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Abstract

The electric power sector is a leading source of air pollutant emissions, impacting
the public health of nearly every community. Although regulatory measures have
reduced air pollutants, fossil fuels remain a significant component of the energy
supply, highlighting the need for more advanced demand-side approaches to reduce
the public health impacts. To enable health-informed demand-side management,
we introduce HealthPredictor, a domain-specific AI model that provides an
end-to-end pipeline linking electricity use to public health outcomes. The model
comprises three components: a fuel mix predictor that estimates the contribution
of different generation sources, an air quality converter that models pollutant
emissions and atmospheric dispersion, and a health impact assessor that translates
resulting pollutant changes into monetized health damages. Across multiple regions
in the United States, our health-driven optimization framework yields substantially
lower prediction errors in terms of public health impacts than fuel mix-driven
baselines. A case study on electric vehicle charging schedules illustrates the public
health gains enabled by our method and the actionable guidance it can offer for
health-informed energy management. Overall, this work shows how AI models can
be explicitly designed to enable health-informed energy management for advancing
public health and broader societal well-being. Our datasets and code are released
at: https://github.com/Ren-Research/Health-Impact-Predictor.

1 Introduction

The electric power sector is a leading source of air pollutant emissions that affect the public health
across nearly every community [42], yet predicting societal health impacts remains challenging due
to the complex relationships between electricity usage, emissions, pollutant dispersion, and health
outcomes [16, 8]. The urgency of understanding these relationships has intensified with the rapid
growth of large energy loads. For instance, the rise of artificial intelligence (AI) and large language
models has led to unprecedented energy demand from data centers [3]. This trend, combined with
the increasing electrification of transportation and industrial processes, makes electricity usage a
critical sector for mitigating public health impacts, a critical topic of social well-being.

Electricity consumption directly impacts public health through air pollution from fossil fuel power
plants, which remain one of the largest industrial polluters [42, 50]. Despite strict regulations reducing
power sector emissions, fossil fuel plants continue to be “a leading source of air, water, and land
pollution that affects communities nationwide” in the United States, as reported by the EPA [40].
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Analysis using the EPA’s COBRA modeling tool [37] indicates that health costs from electricity are
on track to rise, rivaling those of on-road emissions in 2028 as shown in Figure 1.

Coal-fired power plants are among the fossil fuel facilities with the most adverse health effects, with
their PM2.5 emissions estimated to have caused approximately 460,000 excess deaths between 1999
and 2020 [13].3 Despite their significant health impact, they remain a key component of the U.S.
electricity mix. Importantly, the U.S. EIA projects that even by 2050, fossil fuels will still account
for a significant share of electricity generation, with coal power generation remaining around 180
billion kWh under the alternative scenario where power plants are allowed to operate subject to rules
existing before early 2024 [36]. The continued reliance on fossil fuels means that even though the
U.S. is among the leading countries in clean energy development, the associated health risks cannot
be overlooked.
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Figure 1: Total public health costs of elec-
tricity generation and on-road emissions
in the contiguous U.S. in 2023 and 2028
[41]. The error bars represent high and low
estimates provided by COBRA using two
different exposure-response models.

In Europe, according to a 2024 assessment by the Euro-
pean Environment Agency [6], air pollution attributable
to power generation imposes public health damages
equivalent to roughly 1 percent of the GDP. Globally,
dependence on coal and other fossil fuels for electricity
has remained largely steady over the past forty years
[26]. Therefore, it is crucial to predict and mitigate
these health impacts through targeted interventions from
demand-side management alongside supply-side transi-
tioning to cleaner grids.

Importantly, the relationship between electricity use and
health impacts offers unique opportunities for interven-
tion because a large portion of the electricity demand
is dynamically controllable, unlike other natural pollu-
tion sources or weather patterns. This controllability
enables proactive demand-side management by tapping
into energy load flexibilities, e.g., scheduling data center
workloads or coordinating electric vehicle (EV) charging
schedules in residential sectors.

Prior research has evolved from epidemiological pollution-health correlations to advanced machine
learning (ML) for modeling complex public health impacts. Some early studies have quantified the
health effects of air pollutants, particularly particulate matter, laying the foundation for air dispersion
models like COBRA [37] and InMAP [30] by leveraging models like Gaussian dispersion equations
and chemical transport simulations to estimate pollutant spread and associated health risks. More
recent advances have transformed this research landscape. [28] demonstrated the effectiveness of
LSTM networks in air quality assessment and pollution forecasting, achieving higher accuracy than
traditional statistical methods. Researchers have developed foundation models that integrate diverse
data sources to forecast comprehensive atmospheric composition [2].

Nonetheless, the existing studies mostly address isolated aspects of the problem, either assessing
health impacts from air pollutants or modeling energy-to-emissions conversion [8, 2]. Given that
fossil fuel generation will remain a substantial part of the power grid for the foreseeable future, there
is a critical gap to design a new AI model capable of connecting demand-side usage directly to health
outcomes. Such predictions would provide valuable signals to users, enabling them to take informed
actions to mitigate air pollution to protect public health by leveraging demand-side flexibilities.

We present a new domain-specific AI model, HealthPredictor, an end-to-end pipeline that quanti-
fies the public health impacts of electricity consumption. Our model integrates three key components:
a fuel mix predictor that forecasts the proportional contribution of different energy sources to elec-
tricity generation, an air quality converter that models pollutant emissions and their atmospheric
dispersion, and a health impact assessor that translates pollution changes into monetary health costs.
By combining these components with a health-driven optimization framework, HealthPredictor
enables prediction of health impacts from electricity usage to inform demand-side management. We

3While greenhouse gas emissions such as carbon dioxides may also be broadly classified as global air
pollutants, their impacts on public health are often second- or third-order and different from the immediate
health outcomes resulting from criteria air pollutants such as PM2.5 [43, 44, 13]. In this paper, we focus on the
public health impacts of criteria air pollutants without including greenhouse gas emissions.
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demonstrate the effectiveness of our approach through an EV charging case study, where users can
determine optimal charging schedules to minimize adverse health outcomes. Our approach bridges
the critical gap between electricity consumption and health outcomes, providing actionable insights
for both individuals and system operators. In addition, we release the datasets we have collected
and processed to help advance the field of research by addressing the limitations of fragmented and
dispersed data from various sources as observed in previous works [2].

2 Related Works

Energy system modeling typically focuses on technological and economic characteristics, often
incorporating health damage in an aggregated and simplified manner [29, 19]. These approaches
rarely provide granular insights into the direct health impacts of electricity generation. Some
methodologies focus on optimizing energy systems to reduce emissions [1], but their health impact
assessments tend to remain indirect or high-level, missing the opportunity for detailed, localized
health assessments [21, 16].

Epidemiological studies have made significant contributions to understanding the relationship be-
tween health and air pollution [40]. For example, [11] has conducted a comprehensive regional
impact assessment of air quality improvement, while [4] developed log-linear models for quantifying
asthma hospitalizations based on particulate matter levels, demonstrating the direct correlations
between air quality and health outcomes in urban environments. Although these studies provide
a valuable foundation for linking environmental pollutants with health impacts, they lack an inte-
grated framework that connects power systems directly to health outcomes. Air pollution dispersion
modeling also plays a critical role in supporting these epidemiological studies. The study [24] system-
atically reviewed computational fluid dynamics approaches for urban air pollution modeling, and has
developed InMap [30], a specialized model for analyzing air pollution interventions, accounting for
complex atmospheric chemical interactions. More advanced dispersion modelings are also available
[2]. While these models offer insights into the dispersion of pollutants, they typically do not link air
pollutants to users’ energy decisions, and thus do not provide actionable insights for individuals to
make improvements.

Recent advances have integrated machine learning with environmental health research. [28] explored
the use of LSTM network for air quality assessment and pollution forecasting, demonstrating the
potential of data-driven approaches. Additionally, the emerging field of health-informed computing,
exemplified by works like [12], seeks to quantify the broader societal impacts of technological
systems, providing a methodological foundation for the future research on the health consequences
of electricity generation, mainly with respect to the advancement of AI and the development of large
data centers.

The existing studies do not consider end-to-end frameworks that directly quantify the health impacts of
electricity consumption across residential or industrial sectors, with a few notable exceptions [46, 49].
Specifically, the EPA reports annual average health damages associated with electricity consumption
for various U.S. regions, which can help inform energy efficiency programs or spatial planning
for renewable deployment [46]. However, the absence of temporal variation limits its usefulness
for dynamic demand-side energy management. In contrast, [49] provides real-time health impact
signals for electricity use, but these signals reflect only marginal damages (that is, the incremental
health impact from consuming an additional unit of electricity), and the underlying methodology is
proprietary, leaving limited room for external verification or scientific scrutiny. These limitations
point to the need for more comprehensive and transparent approaches that cover diverse fuel sources
and regions while providing actionable guidance for system operators and individual users.

3 Background and Problem Formulation

In this section, we review the background and introduce formulations related to health impact
assessments from the use of power generation fuel mix.
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3.1 Air Pollutants for Health Impact

Ambient/outdoor air pollution is now recognized as the second largest risk factor for noncommuni-
cable diseases, contributing to approximately 4.2 million premature deaths globally each year [51].
Thus, air quality is a critical determinant of human health, shaped by the presence of specific gases
and particulate matter in the atmosphere. Six pollutants are recognized as primary contributors to air
quality degradation: carbon monoxide (CO), nitrogen oxide (NO), nitrogen dioxide (NO2), sulfur
dioxide (SO2), ozone (O3), and particulate matter in three size categories, PM1, PM2.5, and PM10 [50].
These pollutants originate from various sources, including fossil fuel combustion and industrial
processes [2]. The long-distance transport of these pollutants amplifies their public health impact,
particularly for vulnerable populations such as the elderly and individuals with preexisting conditions.
Adverse health outcomes, including premature mortality, asthma exacerbation, and cognitive decline,
also result in substantial societal costs through increased hospitalizations and medication use [9, 47].

3.2 Air Dispersion

Establishing meaningful relationships between emission sources and their health impacts is non-trivial.
Typically, the first step is to determine the spatial and temporal distribution of pollutants in the area.
This process usually involves mathematical models with varying spatial resolutions that solve the
governing dispersion-advection equations. By integrating emission data with meteorological inputs,
dispersion models can estimate pollutant concentrations at specific receptor points [24, 2].

Assume there are K types of air pollutants and M receptor regions of interest. Let Ps =
(Ps,1, . . . ,Ps,K) denote the quantities of K types of air pollutants at the emission source. For
receptor i, the corresponding quantities are represented by Pi

r = (Pi,1
r , . . . ,Pi,K

r ). A general disper-
sion model can be formulated as:

P1
r, . . . ,P

M
r = Dw(Ps), (1)

which gives the amount of K types of air pollutants at receptor region i = 1, . . . ,M , i.e., Pi
r =

(Pi,1
r , . . . ,Pi,K

r ). The parameter w captures factors such as geographical conditions, characteristics
of emission source, and meteorological data [12, 31].

Despite rapid advancements in mathematical models, the uncertainty still exists due to the complex
interplay between emission sources and meteorological conditions [24, 5]. While emission models
require detailed anthropogenic data, meteorological predictions depend on both measurements and
simulations to capture atmospheric turbulence.

3.3 Measuring Health Impacts

The relationship between changes in adverse health effects and changes in air pollution exposure can
be quantified using epidemiological studies [40]. For example, the rate of asthma hospitalizations
can be modeled as a log-linear function of particulate matter levels [4]. Specifically, for a receptor
region i, the change in the number of adverse health effects ∆Y i can be expressed as:

∆Y i = Y i
0 × POPi ×

(
1− e−αT∆Pi

r

)
, (2)

where Y i
0 is the baseline incidence rate for the health outcome at receptor i, POPi is the population

exposed at the receptor i, α is the concentration-response coefficient derived from epidemiological
studies, and ∆Pi

r = (∆Pi,1
r , . . . ,∆Pi,K

r ) is the change in pollutant concentrations at receptor i.

3.4 Converting Health Impacts into Monetary Valuation

Health Impact Assessment (HIA) often requires converting health outcomes into monetary values
to enable cost-benefit analysis and facilitate policy decision-making [32, 40]. We denote these
values by vi = (vi,1, . . . , vi,H), where H represents the number of different types of health impacts
(e.g., premature mortality, asthma attacks) at receptor i. Commonly used methodologies for this
conversion include estimating the economic value of a statistical life (VSL), as proposed by the
Organization for Economic Cooperation and Development (OECD) [23], and quality-adjusted life
years (QALYs) [11, 18]. It is important to note that the health impacts associated with pollutant
exposure at time t reflect effects that unfold over subsequent years, typically within a five-year
window.
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Figure 2: Overview of our end-to-end HealthPredictor. The pipeline begins with energy contribu-
tion, E′

t, from various sources (e.g. gas, coal). It then models pollutant dispersion (e.g. SO2, PM2.5)
to receptors. Finally, it quantifies the resulting health impacts by monetary cost metrics ($/MWh).

Our work establishes the connection between electricity generation at a source s over time steps
t = 1, . . . , T , denoted as Es

t = (Es,1
1 , . . . , Es,F

T ), where F represents the number of different fuel
mix sources (such as oil and gas), and the resulting economic health outcomes vit at receptor i at time
step t.

4 Methods

Our methodology integrates diverse datasets and modeling approaches into an end-to-end pipeline,
which links electricity consumption to public health outcomes based on the power generation fuel
mix pattern, named the HealthPredictor. As shown in Figure 2, the framework consists of three
core modules: the Fuel Mix Predictor, the Air Quality Converter, and the Health Impacter.

4.1 Modeling Framework

4.1.1 Fuel Mix Predictor

A fuel mix predictor is the starting point of our pipeline, as it directly influences the health impacts
of electricity generation. Variations in the fuel mix, driven by factors such as demand, renewable
availability, and regulations, cause fluctuations in pollutant emissions, which in turn impact human
health outcomes like respiratory illnesses and premature deaths [2]. Therefore, accurately predicting
the fuel mix is crucial to estimate these emissions and assess their potential health impacts.

The goal of the fuel mix predictor is to estimate the future fuel mix (e.g., coal, oil, gas) utilized
for electricity generation across the next time horizon based on historical data on the grid’s fuel
mix. The fuel mix data is inherently time-variant [20]. Several machine learning approaches have
been proposed to model these chaotic and nonlinear time-series relationships, including the LSTM
networks to capture temporal dependencies in energy forecasting [14]. Hybrid approaches, such
as combining wavelet basis functions (WBF), sparse autoencoders (SAE), and LSTM, also aim
to improve prediction accuracy by integrating multiple advanced models [25]. For our predictor,
we opt for the Transformer-based architecture in favor of its superior ability to capture long-range
dependencies.

4.1.2 Air Quality Converter

The Air Quality Converter is tasked with transforming predicted fuel mix data into quantifiable air
pollutant emissions in our pipeline.

Pollutants Estimation Each fuel type has distinct emission factors that determine the amount of
pollutants emitted per unit of energy generated. These factors can vary depending on combustion

5



technology, fuel quality, and operating conditions. Additionally, regional differences, such as local
fuel types, regulatory standards, and emission control technologies, can further influence these
emission factors [40]. By obtaining the fuel mix predictions from the fuel mix predictor, we can
estimate pollutant emissions by multiplying the fuel mix with the corresponding emission factor for
each fuel.

Dispersion Modelling Modelling the dispersion of air pollutants is a critical step in understanding
the relationship between emissions and their resulting concentrations in the atmosphere. This process
provides insight into how pollutants spread, dilute, and interact with environmental conditions,
ultimately determining their impact on air quality and public health. Two primary types of pollutants
are usually considered in dispersion modeling. One is the primary pollutants, such as directly emitted
particulate matter (e.g., PM2.5). It usually exhibits a linear relationship with source emissions.
These pollutants can be effectively modeled using tools like AERMOD, a steady-state Gaussian
plume dispersion model recommended by the EPA [40], which calculates pollutant concentrations
by accounting for environmental variables such as wind speed, atmospheric stability, and source
characteristics. The other is the secondary pollutants, such as O3 formed from precursors NO and
NO2, involve more complex, non-linear relationships with emissions. Their formation results from
chemical reactions in the atmosphere, influenced by factors like sunlight and temperature. To model
these interactions, chemical transport models (CTMs) that simulate atmospheric chemistry and
transport processes are commonly used [30].

The general relationship between pollutant concentrations at receptor sites and emissions from sources
can be expressed by Eq. (1). In this formulation, Dw(Ps) encapsulates the complex dispersion process,
where w accounts for factors such as geographical conditions, emission source characteristics, and
meteorological data. In our framework, we consider a simplified modeling approach as used in the
EPA’s COBRA [44], use the prevailing weather pattern, and model the dispersion function Dw(Ps)
using a custom neural network layer designed to approximate the transformation f(Es), which
represents the transformation applied to the emissions Es. This neural network layer takes as input
the pollutant quantities at the emission source (Ps) along with relevant environmental features, and
predicts pollutant quantities at the receptor regions (Pi

r for i = 1, . . . ,M ). The neural network
parameters, corresponding to w, are trained to minimize the discrepancy between predicted and
observed concentrations. By leveraging the neural network-based dispersion modeling, we aim to
provide a flexible framework for predicting pollutant concentrations, while noting that more advanced
models that incorporate real-time weather conditions are also possible [2].

4.1.3 Health Impacter

The health impact component aims to quantify the changes in adverse health effects resulting from
variations in air pollution exposure, following the results obtained from the air quality converter. We
measure the health impact in dollars per megawatt-hour ($/MWh). This measurement reflects the
economic cost of health impacts associated with electricity generation [23]. The most widely utilized
functional form in criteria air pollutant concentration-response modeling is the log-linear model, as
introduced in Eq. (2). This model is well-suited to capture non-linear relationships between pollutant
concentrations and health risks. In addition to the log-linear model, linear models are also applied in
specific cases, such as when evaluating the health impacts of certain pollutants (e.g., SO2 or PM2.5)
or within specific demographic groups where simpler proportional relationships may better describe
the data [40].

The health impact modeling process aligns closely with established epidemiological frameworks and
tools such as COBRA [40], which quantify the proportional increase in health risks due to incremental
changes in pollutant concentrations. These models incorporate concentration-response functions
derived from epidemiological studies, enabling a robust estimation of health risks, such as premature
mortality and respiratory illnesses [40]. By leveraging these functions, our pipeline calculates the
economic valuation of health impacts per unit of electricity generation.

4.2 End-to-End Training

Loss Function Design We design a loss function for a health-informed learning pipeline by
incorporating the health impact directly into the optimization process.
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Let yt be the true fuel mix at time t and ŷt be the predicted fuel mix at time t by the fuel mix predictor.
We denote g(·) as the function that estimates health impacts measured by $/MWh based on the fuel
mix predictor and other applicable features I including pollutant levels and spatial features. The loss
function is formulated as:

L(ŷt|yt, yimpact,t) = β ∥yt − ŷt)∥2 + (1− β) ∥yimpact,t − g(ŷt, I)∥2 , (3)

where yimpact denotes the true value of the health impact, while g(ŷt, I) represents the predicted
health impact, based on the predicted fuel mix and a series of models that convert the corresponding
pollutants into health impacts, and β is a hyperparameter to balance the prediction accuracy of the
fuel mix and the health impact. It is worth noting that yimpact,t here is general, which can refer to
local health impacts, global health impacts, or a combination of both, depending on the context and
the extent of the dispersion of pollutants in the atmosphere. This flexibility allows our pipeline to
account for both direct localized effects and broader regional or global consequences of air pollution.

In training, our pipeline learns to predict health impacts from fuel mix data through multiple stages,
using a customized loss function specifically tailored to incorporate accurate health impact prediction,
as shown in Eq. (3). The input to our pipeline is a sequence of fuel mix data, which represents the
distribution of fuel types over time (e.g., hourly fuel mix data for a year). The output is the predicted
health impact, expressed as a monetary value per unit of energy ($/mWh).

5 Experiments

In this section, we implement our pipeline and develop methods, including health impact-driven
approaches, to demonstrate the effectiveness and flexibility of our pipeline. This implementation
serves as the foundation for the case study carried out in Section 6, which signals EV users to reduce
adverse health impacts during charging.

Datasets Our analysis uses fuel mix data from U.S. Energy Information Administration (EIA) [35]
and health impact data ($/MWh) based on estimates from the AVoided Emissions and geneRation
Tool (AVERT) from the latest available year [40]. Our experiments are conducted on three major
power regions: California (CISO), Texas (ERCO), and the Mid-Atlantic (PJM). These regions
reflect diverse characteristics in grid operations, emission profiles, and public health impact patterns.
The dataset includes six input features, such as fuel mix percentages and time period, and two
output features: internal (within-BA) and external (outside-BA) health impacts, where BA refers to
“balancing authority”. More details and additional empirical results are provided in Appendix A.1.

Model Construction For the fuel-mix predictor, we develop a Transformer-based architecture
tailored to fuel mix time-series data. To model the non-linear conversion of emissions to health
impacts, we utilize a 3-layer Multi-Layer Perceptron (MLP) . Detailed model architectures are
provided in Appendix A.2.

Implementation Details Our pipeline predicts three outputs: Fuel Mix, Health Impact (Internal),
and Health Impact (External). The latter two are derived from fuel mix predictions and account
for the dispersion of air pollutants beyond the source region [40]. The “Internal" captures the total
health cost within a BA’s jurisdiction, while the “External" reflects the cost in all counties outside
that domain. The loss function in Eq. (3) for the case study can then be rewritten as

L(ŷt|yt, yimpact,t) = β ∥yt − ŷt∥2 +
1− β

2

(
∥yimpact,i,t − gi(ŷt, I)∥2 + ∥yimpact,e,t − ge(ŷt, I)∥2

)
(4)

where yimpact,i,t represents the within-region health impact, and yimpact,e,t represents the external
(outside-region) health impact at time t. In our experiments, we observed no clear justification to
prioritize internal versus external health impacts for regions. Therefore, to avoid notation clutter, we
set both hyperparameter values for within-region and outside-region health impacts to 1−β

2 .

In our experiments, predictions are made across time windows (T ) of 24 and 72 hours. In addition to
our Transformer-based models, we also implement LSTM-based variants of both the Fuel-mix-driven
Opt and Health-driven Opt methods as baselines for comparison. We choose LSTM as a baseline
due to its proven effectiveness in capturing temporal dependencies in time-series data [17]. Further
details on data splitting and optimizer hyperparameters are moved to Appendix A.2.
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(a) CISO (b) ERCO (c) PJM

Figure 3: Trade-off between health impact prediction and fuel mix prediction accuracy across CISO,
ERCO, and PJM regions. NAME refers to Normalized Mean Absolute Error. The top-left points
of each curve correspond to the Fuel-mix-driven Opt, while the bottom-right points represent the
Health-driven Opt.

Main Results We evaluate our pipeline by sweeping β across (0, 1) in Eq. (3), where 1−β controls
the weight assigned to health impact optimization (evenly split between internal and external impacts
as 1−β

2 each). Values of β close to 1 (maximum 0.998 in our case) correspond to Fuel-mix-driven Opt,
which prioritizes fuel mix prediction accuracy, while smaller values yield Health-driven Opt, which
prioritizes minimizing health impact prediction error. We cannot set β = 1 because doing so would
prevent the model from learning air dispersion or health outcomes. In that case, estimating health
impacts would require relying entirely on ground-truth modeling tools, which can be time-consuming
to run, especially for complex regulatory-grade models.

Figure 3 illustrates the trade-off between fuel mix and health impact prediction performance across
CISO, ERCO, and PJM regions. Note that the reported Health NMAE represents the aggregated
error of both internal and external health impacts. First, Health-driven Opt consistently achieves
lower health impact NMAE. Second, Transformer-based architectures consistently outperform LSTM
baselines across both optimization objectives and prediction windows (T=24, 72), demonstrating
superior modeling capacity for this task. Importantly, incorporating the downstream health impact
into the predictor is necessary to ensure accurate signaling to users for health-informed energy
management.

6 A Case Study of Health-Aware EV Charging

While EVs can eliminate tailpipe emissions, the increasing adoption of EVs can still potentially
impact the public health through emissions associated with electricity generation. Scheduling EV
charging strategically can play a critical role in reducing harmful emissions, thereby mitigating public
health risks and also supporting power system stability [7].

HealthPredictor provides a real-time health impact signal for EV users over the next few hours
based on electricity usage patterns. These predictions evaluate health impacts caused by electricity
usage, expressed in units of $/MWh, guide users to identify optimal charging times, helping to reduce
pollutant emissions and their health impacts. By delivering quantifiable and actionable insights,
HealthPredictor empowers users to make informed decisions, effectively reducing the health risks
associated with electricity usage. In our case study, different charging schedule strategies along with
their corresponding numerical results are presented and analyzed.

Setups For each EV with a total charging demand of z, the charging occurs within a time frame
starting at tI and ending at tE . To optimize this process, we discretize the interval [tI , tE ] into time
slots and implement a binary charging scheme B = (btI , · · · , btE ). Each element bt in B is either 1,
indicating charging at time t, or 0, indicating no charge. The (constant) charging rate is denoted by c.
Considering the health impact ht at time t ∈ [tI , tE ], the goal to minimize the total charging health
impact by determining the optimal charging schedule for EV j can be expressed as follows,

min
B=(btI ,··· ,btE )

tE∑
t=tI

c · bt · ht, s.t.

tE∑
t=tI

c · bt = z. (5)
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(a) CISO (b) PJM (c) ERCO

Figure 4: Simulation results of using different EV charging strategies based on health impact
predictions in CISO, PJM and ERCO regions. With the provided prediction signals from the
HealthPredictor, EV users can choose the optimal hours to charge their vehicles, achieving the
greatest adverse health outcomes reduction compared to other charging strategies.

EV-Charging Datasets We use the publicly available ACN-Data [15], which provides real-time
charging details (e.g., arrival/departure times, energy delivered), to estimate power demand and
charging rates for EVs in residential areas. To approximate the available residential charging time
window, we leverage data from the National Household Travel Survey (NHTS) [33]. We assume the
distributions of the initial charging time and end time align with the NHTS distributions of home
arrival and departure times, respectively. For the health impact predictions ht, we use the empirical
results from Section 5 on different regions.

Simulation Results We evaluate several charging strategies: First Hours, which charges during the
earliest available hours after arriving; Latest Hours, which charges during the latest available hours
before departure; and Continuous Charging, which involves non-interruptible charging continuously
from an optimal starting time to satisfy the demand while minimizing the overall health impact.

In the simulation, we use predictions of both internal and external health impacts of Health-driven
Opt method from Section 5 to calculate ht. Figure 4 compares the total health impacts generated
throughout the entire charging process. By optimizing the charging schedule using Eq. (5) which
selects optimal charging hours based on health impact predictions, significant reductions in total
health impacts can be achieved. Specifically, across the CISO, PJM, and ERCO regions, our approach
reduces total health impacts by ∼24–42% compared to the First Hours and Latest Hours strategies,
and by ∼15–20% compared to Continuous Charging.

7 Conclusion

This work introduces a novel approach to bridging the gap between electricity consumption decisions
and their public health implications. Our HealthPredictor demonstrates that incorporating health
impact considerations into electricity usage predictions can lead to substantial reductions in adverse
health outcomes. The effectiveness of our approach is validated across three U.S. regions and through
a practical case study on EV charging optimization, showing potential health impact reductions of
17-42% compared to other charging strategies. By providing quantifiable health impact predictions,
HealthPredictor enables more health-informed decision-making for both individuals and system
operators.

Limitations. We acknowledge several limitations in our study. For example, our predictions only
consider relatively short time windows and do not extend to long-term scenarios. Additionally, while
we use the EPA’s air dispersion model as the ground truth, there may still be high level of uncer-
tainty in air dispersion due to the complex interplay between emission sources and meteorological
conditions [24, 5].
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A Appendix

A.1 Datasets Collection and Preparation Details

We here document details on constructing the comprehensive datasets that link the fuel mix usage of
power generation with health outcomes for training the HealthPredictor.

Beyond the end-to-end training design, it is important to highlight that the datasets required to
train our pipeline are not only complex but also fragmented and labor-intensive to construct. These
data come from heterogeneous sources with inconsistent schemas and geographic granularity. For
example, aligning fuel categories across agencies (e.g., 8 types in EIA vs. 40 in EPA eGRID) requires
systematic mapping, and spatial integration between balancing authorities (BAs) and county-level
health data involves optimized point-in-polygon indexing. We have created datasets that link hourly
fuel mix compositions with corresponding health costs, covering all 67 BAs in the U.S. for the latest
available year, totaling 586,920 data points. We release these datasets with our code to support future
research and practical applications.

Our primary dataset consists of hourly generation fuel mix data and their corresponding internal
and external health costs per megawatt-hour (MWh) for the selected geographical regions in the
most recent year. To construct this comprehensive dataset, we employed a systematic approach
encompassing data acquisition, processing, and analysis through the following procedures:

Step I: Acquisition of Hourly Generation Mix Data We collect the hourly generation fuel mix
data of latest years from the U.S. Energy Information Administration (EIA) [35]. The U.S. EIA
provides electricity generation data organized by balancing authorities (BAs, a functional role defined
by the North American Electric Reliability Corporation [22]) rather than state boundaries. This kind
of organization is preferred as BAs align more closely with the operational structure of the power
grid, providing a more accurate representation of how electricity is generated and managed across
regions. In Figure 5, we report the distribution of different fuel types for the regions we studied:
CISO, PJM, and ERCO, averaged hourly throughout the year. For ERCO, the petroleum consumption
is processed as 0% in our analysis due to the EIA including it within the broader "Other" category
without specific data. According to [35], petroleum usage in power generation is generally minimal
in ERCO, so excluding it as a separate category does not affect the overall fuel mix analysis for
our methods. In processing the fuel mix data, missing data points are addressed using a two-step
imputation approach. The primary method involves interpolation based on adjacent hourly data.
When such data are unavailable, missing values are substituted by averaging corresponding time
points from the nearest available days, taking advantage of daily cyclical patterns in the fuel mix.

(a) CISO (b) PJM (c) ERCO

Figure 5: Distribution of the energy generation mix by different fuel types in CISO, PJM, and ERCO.

Step II: Derivation of Emission Data Emission data were derived from the Environmental
Protection Agency’s Emissions & Generation Resource Integrated Database (eGRID) [39], which
provides raw plant-level electricity generation and emission data. Our analysis focuses on four
criteria air pollutants: PM2.5, SO2, NOX, and VOC. We obtain pollutant datasets from the most
recent available eGRID records: plant-level PM2.5 emissions from 2021 and plant-level SO2, NOX,
and VOC emissions from 2022. Since the eGRID database associates each generation facility with
its corresponding BA, we need to map the raw plant-level data to the specific BAs relevant to our
study. For the selected BA, we then assume a unit electricity consumption (1 MWh) for each hour
throughout 2023. Using hourly generation fuel mix data, we allocate this unit hourly demand across
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different fuel sources according to their generation shares. For each fuel type, we further distribute its
allocated generation among all plants within the BA based on their relative generation capacities.

One challenge in this process arises from the inconsistent categorization of fuel types between
the EIA and eGRID datasets. To address this, we develop a systematic mapping approach. First,
we utilize eGRID’s internal hierarchical classification system to map its numerous detailed fuel
types to a smaller set of fuel type categories defined within eGRID. Then, we map these simplified
eGRID categories to EIA’s classification system through both direct correspondence (e.g., HYDRO
to WAT) and careful examination of category definitions for less straightforward cases (e.g., DFO
to OIL). This meticulous mapping process is essential to ensure accurate integration of emissions
data with generation profiles. By combining these carefully harmonized plant-level allocations with
plant-specific emission factors, we quantify the specific emissions profile per MWh for each hour.

Step III: Health Cost Assessment To assess the public health implications of our emissions profile,
we employ the CO-Benefits Risk Assessment (COBRA) Health Impacts Screening and Mapping
Tool (Desktop v5.1, as of October 2024) developed by the U.S. EPA [37]. COBRA utilizes a
reduced-complexity air quality dispersion model incorporating a source-receptor matrix for expedited
assessment. Despite its wide validation and adoption in the literature for large-scale air quality and
health impact analyses [27, 10], applying COBRA to derive health costs requires significant effort. It
involves labor-intensive steps to compile and prepare the input data, including mapping emissions
profiles to specific regions and ensuring the appropriate application of emission factors, all while
maintaining the integrity of the tool’s assumptions. In derivation, we set 2023 as the baseline scenario
year to correspond to our study period. In accordance with EPA recommendations based on the U.S.
Office of Management and Budget Circular No. A-4 guidance [48], we implement a discount rate of
2% in the COBRA model.

Considering the air pollutant transport mechanisms, we account for both internal and external health
impacts in our analysis of an emission source. The spatial delineation of each BA’s service territories is
obtained from the U.S. Energy Atlas [34], which provides raw data in GeoJSON format. To efficiently
process these complex geographical data, we employ spatial indexing techniques to optimize the
computational performance of point-in-polygon operations, enabling the precise identification of
counties within each BA’s operational domain. Following the spatial categorization of counties
as either internal or external to the BA, we aggregate the county-level health costs accordingly.
Specifically, we compute the hourly internal and external health costs throughout the year based on
the unit hourly electricity consumption (1 MWh), where internal costs represent the sum of health
impacts in counties within the BA’s jurisdiction, and external costs comprise impacts in all other
counties. This yields a comprehensive dataset comprising hourly fuel mix compositions and their
corresponding internal and external health costs per MWh for the entire year, which is used to train
our proposed pipeline.

Brief Summary of Dataset Preparation Challenges Challenges in dataset preparation mainly
include reconciling semantic inconsistencies across data sources, resolving spatial mismatches, and
managing infrastructure for local health impact computation. For example, the U.S. EIA defines 8
fuel mix categories, while the EPA’s eGRID lists over 40, requiring us to systematically consolidate
and map these types using internal hierarchies and cross-referencing definitions. Spatial integration is
equally nontrivial—health impacts from COBRA are county-based, whereas eGRID data is organized
by BAs. To bridge this gap, we employ U.S. Energy Atlas GeoJSON files with optimized spatial
indexing for accurate point-in-polygon assignments. Additionally, estimating county-level health
costs using COBRA’s desktop tool demanded significant manual effort, with each run taking 5–20
minutes and data entry requiring 1–2 minutes per input. This entire process spans several days and
underscores the effort involved in building a reliable, multi-source dataset.

A.2 Additional Empirical Details and Results

The three regions—CISO (California), PJM (Mid-Atlantic), and ERCO (Texas) selected in our main
text have shown the effectiveness of our methods in various energy generation patterns and regulatory
environments. These regions represent distinct characteristics in power grid operations, emissions
profiles, and public health impact patterns. Texas, for example, ranks among the top three for PM2.5
emissions, which have severe health effects [45]. Although California does not have the highest
emissions, its dense population results in significant adverse health costs [38]. Specifically, CISO
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has one of the lowest benefits-per-kWh, reflecting high adverse health outcomes, as reported by the
EPA [38].

Model Construction For the fuel-mix predictor, we develop a Transformer-based architecture
tailored to fuel mix time-series data, capitalizing on its ability to capture intricate relationships
between various factors influencing the fuel mix. The transformer also excels at capturing long-term
dependencies, which are critical in understanding the temporal dynamics of fuel usage and transitions
over extended periods. The architecture consists of an embedding layer followed by a Transformer
block with a single encoder and decoder layer, utilizing four multi-head attention mechanisms with a
dropout regularization rate of 0.1.

The conversion of pollutant emissions to air pollutant concentrations and their subsequent dispersion
in the atmosphere is a highly intricate process. It involves complex chemical transformations,
atmospheric reactions, and meteorological processes. To address this complexity, we utilize a 3-layer
Multi-Layer Perceptron (MLP) model, which takes the fuel mix predictions as input and predicts
the potential health impact. The model is specifically chosen for its ability to approximate complex,
nonlinear relationships inherent in pollutant dispersion and their effects.

In experiments, the LSTM based fuel mix predictor is composed of an embedding layer that projects
inputs to a 64-dimensional space, followed by a single-layer LSTM with 64 hidden units and a
dropout rate of 0.1. The number of training epochs is set to 100 for Transformer-based methods,
while it is set to 100 for the LSTM architecture.

Implementation Details In our experiments, predictions are made across different time window
steps, denoted as T . We set T to values of 24 and 72 hours to explore the impact of varying prediction
time windows. Temporal sequences are handled by slicing inputs and targets according to these
specified sliding window steps T . We employ an 80/20 train-test split, where a portion of the training
set is reserved for validation to tune hyperparameters, while the test set remains strictly held-out. For
the CISO region dataset, we utilize the Stochastic Gradient Descent (SGD) optimizer with a learning
rate of 0.004 and a batch size of 128. In addition to our Transformer-based models, we also implement
LSTM-based variants of both the Fuel-mix-driven Opt and Health-driven Opt methods as baselines
for comparison. These LSTM baselines use the same optimization objectives as their corresponding
Transformer-based counterparts, i.e., Health-driven Opt and Fuel-mix-driven Opt, respectively. All
experiments are conducted on a single NVIDIA K80 GPU. Training the Transformer-based models
for 100 epochs takes usually one hour.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction claim to link electricity usage to public health
using a domain-specific AI model for social well-being. We build an end-to-end pipeline,
HealthPredictor, to address this, and validate its effectiveness through experiments
across multiple U.S. regions, see Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: See section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the main experiment setting and dataset source in the main body
(Section 4, Section 5), and include all the information in the Appendix.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our datasets and code will be released upon publication of our paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main body includes our model architecture, baseline model, loss function,
and key hyperparameters, which are adequate for appreciating the results 5. More details
can be found in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to time and compute resource constraint (Section A.2), we do not conduct
repeated experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section A.2
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our research mainly focus on positive societal impacts, currently we do not
foresee any negative impacts of the work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets we use are publicly available and mentioned with corresponding
sources in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

20

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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