variant of optimal transport, often called entropic optimal
transport, and as such it has found applications in large-
scale generative modeling.

In recent years, various approaches have been proposed
to leverage Schrödinger bridges for generative modeling
and density estimation. For instance, it has been shown
that SB can be viewed as a stochastic control or diffusion-
based process that interpolates between given marginals,
often leading to dynamic formulations in the continuous-
time setting (Chen et al., 2016b). More recently, sev-
eral works have explored diffusion–Schrödinger bridge ap-
proaches, bringing together ideas from score-based diffu-
sion models and the classical Schrödinger bridge problem
to design generative algorithms that are both statistically
efficient and robust to numerical issues arising in unregu-
larized cost minimization (Wang et al., 2021; De Bortoli
et al., 2021; Jiao et al., 2024). We refer to these works for
detailed expositions on how iterative Schrödinger bridge
solvers can be coupled with score-matching ideas in gen-
erative modeling.

Beyond direct use in generative methods, Schrödinger
bridges also appear in other machine learning tasks in-
volving distribution alignment or adaptation. For exam-
ple, SBs can be used to perform domain adaptation where
one aims to transport empirical distributions across dif-
ferent domains (Benamou et al., 2015) , or to regularize
large-scale graph alignment problems. The major appeal in
all of these settings lies in the entropic regularization that
smooths the transport plan, often translating into more sta-
ble optimization problems and efficient numerical methods.

1.2.2. SINKHORN ALGORITHM FOR STATIC
SCHRÖDINGER BRIDGE

At the heart of many Schrödinger bridge (and entropic op-
timal transport) algorithms is the Sinkhorn algorithm, also
called the iterative proportional fitting procedure (IPFP).
In the classical setting - where the problem is the conver-
gence to a doubly stochastic limit of a sequence of ma-
trices obtained from a non-negative matrix - the Sinkhorn
algorithm dates back to the work of Sinkhorn and Knopp
(Sinkhorn & Knopp, 1967), and has been extensively ana-
lyzed in the matrix analysis and statistics literature (Dem-
ing & Stephan, 1940; Franklin & Lorenz, 1989). Franklin
and Lorenz (Franklin & Lorenz, 1989) established linear
convergence (i.e., exponential decay of the error) in the
Hilbert projective metric, and Rüschendorf (Ruschendorf,
1995) extended the analysis to continuous measures via
an information projection viewpoint. Subsequent works
by Chen and Pavon (Chen et al., 2016a) further analyzed
the continuous entropic Schrödinger bridge problem with
a similar iterative strategy; Marino and Gerolin (Marino &
Gerolin, 2020) and Carlier (Carlier, 2022) extended conver-
gence results to multi-marginal Sinkhorn algorithms, again
establishing linear rates under reasonable conditions on the
reference measures.
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More recently, the Sinkhorn algorithm has become a main-
stay in computational optimal transport, thanks largely to
the seminal paper by Cuturi (Cuturi, 2013) that popular-
ized the entropic regularization perspective. This line of
work has led to an extensive suite of efficient implemen-
tations and theoretical studies on the stability, complexity,
and generalization of Sinkhorn-based methods in high di-
mensions (Peyré et al., 2019). Despite these advancements,
most classical convergence guarantees have focused on KL
divergence (or equivalently f (x) = x log x). In practice,
though, there are many settings where one may wish to re-
place the standard KL divergence by other strictly convex
divergences - leading to the generalized static Schrödinger
bridge problem considered in this work.

Overall, by bridging the gap between classical matrix-
scaling arguments and modern-day generative modeling,
our work provides a conceptual and theoretical foundation
for generalized Sinkhorn algorithms across a broad range
of entropic transports and divergences.

2. Statements of results
Since the divergence f :R→R∪{∞} is convex, By Jensen’s
inequality, the domain of f , dom( f ) := {x ∈ R | | f (x)| <
∞} is an interval. We will write its interior as (A,B)
for some extended reals A,B . Note that ( f ′(A), f ′(B)) =
Interior(dom(ψ)).
Assumption 2.1. f is twice-differentiable on (A,B)
with f ′′ > 0 and takes ∞ on R \ [A,B ]. Furthermore,
limx↘A f ′(x) = −∞ if |A| < ∞; and limx↗B f ′(x) = ∞ if
|B | <∞.

Without loss of generality we can assume every row sum
of W is positive since if, for instance, the first row of W
is entirely zero, then we may as well omit the first row of
Zr,c entirely from our problem setting (1) and consider only
the (m −1)×n submatrix. Similarly, we may assume that
every column sum of W is also positive. Furthermore, we
will impose that the weight matrix W satisfies the following
structural assumption.
Assumption 2.2. W =C⊙uv⊤ for some positive m×n ma-
trix C and positive vectors u ∈Rm , v ∈Rn , where ⊙ denotes
the Hadamard product.

Comparing with the standard choice (3) in entropic opti-
mal tranport, C plays the role of the (exponentiated) cost
matrix and uv⊤ is the prior product distribution, which is
often taken as rc⊤ from the target margin (r,c). In our anal-
ysis, the following ‘condition number’ of C will play an
important role:

κ := Cmax/Cmin (8)

where Cmax and Cmin are maximum and minimum entries
of C respectively.

2.1. Generalized Kantorovich duality

Notice that since an SSB Zr,c in (1), if exists, is a member
of TW(r,c)∩ (A,B)m×n . Hence this set being non-empty is
a necessary condition for the existence of SSB. In the fol-
lowing lemma, we show that this condition is also sufficient
for the existence of SSB, in which case it is also unique.

Lemma 2.3 (Existence and uniqueness of generalized
SSB). Assume 2.1 holds. For an m ×n margin (r,c) and
weight matrix W, the SSB Zr,c in (1) exists if and only if the
set TW(r,c) ∩ (A,B)m×n is non-empty. Furthermore, the
SSB is unique if it exists.

Inspired by the Kantorovich dual for the entropic optimal
transport (Nutz & Wiesel, 2022) and also the maximum
likelihood formulation of the typical table problem in (Lyu
& Mukherjee, 2024), we seek to construct a dual prob-
lem for (1) that is directly solved by the potentials solving
the Schrödinger system (5). Since f is twice-differentiable
in its domain, its derivative φ := f ′ is strictly increasing
and hence admits a strictly increasing continuous inverse
φ−1. Hence there exists a differentiable function ψ (up
to a constant shift) such that ψ′ = φ−1. By chain rule,
ψ′′(θ) = 1/φ′(x) = 1/ f ′′(x) > 0, where ψ′(θ) = x. Thus ψ is
a twice-differentiable strictly convex function. In words, ψ
is the integral of the inverse of the derivative of f .

Our key observation is that we can use this function ψ to
formulate a ‘Kantorovich dual’ for (1). Namely, we ob-
serve the following crucial identity:(

xφ(x)−ψ(φ(x))
)′ =φ(x)+xφ′(x)−ψ′(φ(x))︸ ︷︷ ︸

=x

φ′(x)

=φ(x) = f ′(x),

where we have used ψ′ = φ−1 and φ = f ′. Thus we may
choose ψ such that

f (x) = xφ(x)−ψ(φ(x)). (9)

Now consider the following (not strictly) concave maxi-
mization problem:

sup
α,β

(
g r,c(α,β) := 〈r,α〉+〈c,β〉−〈W,ψ(α⊕β)〉

)
, (10)

where α⊕β denotes the m ×n matrix with entries α(i )+
β( j ) and the supremum in (10) is over all (α,β) ∈Rm ×Rn

such that ψ(α⊕β) is well-defined and the inner product
between matrices is the sum of the entry-wise products, as
usual. We will call the above the Kantorovich dual for (1)
due to the following result. Note that its first-order opti-
mality condition is exactly the Schrödinger system (5).

Theorem 2.4 (Generalized Kantorovich duality). Assume
2.1 holds. Fix an m ×n margin (r,c) and weight matrix W.
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(i) Suppose the SSB Zr,c for margin (r,c) w.r.t.. W exists.
Then there is a potential (α,β) for (r,c) such that

Zi j =ψ′(α(i )+β( j )) ∀1 ≤ i ≤ m, 1 ≤ j ≤ n. (11)

Also, (α,β) is a solution to the dual problem (10).

(ii) Suppose (α,β) is a solution to the dual problem (10).
Then the SSB Zr,c for margin (r,c) uniquely exists and

Zr,c =ψ′(α⊕β). (12)

Furthermore, the SSB (1) and the dual (10) problems
are in strong duality:

inf
X∈TW(r,c)

g (X) = sup
α,β

g r,c(α,β). (13)

Note that the potentials for margin (r,c) (defined below (4))
are not unique. In fact, if (α,β) is a potential, then (α+
a1m ,β− a1n) is a potential for any scalar a ∈ R. But it
can be made unique once a further linear constraint, say
〈α,1m〉 = 0, is imposed. We call such potential where the
coordinates of the row potential α sum to zero a standard
potential for (r,c).

2.2. Convergence of generalized Sinkhorn algorithm

As we noted before, the Kantorovich dual (10) is a con-
cave maximization problem and the objective function is
not strictly concave. While linear convergence of standard
optimization algorithms for such problems is not usually
expected, our main result (Thm. 2.6) below establishes
linear convergence where the rate of convergence depends
sensitively on the ‘quality of the optimizer’. Namely, it will
be crucial to assess how far the entries of the SSB Zr,c are
bounded away from the boundary values A and B , or equiv-
alently, how far the entries of the ‘direct-sum potential’
α⊕β are bounded away from the boundary values φ(A)
and φ(B). We make this precise via the following notion of
‘δ-tameness’ of margin (r,c).

Definition 2.5 (Tame margins). Fix δ> 0. We call a margin
(r,c) δ-tame if the SSB w.r.t. the weight matrix W, say Zr,c,
exists and its entries satisfy

Aδ := max
(

A+δ,− 1

δ

)
≤ Zr,c ≤ min

(
B −δ,

1

δ

)
=: Bδ, (14)

or, equivalently (due to Theorem 2.4),

φ(Aδ) ≤α⊕β≤φ(Bδ). (15)

We remark that since Zr,c takes entries from (A,B), any
margin (r,c) for which SSB Zr,c w.r.t. W exists, it is δ-
tame for some δ > 0 that may depend on (r,c), and hence
on the dimensions m and n.

Now we state the main result in this work. We establish
that the generalized Sinkhorn algorithm (6) converges at
a linear rate in the sense that the objective value gap as
well as the L2-estimation error of the direct-sum potentials
decay exponentially fast. For the statement below, define
∥A∥uv⊤ :=

√∑
i , j A2

i j u(i )v( j ) for m ×n matrix A.

Theorem 2.6 (Linear convergence of generalized Sinkhorn
iterates). Assume 2.1 and 2.2 hold. Let (αk ,βk ), k ≥ 0 de-
note the iterates produced by the Sinkhorn algorithm (6)
for some m×n margin (r,c) such that TW(r,c)∩(A,B)m×n

is non-empty. Choose δ > 0 small enough so that (r,c)
is δ-tame. Fix a potential (α∗,β∗) and denote ∆k :=
g r,c(α∗,β∗) − g r,c(αk ,βk ). For each ε > 0, let σ−(ε)2

(resp., σ+(ε)2) denote the infimum (resp., supremum) of ψ′′
on (φ(Aε),φ(Bε)). Let κ be as in (8).

(i) (Asymptotic linear convergence) There exists an inte-
ger k0 ≥ 0 that may depend on m,n, f ,W such that the
following holds with ε= δ/2:

Cminσ−(ε)2

2
∥(α∗⊕β∗)− (αk ⊕βk )∥2

uv⊤ ≤∆k (16)

≤
(
1−κ−2σ−(ε)4

σ+(ε)4

)k−k0

∆k0 ∀k ≥ k0. (17)

(ii) (Non-asymptotic linear convergence) Let D0 :=
infλ∈R ∥α0 − (α∗ +λ1m)∥∞ denote the smallest L∞-
distance between α0 and α∗. If

φ(Aε)+2D0 ≤α∗⊕β∗ ≤φ(Bε)−2D0, (18)

for some ε> 0, then (16) holds with k0 = 1.

Part (i) states that whenever SSB Zr,c exists so that the prob-
lem is well-defined, the generalized Sinkhorn iterates (6)
converges linearly asymptotically, meaning that the linear
convergence kicks in after some unknown number k0 of it-
erations. The linear rate of convergence is degraded if the
condition number κ for the cost matrix C is large. Part
(ii) states in fact the linear convergence holds from the very
first iteration if the L∞-ball aroundα∗⊕β∗ with radius 2D0

takes entries from the domain of ψ, (φ(A),φ(B)). In par-
ticular, if we take α0 ≡ 0, then 2D0 equals the ‘span’ of
α∗, maxα∗ −minα∗. This condition is always satisfied
if (φ(A),φ(B)) = R, which is the case for entropic optimal
transport. Otherwise, it can still be satisfied if α0 is suffi-
ciently close to α∗ after suitable translation.

2.3. A priori bound on potentials

Our last concern is to obtain dimension-independent lin-
ear convergence rate of the generalized Sinkhorn iterates.
This is crucial in computing generalized SSBs for large-
scale problems using the proposed Sinkhon algorithm. The
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contraction rate in 2.6 is determined by σ±(ε), which are
essentially determined by the tameness parameter δ for the
target margin (r,c). Hence, we only need to show that such
δ is dimension-independent.

As it turns out, one can easily create a sequence of margins
for which the tameness parameter vanishes at an arbitrary
speed as the dimensions m,n → ∞. In fact, determining
whether a given margin (r,c) is δ-tame for some dimension-
independent δ is an important problem in entropic optimal
transport (Marino & Gerolin, 2020; Carlier, 2022), ran-
dom graphs with given degree sequences (Chatterjee et al.,
2011; Barvinok & Hartigan, 2013; Dhara & Sen, 2022),
enumeration of graphs with given degree sequences (Barvi-
nok & Hartigan, 2013) and contingency tables (Barvinok
& Hartigan, 2012; Lyu & Pak, 2022; Dittmer et al., 2020),
and random matrices with given margins (Lyu & Mukher-
jee, 2024).

In what follows, we will provide some sufficient conditions
for dimension-independent tameness. We will use easily-
checked conditions on the margin of the following form:
there exists some positive s < t such that the target margin
(r,c) satisfies the linear bounds

s ≤ r(i )

Wi•
≤ t and s ≤ c( j )

W• j
≤ t for all i , j . (19)

We then seek for conditions on s and t such that (r,c) is
δ-tame for some δ that depends only on the divergence f
and s, t . It is hard to seek a simple condition that covers all
possible range of problems entailed in the generalized SSB
problem as the problem of tameness is known to depend
very sensitively on the nature of the problem in the litera-
ture above. We will provide two such results depending on
whether f assumes bounded or unbounded domain.

We first consider the case when f has bounded do-
main. Without loss of generality, we can then assume
Interior(dom( f )) = (0,B) for some positive finite B .

Theorem 2.7 (Bound on potentials when f has bounded
domain). Suppose A = 0 and B ∈ (0,∞) and let W and κ be
as above. Fix constants 0 < s < t such that

κt <
p

2B s/κ− s/κ or (κ−1s +κt )2 < 4Bκ−1s. (20)

Then there exists a constant C = C ( f , s, t ) with the fol-
lowing property: If any margin (r,c) satisfies (19) and
TW(r,c)∩ (A,B)m×n is nonempty, then there exists a po-
tential (α,β) for margin (r,c) w.r.t. W such that ∥α∥∞ ≤C
and ∥β∥∞ ≤C . In particular, (r,c) is δ-tame for some δ> 0
depending only on f ,κ, s, and t .

A few remarks are in order. First, the above result gener-
alizes a similar result in (Lyu & Mukherjee, 2024) when
W = 1m 1⊤

n and f is the KL-divergence between a com-
pactly supported probability measure and its exponential

tilting. Second, the result in Theorem 2.7 above cannot be
improved since the specialized result in (Lyu & Mukher-
jee, 2024) is already known to be sharp. This means that
there is a sequence of margins with growing dimension sat-
isfying the strict reverse inequality in (20) with vanishing
tameness parameter. Third, the set of possible (s, t ) satis-
fying the condition (20) shrinks as the condition number
κ increases. Intuitively, it should be harder to guarantee
dimension-independent tameness for wildly varying cost
matrix C. See Fig. 1.
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Figure 1. Red regions depict the solution set of the tameness con-
dition (20) in Thm. 2.7 for B = 1 and κ= 1,2.

Lastly, we consider the case when f has unbounded do-
main. For instance, if f (x) = x log x as in Entropic Opti-
mal Transport (EOT), then (A,B) = (0,∞) and ψ(θ) = eθ so
( f ′(A), f ′(B)) =R. The following theorem gives a sufficient
condition for tameness for similar but more general cases.

Theorem 2.8 (Bound on potentials when f has un-
bounded domain). Suppose (A,B) = (0,∞) and (0,∞) ⊆
( f ′(A), f ′(B)). Let W and κ be as before. Fix constants
s, t ∈ (0,∞) with s ≤ t . Let (r,c) be a m ×n margin such
that TW(r,c)∩(A,B)m×n is nonempty and satisfies (19). Let
(α,β) be a potential for (r,c) w.r.t. W. Denote

c(ε; s, t ) :=φ
(
κ2t (t − (1−ε)s)

εs

)
−φ((1−ε)t ). (21)

Then entrywise,

φ(s)− inf
ε∈(0,1)

c(ε; s, t ) ≤ α⊕β ≤ φ(t )+ inf
ε∈(0,1)

c(ε; s, t ).

(22)

In particular, (r,c) is δ-tame for some δ> 0 depending only
on f ,κ, s, and t if the left-hand side of (22) is strictly larger
than f ′(A).

Consider again EOT, where (φ(A),φ(B)) = R and φ(θ) =
1+ logθ. In this case, the infimum in (22) is attained at
ε∗ = s−t+pt (t−s)

s , which yields

1−2logκ+2log s −2log(
p

t +p
t − s)

≤α⊕β≤ 1+2logκ+ log t − log s +2log(
p

t +p
t − s).
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In entropic optimal transport, one takes (see (3)),

Ci j = exp(−c(i , j )/ε) (23)

where ε > 0 now is the entropic regularization parameter.
Then

κ= exp
(
ε−1(maxc(·, ·)−minc(·, ·))

)≤ exp(∥c∥∞/ε). (24)

So our bound on the potentials above says

α⊕β=O(∥c∥∞/ε)+O(log(t/s)). (25)

The corresponding bound on potentials for EOT in (Marino
& Gerolin, 2020) and (Carlier, 2022) depend only on
∥c∥∞/ε and there is no dependence on the margin (r,c).
This is because such bounds assume specific structure of
the divergence (e.g., f (x) = x log x) and uv⊤ = rc⊤ as in
(3). Our bound above does not assume uv⊤ = rc⊤. Further-
more, our general bound in (22) works for general diver-
gence f .

3. Analysis
Here we give high-level sketches of our analysis. Some of
the proofs are relegated to Appendix B.

3.1. Generalized Kantorovich duality

For each (α,β) ∈Rm ×Rn , define

Xα,β :=ψ′(α⊕β). (26)

Using the key relation (9) and denoting X̃ = (X̃i j ) with
X̃i j := Xi j Wi j , we can relate the primal objective function
for SSB in (1) evaluated at Xα,β to the dual objective in (10)
evaluated at (α,β) as follows:

g (Xα,β) =
m∑

i=1

n∑
j=1

(
Xi jφ(Xi j )−ψ(φ(Xi j ))

)
Wi j

=
m∑

i=1

n∑
j=1

(α(i )+β( j ))X̃i j −
∑
i , j
ψ(φ(Xi j ))Wi j

=
m∑

i=1
α(i )

m∑
j=1

X̃i j +
n∑

j=1
β( j )

n∑
i=1

X̃i j −
∑
i , j
ψ(α(i )+β( j ))Wi j

= g r,c(α,β)−
m∑

i=1
α(i )

(
r(i )−

m∑
j=1

X̃i j

)

−
n∑

j=1
β( j )

(
c( j )−

n∑
i=1

X̃i j

)
, (27)

where g r,c(α,β) is defined in (10). This gives a direct rela-
tion between the primal and the dual objectives. Note that if
W̃ satisfies row and column margin (r,c), or equivalently, if
Xα,β has W-weighted margin (r,c), then the above identity
yields

g (Xα,β) = g r,c(α,β).

This is the essence of our proof of generalized Kantorovich
duality stated in Theorem 2.4. The remaining details of the
proof are given below.

Proof of Theorem 2.4. First we show (i). By the hypothe-
sis, the SSB for margin (r,c) uniquely exists, which we de-
note by Zr,c. Since f ′ =φ, we have ∇g (Z) = (

φ(Zi j )Wi j
)

i j .
Since φ is differentiable, we can apply the multivariate La-
grange multiplier method, to conclude the existence of dual
variables α∗ ∈ Rm and β∗ ∈ Rn such that φ(Zi j ) =α∗

i +β∗
j

whenever Wi j > 0. Hence (α∗,β∗) is a potential for (r,c).
Since Zr,c ∈TW(r,c), (α∗,β∗) satisfies the Schrödinger sys-
tem (5), which is exactly the first-order optimality condi-
tion for the dual (10). Since the dual problem is a concave
maximization problem, it implies that (α∗,β∗) is a global
maximizer for it. This shows (i).

Now suppose (α̂, β̂) is a solution for the dual problem (10).
Then X α̂,β̂ ∈TW(r,c)∩ (A,B)m×n , so the above yields

g (Xα̂,β̂) = g r,c(α̂, β̂) = sup
α,β

g r,c(α,β). (28)

Furthermore, by Lemma 2.3, the SSB for margin (r,c)
uniquely exists, which we denote by Zr,c. By part (i),
there exists a potential (α∗,β∗) for margin (r,c) such that
Zr,c = Xα

∗,β∗
. Then by using (28) with (α∗,β∗) and (α̂, β̂),

it follows that

sup
α,β

g r,c(α,β) = g (Xα
∗,β∗

) = g (Zr,c) ≤ g (Xα̂,β̂)

= g r,c(α̂, β̂) = sup
α,β

g r,c(α,β).

Thus all terms that appear above must equal, verifying (13).
Since g is strictly convex, Zr,c must be its unique global
minimizer over TW(r,c). Since Xα̂,β̂ ∈ TW(r,c), the above
yields that Xα̂,β̂ = Zr,c.

3.2. Convergence of generalized Sinkhorn

Recall that the Kantorovich dual (10) is a concave maxi-
mization problem and the objective function is not strictly
concave. For such problems, linear convergence of stan-
dard optimization algorithms is not usually expected unless
one already knows that the trajectory of an algorithm will
be confined in a compact set and has an access on the strong
convexity parameter of the objective function restricted on
that set. Hence, key difficulty in establishing convergence
of the generalized Sinkhorn algorithm 6 is showing that
the sequence of dual variables along the trajectory of the
Sinkhorn algorithm stays bounded. In the special case of
entropic optimal transport, a uniform bound on the norm of
the dual variables (e.g., (Marino & Gerolin, 2020)) is estab-
lished relying heavily on the closed form of Sinkhorn iter-
ates (7), which is enjoyed only for the special case. In the
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lemma below, we establish that the generalized Sinkhorn
algorithm is a non-expanding operator in the L∞-norm.

Lemma 3.1 (L∞-monotonicity of the Sinkhorn iterates).
Suppose TW(r,c)∩ (A,B)m×n is non-empty. Let (αt ,βt ),
t ≥ 0 denote the iterates produced by the Sinkhorn algo-
rithm (6). Let (α̂, β̂) be an arbitrary potential for the mar-
gin (r,c) w.r.t. W. Then for each t0 ≥ 0,

sup
t≥t0

∥(αt ,βt )− (α̂, β̂)∥∞ ≤ ∥αt0 − α̂∥∞. (29)

A special case of the above lemmas was first obtained
by (Lyu & Mukherjee, 2024) for analyzing Sinkhorn al-
gorithm for typical table problems arising from random
matrix with given margin. Their key idea was to realize
that the Jacobian matrix of the mappings αk−1 7→ βk and
βk 7→αk are row-stochastic matrices by using the implicit
function theorem rather than using a closed-form expres-
sion of these updates, which is only available for special
cases such as EOT. Our proof of Lemma 3.1 above follows
their approach.

Note that by shift invariance of potentials, the bound (29)
in Lemma 3.1 continues to hold if we replace the row po-
tential α̂ with any translation α̂+λ1m . Hence the right-
hand side of (29) takes the minimum value of 2D0, where
D0 is defined in Thm. 2.6 (ii). This means that all fu-
ture Sinkhorn iterates (αt ,βt ) stay within the L∞ neigh-
borhood of (α̂, β̂) with side length 2D0. If such a box is
contained in the box (φ(Aδ),φ(Bδ))(m+n) for some δ > 0,
this would imply that every intermediate potential (αt ,βt )
is δ-tame. When (φ(Aδ),φ(Bδ)) = R (e.g., for EOT when
φ(x) = f ′(x) = 1+ log x and A = 0, B =∞), this is always
the case. However, one has to pay additional care when
(φ(Aδ),φ(Bδ)) is not the entire real line (e.g., it is (−∞,0)
when f (x) = x log x + (1− x) log(1− x) for random graphs
with given degree sequence).

Once we establish a priori bounds on the generalized
Sinkhorn iterates, we can analyze linear convergnece of
the iterates by following the appraoch of Carlier (2022) for
EOT, which was recently generalized by (Lyu & Mukher-
jee, 2024) for the generalized typical table problem. We
adopt their approach to prove Theorem 2.6. Essentially,
the idea is to use the strong convexity and smoothness of
the entry-wise dual objective ψ (see (10)) within a com-
pact interval. This interval comes from the a priori bound
of Sinkhorn iterates given in Lemma 3.1. Using this, one
can show that the algorithm is a contraction in the space
of direct-sum potentials α⊕β, equipped with the weighted
norm ∥ · ∥uv⊤ introduced above the statement of Thm. 2.6.
Since linear convergence occurs at the level of direct-sum
potentials, this does not contradict the fact that there are in-
finitely many solutions to the Kantorovich dual (10) com-
ing from the shift-invariance of potentials.

3.3. A priori bounds on the potentials

In our theory of generalized SSB, obtaining a priori bounds
on the potentials requires a substantial innovation from the
existing literature of EOT and typical tables. Unlike in
EOT, we cannot rely on separability of dual objective, i.e.,
ψ′(α+β) =ψ′(α)ψ′(β) (since ψ′(x) = exp(x)), and unlike
in the typical table problem with uniform weight W = 1m 1⊤

n
(with constant cost), we cannot use reduction techniques
developed in (Lyu & Mukherjee, 2024) that rely on the
symmetry of the weights.

Theorem 2.7 deals with the case when dom( f ) is bounded.
Without loss of generality assume α(1) ≤ ·· · ≤ α(m) and
β(1) ≤ ·· · ≤β(n). In order to arrive at a dimension indepen-
dent sufficient condition we analyze how different shifts in
the potentials (using the shift invariance property) can im-
pact the relative contributions of vectors u and v in arriving
at a pair of constants 0 < s < t which satisfy condition (20).
Once (20) is satisfied, it is easy to find a constant C, using
φ is continuous and increasing , such that ∥α∥∞ ≤ C and
∥β∥∞ ≤C which readily translates to δ-tameness for some
δ > 0 that depends on C and κ. Since C itself depends on
f , s, and t , we get that δ depends on f ,κ, s, and t .

Theorem 2.8 deals with the unbounded case. The first step
is to bound the largest coordinate of the column potential
by β(n) ≤φ(t ). Indeed,

tW•n ≥ c(n) =
m∑

i=1
Wi nψ

′(α(i )+β(n))

≥
m∑

i=1
Wi nψ

′(β(n)) =ψ′(β(n))W•n .

Next, we look at the smallest row sum r(1). The key insight
here is to break the weighted sum for r(1) depending on
whether β( j ) is smaller than φ((1−λ)s). This is because
if most of β( j )’s are less than this value, then the first row
sum will be too small and it will violate the lower bound on
r(1) in terms of the quantity s. Proceeding this way,

sW1• ≤ r(1) = ∑
β( j )<φ((1−λ)s)

W1 jψ
′(β( j ))

+ ∑
β( j )≥φ((1−λ)s)

W1 jψ
′(β( j ))

≤ M(t − (1−λ)s)+W1•(1−λ)s,

where we denote M := ∑
j :β( j )≥φ((1−λ)s) W1 j . Rearranging

terms and since W1•, s > 0, we deduce
M

W1•
≥ λs

t − (1−λ)s
> 0. (30)

Thus a linear fraction of j ’s satisfy β( j ) ≥φ((1−λ))s). Us-
ing this fact, this can be used to upper bound α(m). Since
both the row and column potentials are now upper bounded
and since the row and column sums are lower bounded,
the smallest row and column potentials now cannot be too
small. This leads to lower bounds on α(1) and β(1).
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4. Numerical Experiments
In this section, we present results on the effectiveness of
our GSA (6) for various strictly convex divergences. We
consider the following six strictly convex f-divergences:

• KL divergence: f (x) = x log x,
• Jeffreys divergence: f (x) = (x −1)log x,
• Jensen-Shannon divergence:

f (x) = 1
2 (x log x − (x +1)log( x+1

2 )),
• Neyman χ2 divergence: f (x) = (x −1)2,
• Binomial divergence: f (x) = 10log( 1+ex

2 ), and

• Squared Hellinger divergence: f (x) = 1
2 (
p

x −1)2.

For different combinations of the (source and target)
marginals and the cost matrix, we plot the log-scale im-
provement in the L1 errors of the GSA iterates of the f-
divergences above versus the iteration count. We highlight
two such combinations here, in Fig. 2 and Fig. 3. For
the sake of brevity, we plot only the resultant transporta-
tion map given by Jeffrey’s divergence, while covering all
remaining transportation maps in Appendix C.

Figure 2. Convergence of dual objective gradient norms of GSSB,
transportation maps for various f-divergences for Gaussian
marginals in dimensions m = 100 and n = 100, L2 cost function,
and entropic regularization parameter ϵ = 10. The marginals are
shown in the subplot (1,1), the cost matrix C is shown at (2,1), and
the L1 gradient norm of the dual objective (also the L1 marginal
error) is shown at (1,2). Plot (2,2) shows the transport map given
by Jeffrey’s divergence. For a more thorough transport map com-
parison, we direct the reader to Figure 8.

We observe that using different divergence functions shows
different linear convergence rates; sometimes, the standard
KL divergence is not the fastest one. In addition, the trans-
port maps in Appendix C show qualitative differences de-
pending on the divergence. This indicates the potential

Figure 3. Convergence of dual objective gradient norms of GSSB,
transportation maps for various f-divergences for Gaussian
marginals in dimensions m = 100 and n = 100, L2 cost function,
and entropic regularization parameter ϵ = 10. The marginals are
shown in the subplot (1,1), the cost matrix C is shown at (2,1), and
the L1 gradient norm of the dual objective (also the L1 marginal
error) is shown at (1,2). Plot (2,2) shows the transport map given
by Jeffrey’s divergence. For a more thorough transport map com-
parison, we direct the reader to Figure 9.

benefit of using more adapted divergence functions in EOT
problem formulations. We postpone a more detailed expo-
sition of our numerical experiments to Appendix C.

5. Conclusion
In this paper, we present the generalized static Schrödinger
bridge problem, establish its Kantorovich dual, and show
that the associated generalized Sinkhorn algorithm con-
verges linearly in a dimension independent manner under
mild assumptions on the general divergence functional f ,
weight matrix W and margin (r,c). We now discuss some
immediate open problems. One question of particular in-
terest is if our analysis, which crucially uses a centering
argument (possible by shift-invariance of dual potentials)
can be extended to the more general problem considered in
(Luo & Tseng, 1992) of the form

min
x

f (x) := g (Ex)+〈b,x〉 s.t . x ∈ X,

where g is strictly convex to achieve non-asymptotic linear
convergence for alternating minimization and even coor-
dinate descent methods under milder assumptions than al-
ready known. Another key question is whether the a priori
bounds on potentials can be strengthened to sharp condi-
tions such as those for Barvinok margins.
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Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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Linear Convergence of Sinkhorn’s Algorithm for
Generalized Static Schrödinger Bridge

Supplementary Material

A. Background
Connection to static Schrödinger Bridge. Our prime motivation to study the problem (1) is the classical static
Schrödinger bridge. Suppose we have a probability measure R on X ×X representing our prior knowledge on the joint
behavior of two X -valued random variables, say X and Y . Suppose that we are given marginal distributions of X and Y ,
say µX and µY , respectively. The static Schrödinger bridge in this setting is to find the ‘most natural’ joint probability
measure H for (X ,Y ) such that (1) it has the correct marginal distributions (µX ,µY ) and (2) it is as close as possible to the
prior distribution R.

More precisely, given two probability measures λ,ν on the same measureable space, define the relative entropy (or the
Kullback–Leibler (KL) divergence) of µ from ν by

DK L(λ∥ν) :=
{∫ dλ

dν (u) log
(

dλ
dν (u)

)
ν(du) if λ≪ ν

∞ otherwise,
(31)

where λ≪ ν means that λ is absolutely continuous w.r.t. ν and dλ
dν denotes the Radon-Nikodym derivative of λ with

respect to ν. Now the static Schrödinger bridge problem introduced informally above can be stated as

min
H ∈Π(µX ,µY )

DK L(H ∥R), (32)

where Π(µX ,µY ) denotes the set of all joint distributions in X ×X that has marginal distributions µX and µY . The
joint probability measures H that solves the above problem is called the static Schrödinger bridge between marginal
distributions µX and µY w.r.t. R.

The base model is often taken to be the product measure R = µ1 ⊗µ2. In this case, there exists functions α1,α2 : R→ R

known as the Schrödinger potentials that characterize the Schrödinger bridge as (see, e.g., (Léonard, 2013; Nutz & Wiesel,
2022) and Sec. 3 (B) of (Csiszár, 1975))

dH

dR
(x, y) = eα1(x)+α2(y) R-a.s. (33)

To make the connection between our main problem (1) and the static Schrödinger bridge (32) clear, consider the following
discrete setting where the random variables X and Y take m and n distinct values, respectively. We will identify them
with the integers in [m] := {1, . . . ,m} and [n], respectively. Then the prior measure R lives on the integer lattice [m]× [n]
and the marginal distributions µX and µY live on [m] and [n], respectively. Then writing (32) as an optimization problem
involving the Radon-Nikodym derivative X = dH

dR , we obtain

min
X=(xi j )∈Rm×n

>0

∑
i , j

(xi j log xi j )R(i , j ) (34)

s.t.
n∑

j=1
xi j R(i , j ) =µX (i ),

m∑
i=1

xi j R(i , j ) =µY ( j ) ∀i , j .

Notice that the above is a special case of (1) with weight matrix W =R, margin (µX ,µY ), and divergence f (x) = x log x.

Connection to Entropic Optimal Transport. Schrödinger bridges and entropic optimal transport (EOT) are intimately
related as evidenced by the problem formulation that arises in EOT. More precisely, given a measurable cost function
c : X ×X −→R≥0 and a fixed regularization parameter ε> 0, the entropic optimal transport problem is

min
H ∈Π(µX ,µY )

∫
cdH +εDK L(H ∥µX ⊗µY ) (35)

12



Sinkhorn’s Algorithm for Generalized Static Schrödinger Bridge

which is the same as (32) for R(d(x, y)) ∝ e−c(x,y)/εµX (d x)⊗µY (d y). We differentiate between the cost matrix ci j and the
margin c by boldface. In a manner similar to earlier, consider the discrete case and denote the Radon-Nikodym derivative
as X = dH

dR . Then (34) further reduces to

min
X=(xi j )∈Rm×n

>0

∑
i , j

(xi j log xi j )e−ci j /εµX (i )µY ( j ) (36)

s.t.
n∑

j=1
xi j e−ci j /εµY ( j ) = 1,

m∑
i=1

xi j e−ci j /εµX (i ) = 1 ∀i , j .

The above may look a bit different from a direct discretization of the standard formulation of the EOT (35). The difference
is that while (35) is formulated in temrs of the joint coupling H as the optimization variable, (36) is formulated in terms
of the Radon-Nikodym drivative X = dH

dR . Recall that (36) is a special case of our main problem (1) with weight Wi j ∝
(e−ci j /εµX (i )µY ( j ))i j , margin (r,c) = (µX ,µY ) and divergence f (x) = x log x.

Connection to Random matrices with given margins. Recently, Lyu and Mukherjee (Lyu & Mukherjee, 2024) discov-
ered that the random matrix with i.i.d. entries from a common distribution µ conditioned to have a prescribed row margin
r ∈Rm and column margin c ∈Rn concentrates around the solution of a special case of (1). Specifically, it is the case when
W = 11⊤ (uniform prior) and f (x) = DK L(µφ(x) ∥µ), where µθ is the exponential tilt of µ defined by dµθ

dµ (x) = exp(θx−ψ(θ)),
ψ(θ) = log

∫
eθx µ(d x) is the log-Laplace transform of µ, and φ is the strictly increasing inverse of the ‘tilt-to-mean’ func-

tion ψ′.

The key insight in (Lyu & Mukherjee, 2024) is that the margin-conditioned random matrix X can be well-approximated
by another random matrix Y with independent entries, where the laws of the entries are suitable exponential tilt of the
base measure µ. The authors show that among such parameterized models by entrywise exponential tilts, the best one is
given by a rank-one tilting, where Yi j ∼ µα(i )+β( j ) for some vectors α ∈ Rm and β ∈ Rn . The best such dual variables can
be computed by solving the maximum-likelihood estimation problem, which is precisely (10) with W = 11⊤. Since the
log-likelihood function g r,c(α,β) is strictly concave, the MLE must be a critical point, yielding the MLE equation

E[Y ] =ψ′(α⊕β) ∈T (r,c). (37)

Here, the equality follows from the definition and T (r,c) =TW(r,c) is the transportation polytope of all m×n real matrices
with margin (r,c) (recall W = 11⊤). This consists of m+n linear equations (one being redundant) that precisely correspond
to the system of Schrödinger equations (see, e.g., (Nutz, 2021)).

Once the MLE (α,β) is found, then the best approximating model Y for X is given by

Y ∼µα⊕β, (38)

meaning that Yi j s are independent and Yi j ∼ µα(i )+β( j ). In (Lyu & Mukherjee, 2024), Lyu and Mukherjee established
‘transference principles’, which roughly say that X ≈ Y . Given this, it is natural to expect that X concentrates around the
mean of Y , which is precisely the matrix ψ′(α⊕β). This matrix is known as the typical table for the margin (r,c) and
base measure µ in (Lyu & Mukherjee, 2024). According to our Theorem 2.4, the typical table can also be viewed as the
corresponding generalized static Schrödinger bridge.

Much of the theories we develop in this work are in parallel to and generalize those in (Lyu & Mukherjee, 2024) for
non-uniform weight matrix W and general divergence function f (·) that is not of the form DK L(µφ(·) ∥µ).

B. Postponed Proofs
Recall that we denote Interior(dom( f )) = (A,B) for some A,B ∈R∪ {∞} and Θ◦ := Interior(dom(ψ)).

Proof of Lemma 2.3. Since the domain of f ′ is (A,B), if a SSB Zr,c exists, it belongs to the intersection TW(r,c) ∩
(A,B)m×n . For the other direction, suppose there exists some X = (xi j ) ∈ ∩(A,B)m×n . Then there exists δ > 0 such
that X ∈ [Aδ,Bδ]m×n (see Def. 2.5). Let Z(k) be a sequence of matrices in (A,B)m×n ∩TW(r,c) such that

g (Z(k)) ≤ inf
Z∈TW(r,c)∩(A,B)m×n

g (Z)+ 1

k
(39)

13
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if the infimum is finite, and require g (Z(k)) ≥ k otherwise. We begin by showing that for any i , j such that Wi j > 0,

A < liminf
k→∞

Z(k)
i j ≤ limsup

k→∞
Z(k)

i j < B. (40)

By passing to a subsequence, assume that Z(k)
i j → Z(∞)

i j ∈ [A,B ] for all i j , where Z(∞) = (Z(∞)
i j ) is a (possibly) extended

real-valued matrix. Let

IA := {(i , j ) : Z(∞)
i j = A,Wi j > 0} (41)

IB = {(i , j ) : Z(∞)
i j = B ,Wi j > 0}, (42)

IA,B := {(i , j ) : Z(∞)
i j ∈ (A,B)}. (43)

For any λ ∈ [0,1] set Z(k,λ) := (1−λ)Z(k) +λX, and note that Z(k,λ) ∈TW(r,c)∩ [Aλδ,Bλδ]m×n . Hence

g (Z(k)) ≤ inf
X∈TW(r,c)∩[Aλδ,Bλδ]m×n

g (X)+ 1

k
≤ g (Z(k,λ)) (44)

for all sufficiently large k ≥ 1. By convexity of g ,

1

kλ
≥ g (Z(k))− g (Z(k,λ))

λ
≥ 〈∇g (Z(k,λ)), W⊙ (Z(k) −X)〉

=∑
i , j

f ′
(
Z(k,λ)

i j

)
(Z(k)

i j −xi j )Wi j , (45)

Letting k →∞ followed by λ↘ 0 in (45) we get

0 ≥−∑
i j
φ(Z(∞)

i j )(Z(∞)
i j −xi j )Wi j

= ∑
(i , j )∈IA

φ(A)(A−xi j )Wi j +
∑

(i , j )∈IB

φ(B)(B −xi j )Wi j

+ ∑
(i , j )∈IA,B

φ(Z(∞)
i j )(Z(∞)

i j −xi j )Wi j . (46)

Note that IA =; if A =−∞ and φ(A) =−∞ if A is finite by Assumption 2.1. Similarly, IB =; if B =∞ and φ(B) =∞ if
B is finite. Since the third term above is finite, the above equality holds only if IA =IB =;, which gives (40).

Given (40), we have the existence of δ> 0 such that

inf
X∈TW(r,c)∩(A,B)m×n

g (Z) = inf
X∈TW(r,c)∩[Aδ,Bδ]m×n

g (Z). (47)

But the RHS above focuses on a compact set, and minimizes a strictly convex function. Hence the existence of a unique
optimizer follows.

Proof of Lemma 3.1. By permuting the rows and columns if necessary, we may assume that α̂(1) ≤ ·· · ≤ α̂(m) and β̂(1) ≤
·· · ≤ β̂(n). Fix (α,β) ∈Rm ×Rn . Let β 7→ ξ(β) =:α′ denote the Sinkhorn update for the first dual variable given the second
one β. This update is characterized by (5) as r(i ) =∑

j ψ
′(α′(i )+β( j ))Wi j for all i . We would like to compute the Jacobian

of this map. To do so, define the function F :Rm ×Rn →Rm by setting the i th coordinate of F (α,β) ∈Rm for i = 1, . . . ,m as

r(i )−∑
j
ψ′(α(i )+β( j ))Wi j . (48)

Then α′ = ξ(β) is the unique zero of the equation F (·,β) = 0. Let E = E(α′,β) be the m ×n matrix whose (i , j ) entry is
−ψ′′(α′(i )+β( j )′)Wi j and let Ei• denote the i th row sum of E for i = 1, . . . ,m. Then the Jacobian of F with respect to α
and β, respectively, are given by

[JF ;α(α′,β)]m×m = diag(E1•, . . . ,Em•), (49)
[JF ;β(α′,β)]×n = E . (50)
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The first Jacobian matrix above is always invertible since ψ′′ > 0 on the domain. Hence by the implicit function theorem,

[Jα′;β]m×n =−[JF ;α(α′,β)]−1
m×m[JF ;β(α′,β)]m×n (51)

=−[
E(α′,β)i j /E(α′,β)i•

]
m×n . (52)

Importantly, we observe that −[Jα′;β] is a row-stochastic matrix.

Now fix any potential (α̂, β̂) for the margin (r,c). Note that ξ(β̂) = α̂. Let γ(s) = (1−s)β+sβ̂ denote the linear interpolation
between β and β̂. Then denoting Ps :=−Jξ(γ(s));γ(s), we have

α′− α̂= ξ(β)−ξ(β̂) =
[∫ 1

0
Ps d s

]
︸ ︷︷ ︸

=:P

(β̂−β). (53)

The matrix P defined above is row-stochastic since every intermediate negative Jacobian matrix is row-stochastic by the
earlier observation. In particular, since ∥P∥∞ = 1, this yields

∥α′− α̂∥∞ ≤ ∥P∥∞∥β̂−β∥∞ = ∥β̂−β∥∞. (54)

By a symmetric argument, it also holds that ∥∥β′− β̂∥∥∞ ≤ ∥α̂−α∥∞, (55)

where β′ denotes the output of the Sinkhorn update for the second dual variable given the first dual variable α. It then
follows that, for all k ≥ 0,

∥αk+1 − α̂∥∞ ≤ ∥βk+1 − β̂∥∞ ≤ ∥αk − α̂∥∞ ≤ ∥βk − β̂∥∞. (56)

By induction, from the above, we can deduce (i).

Proof of Theorem 2.6. We first claim the following: (16) holds if all Sinkhorn iterates (αk ,βk ) for k ≥ k0 as well as
the potential (α∗,β∗) are ε-tame. Before proving this claim, we will first deduce parts (i)-(ii) from this claim. First we
remark that there are some well-known results from the optimization literature that are directly applicable to the generalized
Sinkhorn algorithm (6). Since each sub-problem in (6) has a unique solution due to strong concavity of the block-restricted
dual objective, asymptotic convergence to the critical point of (6) follows from a general result for alternating maximization
(e.g., Prop. 2.7.1 in (Bertsekas, 1997)). Every critical point of the dual objective is an MLE, which is a global optimum by
Lemma 2.4. Thus it follows that αk ⊕βk →α∗⊕β∗ as k →∞ entrywise. In particular, if we choose ε> 0 small enough
so that (r,c) is ε-tame (i.e., φ(Aε) ≤α∗⊕β∗ ≤φ(Bε)), then there exists k0 ≥ 1 such that φ(Aε/2) ≤αk ⊕βk ≤φ(Bε/2) for all
k ≥ k0. Then (i) follows from the claim. For (ii), the hypothesis of the claim is directly justified by Lemma 3.1.

It now suffices to show the claim. Our analysis for this is inspired by the proof of linear convergence of Sinkhorn algorithm
for entropic optimal transport due to Carlier (Carlier, 2022). For simplicity denote F := −g r,c. Consider the following
centered Sinkhorn iterates (α̃k , β̃k ) for k ≥ 1 where (α̃0, β̃0) = (α0,β0) and for k ≥ 1, (α̃k , β̃k ) is obtained from β̃k−1 by the
same Sinkhorn update in (6) but follow by centering (adding and subtracting the same constants to α̃k and β̃k , respectively)
so that 〈u,α̃k〉 = 0. By an induction, it is easy to verify

αk ⊕βk = α̃k ⊕ β̃k for all k ≥ 0.

In particular, F (αk ,βk ) = F (α̃k , β̃k ) for all k ≥ 0.

Denote σ2
± =σ2

±(ε), which are defined in the statement. Note that

∇2
αF (α,β) = diag

(
u(i )

∑
j
ψ′′(α(i )+β( j ))Ci j v( j ); i

)
,

∇2
βF (α,β) = diag

(
v( j )

∑
i
ψ′′(α(i )+β( j ))Ci j u(i ); j

)
.
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If (α,β) and (α′,β′) are both ε-tame, then so is their convex combination. Hence F (α, ·) restricted on its j th coordinate is
v( j )Cminu•σ2−-strongly convex and v( j )Cmaxu•σ2+-smooth on the secant line between (α,β) and (α′,β′). Denote

β̃t ; j := (β̃t (1), . . . , β̃t ( j ), β̃t+1( j +1), . . . , β̃t+1(n))

for j = 0, . . . ,n −1 and let β̃t ,n = β̃t+1. Notice that the dual problem (10) restricted to optimizing for β is separable over
each coordinate of β. Hence the first-order optimality of β̃t+1 implies ∇βF (α̃t , β̃t+1) = 0, which in turn implies

∇β( j )F (α,β)
∣∣∣
β=β̃t ; j

= 0 for j = 1, . . . ,n.

Hence by the second-order growth property,

F (αt , β̃t ; j )−F (αt , β̃t ; j+1) ≥ Cminu•
2

|β̃t ( j )− β̃t+1( j )|2v( j )

for all j = 1, . . . ,n −1. Summing over j , we obtain

F (α̃t , β̃t )−F (α̃t , β̃t+1) ≥ u•Cminσ
2−

2
∥β̃t+1 − β̃t∥2

v,

where we denote the v-weighted norm ∥ · ∥v on Rn by ∥a∥v :=
√∑

j a( j )2v( j ). Define the u-weighted norm ∥ · ∥u on Rm

similarly. Then using a similar argument as before with ∇αF (α̃t+1, β̃t+1) = 0, we get

F (α̃t , β̃t+1)−F (α̃t+1, β̃t+1) ≥ v•Cminσ
2−

2
∥α̃t+1 − α̃t∥2

u.

Combining the two inequalities above and recalling ∆t = F (α̃t , β̃t )−F (α∗,β∗), we obtain

∆t −∆t+1

Cminσ2−
≥ v•

2
∥α̃t+1 − α̃t∥2

u + u•
2
∥β̃t+1 − β̃t∥2

v. (57)

Next, note that ψ is σ2−-strongly convex and σ2+-smooth on [φ(Aε),φ(Bε)]. In particular, for each x, y in that interval,

ψ(x)−ψ(y) ≥ψ′(y)(x − y)+ σ2−
2

(x − y)2. (58)

Then ε-tameness, (58), and 〈u,α̃t 〉 = 0 = 〈u,α∗〉 give

1

Cmin

∑
i , j

(ψ(α∗(i )+β∗( j ))−ψ(α̃t (i )+ β̃t ( j )))Wi j

≥∑
i , j
ψ′(α̃t (i )+ β̃t ( j ))(α∗(i )+β∗( j )− α̃t (i )− β̃t ( j ))u(i )v( j )

+ σ2−
2

∥((α∗⊕β∗)− (α̃t ⊕ β̃t ))∥2
uv⊤︸ ︷︷ ︸

≥v•∥α∗−α̃t ∥2
u+u•∥β∗−β̃t ∥2

v

. (59)

Then using ∇αF (α̃t , β̃t ) =∇βF (α̃t , β̃t+1) = 0, we can deduce the following strong-convexity-type inequality

−∆t = 〈(α̃t , β̃t )− (α∗,β∗), (r,c)〉
+∑

i , j
ψ(α∗(i )+β∗( j ))−ψ(α̃t (i )+ β̃t ( j ))Wi j

≥ 〈∇αF (α̃t , β̃t )︸ ︷︷ ︸
=0

,α∗− α̃t 〉+
〈∇βF (α̃t , β̃t ), β∗− β̃t

〉
+ Cminσ

2−
2

[
v•∥α∗− α̃t∥2

u +u•∥β∗− β̃t∥2
v

]
(a)≥ − 1

2u•Cminσ2−
∥∇βF (α̃t , β̃t )−∇βF (α̃t , β̃t+1)∥2

1/v

(b)≥ − C2
maxσ

4+
2Cminσ2−

(
v•∥α̃t+1 − α̃t∥2

u +u•∥β̃t+1 − β̃t∥2
v

)
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where (a) follows from coordinate-wise Young’s inequality (ab ≤ λa2

2 + b2

2λ for a,b ≥ 0 and λ = u•v( j )Cminσ
2− for j th

coordinate) and (b) follows from the Lipschitz continuity of ∇βF and including an additional nonpositive term for the
lower bound. Combining with (57) and recalling κ= Cmax

Cmin
,

∆t ≤ κ2(σ+/σ−)4(∆t −∆t+1).

Rearranging, this is ∆t+1 ≤
(
1−κ−2(σ−/σ+)4

)
∆t . A similar argument as above also shows

∆t ≥
Cminσ

2−
2

∥(α∗⊕β∗)− (αt ⊕βt )∥2
uv⊤ .

Combining, we obtain (16) as claimed.

Proof of Theorem 2.8. By the hypothesis, (A,B) = (0,∞), s ≤ r(i )/Wi• ≤ t and s ≤ c( j )/W• j ≤ t for all i , j . By Lemma
2.4, there exists a potential (α,β) for (r,c) w.r.t. W. Note that φ(zi j ) =α(i )+β( j ) ∈ (φ(A),φ(B)) for all i , j .

Denote κ= Cmax/Cmin and define

c(λ; s, t ) :=φ
(
κ2t

λs
(t − (1−λ)s)

)
−φ((1−λ)t ), (60)

which is well-defined whenever λ ∈ dom(c( · ; s, t )) =
(

t (t−s)
s(B−t ) , t−A

t

)
= (0,1) under the hypothesis. Note that t

λs (t−(1−λ)s) ≥ t

so we get c(λ; s, t ) ≥φ(t )−φ((1−λ)t ) ≥ 0. We claim that for all i , j and λ ∈ dom(c( · ; s, t )),

φ(s)− c(λ; s, t ) ≤α(i )+β( j ) ≤φ(t )+ c(λ; s, t ). (61)

This will directly imply (22). For the second part of the conclusion, note that, since φ is continuous, we may choose
λ ∈ (0,1) such that φ((1−λ)s),φ((1+λ)t ) ∈Θ◦ and c̄(λ; t ) :=φ((1+λ)t )−φ((1−λ)t ) ≥ 0 is so small that

φ(s)− c̄(λ; t ) ∈Θ◦. (62)

Also, since 0 ≤ c(λ; s, t ) ≤ c̄(λ; t ), it follows that from (62), we have

α(i )+β( j ) ∈ [φ(s)− c̄(λ; t ), φ(t )+ c(λ; s, t )] ⊆ (0,∞) ⊆Θ◦ for all i , j . (63)

Therefore, (r,c) is δ-tame for δ> 0 small enough so that Aδ ≤φ(s)− c̄(λ; t ) and φ(t )+ c(λ; s, t ) ≤ Bδ.

Now it remains to show (61). We may assume that 0 =α(1) ≤ ·· · ≤α(m) and β(1) ≤ ·· · ≤ β(n) by shifting the potentials
and permuting the rows and columns if necessary. We first note that β(n) ≤φ(t ), which follows from

tW•n ≥ c(n) =
m∑

i=1
Wi nψ

′(α(i )+β(n)) ≥
m∑

i=1
Wi nψ

′(β(n)) =ψ′(β(n))W•n . (64)

and φ(t ) ∈Θ◦. Define

M := ∑
j :β( j )≥φ((1−λ)s)

W1 j . (65)

Note that

sW1• ≤ r(1) = ∑
β( j )<φ((1−λ)s)

W1 jψ
′(β( j ))+ ∑

β( j )≥φ((1−λ)s)
W1 jψ

′(β( j )) (66)

≤ M(t − (1−λ)s)+W1•(1−λ)s. (67)

Rearranging terms and since W1•, s > 0, we deduce

M

W1•
≥ λs

t − (1−λ)s
> 0. (68)

17



Sinkhorn’s Algorithm for Generalized Static Schrödinger Bridge

Hence there exists an index j∗ such that β( j∗) ≥φ((1−λ)s). Let such j∗ be as small as possible.

Next, we claim that

κ2 t

λs
(t − (1−λ)s) ≥ψ′(α(m)+β( j∗)), (69)

To show this, observe that ψ′(α(m)+β(1)) ≥ 0 since

0 < sW1• ≤ c(1) =
m∑

i=1
Wi 1ψ

′(α(i )+β(1)) ≤ψ′(α(m)+β(1))W•1. (70)

Hence,

t ≥ r(m)

Wm•
≥ ∑

j≥ j∗

Wm j

Wm•
ψ′(α(m)+β( j∗)))+ ∑

j< j∗

Wm j

Wm•
ψ′(α(m)+β(1)) (71)

≥
∑

j≥ j∗ Wm j

Wm•
ψ′(α(m)+β( j∗)). (72)

Now from the hypothesis that W = C⊙uv⊤ and recalling κ= Cmax/Cmin,∑
j≥ j∗ Wm j

Wm•

/∑
j≥ j∗ W1 j

W1•
=

∑
j≥ j∗ Cm j v( j )∑

j Cm j v( j )

/∑
j≥ j∗ C1 j v( j )∑

j C1 j v( j )
≥

∑
j≥ j∗ Cminv( j )∑

j Cmaxv( j )

/∑
j≥ j∗ Cmaxv( j )∑

j Cminv( j )
= κ−2. (73)

Combining with the previous inequality and using (68), we get

t ≥ κ−2 λs

t − (1−λ)s
ψ′(α(m)+β( j∗)). (74)

Simplifying the above yields (69).

Then applying φ on both sides of (69) and using β( j∗) ≥φ((1−λ)t ), we get

α(m) ≤φ
(
κ2t (t − (1−λ)s)

λs

)
−β( j∗) ≤ c(λ; s, t ). (75)

In turn, we can deduce a lower bound on β(1) from

s ≤ c(1)

W•1
=

m∑
i=1

Wi 1

W•1
ψ′(α(i )+β(1)) ≤ψ′(α(m)+β(1)), (76)

which reads β(1) ≥φ(s)−α(m) ≥φ(s)−c(λ; s, t ). Therefore,α(1)+β(1) ≥φ(s)−c(λ; s, t ) andα(m)+β(n) ≤φ(t )+c(λ; s, t ).
This shows (61), as desired.

Proof of Theorem 2.7. Without loss of generality, assume m ≥ n. Let Z be the SSB for margin (r,c) w.r.t. W and (α,β)
be a potential for (r,c) w.r.t. W. respectively. By Lemma 2.4, we have Z = ψ′(α⊕β). Write α = (α1, . . . ,αm) and
β= (β1, . . . ,βn). Without loss of generality, we assume α1 ≤ ·· · ≤αm as well as β1 ≤ ·· · ≤βn .

Recall that for any λ ∈R, (α+λ1m ,β−λ1n) is also a potential for margin (r,c) w.r.t. W. Define functions

ρ(λ) := 1

u•

∑
i

u(i )1(αi +λ≥ 0) and γ(λ) := 1

v•

∑
j

v( j )1(β j −λ≥ 0), (77)

where a• := 〈1,a〉 for a vector a. Note that ρ(λ) is a right-continuous non-decreasing stepfunction and γ(λ) is a left-
continuous non-increasing stepfunction. If λ < min(β1,−αm), then αm +λ < 0 and β1 −λ > 0, so ρ(λ) = 0 and γ(λ) = 1.
Similarly, if λ > max(−α1,βn), then α1 +λ > 0 and βn −λ < 0, so γ(λ) = 1 and γ(λ) = 0. Hence there must be an
intermediate value of λ, say λ∗, where the graphs of ρ(λ) and γ(λ) cross.
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Then near λ∗, either (1) ρ is constant and γ drops down vertically or (2) γ is constant and ρ jumps up vertically. Without
loss of generality, we will assume (1) holds (the other case can be handled by a symmetric argument). Then we have

ρ = w
1

v•

∑
j

v( j )1(β∗
j = 0)+ 1

v•

∑
j

v( j )1(β∗
j > 0) for some w ∈ [0,1]. (78)

In the remainder of the proof, we will consider the shifted potential (α∗,β∗) := (α+λ∗1m ,β−λ∗1n). We will denote
α∗ = (α∗

1 , . . . ,α∗
m) and β∗ = (β∗

1 , . . . ,β∗
n) and δ := ρ(λ∗) and γ := γ(λ∗).

Fix ε > 0 sufficiently small. Note that φ(ε) →−∞ as ε↘ 0 and φ(B −ε) →∞ as ε↘ 0. Hence there are constants c1,c2

(depending on ε) such that

φ(c1ε)+φ(B −ε) ≤φ(s −ε), (79)
φ(ε)+φ(B − c2ε) ≥φ(t +ε). (80)

Then, for fixed ε,c1,c2, we may choose c3,c4 small enough so that

φ(c3ε)+φ(B − c2ε) ≤φ(s −ε), (81)
φ(c1ε)+φ(B − c4ε) ≥φ(t +ε). (82)

We claim that

φ(c1ε)
(a)≤ α∗

1 ≤α∗
m

(b)≤ φ(B − c2ε), (83)

φ(c3ε)
(c)≤ β∗

1 ≤β∗
n

(d)≤ φ(B − c4ε). (84)

Since φ(Zi j ) =α∗
i +β∗

j and φ is non-decreasing, the assertion follows immediately from this claim. Inequalities (c) and (d)
follow easily from assuming (a) and (b). Indeed, suppose (d) is not true while (a) holds. Then

tW•n ≥ c(n) =∑
i

Wi nψ
′(α∗

i +β∗
n) ≥ W•nψ

′(φ(c1ε)+φ(B − c4ε)
)≥ (t +ε)W•n , (85)

which is a contradiction. Thus if we show (a) holds, then (d) also holds. Similarly, if (c) is not true while (b) holds, then

sW•1 ≤ c(1) =∑
i

Wi 1ψ
′(α∗

i +β∗
1 ) ≤ W•1ψ

′(φ(B − c2ε)+φ(c3ε)
)≤ (s −ε)W•1, (86)

which is a contradiction. Therefore, it remains to show (83)(a)-(b).

Suppose for contradiction (a) does not hold, i.e., α∗
1 < φ(c1ε). Then necessarily β∗

n > φ(B − ε), since otherwise for all
1 ≤ j ≤ n,

z1, j =ψ′(α∗
1 +β∗

j ) ≤ψ′(α∗
1 +β∗

n) ≤ψ′ (φ(c1ε)+φ(B −ε)
)≤ψ′(φ(s −ε)) = s −ε. (87)

This implies sW1• ≤ r(1) ≤ (s −ε)W1•, a contradiction.

Now since α∗
1 <φ(c1ε) and β∗

n >φ(B −ε),

Zi ,n =ψ′(α∗
i +β∗

n) ≥ψ′(β∗
n) =ψ′(φ(B −ε)) = B −ε if α∗

i ≥ 0 , (88)
Z1, j =ψ′(α∗

1 +β∗
j ) ≤ψ′(α∗

1 ) =ψ′(φ(c1ε)) = c1ε if β∗
j ≤ 0. (89)

Then we have

t Cmaxv(n)u• ≥ tW•n ≥ c(n) = ∑
i ;αi≥0

Wi ,n Zi ,n + ∑
i ;α∗

i <0

Wi ,n Zi ,n (90)

≥ (B −ε)
∑

i ;α∗
i ≥0

Wi ,n +Z1,n
∑

i ;α∗
i <0

Wi ,n , (91)

≥ (B −ε)v(n)
∑

i ;α∗
i ≥0

Ci ,n u(i )+Z1,n v(n)
∑

i ;α∗
i <0

Ci ,n u(i ), (92)

≥ (B −ε)v(n)Cmin
∑

i ;α∗
i ≥0

u(i )+Z1,n v(n)Cmin
∑

i ;α∗
i <0

u(i ), (93)
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where for the last inequality, we used the fact that Zi , j ∈ dom( f ′) ⊆ [0,∞). This gives

t ≥ (B −ε)
Cmin

Cmax
ρ+Z1,n

Cmin

Cmax
(1−ρ). (94)

Similarly but now using (78),

sCminu(1)v• ≤ sW1• (95)

≤ r(1) =
 ∑

j ;β j <0
W1, j Z1, j + (1−w)

∑
j :β∗

j =0

W1, j Z1, j

+
w

∑
j :β∗

j =0

W1, j Z1, j +
∑

j ;β∗
j >0

W1, j Z1, j

 (96)

≤ c1u(1)Cmax

 ∑
j ;β∗

j <0

v( j )+ (1−w)
∑

j :β∗
j =0

v( j )

+Z1,n u(1)Cmax

w
∑

j :β∗
j =0

v( j )+ ∑
j ;β∗

j >0

v( j )

 (97)

≤ c1u(1)Cmax(1−ρ)v•+Z1,n u(1)Cmaxρv•. (98)

Simplifying, we get

s ≤ c1
Cmax

Cmin
(1−ρ)+Z1,n

Cmax

Cmin
ρ. (99)

Thus far we have obtained the following two inequalities

t̃ := κt ≥ ρ(B −ε)+ (1−ρ)Z1,n , s̃ := κ−1s ≤ (1−ρ)c1 +ρZ1,n . (100)

Denote τ= Z1,n . Since ρ ∈ [0,1],

t̃ +ε≥ ρB + (1−ρ)τ, s̃ − c1 ≤ ρτ. (101)

This yields

t̃ +ε≥ ρB + (1−ρ)τ≥ 2
√

Bρτ−ρτ≥ 2
√

B(s̃ − c1)− (s̃ − c1), (102)

where the first and the last inequalities above is from (101). The middle inequality above uses ρB+τ
2 ≥√

ρBτ and the fact
that the function x 7→ 2

p
B x −x is increasing for x ∈ [0,B ]. Thus if

t̃ +ε< 2
√

B(s̃ − c1)− (s̃ − c1), (103)

then this leads to a contradiction. Note that (103) holds for ε,c1 sufficiently small if t̃ < 2
p

B s̃ − s̃, or (s̃ + t̃ )2 < 4B s̃. The
last condition reads

(κ−1s +κt )2 < 4Bκ−1s (104)

Thus we conclude that (83) (a) hold. An entirely similar argument also shows (83) (b). This completes the proof.

C. Additional Numerical Experiments
In this section, we consider a total of twelve settings (two of which we already cover earlier in Section 4) in dimension
100, combining the three hyperparameter settings:

• Marginal distributions: (1) Each coordinate is uniformly sampled from (0,1) and then normalized; and (2) Gaussian
distributions with 1- or 2-modes.

• Cost functions: (1) Each coordinate is uniformly sampled from (0,1); (2) L2 -cost function

• Entropic regularization: (1) ϵ= 1 , (2) ϵ= 10 , and (3) ϵ= 100.
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As before, we consider the following six strictly convex f-divergences:

• KL divergence: f (x) = x log x,

• Jeffreys divergence: f (x) = (x −1)log x,

• Jensen-Shannon divergence:
f (x) = 1

2 (x log x − (x +1)log( x+1
2 )),

• Neyman χ2 divergence: f (x) = (x −1)2,

• Binomial divergence: f (x) = 10log( 1+ex

2 ), and

• Squared Hellinger divergence: f (x) = 1
2 (
p

x −1)2.

Each experiment is organized as a (3,3) plot. Marginal distributions are shown in the subplot (1,1), the cost matrix C is
shown at (1,2), and the L1 gradient norm of the dual objective (also the L1 marginal error) is shown at (1,3). The second and
the third rows show the optimal transport maps found by the GSA with the corresponding divergence functions. Figures 4
through 15 cover all the remaining ten of the twelve combinations.

Figure 4. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for uniformly random
marginals in dimensions m = 100 and n = 100, L2 cost function, and entropic regularization parameter ϵ= 1. The marginals are shown in
the subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective (also the L1 marginal error) is shown
at (1,3). The second and third rows show the optimal transport maps found by GSA with the corresponding divergence functions.
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Figure 5. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for uniformly random
marginals in dimensions m = 100 and n = 100, L2 cost function, and entropic regularization parameter ϵ= 10. The marginals are shown
in the subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective (also the L1 marginal error) is
shown at (1,3). The second and third rows show the optimal transport maps found by GSA with the corresponding divergence functions.

Figure 6. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for uniformly random
marginals in dimensions m = 100 and n = 100, L2 cost function, and entropic regularization parameter ϵ= 100. The marginals are shown
in the subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective (also the L1 marginal error) is
shown at (1,3). The second and third rows show the optimal transport maps found by GSA with the corresponding divergence functions.
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Figure 7. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for Gaussian marginals
in dimensions m = 100 and n = 100, L2 cost function, and entropic regularization parameter ϵ = 1. The marginals are shown in the
subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective (also the L1 marginal error) is shown at
(1,3). The second and third rows show the optimal transport maps found by GSA with the corresponding divergence functions.

Figure 8. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for Gaussian marginals
in dimensions m = 100 and n = 100, L2 cost function, and entropic regularization parameter ϵ = 10. The marginals are shown in the
subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective (also the L1 marginal error) is shown at
(1,3). The second and third rows show the optimal transport maps found by GSA with the corresponding divergence functions.
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Figure 9. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for Gaussian marginals
in dimensions m = 100 and n = 100, L2 cost function, and entropic regularization parameter ϵ = 100. The marginals are shown in the
subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective (also the L1 marginal error) is shown at
(1,3). The second and third rows show the optimal transport maps found by GSA with the corresponding divergence functions.

Figure 10. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for uniformly random
marginals in dimensions m = 100 and n = 100, uniformly random cost function, and entropic regularization parameter ϵ = 1. The
marginals are shown in the subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective (also the
L1 marginal error) is shown at (1,3). The second and third rows show the optimal transport maps found by GSA with the corresponding
divergence functions.
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Figure 11. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for uniformly random
marginals in dimensions m = 100 and n = 100, uniformly random cost function, and entropic regularization parameter ϵ = 10. The
marginals are shown in the subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective is shown at
(1,3). The second and third rows show the optimal transport maps found by GSA with the corresponding divergence functions.

Figure 12. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for uniformly random
marginals in dimensions m = 100 and n = 100, uniformly random cost function, and entropic regularization parameter ϵ = 100. The
marginals are shown in the subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective (also the
L1 marginal error) is shown at (1,3). The second and third rows show the optimal transport maps found by GSA with the corresponding
divergence functions.
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Figure 13. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for Gaussian marginals
in dimensions m = 100 and n = 100, uniformly random cost function, and entropic regularization parameter ϵ = 1. The marginals are
shown in the subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective is shown at (1,3). The
second and third rows show the optimal transport maps found by GSA with the corresponding divergence functions.

Figure 14. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for Gaussian marginals
in dimensions m = 100 and n = 100, uniformly random cost function, and entropic regularization parameter ϵ = 10. The marginals are
shown in the subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective (also the L1 marginal
error) is shown at (1,3). The second and third rows show the optimal transport maps found by GSA with the corresponding divergence
functions.
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Figure 15. Convergence of dual objective gradient norms of GSSB, transportation maps for various f-divergences for Gaussian marginals
in dimensions m = 100 and n = 100, uniformly random cost function, and entropic regularization parameter ϵ= 100. The marginals are
shown in the subplot (1,1), the cost matrix C is shown at (1,2), and the L1 gradient norm of the dual objective is shown at (1,3). The
second and third rows show the optimal transport maps found by GSA with the corresponding divergence functions.
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