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Abstract001

Large language models (LLMs) demonstrate re-002
markable capabilities but face challenges from003
hallucinations, which typically arise from insuf-004
ficient knowledge or context. While instructing005
LLMs to acknowledge knowledge limitations006
by responding with "I don’t know" appears007
promising, we find that models consistently008
struggle with admitting knowledge gaps. This009
challenge may originate from current instruc-010
tion datasets that emphasise answer generation011
over knowledge boundary awareness. To ad-012
dress this limitation, we introduce Uncertainty-013
and-Sensitivity-Aware Tuning (US-Tuning), a014
novel two-stage approach for contextual ques-015
tion answering (QA). The first stage enhances016
LLMs’ ability to recognise their knowledge017
boundaries, while the second stage reinforces018
instruction adherence through carefully de-019
signed causal prompts. Our experimental re-020
sults demonstrate that US-Tuning not only sig-021
nificantly reduces incorrect answers in contex-022
tual QA but also improves models’ faithfulness023
to their parametric knowledge, mitigating hal-024
lucinations in general QA tasks. Our fine-tuned025
Llama2-7B model achieves up to a 34.7% im-026
provement in handling out-of-knowledge ques-027
tions and outperforms GPT-4 by 4.2% in over-028
all performance.029

1 Introduction030

Large language models (LLMs) have demonstrated031

remarkable capabilities across a wide range of nat-032

ural language processing tasks (Brown et al., 2020;033

Wei et al., 2022; Joshi et al., 2017). Despite their034

impressive performance, these models face signifi-035

cant challenges that limit their reliable deployment036

in real-world applications. One of the most crit-037

ical challenges is hallucination, the tendency to038

generate factually incorrect or non-sensical content039

(Maynez et al., 2020). This phenomenon occurs040

when LLMs generate outputs that either contradict041

the input context or introduce factually unsupported042

Figure 1: The intention of this paper is to address the
inability of LLMs to recognise uncertain answers. We
categorise questions into two types: Known Questions,
which have specific answers, and Unknown Questions,
which fall outside the provided context.

claims (Ji et al., 2023; Ye et al., 2023). The root 043

cause of this behaviour lies in the inherent limita- 044

tions in how these models learn and store knowl- 045

edge during training. Specifically, LLMs encode 046

extensive knowledge from training corpora, this 047

knowledge is inherently incomplete and outdated. 048

When encountering queries that require informa- 049

tion beyond their knowledge, these models often 050

resort to generating plausible but factually incorrect 051

responses (Huang et al., 2024a). 052

To solve this question, two approaches have 053

emerged. The first involves further fine-tuning 054

models with additional knowledge (Liu et al., 055

2023b; Gao et al., 2023; Liu et al., 2023a), while 056

the second leverages retrieval-augmented genera- 057

tion techniques to incorporate external databases 058

(Es et al., 2023). However, as demonstrated in Fig. 059

1, these approaches still struggle with unknown 060

queries in real-world applications, often produc- 061

ing incorrect answers. Recent work suggests that 062

LLMs should be capable of acknowledging their 063
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knowledge limitations by explicitly stating "I don’t064

know" when applicable (Cole et al., 2023; Yu et al.,065

2024a). However, there are two major challenges to066

this goal. First, current instruction datasets predom-067

inantly train LLMs to provide definitive answers,068

inadvertently discouraging models from recognis-069

ing and expressing uncertainty—defined here as a070

model’s awareness of knowledge beyond its train-071

ing boundaries (Zhang et al., 2024). Second, mod-072

els explicitly optimised for uncertainty recognition073

often exhibit degraded performance in zero-shot074

question answering (QA) (Kasai et al., 2023; Li075

et al., 2023a; Si et al., 2023). A fundamental barrier076

to addressing these challenges is the lack of high-077

quality datasets containing unknown questions for078

training and evaluation. Thus, in this work, we079

focus on constructing contextual QA training data,080

including a scenario where the provided context081

is intentionally insufficient. We prioritise this ap-082

proach over regulating parametric knowledge due083

to its greater impact on reasoning processes (Huang084

et al., 2024b).085

Our dataset development is motivated by re-086

search showing that subtle discrepancies between087

available knowledge and questions can trigger hal-088

lucinations (Shuster et al., 2021). Building on the089

ASQA data set (Stelmakh et al., 2022), we create090

a balanced collection of both in-context (known)091

and out-of-context (unknown) questions. For the092

latter, we deliberately introduce minor inconsisten-093

cies in the context, such as mismatched dates or094

objects, while maintaining overall contextual coher-095

ence. Unlike previous works (Li et al., 2022; Chen096

et al., 2023), these subtle discrepancies are particu-097

larly effective in exposing the tendency of LLMs to098

hallucinate, making our data set especially valuable099

for evaluating model performance.100

To enhance LLMs’ capability to know the un-101

known and reject uncertain answers, we introduce102

a novel training framework termed Uncertainty-103

and-Sensitivity-Aware Tuning (US-Tuning). This104

approach contains a two-stage training process de-105

signed to balance the trade-off between uncertainty106

recognition and zero-shot instruction adherence.107

By doing so, it enhances the ability to identify and108

acknowledge uncertainty while preserving its orig-109

inal QA performance. In the first stage, we focus110

on awareness of uncertainty, guiding LLMs to ef-111

fectively identify questions outside the knowledge112

boundaries. The second stageemphasisess the sen-113

sitivity of the instruction, teaching the model to114

reject answering unknown questions and restoring115

the compromised QA performance through addi- 116

tional fine-tuning. 117

Our approach addresses several fundamental 118

challenges in developing uncertainty-aware lan- 119

guage models for question-answering tasks. The 120

primary challenge lies in the delicate balance be- 121

tween admitting the knowledge boundary and gen- 122

eral QA performance—models that are overly sen- 123

sitive to uncertainty often experience significant 124

degradation in their ability to answer standard ques- 125

tions. Additionally, when fine-tuning uncertainty- 126

aware models on conventional QA datasets, which 127

contain questions with supporting evidence, mod- 128

els frequently lose their ability to effectively recog- 129

nise and reject unknown queries. We attribute this 130

degradation to the model’s weak sensitivity to un- 131

certain instructions and address it through carefully 132

designed causal instructions in our approach. 133

Experimental results demonstrate that US- 134

Tuning significantly improves the performance of 135

prevalent LLMs in acknowledging the unknown. 136

Notably, it achieves a 34.7% improvement in ad- 137

dressing unknown questions and surpasses GPT-4 138

(OpenAI, 2023) with an overall performance in- 139

crease of up to 4.2%. Furthermore, it not only 140

reduces the frequency of incorrect answers in con- 141

textual QA but also encourages LLMs to remain 142

faithful to their parametric knowledge, thereby mit- 143

igating hallucinations across various benchmark 144

assessments. Our key contributions are as follows: 145

• We construct a novel dataset and benchmark for 146

uncertainty recognition, enabling the evaluation 147

of the models’ awareness of knowledge gaps. 148

• We investigate why LLMs tuned to prioritise un- 149

certainty fail to adhere to essential instructions, 150

attributing this behaviour to their weak sensitiv- 151

ity to uncertain prompts. 152

• We propose a novel two-stage fine-tuning 153

paradigm for instructing the model to remain 154

faithful to the context and reject unknown ques- 155

tions while exploring the relationship between 156

faithfulness and hallucinations. 157

2 Related Work 158

In this section, we analyse the former works about 159

hallucinations and instruction datasets for training. 160

2.1 Uncertainty in Hallucinations 161

Although the large language models (LLMs) have 162

demonstrated strong performance in downstream 163

tasks by generalising and leveraging encoded 164
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knowledge within the parameters (Liu and Dem-165

berg, 2023; Zhang et al., 2023), the uncertainty of166

such knowledge can also mislead models to gener-167

ate untrustworthy outputs (Yu et al., 2023; Ye et al.,168

2023; Manakul et al., 2023). Generally, the uncer-169

tainty comes from training data and overestimation170

(Zhang et al., 2024). Research shows that models171

tend to mimic the output in the training set (Kang172

and Hashimoto, 2020), leading to hallucinations173

that generate reasonable answers for insufficient174

question-context pairs. Furthermore, models could175

be overconfident in their capacities and fail to iden-176

tify unknown questions (Yin et al., 2023; Ren et al.,177

2023; Kadavath et al., 2022).178

There are studies focusing on uncertainty mea-179

surement to mitigate hallucinations. Lu et al.180

(2023) conclude that a correlation exists between181

the uncertainty and the accuracy. CAD (Shi et al.,182

2023) proposes a contrastive method for measuring183

the uncertainty of generated knowledge, restricting184

models to be context-awarded by amplifying output185

probabilities when the context is provided. Self-186

CheckGPT (Manakul et al., 2023) utilises sampling187

to identify and exclude uncertain information.188

2.2 Faithfulness to the External Knowledge189

Hallucination is defined as generations that are non-190

sensical or unfaithful to the provided source con-191

tent (Ji et al., 2023; Filippova, 2020), encompass-192

ing both context and paremetic knowledge. While193

most prior research has concentrated on the model’s194

faithfulness to parametric knowledge, the aspect of195

contextual faithfulness as a specific and significant196

form of hallucination has received comparatively197

less attention. This gap is underscored by findings198

indicating that the incorporation of up-to-date and199

relevant knowledge within prompts can effectively200

mitigate fact-conflicting hallucinations (Zhou et al.,201

2023; Liu et al., 2022). However, these studies (Vu202

et al., 2023; Lewis et al., 2020) operate under the203

assumption that the given context is always suffi-204

cient for generating accurate answers. To address205

this limitation, various approaches utilise LLMs206

for post-generation detection (Shen et al., 2023) or207

editing (Chen et al., 2023) to ensure the faithfulness208

and consistency of the generated responses with209

the provided contexts. Self-RAG (Asai et al., 2023)210

leverages LLMs to screen the provided context,211

avoiding the disruptions of irrelevant information.212

However, models struggle to accurately determine213

whether the provided knowledge is sufficient for an-214

swering, especially when the domains of query and215

context exhibit similarities. Furthermore, some re- 216

search suggests that reliance on ’unknown’ external 217

knowledge can significantly impair performance, 218

potentially exacerbating hallucinations (Lee et al., 219

2024). Thus, there is a pressing need for an LLM 220

capable of knowing the ’unknown’. 221

2.3 Instruction Dataset for Training 222

Aligning LLMs necessitates substantial training 223

data, prompting a trend toward synthesising instruc- 224

tion data to enhance performance. Self-Instruct 225

(Wang et al., 2023) proposes generating diverse in- 226

structions using ChatGPT. To improve the query’s 227

complexity in different dimensions, WizardLM 228

(Xu et al., 2023) uses five prompts, including depth 229

search and with search. Conversely, AttrPrompt 230

(Yu et al., 2024b) generates various instructions 231

from a feature perspective without relying on class- 232

conditional prompts. Most existing methods con- 233

centrate on improving answer quality by explor- 234

ing a variety of questions with definitive answers, 235

rather than addressing where answers are uncertain. 236

Recent research (Zhang et al., 2024; Cole et al., 237

2023) has led LLMs to reject unknown questions. 238

R-Tuning (Zhang et al., 2024), for example, trains 239

models to recognise their knowledge limits and to 240

respond with "I don’t know". However, identifying 241

the boundaries of parametric knowledge remains 242

challenging due to factors such as latent space com- 243

pression and hallucination. Therefore, in this study, 244

we build a dataset based on contextual question 245

answering and propose a two-step training method 246

that enables models to reject unknown questions 247

while preserving performance in other tasks. 248

3 Uncertainty-and-Sensitivity-Aware 249

Tuning 250

Our research centres on the open-book contextual
question-answering (QA), which aims to generate
an answer a based on three inputs: it, q, and c.
Here, it denotes the task instructions, q represents
the question, and c refers to the provided context.
The generation process G can be formulated as:

a = G(it, q, c)

To induce the model to analyse uncertainty, we 251

will implement two explicit constraints. First, we 252

instruct the model not to utilise knowledge beyond 253

the context by stating in itask: "Your answer must 254

not use any additional knowledge that is not men- 255

tioned in the given contexts". Second, we require 256
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Figure 2: Illustration of our US-Tuning. The green dialog boxes represent task-oriented instructions, while the

yellow box indicates additional causal instructions influencing the output. Overview: The models include the
vanilla model, the Uncertainty-Aware Tuned (UT) model, and the Sensitivity-Aware Tuned (ST) model. We highlight
that hallucinations stem from weak cognition of uncertainty and ignorance of instructions. UT (Stage 1): teaching
the model to know the unknown. ST (Stage 2): instructing the model to effectively follow provided instructions.

the model to reject uncertain answers with the direc-257

tive: "If the context is not sufficient to answer the258

question, please answer it with ’Not Provided’".259

This process relies on the model G to evaluate260

whether the context c is adequate to answer the261

question q. Based on this assessment, G either gen-262

erate an appropriate response (a) or acknowledge263

the insufficiency of c.264

3.1 Motivation265

As demonstrated in Table 1, our benchmark indi-266

cates that vanilla large language models (LLMs)267

exhibit limited efficacy in rejecting questions be-268

yond their knowledge boundaries. Through sys-269

tematic experimentation, we identify two core chal-270

lenges underlying this limitation. First, models fre-271

quently generate speculative answers to satisfy per-272

ceived user expectations, attributable to standard273

QA training paradigms that prioritise definitive re-274

sponses over uncertainty acknowledgement. Sec-275

ond, models fine-tuned for uncertainty recognition276

demonstrate weakened adherence to the zero-shot277

instructions, creating a trade-off between rejecting278

unknown questions and generalisable instruction-279

following capabilities. This trade-off arises from280

the scarcity of highly confusing unknown question-281

context pairs. To preserve the integrity of these rare282

but critical samples, we avoid direct fine-tuning 283

on unknown questions. Instead, our proposed 284

two-stage training framework addresses these chal- 285

lenges synergistically. The first stage emphasises 286

training the model to identify and reject uncertain 287

questions, thereby preventing inaccurate responses. 288

The second stage involves a systematic instruction 289

review process with answer refinement, contrasting 290

conventional QA tuning by emphasising instruction 291

adherence in response generation. 292

3.2 Stage 1: Uncertainty-Aware Tuning (UT) 293

The first stage fine-tunes the model to accurately 294

recognise its knowledge boundaries and identify 295

the known questions. To safeguard the ground truth 296

in the benchmark, we formalise this task as a bi- 297

nary classification problem, as shown in Figure 2. 298

Questions are categorised into two groups: known 299

questions and unknown questions. Known ques- 300

tions are defined as queries with sufficient contex- 301

tual support to yield accurate answers. Conversely, 302

unknown questions are characterised by lacking 303

adequate contextual information, often exhibiting 304

subtle differences from the query. The model learns 305

to evaluate contextual adequacy and classify its con- 306

fidence as either "Sufficient" or "Insufficient" for 307

response generation. 308
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Formally, given a contextual QA dataset309

D = {(qi, ci), (qi, c′i)}ni=1 comprising n known310

question-context pairs and n unknown pairs, we311

fine-tune the LLM to perform binary classification,312

where responses are restricted to two categories:313

"Sufficient" and "Insufficient." The instruction for314

tuning is recorded in Appx. B.2.315

3.3 Stage 2: Sensitivity-Aware Tuning (ST)316

Although UT enables models to delineate knowl-317

edge boundaries and reject unanswerable queries,318

Table 1 reveals two critical challenges. First, UT-319

trained models exhibit heightened uncertainty sen-320

sitivity, which affects their ability to answer known321

questions with confidence. Second, conventional322

QA tuning exacerbates the model’s inability to re-323

ject unknown questions, as UT reduces sensitivity324

to uncertain instructions. We hypothesise that this325

stems from a conflict in objective alignment: in-326

structions for rejecting unknowns (applicable only327

to out-of-distribution queries) are not effective on328

the training data. Consequently, enforcing these in-329

structions during evaluation introduces a misalign-330

ment between uncertainty recognition and instruc-331

tion adherence, degrading overall performance.332

To address this, our proposed ST is motivated333

by explicitly distinguishing the instructions into334

causal and non-causal ones.335

• Causal instructions directly affect the re-336

sponse content, whereas non-causal instruc-337

tions provide auxiliary guidance without af-338

fecting answer semantics. For example, in-339

structions that constrain the format or tense of340

responses serve as typical causal ones. Con-341

versely, extra instructions, such as "answer-342

ing with ’Not Provided’ if the context is in-343

sufficient", function as non-causal instructions344

when fine-tuning known questions, as they do345

not contribute directly to the answer.346

• Non-causal instructions risk being disre-347

garded, despite their critical importance to348

the overall task.349

Our ST is designed to enhance the model’s sensi-350

tivity and adherence to all instructions by ensuring351

that even non-causal instructions are prioritised.352

As shown in Fig. 2, it comprises two synergis-353

tic components: additional causal instructions and354

instruction review synthesis.355

Causal Instruction Synthesis: By instructing356

GPT-4 to produce controlling conditions that di-357

rectly influence response properties, such as tense,358

length, or output format, we obtain additional 359

causal instructions. These causal instructions are 360

then randomly integrated into the original QA 361

prompts, ensuring the model learns to prioritise 362

and comply with diverse task requirements. The 363

prompt for generation is presented in Appx. B.3. 364

Review Instruction Synthesis: The instruction 365

review module employs the model itself to verify 366

the fulfilment of all instructions. The model will 367

recursively regenerate until it gets a perfect answer 368

by utilising the prompts in Appx. B.4. The process 369

of the instruction review is illustrated in Algo. 1. 370

As shown in Fig. 2, given a question-answering 371

dataset {(q1, c1), ...(qn, cn)} and additional causal 372

instructions, the entire process is formulated as 373

a = R(G(it + ic, q, c)), where ic is a randomly se- 374

lected casual instruction and it is the original task 375

description. R is the loop function for instruction 376

review. We employ GPT-4 and record the conversa- 377

tion from the loop to fine-tune the smaller model. 378

4 Experiments 379

In this section, we describe the data construction 380

and the associated experiments. Table 1 shows 381

that the suboptimal performance of LLMs in re- 382

jecting unknown questions can be attributed to two 383

primary factors: weak uncertainty-recognition ca- 384

pacity and the instruction-sensitivity reduction. We 385

assess the effectiveness of US-Tuning using preva- 386

lent LLMs on our proposed benchmark, as well as 387

on traditional QA hallucination benchmarks. 388

4.1 Data Construction 389

We create a benchmark that balances known and 390

unknown questions for evaluation, along with two 391

specific datasets designed for US-Tuning. 392

Uncertainty-Recognition Benchmark To com- 393

prehensively evaluate the model’s cognitive abil- 394

ity to identify knowledge gaps, we construct a 395

test dataset using the ASQA (Stelmakh et al., 396

2022) dataset, which consists of ambiguous ques- 397

tions. Each question is divided into multiple sub- 398

questions with their corresponding contexts. For 399

example, as recorded in Appx. A.10, one pair may 400

discuss the discovery of the photoelectric effect 401

in 1887, while another may cover the theoretical 402

development in 1905. To generate the unknown 403

questions, we shuffle these pairs, reassigning the 404

questions to different but related contexts. As a 405

result, there are two significant advancements in 406

our benchmark. First, the context is closely rele- 407
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vant to the query, featuring partial mismatches in408

dates or objects, thereby challenging the model’s409

ability to handle uncertainty. Second, the context is410

definitely insufficient for the query. Such samples411

are rare and valuable, as ASQA is the only dataset412

we have found that could yield sufficient samples413

that satisfy the requirement. We generate 3,320414

known questions and 3,320 unknown questions to415

construct our benchmark.416

In the evaluation, we design the QA template for417

uncertainty recognition by instructing the model to418

reject unknown questions, as presented:419

• QA Uncertainty-Recognition: If the context is420

not sufficient to answer the question, please421

answer it with ’Not Provided’.422

US-Tuning Datasets Two distinct instruction423

datasets are used for separate stages. For the UT,424

we construct a binary dataset comprising 646 sam-425

ples from the ASQA (Stelmakh et al., 2022) with426

the ground truth concealed to prevent overlap with427

the evaluation data. Here is a demonstration of the428

prompt we used for tuning on this dataset:429

• Uncertainty-Aware Tuning: You must only an-430

swer either ’Sufficient’ or ’Insufficient’ with-431

out any other output432

To protect our valuable benchmark, the dataset433

for ST is derived from HotpotQA (Yang et al.,434

2018), a dataset designed for multi-hop QA. We435

generate causal instructions using GPT-4 (OpenAI,436

2023) and manually select the 28 most robust in-437

structions, as listed in Appx. C. These instructions438

were then integrated into 300 randomly selected439

samples from HotpotQA. Subsequently, we utilised440

GPT-4, following the methodology outlined in Sec-441

tion 3.3, to synthesise the final ST dataset.442

4.2 Experiment Setting443

Training Details. We evaluate our US-Tuning on444

prevalent open-sourced LLMs, including Llama2-445

7B-Chat (Touvron et al., 2023), Mistral-7B-446

Instruct-v0.2 (Jiang et al., 2023), and Gemma-2-447

9B-Instruct (Team et al., 2024). We also test GPT-448

4-1106-preview (OpenAI, 2023), GPT-3.5 Turbo449

(OpenAI, 2023), Vicuna-7B v1.5 (Zheng et al.,450

2024a) and Self-RAG-7B (Asai et al., 2023) on our451

benchmark. Our fine-tuning bases on an RTX3090452

GPU in conjunction with LLaMA-Factory (Zheng453

et al., 2024b), with Lora (Hu et al., 2021) in a rank454

of 8, a batch size of 4, and a learning rate of 5e-5.455

We configured the epochs to 1 and 5 for the two 456

stages, respectively. This research integrates the 457

instruction-based and attributed prompts, which 458

demonstrate to effectively mitigate hallucinations 459

(Zhou et al., 2023), as provided in Appx. B. 460

Evaluation Metric. We use Accknown for rep- 461

resenting the accuracy of questions with specific 462

answers, and Accunknown for unknown questions. 463

Benchmark Result. As summarised in Table 464

1, our analysis (Appx. A.3) reveals that prevalent 465

LLMs struggle to reliably identify unknown ques- 466

tions, achieving modest accuracy rates of 60%. 467

4.3 Analysis 468

4.3.1 Weak Uncertainty-Recognition Capacity 469

Tables 1 and 7 reveal a persistent performance gap 470

of up to 21.0% between known and unknown ques- 471

tions for Llama2, indicating the challenge associ- 472

ated with models’ capacity to recognise uncertainty. 473

By leveraging uncertainty-aware tuning (UT), as 474

evidenced in Table 1, there is a notable improve- 475

ment of up to 26.1% in the accuracy of responses to 476

unknown questions (Accunknown), surpassing base- 477

line performances and being comparable to GPT-4. 478

However, this increased awareness of uncertainty 479

leads to a decrease in the QA capability. Specifi- 480

cally, models demonstrate an excessive sensitivity 481

to the varied phrasing of similar questions. 482

4.3.2 Instruction-Sensitivity Reduction 483

Problem 484

According to Table 1, further fine-tuning on Hot- 485

potQA results in a degradation in the model’s abil- 486

ity to reject unknown questions, primarily due to a 487

decline in its adherence to instructions. This is evi- 488

denced by a low Accunknown of 20.9%, despite the 489

uncertainty recognition capacity being maintained 490

at 66.7% (Table 7). We term this phenomenon the 491

"instruction-sensitivity reduction problem." 492

As shown in Tables 1 and 7, UT equips the model 493

with the ability to recognise and reject uncertain 494

questions. However, the absence of unknown ques- 495

tions in HotpotQA means that the instruction to 496

reject uncertain answers is never effectively imple- 497

mented during training. This creates a conflict that 498

adherencing to zero-shot instructions can inadver- 499

tently increase uncertainty, counteracting the ob- 500

jectives of UT and diminishing performance. Con- 501

sequently, the model often disregards instruction 502

constraints, generating hallucinated answers for un- 503

known questions. Our proposed ST (US-Tuning in 504

Table 1) addresses this issue by ensuring adherence 505
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QA Uncertainty-Recognition
Category Model Accknown Accunknown F1

Benchmark

GPT-4 79.6 83.6 81.6
GPT-3.5 82.1 51.8 63.5

Vicuna-7B v1.5 74.6 43.8 55.2
Self-RAG-7B 67.9 48.1 56.3

Llama2

Vanilla 79.3 58.3 67.2
UT (Stage 1) 52.4 84.4 64.6

UT+HotpotQA 77.0 20.9 32.8
US-Tuning 79.7 93.0 85.8

Mistral

Vanilla 85.1 63.0 72.4
UT (Stage 1) 77.5 75.8 76.6

UT+HotpotQA 87.1 52.4 65.5
US-Tuning 87.3 75.3 80.9

Gemma

Vanilla 86.1 74.1 73.5
UT (Stage 1) 76.1 86.2 80.8

UT+HotpotQA 91.3 20.8 33.9
US-Tuning 87.6 81.2 84.3

Table 1: Results (in %) for prevalent LLMs on QA
uncertainty-recognition benchmark. The overall best
results for each category are highlighted in bold. Results
that are more than 5% higher or lower than the baseline
are highlighted in green and orange , respectively.

to all instructions, bridging the gap between uncer-506

tainty recognition and instruction compliance.507

4.4 Effectiveness on Contextual QA508

Among the models tested on our benchmark, the509

US-Tuned Llama2 ranks the highest, achieving an510

F1 score of 85.8%, which surpasses GPT-4 by 4.2%511

and exceeds the baseline by 18.6% (as shown in512

Table 1). This impressive performance can be at-513

tributed to the model’s optimal balance between un-514

certainty recognition and adherence to zero-shot in-515

structions. Notably, it achieves a remarkable 93.0%516

accuracy on unknown questions, the highest among517

prevalent LLMs, while maintaining a 79.7% accu-518

racy on known questions. Additionally, Gemma-2519

and Mistral exhibit improvements of 13.1% and520

5.6%, respectively, highlighting the robustness and521

effectiveness of our US-Tuning approach in en-522

hancing performance among prevalent LLMs. This523

tuning method effectively mitigates the risk of gen-524

erating incorrect answers without compromising525

the original question-answering capabilities.526

US-Tuning (ours) Vanilla
Model Cor. Wro. Unk. Cor. Wro. Unk.
GPT-4 - - - 79.6 4.4 16.0
Llama2 79.7 1.4 18.9 79.2 8.5 12.2
Mistral 87.3 2.5 10.2 85.1 5.1 9.8
Gemma 87.6 1.6 10.8 86.1 3.9 10.0

Table 2: The portions of correct, wrong, and unknown
responses among the responses for known questions.

Our model effectively supports high-stakes 527

decision-making. For unknown questions, in ad- 528

dition to the significantly increased Accunknown, 529

the case study in Appx. A.9 demonstrates that our 530

model prioritises uncertainty analysis, acknowledg- 531

ing limitations rather than hallucinating responses. 532

For known questions, Table 2 presents a detailed 533

distribution of responses. The data indicate that 534

US-Tuning substantially reduces the occurrence of 535

wrong answers by up to 7.1%, albeit with a modest 536

increase in the proportion of unknown responses. 537

4.5 Comparison with SOTA Approaches 538

We evaluate our method against SOTA approaches 539

within our uncertainty-recognition benchmark, as 540

detailed in Appx. A.4. Table 3 shows that Hon- 541

esty (Yang et al., 2023) and Calibration (Kapoor 542

et al., 2024), which target noncontextual QA tasks, 543

face significant instruction-sensitivity reduction, 544

evidenced by the low Accunknown. Despite being 545

fine-tuned with unknown questions, these methods 546

prioritise uncertainty but struggle with uncertain 547

zero-shot instructions related to contextual uncer- 548

tainty identification. As a result, they exhibit lim- 549

ited robustness in contextual QA. However, when 550

integrated with our proposed ST, as experimented 551

in Appx. A.5, Honesty exhibits significantly im- 552

proved compliance with instructions and outper- 553

forms the baseline. This highlights the effective- 554

ness of our ST in generalising uncertainty recog- 555

nition capacity across diverse tasks. The results 556

of C-DPO (Bi et al., 2024) indicate that Direct 557

Preference Optimisation (Rafailov et al., 2024) ef- 558

fectively enhances the overall capabilities of the 559

model in both QA and instruction adherence, but 560

a gap persists compared to our tailored method. 561

Additionally, post-generation methods face chal- 562

lenges in recognising unknown questions due to 563

their limited capacity for uncertainty detection. 564

Category Method Acckno. Accunk. F1

Vanilla Llama2 79.3 58.3 67.2

Post-Gen.
Validation 82.5 53.8 65.1
Sampling 79.7 66.5 72.5

Prompt CFP 87.4 47.6 61.6

Tuning

Calibration 67.1 63.2 65.1
Honesty 74.7 61.1 67.2
C-DPO 77.7 69.6 73.4

US-Tuning 79.7 93.0 85.8

Table 3: Comparison results with SOTA methods on QA
uncertainty-recognition benchmark.
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4.6 Ablation Study565

To further investigate the impact of US-Tuning, we566

decompose it into three distinct components.567

• UT: 646 samples for uncertainty-aware tuning.568

• HP: 300 samples from HotpotQA with QA569

prompts provided in Appx. B.1.570

• CI: HP with causal instructions, termed ST.571

As illustrated in Table 4 and Fig. 3, our findings572

indicate that models without UT exhibit a weak ca-573

pacity for uncertainty recognition, presented by574

low Accunknown. Furthermore, QA fine-tuning575

that does not incorporate causal instructions con-576

tradicts the objectives of UT, resulting in a decline577

in Accunknown. In contrast, our ST approach not578

only enhances performance on known answers,579

achieving the highest Accknown reported in the ta-580

ble. But also, when effectively integrated with581

UT, our method attains optimal performance across582

both known and unknown questions.583

Component QA Uncertainty-Recognition
UT HP CI Accknown Accunknown F1

79.3 58.3 67.2
✓ 52.4 84.4 64.6

✓ 77.5 58.3 66.5
✓ ✓ 84.8 59.0 69.6

✓ ✓ 77.0 20.9 32.8
✓ ✓ ✓ 79.7 93.0 85.8

Table 4: Results of ablation on our QA benchmark with
significant values highlighted.

4.7 Relationship between Faithfulness and584

Hallucination585

We also conduct the experiment of our approach586

within a traditional QA setting. To our knowledge,587

it is the first work to elucidate the relationship be-588

tween the faithfulness to context and to parametric589

knowledge (hallucination). R-Tuning (Zhang et al.,590

2024) preconstructs the tuning datasets to explicitly591

convey uncertainty for unknown questions, while592

we directly tune our pre-trained model on raw sam-593

ples, as detailed in Appx. A.7. According to Table594

5, while our US-Tuning shows lower effectiveness595

compared to the SOTA approaches specifically de-596

signed for noncontextual QA tasks, it represents597

a significant improvement over the vanilla model,598

with increases of 11.30%, 10.38%, and 6.26% in599

accuracy, respectively. Our findings indicate that600

our model can leverage uncertainty recognition as601

a metacapacity, effectively applying it in both con-602

textual and noncontextual QA scenarios.603

Furthermore, CoCoNot (Brahman et al., 2024)604

Tuning Model ParaRel MMLU HaluEval
Vanilla Llama2 43.38 38.56 76.22

NC
Honesty - 49.28* 88.11*

Calibration - 53.00 87.78
R-Tuning 69.54 55.56 77.17

C US-Tuning 54.68 48.94 82.48
* Based on Llama2-13B-Chat (Touvron et al., 2023)

Table 5: Accuracies (%) of SOTA methods separately
designed for noncontextual (NC) and contextual (C) QA
tasks on QA hallucination detection benchmarks.

Model Vanilla Model Vanilla US-Tuning
GPT-4 92.05 Llama2 94.04 94.37

GPT-3.5 77.81 Mistrial 96.36 96.70
Vicuna 82.62 Gemma 95.28 95.04

Table 6: Compliance rate (%) of prevalent LLMs on the
CoCoNot noncontextual unknown QA benchmark.

provides 302 unknown noncontextual QA pairs and 605

suggests employing GPT-3.5 (OpenAI, 2023) to as- 606

sess compliance. We test our pre-trained models 607

on a subset of CoCoNot, and our results indicate 608

that US-Tuning can also slightly improve the per- 609

formance in rejecting noncontextual questions. 610

5 Conclusion 611

This paper investigates a prevalent issue in large 612

language models (LLMs), where insufficient con- 613

textual information results in plausible yet incorrect 614

responses. Our research reveals that LLMs often 615

struggle with unknown questions, primarily due 616

to their limited uncertainty recognition capacity 617

and weak robustness to zero-shot instructions. No- 618

tably, tuning the models to focus on uncertainty will 619

adversely weaken adherence to zero-shot instruc- 620

tions. To address these issues, we propose a novel 621

two-stage training framework, termed "uncertainty- 622

and-sensitive-aware tuning." The first stage guides 623

the LLM to identify unknown questions, while the 624

second stage aims to recover diminished question- 625

answering performance through carefully designed 626

causal instructions. This approach enhances the 627

model’s reliability and reduces hallucinations. Our 628

methodology distinguishes itself by fine-tuning the 629

uncertainty recognition as a metacapacity, rather 630

than direct training on unknown question samples, 631

thereby enabling effective adaptation across vari- 632

ous tasks. By open-sourcing this work, we aim to 633

advance the development of automatic instruction 634

synthesis datasets, emphasising data diversity and 635

the critical reduction of hallucinations. 636
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Limitations637

In this study, we identify two key areas for future638

refinement. First, the LLM encounters a long-tail639

problem when tuned with datasets that contain a640

limited number of unknown questions, necessitat-641

ing further adaptation of our US-Tuning. Second,642

we have not analysed the parametric knowledge643

acquired by Llama2 during its pre-training phase,644

and our fine-tuning dataset may overlap with this645

pre-training data, potentially affecting performance.646

To address these challenges, future research will647

investigate methods for measuring model uncer-648

tainty through internal parameter monitoring, as649

proposed by Lu et al. (2023). By quantifying un-650

certainty across various inputs, we aim to identify651

knowledge gaps and long-tail weaknesses, inform-652

ing targeted fine-tuning strategies to enhance the653

LLM’s performance across diverse queries.654

Ethics Statement655

The benchmark and datasets utilised in this study656

are derived from public datasets. Additionally, the657

US-Tuning dataset incorporates refinements using658

GPT-4, which may introduce inherent biases. How-659

ever, the methodologies in this research are de-660

signed to avoid introducing any additional biases661

beyond those already inherent in the datasets.662

References663

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and664
Hannaneh Hajishirzi. 2023. Self-RAG: Learning to665
retrieve, generate, and critique through self-reflection.666
arXiv preprint arXiv:2310.11511.667

Baolong Bi, Shaohan Huang, Yiwei Wang, Tianchi668
Yang, Zihan Zhang, Haizhen Huang, Lingrui Mei,669
Junfeng Fang, Zehao Li, Furu Wei, et al. 2024.670
Context-dpo: Aligning language models for context-671
faithfulness. arXiv preprint arXiv:2412.15280.672

Faeze Brahman, Sachin Kumar, Vidhisha Balachan-673
dran, Pradeep Dasigi, Valentina Pyatkin, Abhilasha674
Ravichander, Sarah Wiegreffe, Nouha Dziri, Khyathi675
Chandu, Jack Hessel, et al. 2024. The art of saying676
no: Contextual noncompliance in language models.677
arXiv preprint arXiv:2407.12043.678

Tom Brown, Benjamin Mann, Nick Ryder, Melanie679
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind680
Neelakantan, Pranav Shyam, Girish Sastry, Amanda681
Askell, Sandhini Agarwal, Ariel Herbert-Voss,682
Gretchen Krueger, Tom Henighan, Rewon Child,683
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens684
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-685
teusz Litwin, Scott Gray, Benjamin Chess, Jack686

Clark, Christopher Berner, Sam McCandlish, Alec 687
Radford, Ilya Sutskever, and Dario Amodei. 2020. 688
Language models are few-shot learners. In Ad- 689
vances in Neural Information Processing Systems, 690
volume 33, pages 1877–1901. Curran Associates, 691
Inc. 692

Anthony Chen, Panupong Pasupat, Sameer Singh, Hon- 693
grae Lee, and Kelvin Guu. 2023. Purr: Efficiently 694
editing language model hallucinations by denois- 695
ing language model corruptions. arXiv preprint 696
arXiv:2305.14908. 697

Jeremy Cole, Michael Zhang, Daniel Gillick, Julian 698
Eisenschlos, Bhuwan Dhingra, and Jacob Eisenstein. 699
2023. Selectively answering ambiguous questions. 700
In Proceedings of the 2023 Conference on Empiri- 701
cal Methods in Natural Language Processing, pages 702
530–543, Singapore. Association for Computational 703
Linguistics. 704

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi- 705
lasha Ravichander, Eduard Hovy, Hinrich Schütze, 706
and Yoav Goldberg. 2021. Measuring and improving 707
consistency in pretrained language models. Transac- 708
tions of the Association for Computational Linguis- 709
tics, 9:1012–1031. 710

Shahul Es, Jithin James, Luis Espinosa-Anke, and 711
Steven Schockaert. 2023. Ragas: Automated eval- 712
uation of retrieval augmented generation. arXiv 713
preprint arXiv:2309.15217. 714

Katja Filippova. 2020. Controlled hallucinations: 715
Learning to generate faithfully from noisy data. 716
arXiv preprint arXiv:2010.05873. 717

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. 718
2023. Enabling large language models to generate 719
text with citations. In Proceedings of the 2023 Con- 720
ference on Empirical Methods in Natural Language 721
Processing, pages 6465–6488, Singapore. Associa- 722
tion for Computational Linguistics. 723

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 724
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 725
2020. Measuring massive multitask language under- 726
standing. arXiv preprint arXiv:2009.03300. 727

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 728
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 729
and Weizhu Chen. 2021. Lora: Low-rank adap- 730
tation of large language models. arXiv preprint 731
arXiv:2106.09685. 732

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, 733
Zhangyin Feng, Haotian Wang, Qianglong Chen, 734
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 735
2024a. A survey on hallucination in large language 736
models: Principles, taxonomy, challenges, and open 737
questions. ACM Transactions on Information Sys- 738
tems. 739

Yukun Huang, Sanxing Chen, Hongyi Cai, and Bhuwan 740
Dhingra. 2024b. Enhancing large language mod- 741
els’ situated faithfulness to external contexts. arXiv 742
preprint arXiv:2410.14675. 743

9

https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2310.11511
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.35
https://doi.org/10.18653/v1/2023.emnlp-main.398
https://doi.org/10.18653/v1/2023.emnlp-main.398
https://doi.org/10.18653/v1/2023.emnlp-main.398


Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan744
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea745
Madotto, and Pascale Fung. 2023. Survey of halluci-746
nation in natural language generation. ACM Comput-747
ing Surveys, 55(12):1–38.748

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-749
sch, Chris Bamford, Devendra Singh Chaplot, Diego750
de las Casas, Florian Bressand, Gianna Lengyel, Guil-751
laume Lample, Lucile Saulnier, et al. 2023. Mistral752
7b. arXiv preprint arXiv:2310.06825.753

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke754
Zettlemoyer. 2017. TriviaQA: A large scale distantly755
supervised challenge dataset for reading comprehen-756
sion. In Proceedings of the 55th Annual Meeting of757
the Association for Computational Linguistics (Vol-758
ume 1: Long Papers), pages 1601–1611, Vancouver,759
Canada. Association for Computational Linguistics.760

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom761
Henighan, Dawn Drain, Ethan Perez, Nicholas762
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli763
Tran-Johnson, Scott Johnston, Sheer El-Showk,764
Andy Jones, Nelson Elhage, Tristan Hume, Anna765
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,766
Deep Ganguli, Danny Hernandez, Josh Jacobson,767
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-768
mal Ndousse, Catherine Olsson, Sam Ringer, Dario769
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,770
Ben Mann, Sam McCandlish, Chris Olah, and Jared771
Kaplan. 2022. Language models (mostly) know what772
they know. Preprint, arXiv:2207.05221.773

Daniel Kang and Tatsunori B. Hashimoto. 2020. Im-774
proved natural language generation via loss trunca-775
tion. In Proceedings of the 58th Annual Meeting of776
the Association for Computational Linguistics, pages777
718–731, Online. Association for Computational Lin-778
guistics.779

Sanyam Kapoor, Nate Gruver, Manley Roberts, Arka780
Pal, Samuel Dooley, Micah Goldblum, and Andrew781
Wilson. 2024. Calibration-tuning: Teaching large lan-782
guage models to know what they don’t know. In Pro-783
ceedings of the 1st Workshop on Uncertainty-Aware784
NLP (UncertaiNLP 2024), pages 1–14.785

Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Akari786
Asai, Xinyan Yu, Dragomir Radev, Noah A Smith,787
Yejin Choi, Kentaro Inui, et al. 2024. Realtime qa:788
what’s the answer right now? Advances in Neural789
Information Processing Systems, 36.790

Jungo Kasai, Keisuke Sakaguchi, yoichi takahashi,791
Ronan Le Bras, Akari Asai, Xinyan Velocity Yu,792
Dragomir Radev, Noah A. Smith, Yejin Choi, and793
Kentaro Inui. 2023. Realtime QA: What’s the an-794
swer right now? In Thirty-seventh Conference on795
Neural Information Processing Systems Datasets and796
Benchmarks Track.797

Yoonsang Lee, Pranav Atreya, Xi Ye, and Eunsol Choi.798
2024. Crafting in-context examples according to lms’799
parametric knowledge. Preprint, arXiv:2311.09579.800

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 801
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 802
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 803
täschel, Sebastian Riedel, and Douwe Kiela. 2020. 804
Retrieval-augmented generation for knowledge- 805
intensive nlp tasks. In Proceedings of the 34th Inter- 806
national Conference on Neural Information Process- 807
ing Systems, NIPS ’20, Red Hook, NY, USA. Curran 808
Associates Inc. 809

Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin 810
Wang, Michal Lukasik, Andreas Veit, Felix Yu, 811
and Sanjiv Kumar. 2022. Large language models 812
with controllable working memory. arXiv preprint 813
arXiv:2211.05110. 814

Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin 815
Wang, Michal Lukasik, Andreas Veit, Felix Yu, and 816
Sanjiv Kumar. 2023a. Large language models with 817
controllable working memory. In Findings of the As- 818
sociation for Computational Linguistics: ACL 2023, 819
pages 1774–1793, Toronto, Canada. Association for 820
Computational Linguistics. 821

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun 822
Nie, and Ji-Rong Wen. 2023b. Halueval: A large- 823
scale hallucination evaluation benchmark for large 824
language models. arXiv preprint arXiv:2305.11747. 825

Dongqi Liu and Vera Demberg. 2023. ChatGPT vs 826
human-authored text: Insights into controllable text 827
summarization and sentence style transfer. In Pro- 828
ceedings of the 61st Annual Meeting of the Asso- 829
ciation for Computational Linguistics (Volume 4: 830
Student Research Workshop), pages 1–18, Toronto, 831
Canada. Association for Computational Linguistics. 832

Nelson Liu, Tianyi Zhang, and Percy Liang. 2023a. 833
Evaluating verifiability in generative search engines. 834
In Findings of the Association for Computational Lin- 835
guistics: EMNLP 2023, pages 7001–7025, Singapore. 836
Association for Computational Linguistics. 837

Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao, 838
Zhifang Sui, Weizhu Chen, and Bill Dolan. 2022. 839
A token-level reference-free hallucination detection 840
benchmark for free-form text generation. Preprint, 841
arXiv:2104.08704. 842

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng, 843
Zhengxiao Du, Peng Zhang, Yuxiao Dong, and 844
Jie Tang. 2023b. Webglm: Towards an efficient 845
web-enhanced question answering system with hu- 846
man preferences. In Proceedings of the 29th ACM 847
SIGKDD Conference on Knowledge Discovery and 848
Data Mining, KDD ’23, page 4549–4560, New York, 849
NY, USA. Association for Computing Machinery. 850

Sheng Lu, Hendrik Schuff, and Iryna Gurevych. 2023. 851
How are prompts different in terms of sensitivity? 852
arXiv preprint arXiv:2311.07230. 853

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023. 854
SelfCheckGPT: Zero-resource black-box hallucina- 855
tion detection for generative large language models. 856

10

https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://openreview.net/forum?id=HfKOIPCvsv
https://openreview.net/forum?id=HfKOIPCvsv
https://openreview.net/forum?id=HfKOIPCvsv
https://arxiv.org/abs/2311.09579
https://arxiv.org/abs/2311.09579
https://arxiv.org/abs/2311.09579
https://doi.org/10.18653/v1/2023.findings-acl.112
https://doi.org/10.18653/v1/2023.findings-acl.112
https://doi.org/10.18653/v1/2023.findings-acl.112
https://doi.org/10.18653/v1/2023.acl-srw.1
https://doi.org/10.18653/v1/2023.acl-srw.1
https://doi.org/10.18653/v1/2023.acl-srw.1
https://doi.org/10.18653/v1/2023.acl-srw.1
https://doi.org/10.18653/v1/2023.acl-srw.1
https://doi.org/10.18653/v1/2023.findings-emnlp.467
https://arxiv.org/abs/2104.08704
https://arxiv.org/abs/2104.08704
https://arxiv.org/abs/2104.08704
https://doi.org/10.1145/3580305.3599931
https://doi.org/10.1145/3580305.3599931
https://doi.org/10.1145/3580305.3599931
https://doi.org/10.1145/3580305.3599931
https://doi.org/10.1145/3580305.3599931
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557


In Proceedings of the 2023 Conference on Empiri-857
cal Methods in Natural Language Processing, pages858
9004–9017, Singapore. Association for Computa-859
tional Linguistics.860

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and861
Ryan McDonald. 2020. On faithfulness and factu-862
ality in abstractive summarization. arXiv preprint863
arXiv:2005.00661.864

OpenAI. 2023. GPT4 (Nov 7 version). https://chat.865
openai.com/chat. gpt-4-1106-preview.866

OpenAI. 2023. Language models are few-shot learners.867
gpt-3.5-turbo-1106.868

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-869
pher D Manning, Stefano Ermon, and Chelsea Finn.870
2024. Direct preference optimization: Your language871
model is secretly a reward model. Advances in Neu-872
ral Information Processing Systems, 36.873

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin874
Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen,875
and Haifeng Wang. 2023. Investigating the factual876
knowledge boundary of large language models with877
retrieval augmentation. Preprint, arXiv:2307.11019.878

Jiaming Shen, Jialu Liu, Dan Finnie, Negar Rahmati,879
Mike Bendersky, and Marc Najork. 2023. “why is880
this misleading?”: Detecting news headline hallucina-881
tions with explanations. In Proceedings of the ACM882
Web Conference 2023, WWW ’23, page 1662–1672,883
New York, NY, USA. Association for Computing884
Machinery.885

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia886
Tsvetkov, Luke Zettlemoyer, and Scott Wen-tau887
Yih. 2023. Trusting your evidence: Hallucinate888
less with context-aware decoding. arXiv preprint889
arXiv:2305.14739.890

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,891
and Jason Weston. 2021. Retrieval augmentation892
reduces hallucination in conversation. In Findings893
of the Association for Computational Linguistics:894
EMNLP 2021, pages 3784–3803, Punta Cana, Do-895
minican Republic. Association for Computational896
Linguistics.897

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang898
Wang, Jianfeng Wang, Jordan Lee Boyd-Graber, and899
Lijuan Wang. 2023. Prompting GPT-3 to be reli-900
able. In The Eleventh International Conference on901
Learning Representations.902

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-903
Wei Chang. 2022. ASQA: Factoid questions meet904
long-form answers. In Proceedings of the 2022 Con-905
ference on Empirical Methods in Natural Language906
Processing, pages 8273–8288, Abu Dhabi, United907
Arab Emirates. Association for Computational Lin-908
guistics.909

Gemma Team, Morgane Riviere, Shreya Pathak, 910
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati- 911
raju, Léonard Hussenot, Thomas Mesnard, Bobak 912
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2: 913
Improving open language models at a practical size. 914
arXiv preprint arXiv:2408.00118. 915

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 916
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 917
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 918
Bhosale, et al. 2023. Llama 2: Open founda- 919
tion and fine-tuned chat models. arXiv preprint 920
arXiv:2307.09288. 921

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry 922
Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny 923
Zhou, Quoc Le, and Thang Luong. 2023. Freshllms: 924
Refreshing large language models with search engine 925
augmentation. Preprint, arXiv:2310.03214. 926

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 927
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 928
Hajishirzi. 2023. Self-instruct: Aligning language 929
models with self-generated instructions. Preprint, 930
arXiv:2212.10560. 931

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, 932
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. 933
Dai, and Quoc V Le. 2022. Finetuned language mod- 934
els are zero-shot learners. In International Confer- 935
ence on Learning Representations. 936

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 937
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 938
Jiang. 2023. Wizardlm: Empowering large language 939
models to follow complex instructions. Preprint, 940
arXiv:2304.12244. 941

Yuqing Yang, Ethan Chern, Xipeng Qiu, Graham Neu- 942
big, and Pengfei Liu. 2023. Alignment for honesty. 943
arXiv preprint arXiv:2312.07000. 944

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben- 945
gio, William W. Cohen, Ruslan Salakhutdinov, and 946
Christopher D. Manning. 2018. HotpotQA: A dataset 947
for diverse, explainable multi-hop question answer- 948
ing. In Conference on Empirical Methods in Natural 949
Language Processing (EMNLP). 950

Hongbin Ye, Tong Liu, Aijia Zhang, Wei Hua, and 951
Weiqiang Jia. 2023. Cognitive mirage: A review 952
of hallucinations in large language models. arXiv 953
preprint arXiv:2309.06794. 954

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, 955
Xipeng Qiu, and Xuanjing Huang. 2023. Do 956
large language models know what they don’t know? 957
Preprint, arXiv:2305.18153. 958

Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng 959
Jiang, and Ashish Sabharwal. 2023. Improving lan- 960
guage models via plug-and-play retrieval feedback. 961
arXiv preprint arXiv:2305.14002. 962

11

https://chat.openai.com/chat
https://chat.openai.com/chat
https://chat.openai.com/chat
https://openai.com/gpt-3.5/
https://arxiv.org/abs/2307.11019
https://arxiv.org/abs/2307.11019
https://arxiv.org/abs/2307.11019
https://arxiv.org/abs/2307.11019
https://arxiv.org/abs/2307.11019
https://doi.org/10.1145/3543507.3583375
https://doi.org/10.1145/3543507.3583375
https://doi.org/10.1145/3543507.3583375
https://doi.org/10.1145/3543507.3583375
https://doi.org/10.1145/3543507.3583375
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://openreview.net/forum?id=98p5x51L5af
https://openreview.net/forum?id=98p5x51L5af
https://openreview.net/forum?id=98p5x51L5af
https://doi.org/10.18653/v1/2022.emnlp-main.566
https://doi.org/10.18653/v1/2022.emnlp-main.566
https://doi.org/10.18653/v1/2022.emnlp-main.566
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2305.18153
https://arxiv.org/abs/2305.18153
https://arxiv.org/abs/2305.18153


Xiaodong Yu, Hao Cheng, Xiaodong Liu, Dan Roth,963
and Jianfeng Gao. 2024a. Reeval: Automatic hal-964
lucination evaluation for retrieval-augmented large965
language models via transferable adversarial attacks.966
In Findings of the Association for Computational967
Linguistics: NAACL 2024, pages 1333–1351.968

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng,969
Alexander J Ratner, Ranjay Krishna, Jiaming Shen,970
and Chao Zhang. 2024b. Large language model as971
attributed training data generator: A tale of diversity972
and bias. Advances in Neural Information Processing973
Systems, 36.974

Hanning Zhang, Shizhe Diao, Yong Lin, Yi Fung, Qing975
Lian, Xingyao Wang, Yangyi Chen, Heng Ji, and976
Tong Zhang. 2024. R-tuning: Instructing large lan-977
guage models to say ‘i don’t know’. In Proceedings978
of the 2024 Conference of the North American Chap-979
ter of the Association for Computational Linguistics:980
Human Language Technologies (Volume 1: Long Pa-981
pers), pages 7106–7132.982

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,983
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,984
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei985
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song986
in the ai ocean: A survey on hallucination in large987
language models. arXiv preprint arXiv:2309.01219.988

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan989
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,990
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024a.991
Judging llm-as-a-judge with mt-bench and chatbot992
arena. Advances in Neural Information Processing993
Systems, 36.994

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan995
Ye, Zheyan Luo, and Yongqiang Ma. 2024b. Lla-996
mafactory: Unified efficient fine-tuning of 100+ lan-997
guage models. arXiv preprint arXiv:2403.13372.998

Wenxuan Zhou, Sheng Zhang, Hoifung Poon, and999
Muhao Chen. 2023. Context-faithful prompting1000
for large language models. In Findings of the As-1001
sociation for Computational Linguistics: EMNLP1002
2023, pages 14544–14556, Singapore. Association1003
for Computational Linguistics.1004

12

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://doi.org/10.18653/v1/2023.findings-emnlp.968
https://doi.org/10.18653/v1/2023.findings-emnlp.968
https://doi.org/10.18653/v1/2023.findings-emnlp.968


A Supplementary Material1005

A.1 Algorithm for Instruction Review Module1006

Here we provide the algorithm chart for the Review1007

Instruction Synthesis in Section 3.3.1008

Algorithm 1: Instruction Review Module
Data: context c, query q, task instruction it,

causal instructions ic
1 while not fulfilled do
2 answer = generate(c, q, it, ic);
3 check = review(answer, it, ic);
4 if "<not fulfilled>" not in check then
5 fulfilled = True;
6 end
7 end

A.2 Postfix Uncertainty-Recognition1009

In addition to the question-answering (QA)1010

Uncertainty-Recognition Benchmark mentioned in1011

Section 4.1, we further develop a postfix template1012

specifically for uncertainty recognition. Different1013

from the QA one, the postfix template emphasises1014

the assessment of uncertainty by evaluating the suf-1015

ficiency of the responses and generating a tag after1016

the corresponding answer. The prompt template is1017

recorded as follow:1018

• Postfix Uncertainty-Recognition: You must1019

append either ’<Sufficient>’ or ’<Insuffi-1020

cient>’ after your answer.1021

Postfix Uncertainty-Recognition
Category Model Accknown Accunknown F1

Benchmark

GPT-4 88.9 78.3 83.3
GPT-3.5 Turbo 97.0 33.4 49.7
Vicuna-7B v1.5 93.5 14.3 24.8
Self-RAG-7B 46.0 74.9 57.0

Llama2

Vanilla 85.2 29.5 43.9
UT (Stage 1) 81.3 84.0 82.6

UT+HotpotQA 87.1 66.7 75.5
US-Tuning 88.0 66.0 75.4

Mistral

Vanilla 82.8 43.1 56.7
UT (Stage 1) 86.1 81.9 84.0

UT+HotpotQA 80.7 75.1 77.8
US-Tuning 82.5 82.2 82.4

Gemma

Vanilla 86.3 57.6 69.1
UT (Stage 1) 93.4 76.2 83.9

UT+HotpotQA 99.4 58.7 73.8
US-Tuning 96.1 55.1 70.1

Table 7: Results (in %) for prevalent LLMs on postfix
uncertainty-recognition benchmark. The overall best re-
sults are highlighted in bold. Results that are more than
5% higher or lower than the baseline are highlighted in
green and orange , respectively.

Figure 7 presents the evaluation results from our 1022

benchmark using the postfix template, focusing 1023

solely on the accuracy of the sufficiency tags rather 1024

than the correctness of answers. The findings in- 1025

dicate that most prevalent large language models 1026

(LLMs) struggle to effectively identify uncertainty. 1027

Furthermore, our proposed uncertainty-aware tun- 1028

ing (UT) shows potential to mitigate this challenge. 1029

A.3 Illustration to the Benchmark Results 1030

Table 1 presents the QA performance on our bench- 1031

mark. Coupled with the uncertainty recognition 1032

performance detailed in Table 7, our findings in- 1033

dicate that prevalent LLMs face challenges in ac- 1034

curately identifying unknown questions, achieving 1035

only approximately 60% accuracy. Notably, GPT-4 1036

and Gemma-2 achieve higher accuracies of 83.6% 1037

and 74.1%, respectively. Mistral and Llama-2 rank 1038

highest among the remaining models, surpassing 1039

GPT-3.5 despite its larger parameter size. Nev- 1040

ertheless, a significant performance gap persists 1041

between GPT-4 and other models. Ongoing ex- 1042

periments aim to explore the underlying factors 1043

contributing to this disparity. The analysis further 1044

reveals that different models respond differently to 1045

insufficient queries. Models fine-tuned on dialogue 1046

tasks tend to overly rely on and trust the given in- 1047

formation. Self-RAG, which is fine-tuned for QA 1048

tasks involving unknown questions, demonstrates 1049

a strong ability to identify uncertainty, as indicated 1050

in Table 7, but still struggles to acknowledge it. 1051

A.4 Illustration to the State-of-the-Art 1052

(SOTA) Methods 1053

Current SOTA research primarily addresses re- 1054

jection in noncontextual QA tasks, leaving con- 1055

textual QA underexplored. We categorise SOTA 1056

methodologies into post-generation, prompt-based, 1057

and tuning methods. Notable tuning approaches 1058

for rejecting unknown questions include Honesty- 1059

Alignment (Yang et al., 2023) and Calibration- 1060

Tuning (Kapoor et al., 2024). They focus on 1061

noncontextual QA tasks while tuning for reject- 1062

ing answering in contextual QA tasks remains un- 1063

addressed. C-DPO (Bi et al., 2024) emphasizes 1064

model faithfulness to context rather than rejecting 1065

unknown questions. Context-Faithful-Prompting 1066

(CFP) (Zhou et al., 2023) aims to enhance model 1067

fidelity to context through third-person paraphras- 1068

ing in prompts. Post-generation methods for un- 1069

certainty detection include Multi-Sampling (Cole 1070

et al., 2023) and LM-Validation (Kadavath et al., 1071
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2022). The sampling method generates three out-1072

puts at a temperature of 0.6, selecting the most1073

frequent response, while LM-Validation allows for1074

further refinement of the generation. This study1075

compares these methodologies with our proposed1076

US-Tuning.1077

Model Category Contexutal Task
Validation Post-Gen. Both Faithfulness
Sampling Post-Gen. Both Faithfulness

CFP Prompt Contextual Faithfulness
Calibration Tuning Noncontextual Rejection

Honesty Tuning Noncontextual Rejection
C-DPO Tuning Contextual Faithfulness

US-Tuning Tuning Contextual Rejection

Table 8: Categories and targeted tasks for the SOTAs.

A.5 Further Ablation Study on the SOTA1078

Method with Sensitivity-Aware Tuning1079

In Section 4.5, we evaluate the performance of the1080

SOTA methods on our QA uncertainty-recognition1081

benchmark. We attribute the low performance1082

of Honesty-Alignment (Yang et al., 2023) to the1083

instruction-reduction problem, evidenced by an1084

Accunknown of only 61.1%, despite it being tuned1085

on unknown noncontextual QA samples. In con-1086

trast, our US-Tuned Llama2 achieves 93.0%. This1087

section further elucidates the instruction-sensitivity1088

reduction problem by implementing our Sensitivity-1089

Aware Tuning (ST), which aims to enhance the1090

model’s sensitivity to constraint instructions along-1091

side the Honesty-Alignment approach.1092

Method Accknown Accunknown F1

Vanilla Llama2 79.3 58.3 67.2
US-Tuning 79.7 93.0 85.8

Honesty 74.7 61.1 67.2
Honesty + ST 80.4 80.8 80.6

Table 9: Results of sensitivity-aware tuned Honesty-
Alignment on QA uncertainty-recognition benchmark.

Table 9 yields several key conclusions. First, our1093

proposed ST effectively mitigates the instruction-1094

sensitivity reduction problem, improving the1095

Accunknown of Honesty-Alignment by 19.7%, re-1096

sulting in a 13.4% enhancement in overall perfor-1097

mance. Second, our initial stage, focused on assess-1098

ing the sufficiency of the given context relative to1099

the question, outperforms other methods, as demon-1100

strated by a 5.2% improvement of our US-Tuned1101

Llama2 over the Sensitivity-Aware Tuned Honesty-1102

Alignment. This advancement is attributable to1103

both the quality and quantity of the dataset used 1104

for ST, enabling the model to recognize knowl- 1105

edge gaps as a metacognitive capacity, as discussed 1106

in Section 4.7. Finally, the samples utilized for 1107

Sensitivity-Aware Tuned Honesty-Alignment are 1108

strictly non-overlapping with our benchmark, fur- 1109

ther validating the effectiveness and robustness of 1110

our proposed US-Tuning approach. 1111

A.6 Figure of Ablation Study 1112

In Section 4.6, we present a comparative analysis 1113

of each model configuration. Table 11 details the 1114

specific names associated with each setting. 1115

Model UT HP CI
Llama2

UT ✓
HotpotQA ✓

ST ✓ ✓
UT & HotpotQA ✓ ✓

US-Tuning ✓ ✓ ✓

Table 11: Corresponding model name to each setting in
the ablation study.

Figure 3: Comparison of different models in the ablation
study. A higher score means better performance.

A.7 Experiment Setting for Hallucination 1116

Benchmarks 1117

R-Tuning (Zhang et al., 2024) divides the ParaRel 1118

(Elazar et al., 2021) and MMLU (Hendrycks et al., 1119

2020) into in-domain and out-of-domain datasets, 1120

treating the entire HaluEval (Li et al., 2023b) as 1121

an out-of-domain evaluation set. Models are ini- 1122

tially fine-tuned on in-domain datasets and subse- 1123

quently evaluated on out-of-domain datasets. Our 1124

fine-tuning is based on Llama2-7B-Chat (Touvron 1125

et al., 2023) US-Tuned on ASQA (Stelmakh et al., 1126

2022) and HotpotQA (Yang et al., 2018), as de- 1127

tailed in Section 3. We further fine-tune it on in- 1128

domain datasets with LoRA, adhering to the set- 1129

tings in R-Tuning: 1 epoch, a learning rate of 2e-5, 1130
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Context: This is a passage about Harry Potter:
An epilogue "Nineteen Years Later" (set on 1 September 2017) describes the lives of the surviving characters
and the effects of Voldemort’s death on the Wizarding World. In the epilogue, Harry and Ginny are married
with three children, and Ron and Hermione are married with two children.
Unknown Question: What year were the Harry Potter books first released?
Vanilla Llama2: Sure, I’d be happy to help! Based on the context you provided, the Harry Potter books were
first released in the year 1997. The passage states that the epilogue is set on September1, 2017, which is 19
years after the events of the final book in the series, "Harry Potter and the Deathly Hallows," which was
published in 1997. Therefore, the Harry Potter books were first released in 1997.
US-Tuned Llama2: Based on the given context, the answer to the question "What year were the Harry Potter
books first released?" is: Not Provided.
The context does not provide sufficient information to determine the year the Harry Potter books were first
released. The passage only mentions the epilogue set in 2017, which is 19 years after the events of the books.
Therefore, the year of the books’ release is not mentioned or implied in the given context.

Table 10: An illustrative case from our proposed benchmark, along with the corresponding model responses before
and after the implementation of US-Tuning.

and a batch size of 4. Similarly to R-Tuning, our1131

evaluation spans several out-of-domain datasets.1132

CoCoNot (Brahman et al., 2024) offers a compre-1133

hensive dataset for benchmarking the performance1134

in rejecting answering. In this study, we utilise a1135

subset containing 302 unknown QA pairs in a non-1136

contextual setting and evaluate the effectiveness of1137

US-Tuning on it. Following the methodology out-1138

lined in that paper, we employ GPT-3.5 (OpenAI,1139

2023) to assess the compliance with the response.1140

A.8 Zero-Shot Effectiveness on RealtimeQA1141

RealtimeQA (Kasai et al., 2024) is a dataset de-1142

signed for high-stakes scenarios that necessitate1143

timely responses, thereby challenging the faith-1144

fulness of LLMs to contextual information. Our1145

study utilizes 113 contextual QA pairs from Re-1146

altimeQA, of which 50 are unknown pairs. Our1147

benchmark is distinguished by a larger sample size1148

compared to RealtimeQA. We directly implement1149

our pre-trained model without further tuning on1150

RealtimeQA. As shown in Table 12, our model1151

demonstrates significant improvements in address-1152

ing unknown questions, underscoring the effective-1153

ness and robustness of our approach.1154

Method Accknown Accunknown F1

Vanilla Llama2 88.7 36.7 51.9
US-Tuning 71.8 56.0 62.9

Table 12: Accuracies (%) on RealtimeQA.

A.9 Case Study1155

The case provided in Table 10 addresses a key chal-1156

lenge regarding uncertain information. The vanilla1157

Llama2 incorrectly claims that the Harry Potter 1158

books were released in 1997, despite the context 1159

only referencing an epilogue set in 2017. 1160

In contrast, our US-Tuned Llama2 effectively 1161

mitigates this issue by prioritising uncertainty de- 1162

tection. Rather than offering an uncertain answer, it 1163

appropriately responds with "Not Provided." This 1164

approach not only rejects uncertain responses but 1165

also clarifies the source of uncertainty, thereby en- 1166

hancing the model’s reliability. The implemen- 1167

tation of US-Tuning is particularly vital in high- 1168

stakes fields, such as medicine, where a low wrong 1169

answer rate is essential. By refining LLMs’ abil- 1170

ity to recognise and communicate uncertainty, US- 1171

Tuning promotes responsible and trustworthy inter- 1172

actions, ensuring users receive reliable information. 1173

A.10 Example of Constructing Benchmark 1174

Table 13 presents an example that illustrates the 1175

construction of our uncertainty-recognition bench- 1176

mark, as detailed in Section 4.1. In this process, we 1177

shuffle the questions and their corresponding con- 1178

texts to introduce uncertainty, thereby challenging 1179

the model’s ability to respond to uncertain queries. 1180

B Instructions 1181

In this section, we present an overview of all the 1182

prompt templates utilized in this study. Key de- 1183

scriptions are highlighted in red, while blue descrip- 1184

tions are designated for performance adjustments. 1185

B.1 Question Answering 1186

Question Answering Task: You need to do the 1187

Question Answering for the following query. 1188
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Question: Who discovered and developed an
explanationfor the photoelectric effect in 1887?
Positive Context: This is a passage about
Photoelectric effect: Light, and especially
ultra-violet light, discharges negatively electrified
bodies with the production of rays of the
samenature as cathode rays. Under certain
circumstances it candirectly ionize gases. The first
of these phenomena was discovered by Heinrich
Hertz and Wilhelm Hallwachs in 1887.The second
was announced first by Philipp Lenard in 1900.
Negative Context: This is a passage about
Photoelectric effect: In 1905, Einstein proposed
an explanation of the photoelectriceffect using a
concept first put forward by Max Planck that light
waves consist of tiny bundles or packets of energy
knownas photons or quanta.

Table 13: An example from ASQA (Stelmakh et al.,
2022), where the positive context adequately supports
the question, whereas the negative is insufficient.

I will give a question and several contexts. Based1189

on the given contexts, give an answer to the ques-1190

tion. Your answer must not using any additional1191

knowledge that is not mentioned in the contexts. If1192

the context is not sufficient to answer the question,1193

please answer it with ’Not Provided’1194

QUERY: q1195

CONTEXT: c1196

ANSWER:1197

B.2 Uncertainty-Aware Tuning1198

Cognition Assessment Task: You need to do the1199

Cognition Assessment for the following query.1200

I will give a query and a related context about1201

the query. Your task is to judge whether the context1202

is sufficient to answer the query.1203

Assessment: You must append either ’<Suffi-1204

cient>’ or ’<Insufficient>’ after your answer.1205

Finetuning: You must only answer either ’Suffi-1206

cient’ or ’Insufficient’ without any other output.1207

Here is the example.1208

QUERY: What happened to Jay when he got1209

old?1210

CONTEXT: Jay Chou was the most famous1211

singer in China when he was young, releasing many1212

nostalgic albums and songs that are memorable to1213

middle-aged people today.1214

ANSWER:1215

Assessment: Jay Chou was the most famous1216

singer in China.<Insufficient>1217

Finetuning: Insufficient 1218

Here is the provided information that you need 1219

to accomplish follow the provided example: 1220

QUERY: q 1221

CONTEXT: c 1222

ANSWER: 1223

B.3 Additional Casual Instruction Generation 1224

Your task is to provide various instructions for the 1225

questions answering task. 1226

The questions answering task provides a context 1227

and a query. e.g. "Context: XXX Query: XXX 1228

Answer:". And your task is to add some specific re- 1229

quirement to the answer. e.g. "The answer must be 1230

all in upper case", "There should be no punctuation 1231

in the answer". The added instruction should be 1232

general to the query. You should generate hundreds 1233

of such instructions. 1234

B.4 Sensitivity-Aware Tuning 1235

You should check whether your answer aligned the 1236

requirement by generating a Checking part, check- 1237

ing each sentence of the above instruction, with 1238

either <fulfilled> or <not fulfilled> mark behind 1239

the sentence, indicating whether the requirement 1240

is fulfilled or not. If there is <not fulfilled> mark 1241

behind the sentence, you must modify your answer 1242

again to fulfill the requirement, by appending a new 1243

ANSWER and CHECKING part. 1244

Here is an example for this task: 1245

e.g. Question Answering Task Requirements: 1246

You need to do the Task Prompt for the following 1247

query and context. Ensure the response is written 1248

in the past tense. 1249

QUESTION: Who is Jack Chen? 1250

CONTEXTS: People saying that Jack Chen is a 1251

famous singer in China. 1252

ANSWER: Jack Chen is a famous singer in 1253

China. 1254

CHECKING: Question Answering Task: You 1255

need to do the Task Prompt for the following query 1256

and context.<fulfilled>Ensure the response is writ- 1257

ten in the past tense.<not fulfilled> 1258

ANSWER: Jack Chen is a famous singer in 1259

China. 1260

CHECKING: Question Answering Task: You 1261

need to do the Task Prompt for the following query 1262

and context.<fulfilled>Ensure the response is writ- 1263

ten in the past tense.<fulfilled> 1264

Here is the information of your task: 1265

{Question Answering Instruction} 1266
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B.5 Trustworthy Question Answering for1267

Benchmark1268

Trustworthy Question Answering Task: You need1269

to utilize the ability learnt during both the Question1270

Answering Task and Cognition Assessment Task.1271

And only provide the answers which are sufficiently1272

supported by the context, otherwise provide ’Not1273

Provided’1274

I will give a question and several context texts1275

about the question. Based on the given contexts,1276

give an answer to the question. Your answer must1277

not using any additional knowledge that is not men-1278

tioned in the given contexts. If the context is not1279

sufficient to answer the question, please answer it1280

with ’Not Provided’1281

QUERY: q1282

CONTEXT: c1283

ANSWER:1284

C Causal Instructions1285

We generated 100 causal instructions using GPT-4,1286

as detailed in the prompts recorded in Appx. B.3.1287

Subsequently, we manually selected the 28 most ef-1288

fective instructions based on criteria of robustness.1289

For instance, "Answer in chronological order" is1290

deemed lacking in robustness, as many responses1291

do not conform to a chronological structure. Fol-1292

lowinges the causal instructions we employed:1293

1. Ensure the answer is summarised in less than 501294

characters.1295

2. Include at least three potential answers in the1296

response.1297

3. Include examples from the context.1298

4. Express the answer using bullet points.1299

5. Limit the response to a minimum of 20 words.1300

6. Ensure the response is written in the past tense.1301

7. Provide a concise definition of each answer.1302

8. Provide a wrong answer that did occurr in the1303

context but not the answer to the query.1304

9. Present the answer as a dialogue between two1305

characters discussing the topic.1306

10. Incorporate elements of humour or wit into the1307

response.1308

11. Provide the answer in a complete sentence.1309

12. Provide a brief explanation using terminology.1310

13. Include a relevant metaphor or analogy to ex-1311

plain the concept1312

14. Incorporate a fictional example or event into it.1313

15. Frame the answer as a hypothetical scenario or1314

speculation.1315

16. Write the answer in the style of a news headline 1316

or tabloid headline. 1317

17. Frame the answer as a philosophical reflection 1318

on the question. 1319

18. Present the answer as a list of humorous alter- 1320

natives or alternatives. 1321

19. Use creative storytelling techniques to answer. 1322

20. Include a riddle or puzzle that indirectly hints 1323

at the answer. 1324

21. Write in the style of a poem or lyrics. 1325

22. Include a fictional quote or excerpt from a 1326

fictional text that relates to the topic. 1327

23. Use imagery or descriptive language to paint a 1328

vivid picture of the answer. 1329

24. Write the answer in the form of a limerick or 1330

tongue twister. 1331

25. Incorporate elements of suspense or mystery 1332

into the response. 1333

26. Use hyperbole or exaggeration to emphasise a 1334

point in the response. 1335

27. Incorporate elements of fantasy or science fic- 1336

tion into the response. 1337

28. Use symbolism or allegory to convey deeper 1338

meaning in the response. 1339
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