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Abstract

Electricity consumption impacts public health due to pollutant emissions from1

fossil fuel power plants. While stricter regulations have reduced emissions, fossil2

fuels remain a dominant energy source, necessitating advanced methods to quantify3

and mitigate these societal health effects. Here, we present a domain-specific4

AI model, HealthPredictor, an end-to-end pipeline that links electricity usage5

to public health outcomes. Our system integrates three key components: a fuel6

mix predictor that forecasts energy source contributions, an air quality converter7

that models pollutant emissions and dispersion, and a health impact assessor that8

translates environmental changes into monetary health costs. We demonstrate that9

our health-driven optimization approach achieves significantly lower prediction10

errors compared to fuel mix-driven methods across multiple U.S. regions. Through11

a case study on electric vehicle charging schedules, we show the public health12

benefit of our approach in providing actionable insights about electricity usage for13

users. This work thus demonstrates how AI model can be explicitly designed to14

optimize for public health and societal well-being.15

1 Introduction16

Electricity generation significantly impacts public health through the emission of air pollutants,17

yet quantifying and predicting societal health impacts remains challenging due to the complex18

relationships between electricity usage, emissions, pollutant dispersion, and health outcomes [15, 6].19

The urgency of understanding these relationships has intensified with the rapid growth of large20

energy loads. For instance, the rise of artificial intelligence and large language models has led to21

unprecedented energy demand from data centers [2]. This trend, combined with the increasing22

electrification of transportation and industrial processes, makes electricity usage a critical sector for23

mitigating public health impacts, a critical topic of social well-being.24

Electricity consumption directly impacts public health through air pollution from fossil fuel power25

plants, which remain the largest industrial polluters [37, 42]. This relationship between electricity26

use and health impacts offers unique opportunities for intervention because electricity demand is dy-27

namically controllable, unlike other natural pollution sources or weather patterns. This controllability28

enables proactive demand-side management by tapping into energy load flexibilities, e.g., scheduling29

data center workloads or coordinating electric vehicle charging schedules in residential sectors.30

Moreover, electricity generation is a significant and growing pollution source, with health impacts31

extending far cross-state [37]. Despite strict U.S. regulations reducing power sector emissions, fossil32

fuel plants continue to be “a leading source of air, water, and land pollution that affects communities33

nationwide,” as reported by the EPA [37]. Analysis using the EPA’s COBRA modeling tool [34]34

indicates that health costs from electricity are on track to rise, rivaling those of on-road emissions by35

2028 as shown in Figure 1.36
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Figure 1: Total public health costs of electricity
generation and on-road emissions in the contigu-
ous U.S. in 2023 and 2028 [38]. The error bars
represent high and low estimates provided by
COBRA using two different exposure-response
models.

Coal-fired power plants are among the fossil fuel37

facilities with the most adverse health effects, with38

their PM2.5 emissions estimated to have caused ap-39

proximately 460,000 excess deaths between 199940

and 2020 [11]. Despite their significant health41

impact, they remain a key component of the U.S.42

electricity mix. Importantly, the U.S. EIA projects43

that even by 2050, fossil fuels will still account44

for a significant share of electricity generation,45

with coal power generation remaining around 18046

billion kWh under the alternative scenario where47

power plants are allowed to operate subject to48

rules existing before early 2024 [33]. The contin-49

ued reliance on fossil fuels means that even though50

the U.S. is among the leading countries in clean51

energy development, the associated health risks52

cannot be overlooked. Therefore, it is crucial to53

predict and mitigate these health impacts through54

targeted interventions alongside supply-side grid55

decarbonization.56

Prior research evolves from epidemiological pollution-health correlations to advanced ML for mod-57

eling complex environmental systems. Early studies quantified the health effects of air pollutants,58

particularly particulate matter, laying the foundation for air dispersion models like COBRA [34]59

and InMAP [27] by leveraging models like Gaussian dispersion equations and chemical transport60

simulations to estimate pollutant spread and associated health risks. Recent advances in machine61

learning have transformed this research landscape. [25] demonstrated the effectiveness of LSTM62

networks in air quality assessment and pollution forecasting, achieving higher accuracy than tradi-63

tional statistical methods. Researchers have developed foundation models that integrate diverse data64

sources to forecast comprehensive atmospheric composition [1].65

While these advances are significant, most existing research addresses isolated aspects of the problem,66

either assessing health impacts from air pollutants or modeling energy-to-emissions conversion [6, 1].67

Given that fossil fuel generation will remain a substantial part of the power grid for the foreseeable68

future, there is a critical gap to design a domain-specific model capable of connecting demand-side69

usage directly to health outcomes. Such predictions would provide valuable signals to users, enabling70

them to take informed actions to mitigate air pollution to protect public health.71

We present a domain-specific AI model, HealthPredictor, an end-to-end pipeline that quanti-72

fies the public health impacts of electricity consumption patterns. Our system integrates three key73

components: a fuel mix predictor that forecasts the proportional contribution of different energy74

sources to electricity generation, an air quality converter that models pollutant emissions and their75

atmospheric dispersion, and a health impact assessor that translates environmental changes into76

monetary health costs. By combining these components with a health-driven optimization frame-77

work, HealthPredictor enables prediction of health impacts from electricity usage patterns. We78

demonstrate the effectiveness of our approach through an electric vehicle (EV) charging case study,79

where users can determine optimal charging schedules to minimize adverse health outcomes. In80

addition, we release the datasets we have collected and processed to help advance the field of research81

by addressing the limitations of fragmented and dispersed data from various sources, observed in82

previous works [1]. Our approach bridges the critical gap between electricity consumption and health83

outcomes, providing actionable insights for both individuals and system operators.84

2 Related Works85

Energy system modeling typically focuses on technological and economic characteristics, often86

incorporating health damage in an aggregated and simplified manner [26, 17]. However, these87

approaches rarely provide granular insights into the direct health impacts of electricity generation.88

Some methodologies focus on optimizing energy systems to reduce emissions, but their health impact89

assessments tend to remain indirect or high-level, missing the opportunity for detailed, localized90

health assessments [19, 15].91
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Epidemiological studies have made significant contributions to understanding the relationship between92

health and air pollution [37]. For example, [9] has conducted a comprehensive regional impact93

assessment of air quality improvement, while [3] developed log-linear models for quantifying94

asthma hospitalizations based on particulate matter levels, demonstrating the direct correlations95

between air quality and health outcomes in urban environments. Although these studies provide a96

valuable foundation for linking environmental pollutants with health statistics, they lack an integrated97

framework that connects energy systems directly to health outcomes. Air pollution dispersion98

modeling also plays a critical role in supporting these epidemiological studies. [22] systematically99

reviewed computational fluid dynamics approaches for urban air pollution modeling, and [27] has100

developed InMap, a specialized model for analyzing air pollution interventions, accounting for101

complex atmospheric chemical interactions. While these models offer insights into the dispersion102

of pollutants, they typically do not link air pollutants to human activities, and thus do not provide103

actionable insights for system operators or individuals to make improvements.104

Recent advances have integrated machine learning with environmental health research. [25] explored105

the use of LSTM network for air quality assessment and pollution forecasting, demonstrating the106

potential of data-driven approaches. Additionally, the emerging field of health-informed computing,107

exemplified by works like [10], seeks to quantify the broader societal impacts of technological108

systems, providing a methodological foundation for the future research on the health consequences of109

electricity generation, mainly w.r.t. the advancement of AI and the development of large data centers.110

Most existing research focuses on individual stages of health impact analysis—either assessing111

health impacts from air pollutants or modeling energy-to-emissions conversion. Few studies have112

developed a comprehensive pipeline that directly quantifies health impacts from electricity usage113

across residential or industrial sectors. While some researchers have proposed holistic frameworks,114

they often focus on specific fuel sources, such as coal, or are limited to particular regions [6], and115

they focus on highlighting the importance of the problem with a high level of analysis rather than116

modelling. To the best of our knowledge, advanced modeling approaches that provide high-accuracy,117

end-to-end predictions of health impacts from electricity consumption remain scarce. These gaps118

underscore the need for more comprehensive approaches that encompass various fuel sources and119

regions, offering actionable insights for system operators and individuals.120

3 Background and Problem Formulation121

In this section, we review the background and introduce formulations related to health impact122

assessments from the use of power generation fuel mix.123

3.1 Air Pollutants for Health Impact124

Air quality, a critical determinant of human health, is shaped by the presence of specific gases and125

particulate matter in the atmosphere. Six pollutants are recognized as primary contributors to air126

quality degradation: carbon monoxide (CO), nitrogen oxide (NO), nitrogen dioxide (NO2), sulfur127

dioxide (SO2), ozone (O3), and particulate matter in three size categories, PM1, PM2.5, and PM10 [42].128

These pollutants originate from various sources, including fossil fuel combustion and industrial129

processes [1]. The long-distance transport of these pollutants amplifies their public health impact,130

particularly for vulnerable populations such as the elderly and individuals with preexisting conditions.131

Adverse health outcomes, including premature mortality, asthma exacerbation, and cognitive decline,132

also result in substantial societal costs through increased hospitalizations and medication use [7, 40].133

3.2 Air Dispersion Formulation134

Establishing meaningful relationships between emission sources and their health impacts is non-trivial.135

Typically, the first step is to determine the spatial and temporal distribution of pollutants in the area.136

This process usually involves mathematical models with varying spatial resolutions that solve the137

governing dispersion-advection equations. By integrating emission data with meteorological inputs,138

dispersion models can estimate pollutant concentrations at specific receptor points [22].139

Assume there are K types of air pollutants and M receptor regions of interest. Let Ps =140

(Ps,1, . . . ,Ps,K) denote the quantities of K types of air pollutants at the emission source. For141

receptor i, the corresponding quantities are represented by Pi
r = (Pi,1

r , . . . ,Pi,K
r ). A general disper-142
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sion model can be formulated as:143

P1
r, . . . ,P

M
r = Dw(Ps), (1)

which gives the amount of K types of air pollutants at receptor region i = 1, . . . ,M , i.e., Pi
r =144

(Pi,1
r , . . . ,Pi,K

r ). The parameter w consider factors such as geographical conditions, characteristics145

of emission source, and meteorological data [10, 28].146

Despite rapid advancements in mathematical models, the uncertainty still exists due to the complex147

interplay between emission sources and meteorological conditions [22, 4]. While emission models148

require detailed anthropogenic data, meteorological predictions depend on both measurements and149

simulations to capture atmospheric turbulence. These complexities make deterministic air-dispersion150

models less reliable for forecasting purposes.151

3.3 Measuring Health Impacts152

The relationship between changes in adverse health effects and changes in air pollution exposure can153

be quantified using epidemiological studies [37]. For example, the rate of asthma hospitalizations154

can be modeled as a log-linear function of particulate matter levels [3]. Specifically, for a receptor155

region i, the change in the number of adverse health effects ∆Y i can be expressed as:156

∆Y i = Y i
0 × POPi ×

(
1− e−β∆Pi

r

)
, (2)

where Y i
0 is the baseline incidence rate for the health outcome at receptor i, POPi is the population157

exposed at the receptor region, β is the concentration-response coefficient derived from epidemiolog-158

ical studies, and ∆Pi
r = (∆Pi,1

r , . . . ,∆Pi,K
r ) is the change in pollutant concentrations at receptor159

i.160

3.4 Converting Health Impacts into Monetary Valuation161

Health Impact Assessment (HIA) often requires converting health outcomes into monetary values162

enable cost-benefit analysis and facilitate policy decision-making [29, 37]. We denote these values163

by vi = (vi,1, . . . , vi,H), where H represents the number of different types of health impacts164

(e.g., premature mortality, asthma attacks) at receptor i. Commonly used methodologies for this165

conversion include estimating the economic value of a statistical life (VSL), as proposed by the166

Organization for Economic Cooperation and Development (OECD) [21], and quality-adjusted life167

years (QALYs) [9, 16].168

Our work aims to establish the connection between energy consumption from electricity usage at169

a source s over time steps t = 1, . . . , T , denoted as Es
t = (Es,1

1 , . . . , Es,F
T ), where F represents170

the number of different fuel mix sources (such as oil and gas), and the resulting economic health171

outcomes vit at receptor i at time step t.172

4 Methods173

Our methodology integrates diverse datasets and modeling approaches into a cohesive, end-to-end174

pipeline, which links electricity consumption to public health outcomes based on the power generation175

fuel mix pattern, named the HealthPredictor. As shown in Figure 2, the framework consists of176

three core modules: the Fuel Mix Predictor, the Air Quality Converter, and the Health Impacter.177

4.1 Modelling Framework178

4.1.1 Fuel Mix Predictor179

Fuel mix predictor is the starting point of our pipeline, as they directly inform the potential health180

impacts of electricity generation. Fossil fuels (e.g. coal, gas, oil) are particularly significant due181

to their high pollutant emissions. Electricity demand also affects the types of fuel used for power182

generation. For example, during peak electricity demand periods, less-efficient and higher-emission183

fuel sources like coal or oil are often used [13]. Variations in the fuel mix, driven by factors such as184

demand, renewable availability, and regulations, cause fluctuations in pollutant emissions, which in185
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Figure 2: Overview of the health-informed computing pipeline. The pipeline begins with energy
contribution, E′

t, from various sources (e.g. gas, coal). It then models pollutant dispersion (e.g.
S02, NOx) to receptors. Finally, it quantifies the resulting health impacts by monetary cost metrics
($/MWh).

turn impact human health outcomes like respiratory illnesses and premature deaths [1]. Therefore,186

accurately predicting the fuel mix is crucial to estimate these emissions and assess their potential187

health impacts.188

The goal of the fuel mix predictor is to estimate the future fuel mix (e.g., coal, oil, gas) utilized189

for electricity generation across the next time horizon based on historical data on the grid’s fuel190

mix. The fuel mix data is inherently time-variant [18], and accurately predicting it requires a deep191

understanding of the dynamic interplay between factors such as electricity demand, market conditions,192

and regulations. Several machine learning approaches have been proposed to model these chaotic and193

nonlinear time-series relationships, including the LSTM networks to capture temporal dependencies194

in energy forecasting [12]. Hybrid approaches, such as combining wavelet basis functions (WBF),195

sparse autoencoders (SAE), and LSTM, also aim to improve prediction accuracy by integrating196

multiple advanced [23]. For our predictor, we opt for the Transformer-based architecture in favor197

of its superior ability to capture long-range dependencies, given the lengthy yearly dataset we have198

collected.199

4.1.2 Air Quality Converter200

The Air Quality Converter is tasked with transforming predicted fuel mix data into quantifiable air201

pollutant emissions in our pipeline.202

Pollutants Estimation Each fuel type has distinct emission factors that determine the amount of203

pollutants emitted per unit of energy generated. These factors can vary depending on combustion204

technology, fuel quality, and operating conditions. Additionally, regional differences, such as205

local fuel types, regulatory standards, and emission control technologies, can further influence206

these emission factors [37]. By obtaining the fuel mix predictions from the fuel mix predictor,207

we can estimate pollutant emissions based on these factors using tools provided by InMap [27] or208

COBRA [34].209

Dispersion Modelling Modelling the dispersion of air pollutants is a critical step in understanding210

the relationship between emissions and their resulting concentrations in the atmosphere. This process211

provides insight into how pollutants spread, dilute, and interact with environmental conditions,212

ultimately determining their impact on air quality and public health. Two primary types of pollutants213

are usually considered in dispersion modeling. One is the primary pollutants, such as directly214

emitted particulate matter (e.g., PM2.5). It usually exhibit a linear relationship with source emissions.215

These pollutants can be effectively modeled using tools like AERMOD, a steady-state Gaussian216

plume dispersion model recommended by the EPA [37], which calculates pollutant concentrations217

by accounting for environmental variables such as wind speed, atmospheric stability, and source218
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characteristics. The other is the secondary pollutants, such as O3 formed from precursors NO219

and NO2, involve more complex, non-linear relationships with emissions. Their formation results220

from chemical reactions in the atmosphere, influenced by factors like sunlight and temperature. To221

model these interactions, chemical transport models CTMs) that simulate atmospheric chemistry and222

transport processes are commonly used [27].223

As we introduced in Section 3.2, the general relationship between pollutant concentrations at receptor224

sites and emissions from sources can be expressed by Eq. (1). In this formulation, Dw(Ps) encapsu-225

lates the complex dispersion process, where w accounts for factors such as geographical conditions,226

emission source characteristics, and meteorological data. In our framework, the dispersion function227

Dw(Ps) is modeled using a custom neural network layer designed to approximate the transformation228

f(Es), which represents the transformation applied to the emissions Es. This neural network layer229

takes as input the pollutant quantities at the emission source (Ps) along with relevant environmental230

features, and predicts pollutant quantities at the receptor regions (Pi
r for i = 1, . . . ,M ). The neural231

network parameters, corresponding to w, are trained to minimize the discrepancy between predicted232

and observed concentrations. By leveraging the neural network-based dispersion modeling, we aim233

to provide a more accurate and flexible framework for predicting pollutant concentrations.234

4.1.3 Health Impacter235

The health impact component aims to quantify the changes in adverse health effects resulting from236

variations in air pollution exposure, following the results obtained from the air quality converter. We237

measure the health impact in dollars per megawatt-hour ($/MWh). This measurement reflects the238

economic cost of health impacts associated with electricity generation [21]. The most widely utilized239

functional form in criteria air pollutant concentration-response modeling is the log-linear model, as240

introduced in Eq. (2). This model is well-suited to capture non-linear relationships between pollutant241

concentrations and health risks, particularly at lower exposure levels where the relative risk changes242

more sharply. In addition to the log-linear model, linear models are also applied in specific cases,243

such as when evaluating the health impacts of certain pollutants (e.g., SO2 or PM2.5) or within specific244

demographic groups where simpler proportional relationships may better describe the data [37].245

The health impact modeling process aligns closely with established epidemiological frameworks and246

tools such as COBRA [37], which quantify the proportional increase in health risks due to incremental247

changes in pollutant concentrations. These models incorporate concentration-response functions248

derived from epidemiological studies, enabling a robust estimation of health risks, such as premature249

mortality and respiratory illnesses [37]. By leveraging these functions, our pipeline calculates the250

economic valuation of health impacts per unit of electricity generation.251

4.2 End-to-End Training252

Loss Function Design We design a loss function for a health-informed learning pipeline with253

incorporating health impact measures directly into the optimization process.254

Let yt be the true fuel mix at time t and ŷt be the predicted fuel mix at time t by the fuel mix predictor.255

In AirQuality converter, f(·) be the function that converts fuel mix predictions to pollutant emissions256

like SO2 after dispersion. Let g(·) be the function that estimates health impacts measured by $/mWh257

based on pollutant levels, and spatial features, denoted as I . In the formulation, we also introduce a258

hyperparameter β to balance forecasting accuracy and health impact optimization. The loss function259

is formulated as260

L = β ∥yt − ŷt)∥2 + (1− β) ∥yimpact,t − g(ŷt, I)∥2 , (3)

where yimpact denotes the true value of the health impact, while g(ŷt, I) represents the predicted261

health impact, based on the predicted fuel mix and a series of models that convert the corresponding262

pollutants into health impacts, and β is a hyperparameter to balance the prediction accuracy of the263

fuel mix and the health impact. It is worth noting that yimpact,t here is general, which can refer to264

local health impacts, global health impacts, or a combination of both, depending on the context and265

the extent of the dispersion of pollutants in the atmosphere. This flexibility allows our pipeline to266

account for both direct localized effects and broader regional or global consequences of air pollution.267
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Table 1: Comparison of methods for health impact predictions. The Health-driven Opt based on the
transformer architecture in the fuel mix predictor component achieved the lowest MSE loss on both
internal and external health impact predictions compared to other methods, across various prediction
time windows and regions.

Region Method Prediction Window
(hrs) Fuel-Mix Prediction Loss Health Impact Loss

(Internal)
Health Impact Loss

(External)

CISO

Fuel-mix-driven Opt (LSTM) T = 24 0.1005 1.1417 1.1882
T = 72 0.1181 1.1645 2.2554

Fuel-mix-driven Opt T = 24 0.0160 1.4451 1.7562
T = 72 0.0195 1.5354 2.0057

Health-driven Opt (LSTM) T = 24 0.6012 0.0207 0.0233
T = 72 0.7054 0.0203 0.0217

Health-driven Opt T = 24 0.0718 0.0151 0.0194
T = 72 0.0700 0.0144 0.0182

PJM

Fuel-mix-driven Opt (LSTM) T = 24 0.1883 1.2244 0.9023
T = 72 0.2101 3.1549 1.0721

Fuel-mix-driven Opt T = 24 0.0280 1.1446 0.4388
T = 72 0.0342 3.0022 1.2097

Health-driven Opt (LSTM) T = 24 0.4962 0.0341 0.0225
T = 72 0.5302 0.0180 0.0102

Health-driven Opt T = 24 0.1561 0.0313 0.0136
T = 72 0.1695 0.0152 0.0069

ERCO

Fuel-mix-driven Opt (LSTM) T = 24 0.1160 2.5192 1.0247
T = 72 0.0586 2.2059 1.0912

Fuel-mix-driven Opt T = 24 0.0108 2.4784 1.0571
T = 72 0.0116 2.3926 0.9938

Health-driven Opt (LSTM) T = 24 0.4122 0.0232 0.0133
T = 72 0.8132 0.0270 0.0118

Health-driven Opt T = 24 0.0537 0.0099 0.0043
T = 72 0.0701 0.0199 0.0083

In training, our pipeline learns to predict health impacts from fuel mix data through multiple stages,268

using a customized loss function specifically tailored to incorporate accurate health impact prediction,269

as shown in Eq. (3). The input to our pipeline is a sequence of fuel mix data, which represents the270

distribution of fuel types over time (e.g., hourly fuel mix data for a year). The output is the predicted271

health impact, expressed as a monetary value per unit of energy ($/mWh).272

5 Experiments273

In this section, we implement our pipeline and develop methods, including health impact-driven274

approaches and optimizations, to demonstrate the effectiveness and flexibility of our pipeline. This275

implementation serves as the foundation for the case study carried out in Section 6, which signal276

electric vehicle (EV) users to reduce adverse health outcomes during charging.277

Datasets Our analysis uses fuel mix data from U.S. Energy Information Administration (EIA) [32]278

and health impact data ($/MWh) based on estimates from the AVoided Emissions and geneRation279

Tool (AVERT) from the latest available year [37].280

While our dataset covers all 67 U.S. BA, we our experiments on three representative re-281

gions—California (CISO), Texas (ERCO), and the Mid-Atlantic (PJM). These regions are carefully282

selected to reflect diverse characteristics in grid operations, emission profiles, and public health283

impact patterns. The dataset includes six input features, such as fuel mix percentages and time period,284

and two output features: internal (within-BA) and external (outside-BA) health impacts. More details285

and additional empirical results are provided in Appendix A.1.286

Model Construction For the fuel-mix predictor, we develop a Transformer-based architecture287

tailored to fuel mix time-series data, capitalizing on its ability to capture intricate relationships288

and long-term dependencies . To model the complex, non-linear conversion of emissions to health289

impacts, we utilize a 3-layer Multi-Layer Perceptron (MLP) . The detailed model architectures and290

hyperparameters are provided in Appendix A.2.291

Implementation Details We consider two predicted outputs: Health Impact (Internal) and Health292

Impact (External), which account for the dispersion of air pollutants beyond their region of origin [37].293

The “Internal" captures the total health cost within a BA’s jurisdiction, while the “External" reflects294
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the cost in all counties outside that domain. The loss function in Eq. (3) for the case study can then295

be rewritten as296

L = β ∥yt − ŷt)∥2 +
1− β

2

(
∥yi,t − g(ŷt, I)∥2 + ∥ye,t − g(ŷt, I)∥2

)
(4)

where yi,t represents the within-region health impact, and ye,t represents the external (outside-297

region) health impact at time t. In our experiments, we observed no clear justification to prioritize298

internal versus external health impacts for regions. Therefore, to avoid notation clutter, we set the299

hyperparameter values for within-region and outside-region health impacts to 1−β
2 .300

In our experiments, predictions are made across time windows (T ) of 24 and 72 hours. In addition to301

our Transformer-based models, we also implement LSTM-based variants of both the Fuel-mix-driven302

Opt and Health-driven Opt methods as baselines for comparison. Further details on data splitting and303

optimizer hyperparameters are moved to Appendix A.2.304

Main Results For our method, we set β = 0.2, assigning a weight of 0.8 to the health impact305

component, evenly split between internal and external health impacts at 0.4 each. This setting,306

referred to as Health-driven Opt, prioritizes health outcomes over fuel-mix prediction accuracy.307

In Fuel-mix-driven Opt, we set β = 1 to optimize only the fuel-mix predictors as one baseline.308

In Table 1, we present the prediction results for these methods, showing that Health-driven Opt309

consistently achieves lower loss in health impacts compared to other baselines across different regions310

and prediction time steps. Among them, those based on the Transformer architecture achieve lower311

losses in fuel-mix prediction compared to the ones using LSTM, while Health-driven Opt methods,312

regardless of the architecture used in its fuel-mix predictor, achieves lower loss in both internal and313

external health impacts compared to the Fuel-mix-driven Opt methods.314

6 A Case Study of Health-Aware EV Charging315

The increasing adoption of electric vehicles (EVs) highlights concerns about their potential health-316

related impacts, particularly through emissions associated with electricity generation. Scheduling317

EV charging strategically can play a critical role in reducing harmful emissions, thereby mitigating318

public health risks and also supporting power system stability [5].319

Our method provides a straightforward, data-driven signal for EV users by predicting health impacts320

over the next few hours based on electricity usage patterns. These predictions evaluate health321

impacts caused by electricity usage, expressed in units of $/MWh, guide users to identify optimal322

charging times, helping to minimize exposure to pollutants such as NO2 and PM2.5. By delivering323

quantifiable and actionable insights, our approach empowers users to make informed decisions,324

effectively reducing the health risks associated with electricity usage. In our case study, different325

charging schedule strategies along with their corresponding numerical results are presented and326

analyzed.327

Setups For an EV denoted as j, let Ij and Dj represent the initial and target state of charge (SoC),328

respectively. The charging occurs within a time frame starting at sj and ending at ej . To optimize329

this process, we discretize the interval [sj , ej ] into time slots τ = 1, ..., T and implement a binary330

charging scheme Yj . Each element yj,t in Yj is either 1, indicating charging at time t, or 0, indicating331

no charge (e.g., Yj = [1, 0, ...1]). The electricity charged at time t for EV j is denoted by ζj,t.332

Considering the health impact Ht at time t, the goal to minimize the total charging health impact by333

determining the optimal charging schedule for EV j can be expressed as follows,334

min
Yj

∑
t

ζj,tyj,t ·Ht, s.t.
∑
t

ζj,tyj,t + Ij = Dj , (5)

where Yj = [yj,1, · · · , yj,T ].335

EV-Charging Datasets We use the publicly available ACN-Data [14], which provides real-time336

charging details (e.g., arrival/departure times, energy delivered), to estimate power demand and337

charging rates for EVs in residential areas.338
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(a) CISO (b) PJM (c) ERCO

Figure 4: Simulation results of using different EV charging strategies based on health impact
predictions in CISO, PJM and ERCO regions. With the provided prediction signals from the
HealthPredictor, EV users can choose the optimal hours to charge their vehicles, achieving the
greatest adverse health outcomes reduction compared to other charging strategies.

Figure 3: The HealthPredictor-embedded
health-aware charging agent provides EVs with
health outcome estimates for each charging time
window, H1, · · · , HT . This information allows
EVs to determine the optimal charging schedule
by minimizing the total health impact, given by∑

t ζj,tyj,t ·Ht, for each EV j.

To approximate the available residential charging339

time window (sj to ej), we leverage data from the340

National Household Travel Survey (NHTS) [30].341

We assume the distributions of the initial charging342

time (sj) and end time (ej) align with the NHTS343

distributions of home arrival and departure times,344

respectively. For the health impact predictions Ht,345

we use the empirical results from Section 5 on346

different regions.347

Simulation Results We evaluated several charg-348

ing strategies: First Hours, which charges during349

the earliest available hours after arriving; Latest350

Hours, which charges during the latest available351

hours before departure; and Continuous Charging,352

which involves charging continuously from an op-353

timal starting time t1 to satisfy the demand Dj354

while minimizing the overall health impact.355

In the simulation, we use predictions of both internal and external health impacts of Health-driven356

Opt method from Section 5 to calculate Ht by a weighting factor of 0.5 to balance them. Figure 4357

compares the total health impacts generated throughout the entire charging process. By optimizing358

the charging schedule using Eq. (5) which selects optimal charging hours based on health impact359

predictions H, significant reductions in total health impacts can be achieved. Specifically, across the360

CISO, PJM, and ERCO regions, our approach reduces total health impacts by ∼24–42% compared361

to the First Hours and Latest Hours strategies, and by ∼15–20% compared to Continuous Charging.362

7 Conclusion363

This work introduces a novel approach to bridging the gap between electricity consumption decisions364

and their public health implications. Our HealthPredictor demonstrates that incorporating health365

impact considerations into electricity usage predictions can lead to substantial reductions in adverse366

health outcomes. The effectiveness of our approach is validated across different U.S. regions367

and through a practical case study on EV charging optimization, showing potential health impact368

reductions of 17-42% compared to other charging strategies. By providing quantifiable health impact369

predictions, our system enables more informed decision-making for both individuals and system370

operators. Future work could extend this framework by exploring decision-focused learning that371

optimize the minimization of adverse health outcomes during training.372

Limitations. We acknowledge several limitations in our study. For example, our predictions only373

consider relatively short time windows and do not extend to long-term scenarios. Additionally, while374

we use the EPA’s air dispersion model as the ground truth, there may still be high level of uncer-375

tainty in air dispersion due to the complex interplay between emission sources and meteorological376

conditions [22, 4].377
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A Appendix493

A.1 Datasets Collection and Preparation Details494

We here document details on constructing the comprehensive datasets that link the fuel mix usage of495

power generation with health outcomes for training the HealthPredictor.496

Beyond the end-to-end training design, it is important to highlight that the datasets required to497

train our pipeline are not only complex but also fragmented and labor-intensive to construct. These498

data come from heterogeneous sources with inconsistent schemas and geographic granularity. For499

example, aligning fuel categories across agencies (e.g., 8 types in EIA vs. 40 in EPA eGRID) required500

systematic mapping, and spatial integration between balancing authorities (BAs) and county-level501

health data involved optimized point-in-polygon indexing. We have created datasets that link hourly502

fuel mix compositions with corresponding health costs, covering all 67 BAs in the U.S. for the latest503

available year, totaling 586,920 data points. We release these datasets with our code to support future504

research and practical applications. More details are reported in the Experiments and Appendix.505

Our primary dataset consists of hourly generation fuel mix data and their corresponding internal506

and external health costs per megawatt-hour (MWh) for the selected geographical regions in the507

most recent year. To construct this comprehensive dataset, we employed a systematic approach508

encompassing data acquisition, processing, and analysis through the following procedures:509

Step I: Acquisition of Hourly Generation Mix Data We collect the hourly generation fuel mix510

data of latest years from the U.S. Energy Information Administration (EIA) [32]. The U.S. EIA511

provides electricity generation data organized by balancing authorities (BAs, a functional role defined512

by the North American Electric Reliability Corporation [20]) rather than state boundaries. This kind513

of organization is preferred as BAs align more closely with the operational structure of the power514

grid, providing a more accurate representation of how electricity is generated and managed across515

regions. In Figure 5, we report the distribution of different fuel types for the regions we studied:516

CISO, PJM, and ERCO, averaged hourly throughout the year. For ERCO, the petroleum consumption517

is processed as 0% in our analysis due to the EIA including it within the broader "Other" category518
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without specific data. According to [32], petroleum usage in power generation is generally minimal519

in ERCO, so excluding it as a separate category does not affect the overall fuel mix analysis for520

our methods. In processing the fuel mix data, missing data points are addressed using a two-step521

imputation approach. The primary method involves interpolation based on adjacent hourly data.522

When such data are unavailable, missing values are substituted by averaging corresponding time523

points from the nearest available days, taking advantage of daily cyclical patterns in the fuel mix.524

(a) CISO (b) PJM (c) ERCO

Figure 5: Distribution of the energy generation mix by different fuel types in CISO, PJM, and ERCO.

Step II: Derivation of Emission Data Emission data were derived from the Environmental525

Protection Agency’s Emissions & Generation Resource Integrated Database (eGRID) [36], which526

provides raw plant-level electricity generation and emission data. Our analysis focuses on four criteria527

air pollutants: PM2.5, SO2, NOX, and VOC. We obtained pollutant datasets from the most recent528

available eGRID records: plant-level PM2.5 emissions from 2021 and plant-level SO2, NOX, and529

VOC emissions from 2022. Since the eGRID database associates each generation facility with its530

corresponding balancing authority (BA), we needed to map the raw plant-level data to the specific531

BAs relevant to our study. For the selected BA, we then assumed a unit electricity consumption (1532

MWh) for each hour throughout 2023. Using hourly generation fuel mix data, we allocated this unit533

hourly demand across different fuel sources according to their generation shares. For each fuel type,534

we further distributed its allocated generation among all plants within the BA based on their relative535

generation capacities.536

One challenge in this process arose from the inconsistent categorization of fuel types between the537

EIA and eGRID datasets. To address this, we developed a systematic mapping approach. First, we538

utilized eGRID’s internal hierarchical classification system to map its numerous detailed fuel types539

to a smaller set of fuel type categories defined within eGRID. Then, we mapped these simplified540

eGRID categories to EIA’s classification system through both direct correspondence (e.g., HYDRO541

to WAT) and careful examination of category definitions for less straightforward cases (e.g., DFO542

to OIL). This meticulous mapping process is essential to ensure accurate integration of emissions543

data with generation profiles. By combining these carefully harmonized plant-level allocations with544

plant-specific emission factors, we quantified the specific emissions profile per MWh for each hour.545

Step III: Health Cost Assessment To assess the public health implications of our emissions profile,546

we employ the CO-Benefits Risk Assessment (COBRA) Health Impacts Screening and Mapping547

Tool (Desktop v5.1, as of October 2024) developed by the U.S. EPA [34]. COBRA utilizes a548

reduced-complexity air quality dispersion model incorporating a source-receptor matrix for expedited549

assessment. Despite its wide validation and adoption in the literature for large-scale air quality and550

health impact analyses [24, 8], applying COBRA to derive health costs requires significant effort. It551

involves labor-intensive steps to compile and prepare the input data, including mapping emissions552

profiles to specific regions and ensuring the appropriate application of emission factors, all while553

maintaining the integrity of the tool’s assumptions. In derivation, we set 2023 as the baseline scenario554

year to correspond to our study period. In accordance with EPA recommendations based on the U.S.555

Office of Management and Budget Circular No. A-4 guidance [41], we implement a discount rate of556

2% in the COBRA model.557

Considering the air pollutant transport mechanisms, we account for both internal and external health558

impacts in our analysis of an emission source. The spatial delineation of each BA’s service territories is559

obtained from the U.S. Energy Atlas [31], which provides raw data in GeoJSON format. To efficiently560

process these complex geographical data, we employed spatial indexing techniques to optimize561
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Table 2: Comparison of methods for health impact predictions in State Tennessee with T = 24.

Method Fuel-Mix Prediction Loss Health Impact Loss
(Internal)

Health Impact Loss
(External)

Fuel-mix-driven Opt (LSTM) 0.1683 0.2059 0.3096
Fuel-mix-driven Opt 0.0743 0.1093 0.6791

Health-driven Opt (LSTM) 0.7288 0.0150 0.2099
Health-driven Opt 0.1524 0.0135 0.1466

the computational performance of point-in-polygon operations, enabling the precise identification562

of counties within each BA’s operational domain. Following the spatial categorization of counties563

as either internal or external to the BA, we aggregated the county-level health costs accordingly.564

Specifically, we compute the hourly internal and external health costs throughout the year based on565

the unit hourly electricity consumption (1 MWh), where internal costs represent the sum of health566

impacts in counties within the BA’s jurisdiction, and external costs comprise impacts in all other567

counties. This yields a comprehensive dataset comprising hourly fuel mix compositions and their568

corresponding internal and external health costs per MWh for the entire year, which is used to train569

our proposed pipeline.570

Brief Summary of Dataset Preparation Challenges Challenges in dataset preparation mainly571

include reconciling semantic inconsistencies across data sources, resolving spatial mismatches,572

and managing infrastructure for local health impact computation. For example, the U.S. Energy573

Information Administration (EIA) defines 8 fuel mix categories, while the EPA’s eGRID lists over 40,574

requiring us to systematically consolidate and map these types using internal hierarchies and cross-575

referencing definitions. Spatial integration was equally nontrivial—health impacts from COBRA are576

county-based, whereas eGRID data is organized by BAs. To bridge this gap, we employed U.S. Energy577

Atlas GeoJSON files with optimized spatial indexing for accurate point-in-polygon assignments.578

Additionally, estimating county-level health costs using COBRA’s desktop tool demanded significant579

manual effort, with each run taking 5–20 minutes and data entry requiring 1–2 minutes per input.580

This entire process spanned several days and underscores the substantial effort involved in building a581

reliable, multi-source dataset.582

A.2 Additional Empirical Details and Results583

The three regions—CISO (California), PJM (Mid-Atlantic), and ERCO (Texas) selected in our main584

text have shown the effectiveness of our methods in various energy generation patterns and regulatory585

environments. These regions are carefully chosen to represent distinct characteristics in power grid586

operations, emissions profiles, and public health impact patterns. Texas, for example, ranks among587

the top three for PM2.5 emissions, which have severe health effects [39]. Although California does588

not have the highest emissions, its dense population results in significant adverse health costs [35].589

Specifically, CISO has one of the lowest benefits-per-kWh, reflecting high adverse health outcomes,590

as reported by the EPA [35].591

Model Construction For the fuel-mix predictor, we develop a Transformer-based architecture592

tailored to fuel mix time-series data, capitalizing on its ability to capture intricate relationships593

between various factors influencing the fuel mix. The transformer also excels at capturing long-term594

dependencies, which are critical in understanding the temporal dynamics of fuel usage and transitions595

over extended periods. The architecture consists of an embedding layer followed by a Transformer596

block with a single encoder and decoder layer, utilizing four multi-head attention mechanisms with a597

dropout regularization rate of 0.1.598

The conversion of pollutant emissions to air pollutant concentrations and their subsequent dispersion599

in the atmosphere is a highly intricate process. It involves complex chemical transformations,600

atmospheric reactions, and meteorological processes. To address this complexity, we utilize a 3-layer601

Multi-Layer Perceptron (MLP) model, which takes the fuel mix predictions as input and predicts602

the potential health impact. The model is specifically chosen for its ability to approximate complex,603

nonlinear relationships inherent in pollutant dispersion and their effects.604

In experiments, the LSTM based fuel mix predictor is composed of an embedding layer that projects605

inputs to a 64-dimensional space, followed by a single-layer LSTM with 64 hidden units and a dropout606

rate of 0.1. The number of training epochs is set to 150 for Transformer-based methods, while it607
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is set to 50 for the LSTM architecture. In Table 2, we have also included additional experimental608

results from State Tennessee, which has a high level of SO2 emissions based on the EPA reports [36],609

with prediction time window set as 24 hours. Table 2 has shown that Health-driven Opt based on610

transformer architecture achieves the lowest loss in health impacts compared to other methods.611

Implementation Details In our experiments, predictions are made across different time window612

steps, denoted as T . We set T to values of 24 and 72 hours to explore the impact of varying prediction613

time windows. Temporal sequences are handled by slicing inputs and targets according to these614

specified sliding window steps T , and an 80/20 train-validation split is employed. For the CISO615

region dataset, we utilize the Stochastic Gradient Descent (SGD) optimizer with a learning rate616

of 0.001 and a batch size of 32. In addition to our Transformer-based models, we also implement617

LSTM-based variants of both the Fuel-mix-driven Opt and Health-driven Opt methods as baselines618

for comparison. These LSTM baselines use the same optimization objectives as their corresponding619

Transformer-based counterparts, i.e., Health-driven Opt and Fuel-mix-driven Opt, respectively. All620

experiments are conducted on a single NVIDIA K80 GPU. Training the Transformer-based models621

for 100 epochs takes usually less than five hours.622

NeurIPS Paper Checklist623

1. Claims624

Question: Do the main claims made in the abstract and introduction accurately reflect the625

paper’s contributions and scope?626

Answer: [Yes]627

Justification: The abstract and introduction claim to link electricity usage to public health628

using a domain-specific AI model for social well-being. We build an end-to-end pipeline,629

HealthPredictor, to address this, and validate its effectiveness through experiments630

across multiple U.S. regions, see Section 5.631

Guidelines:632

• The answer NA means that the abstract and introduction do not include the claims633

made in the paper.634

• The abstract and/or introduction should clearly state the claims made, including the635

contributions made in the paper and important assumptions and limitations. A No or636

NA answer to this question will not be perceived well by the reviewers.637

• The claims made should match theoretical and experimental results, and reflect how638

much the results can be expected to generalize to other settings.639

• It is fine to include aspirational goals as motivation as long as it is clear that these goals640

are not attained by the paper.641

2. Limitations642

Question: Does the paper discuss the limitations of the work performed by the authors?643

Answer: [Yes]644

Justification: See section 7.645

Guidelines:646

• The answer NA means that the paper has no limitation while the answer No means that647

the paper has limitations, but those are not discussed in the paper.648

• The authors are encouraged to create a separate "Limitations" section in their paper.649

• The paper should point out any strong assumptions and how robust the results are to650

violations of these assumptions (e.g., independence assumptions, noiseless settings,651

model well-specification, asymptotic approximations only holding locally). The authors652

should reflect on how these assumptions might be violated in practice and what the653

implications would be.654

• The authors should reflect on the scope of the claims made, e.g., if the approach was655

only tested on a few datasets or with a few runs. In general, empirical results often656

depend on implicit assumptions, which should be articulated.657
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• The authors should reflect on the factors that influence the performance of the approach.658

For example, a facial recognition algorithm may perform poorly when image resolution659

is low or images are taken in low lighting. Or a speech-to-text system might not be660

used reliably to provide closed captions for online lectures because it fails to handle661

technical jargon.662

• The authors should discuss the computational efficiency of the proposed algorithms663

and how they scale with dataset size.664

• If applicable, the authors should discuss possible limitations of their approach to665

address problems of privacy and fairness.666

• While the authors might fear that complete honesty about limitations might be used by667

reviewers as grounds for rejection, a worse outcome might be that reviewers discover668

limitations that aren’t acknowledged in the paper. The authors should use their best669

judgment and recognize that individual actions in favor of transparency play an impor-670

tant role in developing norms that preserve the integrity of the community. Reviewers671

will be specifically instructed to not penalize honesty concerning limitations.672

3. Theory assumptions and proofs673

Question: For each theoretical result, does the paper provide the full set of assumptions and674

a complete (and correct) proof?675

Answer: [NA]676

Justification: NA677

Guidelines:678

• The answer NA means that the paper does not include theoretical results.679

• All the theorems, formulas, and proofs in the paper should be numbered and cross-680

referenced.681

• All assumptions should be clearly stated or referenced in the statement of any theorems.682

• The proofs can either appear in the main paper or the supplemental material, but if683

they appear in the supplemental material, the authors are encouraged to provide a short684

proof sketch to provide intuition.685

• Inversely, any informal proof provided in the core of the paper should be complemented686

by formal proofs provided in appendix or supplemental material.687

• Theorems and Lemmas that the proof relies upon should be properly referenced.688

4. Experimental result reproducibility689

Question: Does the paper fully disclose all the information needed to reproduce the main ex-690

perimental results of the paper to the extent that it affects the main claims and/or conclusions691

of the paper (regardless of whether the code and data are provided or not)?692

Answer: [Yes]693

Justification: We include the main experiment setting and dataset source in the main body694

(Section 4, Section 5), and include all the information in the Appendix.695

Guidelines:696

• The answer NA means that the paper does not include experiments.697

• If the paper includes experiments, a No answer to this question will not be perceived698

well by the reviewers: Making the paper reproducible is important, regardless of699

whether the code and data are provided or not.700

• If the contribution is a dataset and/or model, the authors should describe the steps taken701

to make their results reproducible or verifiable.702

• Depending on the contribution, reproducibility can be accomplished in various ways.703

For example, if the contribution is a novel architecture, describing the architecture fully704

might suffice, or if the contribution is a specific model and empirical evaluation, it may705

be necessary to either make it possible for others to replicate the model with the same706

dataset, or provide access to the model. In general. releasing code and data is often707

one good way to accomplish this, but reproducibility can also be provided via detailed708

instructions for how to replicate the results, access to a hosted model (e.g., in the case709

of a large language model), releasing of a model checkpoint, or other means that are710

appropriate to the research performed.711
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• While NeurIPS does not require releasing code, the conference does require all submis-712

sions to provide some reasonable avenue for reproducibility, which may depend on the713

nature of the contribution. For example714

(a) If the contribution is primarily a new algorithm, the paper should make it clear how715

to reproduce that algorithm.716

(b) If the contribution is primarily a new model architecture, the paper should describe717

the architecture clearly and fully.718

(c) If the contribution is a new model (e.g., a large language model), then there should719

either be a way to access this model for reproducing the results or a way to reproduce720

the model (e.g., with an open-source dataset or instructions for how to construct721

the dataset).722

(d) We recognize that reproducibility may be tricky in some cases, in which case723

authors are welcome to describe the particular way they provide for reproducibility.724

In the case of closed-source models, it may be that access to the model is limited in725

some way (e.g., to registered users), but it should be possible for other researchers726

to have some path to reproducing or verifying the results.727

5. Open access to data and code728

Question: Does the paper provide open access to the data and code, with sufficient instruc-729

tions to faithfully reproduce the main experimental results, as described in supplemental730

material?731

Answer: [Yes]732

Justification: Our datasets and code will be released upon publication of our paper.733

Guidelines:734

• The answer NA means that paper does not include experiments requiring code.735

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/736

public/guides/CodeSubmissionPolicy) for more details.737

• While we encourage the release of code and data, we understand that this might not be738

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not739

including code, unless this is central to the contribution (e.g., for a new open-source740

benchmark).741

• The instructions should contain the exact command and environment needed to run to742

reproduce the results. See the NeurIPS code and data submission guidelines (https:743

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.744

• The authors should provide instructions on data access and preparation, including how745

to access the raw data, preprocessed data, intermediate data, and generated data, etc.746

• The authors should provide scripts to reproduce all experimental results for the new747

proposed method and baselines. If only a subset of experiments are reproducible, they748

should state which ones are omitted from the script and why.749

• At submission time, to preserve anonymity, the authors should release anonymized750

versions (if applicable).751

• Providing as much information as possible in supplemental material (appended to the752

paper) is recommended, but including URLs to data and code is permitted.753

6. Experimental setting/details754

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-755

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the756

results?757

Answer: [Yes]758

Justification: The main body includes our model architecture, baseline model, loss function,759

and key hyperparameters, which are adequate for appreciating the results 5. More details760

can be found in the Appendix.761

Guidelines:762

• The answer NA means that the paper does not include experiments.763

• The experimental setting should be presented in the core of the paper to a level of detail764

that is necessary to appreciate the results and make sense of them.765
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• The full details can be provided either with the code, in appendix, or as supplemental766

material.767

7. Experiment statistical significance768

Question: Does the paper report error bars suitably and correctly defined or other appropriate769

information about the statistical significance of the experiments?770

Answer: [No]771

Justification: Due to time and compute resource constraint (Section A.2), we do not conduct772

repeated experiments.773

Guidelines:774

• The answer NA means that the paper does not include experiments.775

• The authors should answer "Yes" if the results are accompanied by error bars, confi-776

dence intervals, or statistical significance tests, at least for the experiments that support777

the main claims of the paper.778

• The factors of variability that the error bars are capturing should be clearly stated (for779

example, train/test split, initialization, random drawing of some parameter, or overall780

run with given experimental conditions).781

• The method for calculating the error bars should be explained (closed form formula,782

call to a library function, bootstrap, etc.)783

• The assumptions made should be given (e.g., Normally distributed errors).784

• It should be clear whether the error bar is the standard deviation or the standard error785

of the mean.786

• It is OK to report 1-sigma error bars, but one should state it. The authors should787

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis788

of Normality of errors is not verified.789

• For asymmetric distributions, the authors should be careful not to show in tables or790

figures symmetric error bars that would yield results that are out of range (e.g. negative791

error rates).792

• If error bars are reported in tables or plots, The authors should explain in the text how793

they were calculated and reference the corresponding figures or tables in the text.794

8. Experiments compute resources795

Question: For each experiment, does the paper provide sufficient information on the com-796

puter resources (type of compute workers, memory, time of execution) needed to reproduce797

the experiments?798

Answer: [Yes]799

Justification: See Section A.2800

Guidelines:801

• The answer NA means that the paper does not include experiments.802

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,803

or cloud provider, including relevant memory and storage.804

• The paper should provide the amount of compute required for each of the individual805

experimental runs as well as estimate the total compute.806

• The paper should disclose whether the full research project required more compute807

than the experiments reported in the paper (e.g., preliminary or failed experiments that808

didn’t make it into the paper).809

9. Code of ethics810

Question: Does the research conducted in the paper conform, in every respect, with the811

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?812

Answer: [Yes]813

Justification: The research conform with the NeurIPS Code of Ethics.814

Guidelines:815

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.816
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• If the authors answer No, they should explain the special circumstances that require a817

deviation from the Code of Ethics.818

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-819

eration due to laws or regulations in their jurisdiction).820

10. Broader impacts821

Question: Does the paper discuss both potential positive societal impacts and negative822

societal impacts of the work performed?823

Answer: [Yes]824

Justification: Our research mainly focus on positive societal impacts, currently we do not825

foresee any negative impacts of the work.826

Guidelines:827

• The answer NA means that there is no societal impact of the work performed.828

• If the authors answer NA or No, they should explain why their work has no societal829

impact or why the paper does not address societal impact.830

• Examples of negative societal impacts include potential malicious or unintended uses831

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations832

(e.g., deployment of technologies that could make decisions that unfairly impact specific833

groups), privacy considerations, and security considerations.834

• The conference expects that many papers will be foundational research and not tied835

to particular applications, let alone deployments. However, if there is a direct path to836

any negative applications, the authors should point it out. For example, it is legitimate837

to point out that an improvement in the quality of generative models could be used to838

generate deepfakes for disinformation. On the other hand, it is not needed to point out839

that a generic algorithm for optimizing neural networks could enable people to train840

models that generate Deepfakes faster.841

• The authors should consider possible harms that could arise when the technology is842

being used as intended and functioning correctly, harms that could arise when the843

technology is being used as intended but gives incorrect results, and harms following844

from (intentional or unintentional) misuse of the technology.845

• If there are negative societal impacts, the authors could also discuss possible mitigation846

strategies (e.g., gated release of models, providing defenses in addition to attacks,847

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from848

feedback over time, improving the efficiency and accessibility of ML).849

11. Safeguards850

Question: Does the paper describe safeguards that have been put in place for responsible851

release of data or models that have a high risk for misuse (e.g., pretrained language models,852

image generators, or scraped datasets)?853

Answer: [NA]854

Justification: The paper poses no such risks.855

Guidelines:856

• The answer NA means that the paper poses no such risks.857

• Released models that have a high risk for misuse or dual-use should be released with858

necessary safeguards to allow for controlled use of the model, for example by requiring859

that users adhere to usage guidelines or restrictions to access the model or implementing860

safety filters.861

• Datasets that have been scraped from the Internet could pose safety risks. The authors862

should describe how they avoided releasing unsafe images.863

• We recognize that providing effective safeguards is challenging, and many papers do864

not require this, but we encourage authors to take this into account and make a best865

faith effort.866

12. Licenses for existing assets867

Question: Are the creators or original owners of assets (e.g., code, data, models), used in868

the paper, properly credited and are the license and terms of use explicitly mentioned and869

properly respected?870
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Answer: [Yes]871

Justification: All datasets we use are publicly available and mentioned with corresponding872

sources in the paper.873

Guidelines:874

• The answer NA means that the paper does not use existing assets.875

• The authors should cite the original paper that produced the code package or dataset.876

• The authors should state which version of the asset is used and, if possible, include a877

URL.878

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.879

• For scraped data from a particular source (e.g., website), the copyright and terms of880

service of that source should be provided.881

• If assets are released, the license, copyright information, and terms of use in the882

package should be provided. For popular datasets, paperswithcode.com/datasets883

has curated licenses for some datasets. Their licensing guide can help determine the884

license of a dataset.885

• For existing datasets that are re-packaged, both the original license and the license of886

the derived asset (if it has changed) should be provided.887

• If this information is not available online, the authors are encouraged to reach out to888

the asset’s creators.889

13. New assets890

Question: Are new assets introduced in the paper well documented and is the documentation891

provided alongside the assets?892

Answer: [NA]893

Justification: The paper does not release new assets.894

Guidelines:895

• The answer NA means that the paper does not release new assets.896

• Researchers should communicate the details of the dataset/code/model as part of their897

submissions via structured templates. This includes details about training, license,898

limitations, etc.899

• The paper should discuss whether and how consent was obtained from people whose900

asset is used.901

• At submission time, remember to anonymize your assets (if applicable). You can either902

create an anonymized URL or include an anonymized zip file.903

14. Crowdsourcing and research with human subjects904

Question: For crowdsourcing experiments and research with human subjects, does the paper905

include the full text of instructions given to participants and screenshots, if applicable, as906

well as details about compensation (if any)?907

Answer: [NA]908

Justification: The paper does not involve crowdsourcing nor research with human subjects.909

Guidelines:910

• The answer NA means that the paper does not involve crowdsourcing nor research with911

human subjects.912

• Including this information in the supplemental material is fine, but if the main contribu-913

tion of the paper involves human subjects, then as much detail as possible should be914

included in the main paper.915

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,916

or other labor should be paid at least the minimum wage in the country of the data917

collector.918

15. Institutional review board (IRB) approvals or equivalent for research with human919

subjects920
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Question: Does the paper describe potential risks incurred by study participants, whether921

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)922

approvals (or an equivalent approval/review based on the requirements of your country or923

institution) were obtained?924

Answer: [NA]925

Justification: The paper does not involve crowdsourcing nor research with human subjects.926

Guidelines:927

• The answer NA means that the paper does not involve crowdsourcing nor research with928

human subjects.929

• Depending on the country in which research is conducted, IRB approval (or equivalent)930

may be required for any human subjects research. If you obtained IRB approval, you931

should clearly state this in the paper.932

• We recognize that the procedures for this may vary significantly between institutions933

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the934

guidelines for their institution.935

• For initial submissions, do not include any information that would break anonymity (if936

applicable), such as the institution conducting the review.937

16. Declaration of LLM usage938

Question: Does the paper describe the usage of LLMs if it is an important, original, or939

non-standard component of the core methods in this research? Note that if the LLM is used940

only for writing, editing, or formatting purposes and does not impact the core methodology,941

scientific rigorousness, or originality of the research, declaration is not required.942

Answer: [NA]943

Justification: The core method development in this research does not involve LLMs as any944

important, original, or non-standard components.945

Guidelines:946

• The answer NA means that the core method development in this research does not947

involve LLMs as any important, original, or non-standard components.948

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)949

for what should or should not be described.950
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