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ABSTRACT

Contrastive representation learning has been recently proved to be very efficient
for self-supervised training. These methods have been successfully used to train
encoders which perform comparably to supervised training on downstream clas-
sification tasks. A few works have started to build a theoretical framework around
contrastive learning in which guarantees for its performance can be proven. We
provide extensions of these results to training with multiple negative samples and
for multiway classification. Furthermore, we provide convergence guarantees for
the minimization of the contrastive training error with gradient descent of an over-
parametrized deep neural encoder, and provide some numerical experiments that
complement our theoretical findings.

1 INTRODUCTION

The aim of this work is to provide additional theoretical guarantees for contrastive learning (van den
Oord et al., 2018), which corresponds to methods allowing to learn useful data representations in
an unsupervised setting. Unsupervised representation learning was initially approached with a fair
amount of success by training through the minimization of losses coming from “pretext” tasks, a
technique known as self-supervision (Doersch & Zisserman, 2017), where labels can be automati-
cally constructed. Notable examples of pretext tasks in computer vision include colorization (Zhang
et al., 2016), transformation prediction (Gidaris et al., 2018; Dosovitskiy et al., 2014) or predicting
patch relative positions (Doersch et al., 2015). Some theoretical guarantees (Lee et al., 2020) were
recently proposed to support training on pretext tasks.

Contrastive learning is also known to be very effective for pretraining supervised methods (Chen
et al., 2020a;b; Grill et al., 2020; Caron et al., 2020), where we can observe that, quite surprisingly,
the gap between unsupervised and supervised performance has been closed for tasks such as image
classification: the use of a pretrained image encoder on top of simple classification layers, that are
trained on a fraction of the labels available, allows to achieve an accuracy comparable to that of
a fully supervised end-to-end training (Hénaff et al., 2019; Grill et al., 2020). Contrastive meth-
ods show also strong success in natural language processing (Logeswaran & Lee, 2018; Mikolov
et al., 2013; Devlin et al., 2018; van den Oord et al., 2018), video classification (Sun et al., 2019),
reinforcement learning (Srinivas et al., 2020) and time-series (Franceschi et al., 2019).

Although the papers cited above introduce methods with considerable variations, they mostly agree
on the following basic pretraining approach: provided a dataset, an encoder is trained using a con-
trastive loss whose minimization allows to learn embeddings that are similar for pairs of samples
(called the positives) that are close to each other (such as pairs of random data augmentations of the
same image, see He et al. (2020); Chen et al. (2020a)), while such embeddings are contrasted for
dissimilar pairs (called the negatives).

However, despite growing efforts (Saunshi et al., 2019; Wang & Isola, 2020), as of today, few theo-
retical results have been obtained. For instance, there is still no clear theoretical explanation of how
a supervised task could benefit from an upstream unsupervised pretraining phase, or of what could
be the theoretical guarantees for the convergence of the minimization procedure of the contrastive
loss during this pretraining phase. Getting some answers to these questions would undoubtedly be a
step towards a better theoretical understanding of contrastive representation learning.
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Our contributions in this paper are twofold. In Section 3, we provide new theoretical guarantees for
the classification performance of contrastively trained models in the case of multiway classification
tasks, using multiple negative samples. We extend results from Saunshi et al. (2019) to show that
unsupervised training performance reflects on a subsequent classification task in the case of multiple
tasks and when a high number of negative samples is used. In Section 4, we prove a convergence
result for an explicit algorithm (gradient descent), when training overparametrized deep neural net-
work for unsupervised contrastive representation learning. We explain how results from Allen-Zhu
et al. (2019) about training convergence of overparametrized deep neural networks can be applied
to a contrastive learning objective. The results and major assumptions of both Sections 3 and 4 are
illustrated in Section 5 through experiments on a few simple datasets.

2 RELATED WORK

A growing literature attempts to build a theoretical framework around contrastive learning and to
provide justifications for its success beyond intuitive ideas. In Saunshi et al. (2019) a formalism
is proposed together with results on classification performance based on unsupervisedly learned
representation. However, these results do not explain the performance gain that is observed empiri-
cally (Chen et al., 2020a; He et al., 2020) when a high number of negative samples are used, while the
results proposed in Section 3 below hold for an arbitrary large number of negatives (and decoupled
from the number of classification tasks). A more recent work (Wang & Isola, 2020) emphasizes the
two tendencies encouraged by the contrastive loss: the encoder’s outputs are incentivized to spread
evenly on the unit hypersphere, and encodings of same-class samples are driven close to each other
while those of different classes are driven apart. Interestingly, this work also shows how the tradeoff
between these two aspects can be controlled, by introducing weight factors in the loss leading to
improved performance. Chuang et al. (2020) considers the same setting as Saunshi et al. (2019) and
addresses the bias problem that comes from collisions between positive and negative sampling in the
unsupervised constrastive loss. They propose to simulate unbiased negative sampling by assuming,
among other things, extra access to positive sampling. However, one has to keep in mind that an
excessive access to positive sampling gets the setting closer to that of supervised learning.

In a direction that is closer to the result proposed in Section 4 below, Wen (2020) provides a the-
oretical guarantee on the training convergence of gradient descent for an overparametrized model
that is trained with an unsupervised contrastive loss, using earlier works by Allen-Zhu et al. (2019).
However, two separate encoders are considered instead of a single one: one for the query, which
corresponds to a sample from the dataset, and one for the (positive and negative) samples to com-
pare the query to. In this setting, it is rather unclear how the two resulting encoders are to be used
for downstream classification. In Section 4 below, we explain how the results from Allen-Zhu et al.
(2019) can be used for the more realistic setting of a single encoder, by introducing a reasonable
assumption on the encoder outputs.

3 UNSUPERVISED TRAINING IMPROVES SUPERVISED PERFORMANCE

In this section, we provide new results in the setting previously considered in Saunshi et al. (2019).
We assume that data are distributed according to a finite set C of latent classes, and denote NC =
card(C) its cardinality. Let ⇢ be a discrete distribution over C that is such that

X

c2C
⇢(c) = 1 and ⇢(c) > 0

for all c 2 C. We denote Dc a distribution over the feature space X from a class c 2 C. In order to
perform unsupervised contrastive training, on the one hand we assume that we can sample positive
pairs (x, x+) from the distribution

Dsim(x, x
+) =

X

c2C
⇢(c)Dc(x)Dc(x

+), (1)

namely, (x, x+) is sampled as a mixture of independent pairs conditionally to a shared latent class,
sampled according to ⇢. On the other hand, we assume that we can sample negative samples x�

from the distribution
Dneg(x

�) =
X

c2C
⇢(c)Dc(x

�). (2)
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Given k  NC � 1, a (k + 1)-way classification task is a subset T ✓ C of cardinality |T | = k + 1,
which induces the conditional distribution

DT (c) = ⇢(c | c 2 T )

for c 2 C and we define
DT (x, c) = DT (c)Dc(x).

In particular, we denote as C, whenever there is no ambiguity, the NC-way classification task where
the labels are sampled from ⇢, namely DC(x, c) = ⇢(c)Dc(x).

Supervised loss and mean classifier. For an encoder function f : X ! Rd, we define a super-
vised loss (cross-entropy with the best possible linear classifier on top of the representation) over
task T as

Lsup(f, T ) = inf
W2R|T |⇥d

E(x,c)⇠DT


� log

✓
exp (Wf(x))cP

c02T exp (Wf(x))c0

◆�
. (3)

Then, it is natural to consider the mean or discriminant classifier with weights Wµ which stacks, for
c 2 T , the vectors

Wµ
c,: = Ex⇠Dc [f(x)] (4)

and whose corresponding (supervised) loss is given by

Lµ
sup(f, T ) = E(x,c)⇠DT


� log

✓
exp (Wµf(x))cP

c02T exp (Wµf(x))c0

◆�
. (5)

Note that, obviously, one has Lsup(f, T )  Lµ
sup(f, T ).

Unsupervised contrastive loss. We consider the unsupervised contrastive loss with N negative
samples given by

LN
un(f) = E(x,x+)⇠Dsim

X�⇠D⌦N
neg

"
� log

 
exp

�
f(x)T f(x+)

�

exp (f(x)T f(x+)) +
P

x�2X� exp (f(x)T f(x�))

!#
, (6)

where Dsim is given by Equation (1) and where D⌦N
neg stands for the N tensor product of the Dneg

distribution given by Equation (2). When a single negative sample is used (N = 1), we will use the
notation Lun(f) = L1

un(f). In the rest of the paper, N will stand for the number of negatives used
in the unsupervised loss (6).

3.1 INEQUALITIES FOR UNSUPERVISED TRAINING WITH MULTIPLE CLASSES

The following Lemma states that the unsupervised objective with a single negative sample can be
related to the supervised loss for which the target task is classification over the whole set of latent
classes C.
Lemma 3.1. For any encoder f : X ! Rd, one has

Lsup(f, C)  Lµ
sup(f, C) 

1

p⇢min

Lun(f) + logNC , (7)

where p⇢min = minc ⇢(c).

The proof of Lemma 3.1 is given in Supplementary Material, and uses a trick from Lemma 4.3
in Saunshi et al. (2019) relying on Jensen’s inequality. This Lemma relates the unsupervised and the
supervised losses, a shortcoming being the introduction of p⇢min, which is small for a large NC since
obviously p⇢min  1/NC .

The analysis becomes more difficult with a larger number of negative samples. Indeed, in this
case, one needs to carefully keep track of how many distinct classes will be represented by each
draw. This is handled by Theorem B.1 of Saunshi et al. (2019), but the bound given therein only
estimates an expectation of the supervised loss w.r.t. the random subset of classes considered (so
called tasks). For multiple negative samples, the approach adopted in the proof of Lemma 3.1 above
further degrades, since p⇢min would be replaced by the minimum probability among tuple draws, an
even much smaller quantity.

We propose the following Lemma, which assumes that the number of negative samples is large
enough compared to the number of latent classes.
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Lemma 3.2. Consider the unsupervised objective with N negative samples as defined in Equa-
tion (6) and assume that N satisfies N = ⌦(NC logNC). Then, we have

Lsup(f, C)  Lµ
sup(f, C) 

1

p⇢cc(N)
LN
un(f), (8)

where p⇢cc(N) is the probability to have all coupons after N draws in an NC-coupon collector
problem with draws from ⇢.

The proof of Lemma 3.2 is given in Supplementary Material. In this result, p⇢cc(N) is related to the
following coupon collector problem. Assume that ⇢ is the uniform distribution over C and let T be
the random number of necessary draws until each c 2 C is drawn at least once. It is known (see for
instance Motwani & Raghavan (1995)) that the expectation and variance of T are respectively given
by NCHNC and (NC⇡)2/6, where Hn is the n-th harmonic number Hn =

Pn
i=1 1/i. This entails

using Chebyshev’s inequality that

P (|T �NCHNC | � �NC) 
⇡2

6�2

for any � > 0, so that whenever ⇢ is sufficiently close to a uniform distribution and N =
⌦(NC logNC), the probability p⇢cc is reasonably high. Due to the randomness of the classes sam-
pled during training, it is difficult to obtain a better inequality than Lemma 3.2 if we want to upper
bound LN

un(f) by the supervised Lsup(f, C) on all classes. However, the result can be improved by
considering the average loss over tasks Lsup,k(f), as explained in the next Section.

3.2 GUARANTEES ON THE AVERAGE SUPERVISED LOSS

In this Section, we bound the average of the supervised classification loss on tasks that are subsets
of C. Towards this end, we need to assume (only in this Section) that ⇢ is uniform. We consider
supervised tasks consisting in distinguishing one latent class from k other classes, given that they are
distinct and uniformly sampled from C. We define the average supervised loss of f for (k + 1)-way
classification as

Lsup,k(f) = ET ⇠Dk+1 [Lsup (f, T )] , (9)
where Dk+1 is the uniform distribution over (k + 1)-way tasks, which means uniform sampling of
{c1, · · · , ck+1} distinct classes in C. We define also the average supervised loss of the mean classifier

Lµ
sup,k(f) = ET ⇠Dk+1

⇥
Lµ
sup (f, T )

⇤
, (10)

where we recall that Lµ
sup (f, T ) is given by (5). The next Proposition is a generalization to arbitrary

values of k and N of Lemma 4.3 from Saunshi et al. (2019), where it is assumed k = 1 and N = 1.
Proposition 3.3. Consider the unsupervised loss LN

un(f) from Equation (6) with N negative sam-
ples. Assume that ⇢ is uniform over C and that 2  k + 1  NC . Then, any encoder function
f : X ! Rd satisfies

Lsup,k(f)  Lµ
sup,k(f) 

k

1� ⌧+N

�
LN
un(f)� ⌧+N log(N + 1)

�

with ⌧+N = P
⇥
ci = c, 8i | (c, c1, · · · , cN ) ⇠ ⇢⌦N+1

⇤
.

The proof of Proposition 3.3 is given in Supplementary Material. This Proposition states that, in a
setting similar to that of Saunshi et al. (2019), on average, the (k+ 1)-way supervised classification
loss is upper-bounded by the unsupervised loss (both with N = 1 negative or N > 1 negatives),
that contrastive learning algorithms actually minimize. Therefore, these results give hints for the
performances of the learned representation for downstream tasks.

Also, while Saunshi et al. (2019) only considers an unsupervised loss with N = k negatives along
with (k + 1)-way tasks for evaluation, the quantities N and k are decoupled in Proposition 3.3.
Furthermore, whenever ⇢ is uniform, one has ⌧+N =

P
c2C ⇢(c)

N+1 = N�N
C , which decreases

to 0 as N ! +1, so that a larger number of negatives N makes k/(1� ⌧+N ) smaller and closer
to k. This provides a step towards a better understanding of what is actually done in practice with
unsupervised contrastive learning. For instance, N = 65536 negatives are used in He et al. (2020).

While we considered a generic encoder f and a generic setting in this Section, the next Section 4
considers a more realistic setting of an unsupervised objective with a fixed available dataset, and the
study of an explicit algorithm for the training of f .
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4 CONVERGENCE OF GRADIENT DESCENT FOR CONTRASTIVE
UNSUPERVISED LEARNING

This section leverages results from Allen-Zhu et al. (2019) to provide convergence guarantees for
gradient-descent based minimization of the contrastive training error, where the unsupervisedly
trained encoder is an overparametrized deep neural network.

Deep neural network encoder. We consider a family of encoders f defined as a deep feed-forward
neural network following Allen-Zhu et al. (2019). We quickly restate its structure here for the sake
of completeness. A deep neural encoder f is parametrized by matrices A 2 Rm⇥dx , B 2 Rd⇥m and
W1, . . . ,WL 2 Rm⇥m for some depth L. For an input x 2 Rdx , the feed-forward output y 2 Rd is
given by

g0 = Ax, h0 = �(g0), gl = Wlhl�1, hl = �(gl) for l = 1, . . . , L,

y = BhL,

where � is the ReLU activation function. Note that the architecture can also include residual con-
nections and convolutions, as explained in Allen-Zhu et al. (2019).

We know from Allen-Zhu et al. (2019) that, provided a �-separation condition on the dataset
(xi, yi) for i = 1, . . . , n with � > 0 and sufficient overparametrization of the model (m =
⌦
�
poly(n, L, ��1) · d

�
), the optimisation of the least-squares error 1

2

Pn
i=1 kbyi � yik22 using gradi-

ent descent provably converges to an arbitrarily low value ✏ > 0, where byi = f(xi) are the network
outputs. Moreover, the convergence is linear i.e. the number of required epochs is T = O(log(1/✏)),
although involving a constant of order poly(n, L, ��1). Although this result does not directly ap-
ply to contrastive unsupervised learning, we explain below how it can be adapted provided a few
additional assumptions.

Ideally, we would like to prove a convergence result on the unsupervised objective defined in Equa-
tion (6). However, we need to define an objective through an explicitly given dataset so that it falls
within the scope of Allen-Zhu et al. (2019). Regarding this issue, we assume in what follows that
we dispose of a set of fixed triplets (x, x+, x�) 2 (Rdx)3 we train on.

Objective function. Let us denote this fixed training set {(xi, x
+
i , x

�
i )}ni=1. Each element leads

to an output zi = (f(xi), f(x
+
i ), f(x

�
i )) by the encoder and we optimize the empirical objective

bLun(f) =
nX

i=1

⇣(f(xi)
T (f(x�

i )� f(x+
i ))) =

nX

i=1

`(zi), (11)

where we introduced the loss function `(zi) = `(zi,1, zi,2, zi,3) = ⇣(zTi,1(zi,3 � zi,2)) with ⇣(x) =
log (1 + ex). Note that bLun(f)/n is the empirical counterpart of the unsupervised loss (6). Our
management of the set of training triplets can be compared to that of Wen (2020) who similarly fixes
them in advance but uses multiple negatives and the same xi as a positive. However, two distinct
encoders are trained therein, one for the reference sample xi and another for the rest. We consider
here the more realistic case where a single encoder is trained. Our approach also applies to multiple
negatives, but we only use a single one here for simplicity. We need the following data separation
assumption from Allen-Zhu et al. (2019).
Assumption 1. We assume that all the samples x 2 Xdata =

Sn
i=1{xi, x

+
i , x

�
i } are normalized

kxk = 1 and that there exists � > 0 such that kx� x0k2 � � for any x, x0 2 Xdata.

Note that sampling the positives and negatives x+
i , x

�
i need not to be made through simple draws

from the dataset. A common practice in contrastive learning (Chen et al., 2020a) is to use data aug-
mentations, where we replace x±

i by  (x±
i ) for an augmentation function  also drawn at random.

Such an augmentation can include, whenever inputs are color images, Gaussian noise, cropping,
resizing, color distortion, rotation or a combination thereof, with parameters sampled at random in
prescribed intervals. The setting considered here allows the case where x±

i are actually augmenta-
tions (we won’t write  (x±

i ) but simply x±
i to simplify notations), provided that Assumption 1 is

satisfied and that such augmentations are performed and fixed before training. Note that, in practice,
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the augmentations are themselves randomly sampled at each training iteration (Chen et al., 2020a).
Unfortunately, this would make the objective intractable and the convergence result we are about to
derive does not apply in that case.

In order to apply the convergence result from Allen-Zhu et al. (2019), we need to prove that the
following gradient-Lipschitz condition

`(z + z0)  `(z) + hr`(z), z0i+ Lsmooth

2
kz0k2 (12)

holds for any z, z0 2 R3d, for some constant Lsmooth > 0, where ` is the loss given by (11).
However, as defined previously, ` does not satisfy (12) without extra assumptions. We propose to
bypass this problem by making the following additional assumption on the norms of the outputs of
the encoder.
Assumption 2. For each element x 2 Xdata , the output z = f(x) 2 Rd satisfies

⌘ < kzk < C

during and at the end of the training of the encoder f , for some constants 0 < ⌘ < C < +1.

In Section 5, we check experimentally on three datasets (see Figure 3 herein) that this assumption is
rather realistic. The lower bound ⌘ > 0 is necessary and used in Lemma 4.2 below, while the upper
bound C is used in the next Lemma 4.1, which establishes the gradient-Lipschitz smoothness of the
unsupervised loss ` and provides an estimation of Lsmooth.
Lemma 4.1. Consider the unsupervised loss ` given by (11), grant Assumption 2 and define the set

B3 =
n
z = (z1, z2, z3) 2 (Rd)3 : max

j=1,2,3
kzjk22  C2

o

where C > 0 is defined in Assumption 2. Then, the restriction of ` to B3 satisfies (12) with a
constant Lsmooth  2 + 8C2.

The proof of Lemma 4.1 is given in Supplementary Material. Now, we can state the main result of
this Section.
Theorem 1. Grant both Assumptions 1 and 2, let ✏ > 0 and let bLun(f) be the loss given by (11).
Then, assuming that

m � ⌦
⇣poly(n, L, ��1) · d

✏

⌘
,

the gradient descent algorithm with a learning rate ⌫ and a number of steps T such that

⌫ = ⇥
⇣ d�

poly(n, L) ·m

⌘
and T = O

⇣poly(n, L)
�2✏2

⌘
,

finds a parametrization of the encoder f satisfying

bLun(f)  ✏.

The proof of Theorem 1 is given in Supplementary Material. Although it uses Theorem 6
from Allen-Zhu et al. (2019), it is actually not an immediate consequence of it. Indeed, in our
case, the Theorem 6 therein only allows us to conclude that krbLun(f)k ✏, where the gradient
is taken w.r.t. the outputs of f . The convergence of the objective itself is obtained thanks to the
following Lemma whose proof is given in Supplementary Material.
Lemma 4.2. Grant Assumption 2 and assume that the parameters of the encoder f are optimized so
that krbLun(f)k ✏ with ✏ < ⌘/2, where ⌘ is defined in Assumption 2. Then, for any i = 1, . . . , n,
we have `(zi)  2✏/⌘ where zi = (f(xi), f(x

+
i ), f(x

�
i )).

This Lemma is crucial for proving Theorem 1 as it allows to show, in this setting, that the reached
critical point is in fact a global minimum.

A natural idea would be then to combine Theorem 1 with Proposition 3.3 in order to prove that
gradient descent training of the encoder using the unsupervised contrastive loss helps to minimize
the supervised loss. This paper makes a step towards such a result, but let us stress that it requires
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much more work, to be considered in future papers, the technical problems to be addressed being
as follows. Firstly, the result of Theorem 1 applies to bLun(f) and cannot be directly extrapolated
on Lun(f). Doing so would require a sharp control of the generalization error, while Theorem 1 is
about the training error only. Secondly, Assumption 1 requires that all samples are separated and, in
particular, distinct. This cannot hold when the objective is defined through an expectation as we did
in Section 3. Indeed, it would be invalidated simply by reusing a sample in two different triples.

5 EXPERIMENTS

In this section, we report experiments that illustrate our theoretical findings.

Datasets and Experiments. We use a small convolutional network as encoder on MNIST (LeCun
& Cortes, 2010) and FashionMNIST (Xiao et al., 2017), and VGG-16 (Simonyan & Zisserman,
2015) on CIFAR-10 (Krizhevsky et al., 2009). Experiments are performed with PyTorch (Paszke
et al., 2019).

Results. Figure 1 provides an illustration of Lemma 3.1, where we display the values of Lun (i.e.,
LN
un with N = 1) and Lµ

sup(f, C) along training iterations over 5 separate runs (and their average).
We observe that Inequality (7) is satisfied on these experiments, even when the logNC term is
discarded. Moreover, both losses follow a similar trend. Figure 2 illustrates Lemma 3.2 for several
values of N . Once again, we observe that both losses behave similarly, and that Inequality (8) seems
to hold even without the 1/p⇢cc term (removed for these displays).

Figure 1: Illustration of Lemma 3.1: we observe that Inequality (7) is satisfied on these examples,
even without the logNC term, and that both losses behave similarly (5 runs are displayed together
with their average).

Figure 2: Illustration of Lemma 3.2 with N = 15, 25, 35 on MNIST. We observe again that both
the unsupervised and supervised losses behave similarly and that Inequality (8) is satisfied in these
experiments, even without the 1/p⇢cc factor (5 runs are displayed together with their average).

Finally, Figure 3 displays the minimum and maximum Euclidean norms of the outputs of the encoder
along training. On these examples, we observe that one can indeed assume these norms to be lower
and upper bounded by constants, as stated in Assumption 2.
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Figure 3: Minimum and maximum Euclidean norms of the outputs of the encoder along contrastive
unsupervised training. We observe that Assumption 2 is satisfied on these examples (5 runs are
displayed together with their average), the dashed line shows that the minimum norms are away
from 0 even in the early iterations.

6 CONCLUSION

This work provides extensions to previous results on contrastive unsupervised learning, in order
to somewhat improve the theoretical understanding of the performance that is empirically observed
with pre-trained encoders used for subsequent supervised task. The main hindrance to tighter bounds
in Section 3 is the blind randomness of negative sampling, which is unavoidable in the unsuper-
vised setting. Section 4 explains how recent theoretical results about gradient descent training of
overparametrized deep neural networks can be used for unsupervised contrastive learning, and con-
cludes with an explanation of why combining the results from Sections 3 and 4 requires many extra
technicalities to be considered in future works. Let us conclude by stressing, once again, our moti-
vations for doing this: unsupervised learning theory is much less developed than supervised learning
theory, and recent empirical results (see Section 1) indicate that some forms of contrastive learning
enable the learning of powerful representations without supervision. In many fields of application,
labels are too difficult, too expensive or too invasive to obtain (in medical applications, see for
instance Ching et al. (2018)). We believe that a better understanding of unsupervised learning is
therefore of utmost importance.
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