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Abstract

Leveraging medical data for Deep Learning models holds great potential, but
ensuring the protection of sensitive patient information is paramount in the clinical
domain. A widely used approach to balance data utility and privacy is the generation
of synthetic text with Large Language Models (LLMs) under the framework of
differential privacy (DP). Techniques like Differentially Private Stochastic Gradient
Descent (DP-SGD) are typically considered to provide privacy guarantees, but
they rely on specific conditions. This research demonstrates how memorization in
LLMs can deteriorate when these privacy safeguards are not fully met, increasing
the risk of personal and sensitive information being leaked in synthetic clinical
reports. Addressing these vulnerabilities could enhance the reliability of DP in
protecting clinical text data while maintaining its utility.

1 Introduction

The utilization of Electronic Health Records (EHRs) for Natural Language Processing (NLP) offers
numerous benefits, particularly in enhancing healthcare research and outcomes [7]. However, pro-
tecting the privacy of the patients in these records is crucial. Privacy is recognized as a core human
right in the Universal Declaration of Human Rights, placing the control individuals have over their
personal information on par with the authority exercised by corporations and governments [14].

According to the 2021 Annual Report of the United Nations High Commissioner, privacy reflects
human dignity and plays a critical role in safeguarding individual autonomy and identity. In today’s
digital age, privacy concerns are even more pronounced as personal data—often considered a valuable
commodity—can be collected, sold, and potentially misused. This is particularly concerning when
sensitive health data is involved (e.g., apps that collect reproductive information, or dating apps that
ask for HIV status) [6]. The mishandling of such data not only threatens privacy but can also foster
discrimination and erode human dignity.

There are several techniques to protect patient privacy in EHRs, such as Named Entity Recognition
(NER) for de-identification or pseudo-anonymization [3, 17, 16]. However, synthetic text genera-
tion with Differential Privacy (DP) is often preferred due to its formal privacy guarantees and its
widespread use [20, 10, 19, 2].

Synthetic text refers to artificially generated text that mimics human language and content. One way
to create it is by using Large Language Models (LLMs), which generate text through "next-token
prediction." This process involves predicting the next word in a sentence based on the previous ones,
allowing the model to generate coherent text. In this context, the goal is to create realistic synthetic
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Electronic Health Records (EHRs) that are similar to original EHRs, making them useful for research
and other purposes. To achieve this, an LLM can be trained using real EHR data.

Training an LLM involves exposing the model to a dataset and adjusting its parameters based on the
patterns it learns. However, during this process, the model might memorize personal information and
reproduce it [4], which is critical when dealing with clinical data. To prevent this, DP can be applied.
DP, in essence, ensures that individual data points within a dataset do not significantly influence the
outcome of an algorithm, protecting information quantified by a level of privacy ϵ [9]. A common
technique used for training an LLM with DP is Differentially Private Stochastic Gradient Descent
(DP-SGD), which adds noise during training to prevent memorization, ensuring both privacy and
utility [1, 11].

However, the mere use of DP-SGD often leads to an assumption of privacy guarantees, but in practice,
is frequently overlooked. DP-SGD provides “sample-level” privacy [18, 11], meaning it protects
individual data points as long as the same individual does not appear in multiple samples. In clinical
datasets, this assumption is unfeasible, as the same individual may be represented in multiple samples.
This raises serious concerns about the true effectiveness of DP in such contexts.

To address potential privacy concerns, it is important to evaluate privacy beyond standard guarantees,
such as by assessing the level of memorization. Previous research has primarily focused on measuring
model memorization and the leakage of sensitive information in synthetic data, particularly the
leakage of isolated pieces of Personally Identifiable Information (PII) [20, 5]. Building on these
studies, this work introduces a novel method for analyzing the memorization of LLMs and the risk
of information leakage in synthetic EHRs generated in Spanish. This presents unique challenges
specific to the language (e.g. the more frequent use of gendered terms throughout sentences).

2 Experimental Setup

In this study we used the MEDDOCAN dataset [12] (available here), which consists of 1,000
manually crafted Spanish clinical reports enriched with personal information and annotated with
NER for PII and sensitive data. For computing limitations, the final dataset used consisted of 1000
reports, divided into 750 documents for training and 250 for validation. These documents are used to
analyze information leakage at the document level. We conducted the experiments using the LLM
meta-llama/Meta-Llama-3.1-8B-Instruct [8].

The training was executed with the following parameters: 7 epochs, batch size of 2, gradient
accumulation steps of 1, LoRA dimension of 4, LoRA alpha, and a learning rate of 3e-4. Additionally,
the training of the LLMs was performed on 2 NVIDIA RTX 6000 Ada Generation GPUs.

3 Methodology

The training used DP-SGD, which adds noise to gradients during the training process to safeguard the
original data’s privacy [1]. We trained the models using identical parameters across different dataset
versions, each with varying levels of differential privacy. ϵ, a key parameter in differential privacy,
measures privacy loss, with lower values providing stronger protection. The used values are ϵ = 8,
16, and ∞ (no privacy).

After training, 500 synthetic documents were generated with each model. These documents were
analyzed to assess memorization and evaluate the quality and utility of the generated text. The
generation process was standardized putting the same training parameters to ensure comparable
results across models. Finally, we applied various metrics to examine the privacy-utility trade-off and
the extent of memorization.

3.1 Utility Metrics

The utility of the synthetic documents generated by each model was evaluated using key metrics
such as MAUVE and perplexity (PPL). MAUVE [15] measures the quality and diversity of generated
text using divergence frontiers, reflecting how closely the synthetic data aligns with the distribution
of real text. PPL assesses how well a model predicts a sample, with lower values indicating better
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performance [13]. These metrics were used to evaluate the impact of differential privacy on the
quality and coherence of the generated EHRs.

3.2 Leakage of Sensitive Information

To evaluate the impact of synthetic text generation with DP-SGD when private patient information
is repeated across documents, we adapted the “canary” experiment [5]. This involved injecting a
“canary” sentence containing a single piece of PII repeated across documents, allowing us to track
how often it appeared in generated samples. In our version, two pieces of information—a reference to
positive HIV as sensitive data and the name “Lopez Perez” to link it to personal information—were
embedded into 0, 50, and 200 documents. We then counted how often this information appeared in
the generated samples. In this way, we assess the memorization of links between sensitive data and
individuals rather than the memorization of individual data points, which is crucial in the context
of sensitive clinical data, as the ability to link sensitive information (such as an illness or medical
history) to an individual must be protected.

4 Results and Discussion

Inj. Can. ϵ
MAUVE

Model 1 Model 2
PPL

Model 1 Model 2
Leaked Can.

Model 1 Model 2
0 8 0.48 0.84 7.84±0.42 8.27±0.43 0 0
0 16 0.55 0.88 7.56± 0.21 8.44±0.39 0 0
0 ∞ 0.83 0.89 6.02±0.29 4.73±0.24 0 0
50 8 0.47 0.76 7.76±0.44 8.34±0.37 0 1
50 16 0.59 0.80 7.57± 0.23 8.76±0.32 2 2
50 ∞ 0.82 0.87 6.06±0.27 4.39±0.07 76 120
200 8 0.41 0.81 8.05±0.35 8.32±0.39 1 1
200 16 0.55 0.85 7.75±0.30 8.45±0.19 3 8
200 ∞ 0.84 0.95 5.72±0.32 4.91±0.64 103 331

Table 1: Privacy-utility evaluation results for Model 1 : mistralai/Mistral-7B-v0.1 and Model
2 : meta-llama/Meta-Llama-3.1-8B-Instruct. The models were evaluated across varying
privacy levels (ϵ = 8, 16,∞) and different quantities of injected canaries (Inj. Can.). The evaluation
metrics include MAUVE, Perplexity (PPL), and the number of leaked canaries (Leaked Can.) in the
500 synthetic generated data.

Table 1 shows the results of synthetically generated texts evaluated by models trained with different
privacy levels (ϵ = 8, 16, ∞) and varying numbers of injected canaries (0, 50, 200). The utility
metrics, MAUVE and PPL, reveal that as privacy increases (lower ϵ), MAUVE decreases and PPL
rises, indicating lower text quality and diversity due to the added noise from DP-SGD. Additionally,
Model 1 displays lower PPL but also a lower MAUVE than Model 2, suggesting that while the
text generated by Model 1 is more predictable, it is less natural and diverse—consistent with the
definitions of MAUVE and PPL. Except in the case where there is no privacy (ϵ = ∞), where Model
1 shows both lower MAUVE and higher PPL than Model 2.

Regarding canary leakage, the more frequently a canary (e.g., name and disease) is injected into
the training data, the more it appears in the generated texts, with over 15% of the text containing
personal information in some cases. However, when differential privacy is applied, this percentage
drops to less than 2%. Despite this reduction, conditions for privacy guarantees are still violated, as
differential privacy requires that no individual appear in more than one sample. Consequently, the
generated text would be leaking that the individual with the surname “Lopez Perez” is HIV positive.

5 Conclusions and Limitations

While DP-SGD is widely believed to provide strong privacy guarantees, our findings reveal that
memorization in LLMs occurs when those privacy guarantees are compromised, particularly in
cases where the same individual appears across multiple samples—an aspect rarely considered
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when applying these methods. This was done by injecting the same linked personal and sensitive
information multiple times in the training data of an LLM and then quantifying the leakage of
this information in synthetic generated data by the model, offering a more comprehensive view
of information leakage across entire documents, rather than focusing on individual PII entities.
This raises concerns about the effectiveness of DP in clinical datasets, where privacy protection is
paramount. Despite these challenges, DP can still serve as a valuable tool for safeguarding individuals
if its conditions are properly fulfilled.

It is important to highlight a limitation of this work: while the goal is to analyze the level of
memorization in an entire clinical report, this study only focuses on whether a name paired with a
disease appears in any generated text. Although this approach is closer to identifying more than just
a name, it still falls short of capturing a complete clinical record. Clinical records (for the dataset
used in this study) typically include more detailed information such as medical history, addresses,
phone numbers, prescriptions, medications, diagnoses, and more. Therefore, a more robust method
for analyzing memorization in clinical reports that takes into account all this additional information
is needed.

As future work, we propose employing feature extraction and Named Entity Recognition (NER)
algorithms to detect personal and sensitive information in each synthetically generated document.
Once extracted, this information can be used to analyze memorization across different differentially
private algorithms for generating synthetic clinical data, comparing how these techniques perform in
both the original and synthetic texts.
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