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ABSTRACT

Long video generation with Diffusion Transformers (DiTs) is bottlenecked by the
quadratic scaling of full attention with sequence length. Since attention is highly
redundant, outputs are dominated by a small subset of query–key pairs. Existing
sparse methods rely on blockwise coarse estimation, whose accuracy–efficiency
trade-offs are constrained by block size. This paper introduces Mixture-of-
Groups Attention (MoGA), an efficient sparse attention that uses a lightweight,
learnable token router to precisely match tokens without blockwise estimation.
Through semantic-aware routing, MoGA enables effective long-range interac-
tions. As a kernel-free method, MoGA integrates seamlessly with modern at-
tention stacks, including FlashAttention and sequence parallelism. Building on
MoGA, we develop an efficient long video generation model that end-to-end pro-
duces minute-level, multi-shot, 480p videos at 24 fps, with a context length of
approximately 580k. Comprehensive experiments on various video generation
tasks validate the effectiveness of our approach. We provide an anonymous link
https://anonymous.4open.science/r/MoGA to showcase the gener-
ated videos.

1 INTRODUCTION

A growing body of research indicates that scaling laws are a primary driver of progress toward
artificial general intelligence (Brown et al., 2020; Team et al., 2023; Kaplan et al., 2020). As model
parameters and data scale to billions, Transformer-based foundation models (Vaswani et al., 2017)
often exhibit emergent capabilities (Wei et al., 2022; Kaplan et al., 2020; Radford et al., 2021). In
video generation, given the inherently temporal nature, progress requires not only scaling parameters
and data but, more critically, scaling the effective context length. This need is especially salient for
long-form video generation (e.g., movies), where persistent memory is essential for maintaining
consistency of environments and characters (Yu et al., 2025).

The main challenge of vanilla attention (Vaswani et al., 2017) for long sequences is its computa-
tional cost, which grows quadratically with the context length. To mitigate the challenge, prior
work (Zhuang et al., 2024; Tian et al., 2024; Huang et al., 2025b; Xiao et al., 2025; Wang et al.,
2025a) adopts a multi-stage pipeline that first generates key frames and then synthesizes intermedi-
ate frames. However, this design yields disjoint objectives that are not directly optimized for the end
task, leading to error accumulation across stages. It also introduces hand-crafted inductive biases,
hindering scalability.

For end-to-end long video generation, one line of work compresses historical content to accommo-
date longer contexts (e.g., via recurrent layers (Dalal et al., 2025) or FramePack (Zhang & Agrawala,
2025)), which inevitably results in information loss. A complementary direction exploits sparse at-
tention (Zaheer et al., 2020) by restricting computation to a selected subset of salient query–key
pairs. Existing selection strategies generally fall into two categories: (i) static selection, i.e., prior-
driven heuristics that emphasize local spatiotemporal neighborhoods, which is efficient but limited
in capturing dynamic long-range dependencies (Li et al., 2025; Xi et al., 2025; Gao et al., 2025;
Seawead et al., 2025); and (ii) coarse-to-fine dynamic selection, which first estimates block-level
important scores, routes query tokens to the top-k blocks, and then applies fine-grained attention
within the selected blocks (Wu et al., 2025; Cai et al., 2025; Yang et al., 2025; Yuan et al., 2025;
Lu et al., 2025). As shown in Fig.1 (b), the latter introduces an efficiency–performance trade-off:
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Figure 1: Illustration of our motivation. (a) Full attention suffer from dense computing when dealing
with long sequences. (b) Block sparse attention cause the attention compute to fail when the block
similarity is confused. (c) Mixture-of-groups attention adopts a token router that accurately assigns
tokens to specialized groups, enabling group-wise attention and efficient long-context modeling.

using larger blocks with a small top-k reduces the computational cost of the coarse stage but reduces
selection performance.

In this work, we reveal that such coarse-grained estimation is unnecessary and each token should
be precisely allocated. To achieve this, we propose Mixture-of-Groups Attention (MoGA), a simple
and efficient dynamic token routing solution for end-to-end long video generation. A lightweight
router (i.e., a single linear layer) is employed to assign tokens to specific groups, as illustrated
in Fig. 1(c), inspired by Mixture-of-Experts (MoE) (Jacobs et al., 1991). Full attention is then
performed within each group, where the groupwise attention integrates seamlessly with modern
attention kernels, e.g., FlashAttention (Dao, 2023). Intuitively, the linear router’s weight can be
viewed as implicit cluster centers, enabling direct assignment of tokens to learnable anchors, without
global similarity estimation. Furthermore, to balance long-range coherence and local fidelity, we
couple MoGA with the spatiotemporal window attention (Gao et al., 2025), which can be considered
as the groupwise attention with static and pre-defined groups. In addition, extended context alone
is insufficient because a single global prompt cannot reliably control scene transitions or orchestrate
events at precise time points in long videos. We therefore introduce shot-level textual conditioning
via cross-modal attention, where each shot is guided by a concise description (Gu et al., 2025; Wang
et al., 2025b). To support this, we build a data pipeline that produces minute-level video samples
with dense, multi-shot captions and reliable shot segmentation.

Our contributions: We propose MoGA, an effective sparse attention that replaces block-level scoring
with precise group assignment via a lightweight token router, enabling effective modeling of long
contexts. Building on MoGA, we introduce a novel video generation model capable of producing
minute-level, multi-shot, 480p videos at 24 fps with a context length of about 580k tokens. Exten-
sive evaluations show consistent improvements over state-of-the-art sparse attention baselines and a
multi-shot video generation model.

2 METHOD

In this section, we introduce MoGA for efficient long video generation. The overview of the whole
architecture is shown in Fig. 2. We first present the preliminaries, then detail MoGA, and finally
describe the pipeline for constructing multi-shot long-video training data.

2.1 PRELIMINARY

Vanilla self-attention Vaswani et al. (2017) plays a crucial role for video generation with diffusion
transformer (DiT) Peebles & Xie (2023). Consider an input sequence X ∈ RN×d, where N =
h× w × t represents the total number of tokens across latent spatial dimensions (h× w) and latent
temporal dimension (t), with d denoting the model’s hidden dimension. For simplicity, we consider
a single query case where x is a token from the input sequence and q is its corresponding query
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Figure 2: Left: Our model adopts a DiT architecture with interleaved Visual Attention and Cross-
Modal Attention blocks. Visual Attention exclusively processes visual content, while Cross-Modal
Attention enables shot-level text conditioning, instantiated via either cross-attention (Wan et al.,
2025) or multi-modal attention (Kong et al., 2024; Esser et al., 2024). Top-right (a): Visual Atten-
tion module combining MoGA with Spatial-Temporal Group Attention for global-local consistency.
Bottom-right (b): MoGA, where a Router groups tokens and performs intra-group attention, en-
abling globally long-range content interaction.

token. The vanilla self-attention (SA) is computed as:

SA(q,K,V ) = softmax(
qK⊤
√
d

) · V , (1)

where K and V denote key and value tokens. While self-attention excels at capturing long-range de-
pendencies through global information aggregation, they incur a quadratic computational complex-
ity of O(N2). The computational burden of vanilla self-attention becomes particularly prohibitive
in long-video generation. For example, generating a 1-minute video at 480p resolution with approx-
imately 1,600 tokens per frame across 961 frames (16 fps) yields a total token count approaching
384k1. Performing full-attention on such a long sequence is intractable.

Beyond cost, full-attention is not ideally aligned with video structure. Softmax attention (in video)
is inherently sparse Xi et al. (2025) because nearby tokens exhibit strong local spatiotemporal cor-
relation while only a few globally shared, dynamic semantics persist across frames. Most query–key
pairs contribute little, while a small subset dominates Ge et al. (2023). For long videos, attention
should leverage this sparsity by prioritizing important query–key interactions to reduce redundancy.

2.2 MIXTURE-OF-GROUPS ATTENTION

MoGA addresses the above challenge through efficient token routing, where a lightweight trainable
router assigns correlated tokens to groups and performs self-attention within each group. Specif-
ically, our router is a linear projection followed by softmax gating, similar to MoE Fedus et al.
(2022). MoE scales model parameters by routing tokens to expert FFNs. In contrast, MoGA scales
with respect to sequence length by modifying attention and routing tokens into different attention
groups.

Given a token x ∈ Rd and a predetermined number of groups M , the router computes routing scores
r ∈ RM :

r = Router(x). (2)
The group assignment probability is computed as:

p(i|x) = softmax(r)i, (3)
1Following Wan et al. (2025), VAE downsampling factors of (t/h/w) is (4,8,8) and patchify sizes is (1,2,2).
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Figure 3: Visualization of dynamic router grouping. We visualize the visual patches of tokens from
the same group assigned by an intermediate block’s router. They focus on a specific visual concept
across frames.

and the token is assigned to the group with highest probability:

g(x) = arg max
i∈[M ]

p(i|x). (4)

Following group assignment, we apply self-attention independently within each group. The MoGA
output is:

MoGA(x) = p(g(x)|x) · SA(q,Kg(x),Vg(x)), (5)

where Kg(x) and Vg(x) are the keys and values of the group g(x). q is the query feature of x.
This grouped attention mechanism reduces computational complexity from O(N2) to a theoretical
minimum of O(N2/M) under uniform group assignment.

As illustrated in Fig. 3, we extract the grouping assignments from an intermediate-layer router
during the video generation process and visualize one representative group. After (unsupervised)
training, the router successfully assigns the man’s head, hands, and portions of his clothing to the
same group, indicating its ability to capture semantically coherent structures that extend across shot
boundaries.

MoGA builds on group-wise attention and remains compatible with high-performance kernels such
as FlashAttention (Dao, 2023) (see Alg. 1). Beyond sparse attention, a second pillar for long-context
modeling is sequence parallelism (Jacobs et al., 2023), with which MoGA is also compatible. Prior
to the step of sequence gather and head scatter in each attention, MoGA computes routing scores
over tokens (with whole heads), and then aggregates the routing results across all tokens.

Group Balancing Loss. A potential issue of token assignment is that the Router may collapse by
routing most tokens into only a few groups. This would degrade MoGA into full-attention. For
encouraging groups to allocate tokens adaptively, we introduce an auxiliary group balancing loss,
inspired by the load balancing loss (Fedus et al., 2022) from MoE. The loss is formulated as:

Lgb = α ·M ·
M∑
i=1

Fi · Pi, (6)

where α is loss weight, Fi is the fraction of tokens assigned to group i,

Fi =
1

N

∑
x

1(g(x) = i), (7)

and Pi is the mean routing probability allocated for group i,

Pi =
1

N

∑
g(x)=i

p(g(x)|x). (8)

Minimizing the Lgb incentivizes uniform token assignment across groups, as this objective achieves
its minimum under uniform distribution (Fedus et al., 2022).

Spatial-Temporal Group Attention. Although MoGA captures long-range coherence, it lacks local
continuity. We complement it with a local spatiotemporal group attention (STGA) (Gao et al., 2025;
Zhang et al., 2025c) that restricts self-attention to local windows in latent video space, as shown in
Fig. 2(a). This captures short-range dependencies with bounded compute.

We first partition the latent video into fixed spatial windows, and then group frames along the tempo-
ral axis. Frames from different shots are assigned to distinct temporal groups. We empirically found
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Algorithm 1 MoGA Pseudocode with FlashAttention
1: Q,K,V are the query, key and value of tokens X
2: g = router(X) ▷ MoGA routing results
3: Q̂, K̂, V̂ , cu seq len,max seq len, permute index = permute(Q,K,V , g)

4: Ô = flash attn(Q̂, K̂, V̂ , cu seq len,max seq len)
5: O = repermute(Ô, permute index) ▷ MoGA recovers the original token positions
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Figure 4: Multi-shot long video data pipeline.

that purely removing inter-shot interactions causes flicker in the first frame after a shot cut. To mit-
igate this, when computing group attention we augment the keys and values with two latent frames
from adjacent shots (without adding queries). This preserves continuity at shot boundaries with
negligible extra compute. To enable intra-frame information exchange, we also perform per-frame
attention by grouping tokens within each frame. Each token thus receives outputs from multiple
groups (one dynamic group and two static groups), and we take their mean as the final output.

2.3 DATA PIPELINE

We construct a pipeline that converts raw long videos into one-minute, multi-shot clips with dense
annotations for long video generation. The pipeline has two stages: a video-level phase and a shot-
level phase (Fig. 4).

Video-level. We first analyze raw videos using visual quality assessment (VQA) models (e.g., aes-
thetics (Schuhmann et al., 2022b), clarity, exposure) and simple operators (e.g., black-border detec-
tion) to obtain metadata and quality scores. We then filter raw videos with source-specific, calibrated
thresholds to remove low-quality content. Because long-video samples requires temporally coher-
ent, we relax clip-level filtering(Zheng et al., 2024; Kong et al., 2024) but apply stricter filtering at the
source (raw-video) level. Next, we segment each video into single-shot clips, using AutoShot (Zhu
et al., 2023) and PySceneDetect (Breakthrough & Contributors, 2014). AutoShot shows higher sen-
sitivity to fades and gradual transitions. Combining both tools’ predictions allow us to label whether
a boundary is clean or affected by transition overlap. This stage yields a pool of single-shot clips.

Shot-level. We process single-shot clips using VQA and optical character recognition (OCR) mod-
els and discard low-quality clips. Based on OCR results, we compute a maximal-area crop that
excludes watermarks and subtitles while preserving the original aspect ratio. Clips with insufficient
retained area are discarded. Next, we generate captions of cropped clips by employing a multimodal
large language model (Bai et al., 2025). Finally, we merge temporally adjacent single-shot clips
into multi-shot training samples (up to 65 seconds). We trim a few frames from clips affected by
transition overlap to ensure clean boundaries.

3 EXPERIMENTS

Training settings. We fine-tune MoGA on existing DiT-based short-video generation models. For
a fair comparison with baselines, we train MoGA on top of the open-source model Wan2.1 (1.3B
and 14B) (Wan et al., 2025). The model stably generates 477 frames at 16 fps (30-second) at 480p,
with a context length of 187k. We use a constant learning rate of 1e-5. The loss weight α is 0.1.
We set the number of groups to M = 5 and partition the spatial grid into 2 × 2 groups. We adopt
a multistage training strategy: 3k steps on 10-second clips followed by 1k steps on 30-second clips.
The total compute is approximately 10k GPU-hours (equivalent to NVIDIA A100).

Because MoGA is a general sparse attention, we also apply it to a video generation model built on
MMDiT (Esser et al., 2024; Kong et al., 2024). Unlike Wan, this model replaces cross-attention
with MMDiT to perform multimodal attention. It partitions space into 4×4 groups and sets the
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Method Base Model Subject
Consistency ↑

Background
Consistency ↑

Motion
Smoothness ↑

Aesthetic
Quality ↑

Image
Quality ↑

Text2Video
CLIP ↑

Overall
Consistency ↑

Temporal
Flickering ↑ Sparsity ↑

Wan (Original) Wan2.1-14B 0.9611 0.9560 0.9936 0.5807 0.6680 0.2590 0.1855 0.9897 0%

DiTFastAttn (Training-based) Wan2.1-14B 0.9456 0.9394 0.9924 0.5269 0.6466 0.2461 0.1361 0.9899 50.00%
SVG (Training-free) Wan2.1-14B 0.9002 0.8926 0.9870 0.5370 0.6357 0.2516 0.1650 0.9714 50.00%
VMoBA (Training-free) Wan2.1-14B 0.8605 0.8876 0.9789 0.5369 0.6111 0.2492 0.1695 0.9523 31.00%

MoGA (Ours) Wan2.1-1.3B 0.9527 0.9462 0.9836 0.5519 0.6523 0.2502 0.1559 0.9721 71.25%
MoGA (Ours) Wan2.1-14B 0.9699 0.9542 0.9927 0.5810 0.6994 0.2576 0.1743 0.9811 71.25%

Table 1: Quantitative comparison of 5-second single-shot video generation.

Method Base Model Subject
Consistency ↑

Background
Consistency ↑

Motion
Smoothness ↑

Aesthetic
Quality ↑

Image
Quality ↑

Text2Video
CLIP ↑

Cross-Shots
DINO ↑

Cross-Shots
CLIP ↑

IC-Lora+Wan Wan2.1-1.3B 0.9476 0.9538 0.9901 0.5237 0.6684 0.2381 0.4669 0.7169
Echoshot Wan2.1-1.3B 0.9544 0.9518 0.9939 0.5718 0.6534 0.2535 0.5961 0.8469

MoGA (Ours) Wan2.1-1.3B 0.9549 0.9597 0.9919 0.5890 0.6729 0.2582 0.6623 0.8654
MoGA (Ours) Wan2.1-14B 0.9651 0.9679 0.9954 0.5932 0.6867 0.2783 0.6703 0.8629

Table 2: Quantitative comparison of 10-second multi-shot video generation.

dynamic group count to M = 20, enabling a much longer context length. This MMDiT-based model
generates 1,441 frames at 24 fps (60-second) at 480p, with a context length of 578K.

Baseline. To evaluate our method, we compare with multiple baselines. For multi-shot long video
generation, we included the keyframe-based video generation pipeline of IC-LoRA+Wan (Huang
et al., 2024a; Wan et al., 2025) and EchoShot (Wang et al., 2025b), which natively supports multi-
shot. For sparse video generation, we compared against sparse attention methods such as training-
based method DiTFastAttn (Yuan et al., 2024) and training-free methods SVG (Xi et al., 2025) and
VMOBA (Wu et al., 2025).

Evaluation metrics. Following prior work, we evaluate all methods using the metrics introduced
by VBench (Huang et al., 2024b). Specifically, subject consistency and background consistency
measure how well the main subjects and backgrounds of the sampled frames are preserved through-
out the video. Motion smoothness measures motion fluidity, penalizing jitter and abrupt transitions.
We report aesthetic quality and image quality to quantify visual appeal and technical fidelity of
each frame. In order to compute cross-shot consistency, we extract a certain number of frames be-
tween different shots We compute cross-shot consistency using CLIP (Radford et al., 2021) and
DINOv2 (Oquab et al., 2023) feature similarities across shots, referred to as Cross-Shot CLIP and
Cross-Shot DINO. For single-shot 5-second video generation, we constructed a diverse test set com-
prising 300 prompts. For multi-shot 10-second video generation, we use the 100 multi-shot prompt
sets, which introduced from (Wang et al., 2025b). We evaluate long video generation with a test
set of 11 scripts comprising 105 prompts. Each script contains 8–10 shots to produce a 30-second
video.

3.1 QUANTITATIVE RESULTS.

First, we compare MoGA with prior sparse-attention methods for single-shot, short video gener-
ation, following their evaluation settings to ensure fairness. As shown in Tab. 1, despite higher
sparsity, MoGA achieves consistent improvements over existing sparse baselines across metrics. It
is worth noting that although our method is significant sparse, it can still match or even surpass
original Wan (full attention) in multiple dimensions.

Next, we compare MoGA with other multi-shot video generation methods. Tab. 2 reports quan-
titative comparisons against MoGA, IC-LoRA+WAN, and EchoShot. Despite relying on sparse
attention, our method outperforms the full attention baseline (EchoShot) on most metrics, indicating
that preserving interactions among salient tokens not only reduces FLOPs but also suppresses noise
from irrelevant content. This leads to stronger character identity consistency and improved scene
(temporal) coherence.

Finally, we benchmark long video generation against the baseline. Because few open-source meth-
ods can produce 30-second, multi-shot videos, we compare MoGA (with two backbones) to IC-
LoRA+Wan. As shown in Tab. 3, MoGA substantially outperforms IC-LoRA+Wan under the same
backbone, highlighting the benefits of end-to-end modeling over multistage pipelines. Notably, even
under aggressive sparsity, MoGA with MMDiT maintains high visual fidelity, indicating a scalable
path to longer context lengths.
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Method Base model Subject
Consistency ↑

Background
Consistency ↑

Motion
Smoothness ↑

Aesthetic
Quality ↑

Image
Quality ↑

Text2Video
CLIP ↑

IC-Lora+Wan Wan2.1-14B 0.8946 0.9169 0.9872 0.5759 0.6835 0.2547

MoGA (Ours) Wan2.1-1.3B 0.9218 0.9204 0.9846 0.5731 0.6829 0.2579
MoGA (Ours) Wan2.1-14B 0.9572 0.9475 0.9893 0.5789 0.6993 0.2634
MoGA (Ours) MMDiT 0.9305 0.9301 0.9895 0.5881 0.6996 0.2614

Table 3: Quantitative comparison of 30-second multi-shot long video generation.

[Shot1] a woman with basket [Shot3] the woman smile [Shot4] panoramic shot of them

[Shot6] woman full face smile [Shot8] woman looks to left

[Shot2] a men with plaid shirt
MoGA
(Ours)

EchoShot

T2I

+
I2V

(IC-Lora)

(Wan2.1)

Inconsistent

[Shot2] a man with plaid shirt

[Shot7] man looks at woman[Shot5] woman smiles at man

Inconsistent

Figure 5: Qualitative of MoGA and other methods. We present eight representative shots, demon-
strating long-range coherence, character consistency, and visual quality.

3.2 QUALITATIVE RESULTS.

In this subsection, we present qualitative results on 30-second videos across representative baselines.
Since EchoShot cannot natively produce 30-second outputs, we concatenate video clips generated by
EchoShot to form the full sequence. As shown in Fig. 5, the IC-LoRA+Wan pipeline is constrained
by its per-iteration image cap (typically three frames), which limits its ability to cover a larger
number of shots. Consequently, it frequently exhibits subject drift and background inconsistency
as the sequence progresses. EchoShot scales to more shots, but still manifests notable cross-shot
inconsistencies on long temporal distances. In contrast, MoGA maintains stable, coherent content
over extended ranges. For example, despite not being repeatedly or explicitly specified across shots,
the woman’s hat remains consistently preserved. Since STGA lacks explicit cross-shot information
exchange, this consistency can be attributed to MoGA, which effectively selects and maintains shot-
spanning identity and context. We provide more visualization in appendix A.1.
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Figure 6: Computational efficiency. The x-axis denotes the generated video duration (s). As the
number of groups increases, MoGA’s Flops decrease substantially.

Group num Cross-shot CLIP ↑ Cross-shot DINO ↑ Sparsity PFlops
1 0.8206 0.5919 0% 0.88
2 0.8589 0.6761 41.25% 0.59
4 0.8672 0.6853 66.25% 0.42
8 0.8606 0.6910 78.75% 0.36

16 0.8569 0.6896 81.25% 0.35

Table 4: Results of consistency for MoGA with Wan2.1-1.3B on 10s videos.

3.3 ABLATION STUDY

Computational Efficiency. Fig. 6 plots the relationship between group number and FLOPs for
the Wan2.1-1.3B model. Our experiments demonstrate that even on a relatively small groups num-
bers 5 with 30-second videos, MoGA achieves substantial computational savings compared to full
attention (2.26 PFlops vs. 6.94 PFlops). Meanwhile, it delivers a 1.7× speedup in both training
and inference. Notably, unlike alternative sparse attention such as VMoBA, which incur additional
memory overhead due to the block-based mechanisms, our approach maintains memory efficiency
without introducing extra memory consumption.

Routing Group number M. We conduct an ablation study on the number of groups under a fixed
computational budget (in Tab. 4). Cross-shot DINO and CLIP scores exhibit a rise-then-fall trend
with increasing group number. This suggests that a moderate degree of grouped sparsity can achieve
a win–win of global consistency and efficiency. These results indicate that a moderate level of
grouped sparsity yields optimal global consistency while maintaining computational efficiency.

Effectiveness of MoGA and STGA. In Fig.7, our visualizations demonstrate that MoGA and STGA
play complementary roles in achieving context-consistent long video generation. When MoGA is
used in isolation, the absence of local information exchange prevents the model from producing
meaningful visual content. In contrast, using only STGA constrains long-range shot interactions,
leading to poor cross-shot consistency and weakened narrative coherence. When both components
are applied together, the model attains strong cross-shot consistency. These results indicate that
MoGA can effectively construct the interaction of consistent information of its cross-shot under the
premise of a relatively low amount of computation.

Controllability of subject consistency. Fig. 8 provides a visualization of MoGA and full attention.
Both trained on 10-second data with Wan2.1-14B. The left panel illustrates MoGA’s capability to
maintain subject identity across multiple scenes, while the right panel demonstrates its robustness
in preserving identity consistency under appearance changes (e.g., clothing). Despite with 71.25%
sparsity, MoGA achieves narrative coherence and content editability on par with full attention, and
in certain cases delivers superior performance.

4 RELATED WORK

4.1 LONG VIDEO GENERATION

Previous work on long video generation beyond typical duration limits has converged on three
main paradigms. Multistage methods decompose long video generation into multiple steps (Yin
et al., 2023; Zhuang et al., 2024; Tian et al., 2024; Huang et al., 2025b; Xiao et al., 2025; Wang
et al., 2025a). For example, Captain Cinema (Xiao et al., 2025) adopts hierarchical planning with
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Shot 1

Shot 2

Only MoGA Only STGA MoGA + STGA

Inconsistent Consistent

Figure 7: Visual ablation of MoGA and STGA.

MoGA

Full Attn

MoGA

Full Attn

Figure 8: Visual comparison of MoGA vs. full attention on multi-shot generation with single subject.
Left column shows the subject wearing the same outfit across different shots. Right column shows
the subject changing outfits at shot transitions according to the text instructions.

top-down keyframe generation and bottom-up synthesis for narrative coherence. Multistage ap-
proaches introduce hand-crafted inductive biases and pose challenges for end-to-end optimization.
Autoregressive approaches generate videos through sequential segment synthesis (Chen et al., 2024;
Huang et al., 2025c; Yin et al., 2025; Henschel et al., 2025; Gu et al., 2025; ai et al., 2025). Dif-
fusion Forcing (Chen et al., 2024) adapts denoising schedules for variable sequence lengths. Ca-
susVid (Yin et al., 2025) distills bidirectional models into an efficient autoregressive model. Stream-
ingT2V (Henschel et al., 2025) combines short- and long-term memory for streaming video exten-
sion. FAR (Gu et al., 2025) introduces hierarchical causal representations for multiscale dependen-
cies. MAGI-1 (ai et al., 2025) demonstrates the scaling capability of this paradigm. Context com-
pression methods address computational constraints by compressing historical content (Dalal et al.,
2025; Zhang & Agrawala, 2025; Jiang et al., 2025; Huang et al., 2025a). TTT (Dalal et al., 2025)
compresses long context via a bidirectional recurrent layer. FramePack (Zhang & Agrawala, 2025)
employs importance-based frame compression to maintain a fixed computational budget. Further-
more, M4V (Huang et al., 2025a) augments the original MMDiT blocks with a modified Mamba (Gu
& Dao, 2024) tailored for multimodal and spatiotemporal modeling, achieving lower FLOPs and re-
ducing training/inference latency while maintaining quality. However, these methods either produce
videos of limited duration (Chen et al., 2024; Huang et al., 2025c; ai et al., 2025) or fail to gener-
ate multi-shot videos in real-world scenes (Yin et al., 2025; Henschel et al., 2025; Gu et al., 2025;
Dalal et al., 2025; Zhang & Agrawala, 2025; Jiang et al., 2025). A closely related line of work
is LCT (Guo et al., 2025), which models interleaved multi-shot prompts and videos within a local
context window using full attention. While pioneering end-to-end multi-shot long video generation,
LCT remains constrained by the quadratic cost of full attention.

4.2 SPARSE ATTENTION FOR VIDEO GENERATION

Attention–based foundation models unify many domains and consistently exhibit a common spar-
sity structure (Lu et al., 2025; Yuan et al., 2025; DeepSeek-AI, 2025). In video generation, given the
inherent sparsity, a natural approach to efficient generation is to select important query-key pairs.
Prior work broadly falls into two categories: static priors (Zhang et al., 2025a; Xi et al., 2025; Li
et al., 2025) and coarse-to-fine dynamic routing (Wu et al., 2025; Yang et al., 2025; Zhang et al.,
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2025b). Among static approaches, STA (Zhang et al., 2025a) employs 3D sliding windows with
a hardware-aware implementation. SVG (Xi et al., 2025) uses online pattern selection to classify
attention heads as spatial or temporal sparse attention. Radial-Attention (Li et al., 2025) uses a fixed
attention mask whose sparsity grows with the query–key distance to perform spatiotemporal atten-
tion with O(n log n) complexity. However, these methods struggle to modeling evolving long-range
dependencies, which are crucial for maintaining cross-shot consistency. Moreover, the implemen-
tation of fixed mask (e.g., Radial-Attention) requires O(n2) memory, which is prohibitive for long
videos (300 GB memory for a one-minute video). MoGA avoids the mask-based design, making it
practical at long context.

Another line of work adopts dynamic token routing for sparse attention. VSA (Zhang et al., 2025b)
first obtains compressed representations of contiguous spatiotemporal blocks, and then selects the
top-k blocks for fine-grained attention. Similarly, VMoBA (Wu et al., 2025) extends the idea of
MoBA (Lu et al., 2025) to video with tailored block structures and threshold-based selection. In
such methods, the block size presents a trade-off between expressiveness and efficiency. Smaller
blocks yield more accurate coarse-grained attention estimates but reduce efficiency. In addition,
SVG2 (Yang et al., 2025) is a training-free dynamic sparse attention method that performs online
k-means clustering over tokens during inference and selects the top-k clusters based on their cen-
troids. It shares a similar motivation with MoGA, i.e., tokens can be grouped into semantically
coherent clusters. However, online clustering in SVG2 introduces additional k-means computations
during the forward pass and is not straightforward to differentiate through. In contrast, MoGA em-
ploys trainable cluster centroids to enable simple and efficient routing with minimal computational
overhead, making it suitable for end-to-end training.

5 CONCLUSION

This paper introduces MoGA, a sparse attention that replaces coarse block-level scoring with pre-
cise, learned group assignments via a lightweight token router. By routing tokens into coherent
groups, MoGA improves attention efficiency and fidelity for very long context. Building on MoGA,
we propose a video generation model that produces minute-level, multi-shot videos at 480p reso-
lution and 24 fps. Diversity experiments on video generation demonstrate the effectiveness of our
approach.
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A APPENDIX

A.1 ONE-MINUTE VIDEO OF 1,441 FRAMES

𝟏𝒔𝒕 𝟑𝟎𝒕𝒉 𝟔𝟎𝒕𝒉

…

𝟗𝟎𝒕𝒉 𝟏𝟐𝟎𝒕𝒉 𝟏𝟓𝟎𝒕𝒉 𝟏𝟖𝟎𝒕𝒉 𝟐𝟏𝟎𝒕𝒉 𝟐𝟒𝟎𝒕𝒉

𝟐𝟕𝟎𝒕𝒉 𝟑𝟎𝟎𝒕𝒉 𝟑𝟑𝟎𝒕𝒉 𝟑𝟔𝟎𝒕𝒉 𝟑𝟗𝟎𝒕𝒉 𝟒𝟐𝟎𝒕𝒉 𝟒𝟓𝟎𝒕𝒉 𝟒𝟖𝟎𝒕𝒉 𝟓𝟏𝟎𝒕𝒉

𝟓𝟒𝟎𝒕𝒉 𝟓𝟕𝟎𝒕𝒉 𝟔𝟎𝟎𝒕𝒉 𝟔𝟑𝟎𝒕𝒉 𝟔𝟔𝟎𝒕𝒉 𝟔𝟗𝟎𝒕𝒉 𝟕𝟐𝟎𝒕𝒉 𝟕𝟓𝟎𝒕𝒉 𝟕𝟖𝟎𝒕𝒉

𝟖𝟏𝟎𝒕𝒉 𝟖𝟒𝟎𝒕𝒉 𝟖𝟕𝟎𝒕𝒉 𝟗𝟎𝟎𝒕𝒉 𝟗𝟑𝟎𝒕𝒉 𝟗𝟔𝟎𝒕𝒉 𝟗𝟗𝟎𝒕𝒉 𝟏𝟎𝟐𝟎𝒕𝒉 𝟏𝟎𝟓𝟎𝒕𝒉

𝟏𝟎𝟖𝟎𝒕𝒉 𝟏𝟏𝟕𝟎𝒕𝒉𝟏𝟏𝟏𝟎𝒕𝒉 𝟏𝟏𝟒𝟎𝒕𝒉 𝟏𝟐𝟎𝟎𝒕𝒉 𝟏𝟐𝟑𝟎𝒕𝒉 𝟏𝟐𝟔𝟎𝒕𝒉 𝟏𝟐𝟗𝟎𝒕𝒉 𝟏𝟑𝟐𝟎𝒕𝒉
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𝒔𝒉𝒐𝒕𝟏 𝒔𝒉𝒐𝒕𝟑

𝒔𝒉𝒐𝒕𝟐𝟐

Figure 9: One-minute video generated by MoGA.

As shown in Fig. 9, we present the generated results of MoGA on an ultra-long video exceeding one
minute, , using the MMDiT-based MoGA model (M = 20). MoGA maintains strong long-range
contextual consistency. The 1st and 22nd shots remain highly coherent, and fine details such as
the woman’s hairpin and earrings are preserved across shots. Moreover, even with multiple faces
appearing across different shots, the model avoids identity confusion.

A.2 EMERGENCE OF BACKGROUND CONSISTENCY

As shown in Fig. 10, we demonstrate MoGA’s ability to maintain background consistency. After
training on long, multi-shot videos, MoGA exhibits emergent, implicit control over consistency in
both the environment and the characters. Even without explicit specification of details (e.g., the
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cabinet shape and the position of intravenous drip bottle), different shots automatically maintain
coherent, temporally consistent depictions.
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𝟏𝟖𝟎𝒕𝒉 𝟐𝟏𝟎𝒕𝒉 𝟐𝟒𝟎𝒕𝒉 𝟐𝟕𝟎𝒕𝒉 𝟑𝟎𝟎𝒕𝒉 𝟑𝟑𝟎𝒕𝒉

𝟑𝟔𝟎𝒕𝒉 𝟑𝟗𝟎𝒕𝒉 𝟒𝟐𝟎𝒕𝒉 𝟒𝟓𝟎𝒕𝒉 𝟒𝟖𝟎𝒕𝒉 𝟓𝟏𝟎𝒕𝒉

𝟓𝟒𝟎𝒕𝒉 𝟓𝟕𝟎𝒕𝒉 𝟔𝟎𝟎𝒕𝒉 𝟔𝟑𝟎𝒕𝒉 𝟔𝟔𝟎𝒕𝒉 𝟔𝟗𝟎𝒕𝒉

𝑺𝒉𝒐𝒕𝟏

𝑺𝒉𝒐𝒕𝟒

𝑺𝒉𝒐𝒕𝟔

Figure 10: Emergence of background consistency.

A.3 MULTI-STYLE VIDEO GENERATION

Fig. 11 illustrates MoGA’s multi-style generation capability. MoGA not only performs strongly in
realistic spaces, but also excels in stylized domains such as animation, illustration, and cinematic
aesthetics. It can produce high-quality long 2D videos and long 3D videos while maintaining tempo-
ral coherence, identity consistency, and scene continuity across diverse styles and camera motions.

A.4 DETAILS OF THE COMPUTATIONAL COMPLEXITY

As shown in Tab. 5, it reports the computational cost under varying numbers of groups (M ) and
video duration. As the generation video duration increases, the computational complexity of STGA
exhibits approximately linear growth and the computational complexity of MoGA is approximately
1/M of that of Full Attention.

A.5 ANALYSIS OF GROUP BALANCING LOSS

As shown in Fig. 12, we validate the effectiveness of the group balancing loss, which measures the
balance of the router’s token-to-group assignments. A higher value indicates that tokens concentrate
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𝟒𝟓𝟎𝒕𝒉 𝟒𝟖𝟎𝒕𝒉 𝟓𝟏𝟎𝒕𝒉 𝟓𝟒𝟎𝒕𝒉 𝟓𝟕𝟎𝒕𝒉

𝑺𝒉𝒐𝒕𝟏

𝑺𝒉𝒐𝒕𝟑

𝑺𝒉𝒐𝒕𝟖

𝑺𝒉𝒐𝒕𝟐

𝑺𝒉𝒐𝒕𝟔

Figure 11: Multi-style video generation of MoGA.

Video Duration 5s 10s 15s 20s 30s

Frames 77 157 237 317 477
Sequence length 31200 62400 93600 124800 187200

PFLOPs

Full Attention 0.28 0.88 1.85 3.19 6.94
MoGA (M=5) 0.093 0.34 0.67 1.09 2.26
MoGA (M=10) 0.065 0.25 0.48 0.78 1.56
MoGA (M=20) 0.051 0.21 0.39 0.61 1.22

Table 5: Compute (PFLOPs) versus group number M and video duration on Wan2.1-1.3B.

in a few groups, whereas a lower value indicates more balanced grouping. When we include this loss
during training, the metric rapidly converges to around 1, reflecting globally balanced assignments.
In contrast, without it, the metric increases as the router funnels tokens into a few groups to gain
short-term advantages in the diffusion MSE loss. Because our goal is to separate weakly related
tokens and maintain balanced grouping, the additional group balance loss is necessary to enforce
the desired assignments.
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with group balance loss

w/o group balance loss

Figure 12: Group balancing loss curves of MoGA.

A.6 DETAILED PYTORCH PSEUDO-CODE�
def moga_permute(q, k, v, router_logits, T=1):

weights = (router_logits/T).softmax(dim=-1)
weights, groups = torch.topk(weights, k=1, dim=-1)
weights, groups = weights.reshape(-1), groups.reshape(-1)
sort_idx = torch.argsort(groups, stable=True)
groups_sorted, weights_sorted = groups[sort_idx], weights[sort_idx]
_, counts = torch.unique_consecutive(

groups_sorted, return_counts=True)
cu_seqlens = torch.cat([counts.new_zeros(1), counts.cumsum(0)])
q, k, v = q[sort_idx], k[sort_idx], v[sort_idx]
return q, k, v, sort_idx, weights_sorted, cu_seqlens

def moga_repermute(out, sort_idx, weights_sorted):
out = out * weights_sorted[:, None, None]
out_ = torch.zeros_like(out)
out_.index_add_(0, sort_idx, out)
return out_

def mixture_of_groups_attention(q, k, v, router_logits):
’’’
q, k, v: (L, H, D)
router_logits: (L, M)
’’’
q, k, v, sort_idx, weights_sorted, cu_seqlens = moga_permute(

q, k, v, router_logits)
max_seqlen = cu_seqlens.max().item()
out = flash_attn_varlen_func(q, k, v, cu_seqlens, max_seqlen)
out = moga_repermute(out, sort_idx, weights_sorted)
return out� �

We provide a minimal implementation of MoGA based on PyTorch.

A.7 EFFECT OF THE ROUTER TEMPERATURE

As shown in Fig. 13 and the quantitative analysis in Tab. 6, we adjust the router temperature hy-
perparameter and find that cross-shot similarity does not exhibit significant change, and there is no
obvious impact on the router’s stability.

A.8 EFFECT OF THE GROUP BALANCING LOSS WEIGHT

As shown in Fig. 14 and Tab. 7, when we increase the balancing loss weight α to 1.0, the loss does
not exhibit significant fluctuations, but the cross-shot consistency slightly decreases.
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Figure 13: Visualization results under different temperatures.

Temperature Cross-shot DINO Cross-shot CLIP

1 0.7284 0.8970
0.5 0.7286 0.8946

Table 6: Results under different temperatures.
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Figure 14: Visualization results under different balance loss weights.

α Cross-Shot DINO Cross-Shot CLIP

0.1 0.7284 0.8970
1.0 0.7157 0.8851

Table 7: Results under different balance loss weights.

A.9 VISUALIZATIONS OF TOKEN ROUTING

We select a specific group from a router (the first group in the 14th DiT block) to examine the
relationship between token assignment and the corresponding visual patches. We visualize the visual
patches corresponding to this group of tokens.

As shown in Fig. 15, we demonstrate that the router develop consistent semantic specializations
for the visual concept without explicit supervision. For instance, this selection group consistently
capture face-related tokens across diverse video samples.

A.10 QUANTITATIVE ANALYSIS OF TOKEN ROUTING

We develop a quantitative analysis tool to measure whether the router assigns semantically related
tokens to the same group. We treat the router’s grouping of tokens a form of unsupervised segmen-
tation. We then use SAM2 (Ravi et al., 2024) to obtain foreground masks for each frame as ground
truth (GT), and treat the tokens aggregated by each group as predictions. For each GT mask, we
match the group whose prediction mask achieves the highest IoU, and use the IoU as the metric.
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Shot 2Shot 1 Shot 3

Token allocation 
of Group 1
in Layer 14

Token allocation 
of Group 1
in Layer 14

Figure 15: More visualization results of token routing.

Random MoGA (Before Training) MoGA (After Training)

IoU (%) 15.6 18.5 28.6

Table 8: Comparison of IoU before and after training.

Time Step 999 956 931 884 853 499 438 364 272 155

IoU (%) 17.6 22.2 25.9 25.1 24.8 27.8 27.6 27.3 28.0 28.6

Table 9: IoU across different time steps.

Block Index 1 5 10 15 20 25 30 35 38

IoU (%) 19.2 18.4 31.0 23.6 26.6 28.9 28.0 30.6 24.5

Table 10: IoU across different blocks.

We use the average IoU of different prompts as the final result. For evaluation, we use 9 scripts
containing 27 prompts to generate 10-second videos. The IoU reflects the router’s ability to assign
tokens of the same category to a single group.

Train vs. Random. As shown in Tab. 8, we compare three routing methods: random assignment,
a randomly initialized router, and the trained router. After training, specific groups achieve substan-
tially higher IoU (28.6%) than both the random baseline (15.6%) and the randomly initialized router
(18.5%).

Different Time Step. As shown in Tab. 9, we evaluate the IoU of the router at different sampling
steps during inference. The router assigns tokens suboptimally (low IoU, 17%) at the initial denois-
ing step (t=999). As denoising progresses, the IoU quickly rises above 25% (t=931) and remains
stable, gradually increasing to 28.6%, which indicates that MoGA is robust in the semantics of token
assignments throughout the denoising process.

Different Blocks. As shown in Tab. 10, we evaluate the IoU of the router at different DiT blocks
during inference. The middle DiT blocks exhibit relatively stronger semantic grouping ability (IoU
up to 31.0%), which is consistent with prior work indicating that intermediate layers of DiT can
capture high-level semantic features (Yu et al., 2024).

A.11 RUNTIME AND MEMORY USAGE

We compare MoGA (with STGA) and full attention (FlashAttention) in operator runtime, end-to-
end training/inference time (sequence parallel=8; duration=30 s), and memory usage. All tests base
on the same hardware, Ascend 910B NPU (TFLOPs roughly comparable to NVIDIA A100; 64 GB
memory).

Operator Comparisons (Latency). As shown in Tab. 11, MoGA consistently outperforms Full
Attention across different sequence lengths, with larger gains at longer durations. Speedup grows
with sequence length: from 1.46×–1.86× at 5 s to 3.12×–5.33× at 30 s.
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Duration Seq Len Full Attention MoGA (M=5) Speedup (M=5) MoGA (M=20) Speedup (M=20)

5 s 31,200 40.06 ms 27.43 ms 1.46× 21.58 ms 1.86×
10 s 62,400 158.83 ms 81.15 ms 1.96× 62.24 ms 2.55×
20 s 124,800 650.08 ms 231.81 ms 2.80× 151.16 ms 4.30×
30 s 187,200 1,423.52 ms 455.57 ms 3.12× 267.24 ms 5.33×

Table 11: Latency comparison between Full Attention and MoGA.

Full Attention MoGA (M=5) MoGA (M=20)

Training time (per iter) 66.87 s 38.76 s 29.84 s
→ Speedup vs. Full — 1.72× 2.24×

Training RAM 48.1 GB 49.8 GB 49.6 GB

Inference time (per step) 40.21 s 19.06 s 16.55 s
→ Speedup vs. Full — 2.10× 2.43×

Inference RAM 33.4 GB 38.6 GB 38.6 GB

Table 12: Training and inference efficiency comparison.

Metric (↑ better) EchoShot IC-LoRA+Wan MoGA

Prompt Following 6.97 5.58 8.47
Video Quality 7.11 4.53 8.05
Consistency 6.37 5.03 8.26

Table 13: Comparison across metrics.

End-to-End Comparisons. For 30s training dataset and Wan2.1-14B, the wall-clock times are
measured in Tab. 12. MoGA significantly reduces both training and inference time versus full
attention, with gains at M=5 (1.72× train, 2.10× inference) and M=20 (2.24× train, 2.43× inference).

A.12 USER STUDY

We conduct a user study. Each user rates the generated videos (1-10), with rating dimensions includ-
ing three aspects: video quality, consistency, and prompt following. The study covers 10s and 30s
multi-shot scripts and conducts a blind comparison among MoGA, EchoShot, and IC-LoRA+Wan.
As shown in Tab. 13, MoGA clearly outperforms the baselines across all metrics, achieving the high-
est scores in Prompt Following (8.47), Video Quality (8.05), and Consistency (8.26). Compared
with EchoShot, MoGA shows notable gains (+1.50, +0.94, +1.89 respectively), and it decisively
surpasses IC-LoRA+Wan with even larger margins (+2.89 to +3.73).

A.13 THE DETAILS OF DATA PIPELINE.

We first collect publicly available long-form videos, including movies, TV series, animations, and
short dramas. We then filter out videos with resolution below 720p, duration shorter than 1 minute,
and videos whose VQA scores (sparse sampling) falls below the thresholds (e.g., the aesthetic
threshold (Schuhmann et al., 2022a) ranges from 4 to 4.5 depending on the source). Next, we
employ AutoShot and PySceneDetect jointly to segment the raw videos, obtaining single-shot clips
with clean boundary transitions. After that, we perform denser frame sampling for each clip and
compute per-clip VQA scores as well as OCR results. Based on OCR, we crop each clip while
preserving the original aspect ratio to remove watermarks and subtitles. Clips whose cropped area
is less than 40% of the original or whose VQA scores are below the thresholds are discarded. Fi-
nally, we concatenate clips from the same source video in chronological order and use an MLLM to
caption each clip, assembling multi-shot long video training samples. We thus obtain approximately
200k training samples.
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A.14 LLM USAGE

Large Language Models (LLMs) were employed exclusively to assist with manuscript preparation.
Their role was limited to refining language, improving readability, and enhancing the clarity of
exposition. Specifically, the LLM contributed to tasks such as rephrasing sentences, correcting
grammar, and smoothing the overall flow of the text.

The LLM played no part in formulating research questions, designing methodologies, conducting
experiments, or analyzing results. All scientific ideas, experimental designs, and analyses were
conceived and executed entirely by the authors. The authors accept full responsibility for the
manuscript’s content, including any text edited with LLM assistance. Care was taken to ensure that
LLM-derived text complies with ethical standards and does not introduce plagiarism or scientific
misconduct.
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