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Abstract

Flow models transform data gradually from a modality (e.g. noise) onto another
(e.g. images). Such models are parameterized by a time-dependent velocity field,
trained to fit segments connecting pairs of source & target points. When a pairing
between source and target points is known, the training boils down to a supervised
regression problem. When no such pairing exists, as is the case when generating
data from noise, training flows is much harder. A popular approach lies in picking
in that case source and target points independently [Lipman et al., 2023]. This can,
however, lead to velocity fields with high variance that are difficult to integrate. In
theory, one would greatly benefit from training flow models by sampling pairs from
an optimal transport (OT) measure coupling source and target, since this would lead
to a highly efficient flow solving the Benamou and Brenier dynamical OT problem.
Practically, recent works have proposed to sample mini-batches of n source and n
target points and reorder them using an OT solver to form “better” pairs. These
works have advocated using batches of size n ~ 256, and considered couplings
that are both “hard” (permutations obtained with the Hungarian algorithm) or
“soft” (computed with the Sinkhorn algorithm). We follow in the footsteps of
these works by exploring the benefits of increasing this mini-batch size n by
several orders of magnitude, and look more carefully on the effect of the entropic
regularization € used in Sinkhorn. Our analysis and computations are facilitated
by new scale invariant quantities to present results and sharded computations
parallelized over multiple GPU nodes. We uncover various dimensional regimes
where flow matching benefits from OT guiding, using proper scales for n and
suitable entropic regularization €, to be set so that it approximates 0.2 in the novel
renormalized entropy scale we propose.

1 Introduction

Finding a map that can transform a source into a target measure is a task at the core of generative
modeling and unpaired modality translation. Following the widespread popularity of GAN formula-
tions [Goodfellow et al., 2014], the field has greatly benefited from a gradual, time-dependent parame-
terization of these transformations as neural-ODEs [Chen et al., 2018] or normalizing flows [Rezende
and Mohamed, 2015]. Such flow models are now commonly estimated using flow matching [Lipman
et al., 2024]. While time parameterization substantially increases the expressivity of these models,
this comes typically with a higher cost at inference time due to the additional cost of running an
ODE solver with potentially dozens of steps. On the theoretical side, the golden standard for such
time parameterized transformation is given by the Benamou and Brenier dynamical optimal transport
(OT) solution, which would collapse in practice in a 1-step generation achieved by the Monge map
formulation [Santambrogio, 2015]. In practice, while the mathematics [Villani, 2003] of optimal
transport have contributed to the understanding of these methodsLiu et al., the jury seems to be still
out on ruling whether tools from the computational OT toolbox [Peyré and Cuturi, 2019], which is
typically used to compute large scale couplings from data [Klein et al., 2025], can decisively help
with the estimation of flows in high-dimensions.
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Stochastic interpolants. The flow matching (FM) framework [Lipman et al., 2024], introduced
in concurrent seminal papers [Peluchetti, 2022, Lipman et al., 2023, Albergo and Vanden-Eijnden,
2023, Neklyudov et al., 2023] proposes to estimate a flow model by leveraging a time-dependent
interpolation p; between source iy and target pq —the stochastic interpolant following the terminol-
ogy of Albergo and Vanden-Eijnden [2023]. That interpolation is the crucial ingredient used to fit a
parameterized velocity field, with a regression loss. In practice, such an interpolation can be formed
by sampling X ~ pg independently of X1 ~ p1, to define p; as the law of X; := (1 — )Xo + tX;.
One can then fit a parameterized time-dependent velocity field vy (¢, x) that minimizes the expectation
of | X1 — Xo — vo(Xr,T)||?> wrt. X, X; and T a random time variable in [0, 1]. This procedure
(hereafter abbreviated as Independent-FM, IFM) has been immensely successful, but can suffer from
high variance, as highlighted by [Liu, 2022] (that loss can never be 0), and does not result in an
optimal transport: this can be measured by noticing a high curvature when integrating the ODE
needed to form an output from an input sample point x.

Blending FM and OT Solvers. To fit exactly the OT framework, it would be best to choose
to be the McCann interpolation between o and 111, which would be p; := ((1 — ¢)Id + tT)# w0,
where T is the Monge map connecting (o and p1. Unfortunately, this insight is irrelevant, since
knowing 7™ would mean that no flow needs to be trained at all. Adopting a more practical perspective,
Pooladian et al. [2023] and Tong et al. [2023] have proposed in their seminal works to carefully select
pairs of observations using OT solvers. Concretely, they sample mini-batches x . .., x% from 1o and
x1,...,x7 from p1; compute a n x n OT coupling matrix; sample pairs of indices (i, j;) from that
bistochastic matrix, and feed the flow model with pairs X?Z, x;,. This approach was recently used and
adapted in [Tian et al., 2024, Generale et al., 2024, Klein et al., 2023, Davtyan et al., 2025]. Despite
their appeal, these modifications have not yet been widely adopted. The consensus stated recently
by Lipman et al. [2024] seems to be still that "the most popular class of affine probability paths is
instantiated by the independent coupling".

Can mini-batch OT really help? We try to answer this question by noticing first that the evaluations
carried out in all of the references cited above use batch sizes of 2 = 256 points, more rarely
210 — 1024. We believe that this might be the case because these works rely on the Hungarian
algorithm (complexity O(n?)). We also notice that while these works also consider entropic OT
(EOT) [Cuturi, 2013], they choose a single € value throughout their work. We go back to the drawing
board in this paper, and study whether batch-OT FM can work at all, and if so at which regimes of
mini-batch size n, regularization ¢, and for which data dimensions d. Our contributions are:

* Rather than drawing a line between Batch-OT (in Hungarian or EOT form) and independent FM, we
leverage the fact that all of these approaches can be interpolated using EOT: Hungarian corresponds
to the case where ¢ — 0 while IFM is recovered with € — oo.

* We propose a modification of the Sinkhorn algorithm when used with for the squared-Euclidean
norm, by dropping norms and focusing on the dot-product between points. We propose the definition
of a renormalized entropy for couplings, to pin them efficiently on a scale of O (bijective assignment
induced by a permutation, e.g. that returned by a Hungarian algorithm) to 1 (independent coupling).
This quantity is useful because unlike transport cost or entropy regularization ¢, it is bounded in
[0, 1] and is invariant to data dimension d or number of points n.

* We explore in our experiments substantially different regimes for n and €. We vary the mini-batch
size fromn = 2'* = 2,048 to n = 22! = 2,097, 152 and consider a more ample adaptive grid for
¢ that captures the range [0, 1] range of our renormalized entropy.

2 Background Material on Optimal Transport and Flow Matching

Let P, (R?) denote the space of probability measures over R? with a finite second moment. Let
w,v € Po(R%), and let I'(uu,v) be the set of joint probability measures in Py (R? x R?) with
left-marginal p and right-marginal v. The OT problem in its Kantorovich formulation is:

W(p,v) = inf // sz —ylPdm(z,y). (1
mel(p,v)

A minimizer of (1) is called an OT coupling measure, denoted 7*. If y« was a source (e.g. noise) and

v a target (e.g. images), 7* would be the perfect coupling to sample pairs of noise and image to learn

flow models: e.g. sample xg,x; ~ 7* and ensure the flow models bring xg to x; along a straight

path. Such of these couplings 7* are in fact induced by pushforward maps, i.e. a point x( can only
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be paired with a T'(x), where 7' : R? — RY. We say that such 7" pushes y forward to v, Ty p = v,
when for X ~ p one has T'(X) ~ v. The Monge formulation of OT is:

T*(u,v) == argmin / 2llx — T(x) [ *dp(x) 2)
T:Typ=v

where the minimizers are referred to as Monge or OT maps. Such maps can be characterized:

Theorem 1 ([Brenier, 1991]). If u € P2(R%) has an absolutely continuous density then (2) is solved

by a map T* of the form T* = Vu, where u : R — R is convex. Moreover if u is a convex potential

that is such that Vuy . = v then Vu solves (2).

As a result of this theorem, one can choose a convex potential u, a starting measure 4, and train flow
matching models between p and v := Vuyp to define synthetic tasks for which the coupling 7* is
known, as proposed in [Korotin et al., 2021]. We consider this in Section 4.2 to benchmark batch-OT.

Entropic OT. Entropic regularization [Cuturi, 2013] has become the most popular approach
to estimate a finite sample analog of 7* using samples (x3,...,%,) and (yi1,...,yn). Using a
regularization strength & > 0, a cost matrix C := [%]|x; — y;||%];; between these samples, the
entropic OT (EOT) problem can be presented in primal form (1) or in dual form:

min (P,C)—cH(P),  max  L(f+g 1,)—=(exp (CFE) 1, ()
PeR} " P1,=PT1,=1,/n feR™,geR™

The optimal solutions to (3) are usually found

with the Sinkhorn algorithm, as presented in Al- Algorithm 1 SINK(X € R"*4 Y € R™¥4 ¢ 1)
gorithm 1, where for a matrix S = [S; ;] we Cfec 0.0
write min.(S) = [—clog (1T e=Si-/€)];, and -5he v e . .

@ is the tegls?)r sur[n of t%vg) vectors, i.)e]. fo C« [%”Xl = Yillijii <mj <m
g := [f; + g;]i;. The optimal dual variables (3)
(f¢, g%) can then be used to instantiate a valid
coupling matrix P¢ = exp ((C — f° & g%)/¢),
which approximately solves the finite-sample
counterpart of (1). An important remark is
that as ¢ — 0, the solution P® converges to
the optimal transport matrix solving 1, while
P — #len as € — oo. These two limiting points coincide with the optimal assignment matrix
(or optimal permutation as returned e.g. by the Hungarian algorithm [Kuhn, 1955]), and the uniform
independent coupling used implicitly in I-FM.

C—fog
=1

while || exp ( m— %1,””1 < 7do

f«— glogiln —min.(C—fdg)+f
g+ slog%ln —min,(CT —gaf)+g
end while
return f, g, P = exp ((C - f® g)/e)

A A S

Independent and Batch-OT Flow Matching. Algorithm 2 FM 1-Step(p0, 41, 7, OT-SOLVE)
A stochastic interpolant p; with law X, := (1 —

)Xo + tX; is used in flow matching to solve L Xo = (X§, -, X5) ~ o

a regression loss ming Ep x, x, || X1 — Xo — 20 Xy = (Xq,...,X]) ~ i1

vo(X7, T)||? where the expectation is taken w.rt. > P ¢ OT-SOLVE(Xo, X1) or L,/n

Xo ~ g, X1 ~ p; and T a random variable in % (11,41), -+ (in; jin) ~ P

[0, 1]. In I-FM, this interpolant is implemented by 5 t}}é eoln THYIESAMP.LER

taking independent batches of samples xJ ..., x7 6 X" ¢ (1 — )X + tyxy®, fork <n

from g, x1,..., X7 from puy, and ¢y, ..., t, time 70 L(0) =, [|x3* — xg — vo(X*, 1) |?
8:

values sampled in [0, 1], to form the loss values 6 < GRADIENT-UPDATE(V L(0))

llxk —xb —vo((1 — ti)x) + texF, )|/ In the
formalism of Pooladian et al. [2023] and Tong et al. [2023], the same samples x(l) ...,X{ and
x1,...,x7 are first fed into a discrete optimal matching solver. This outputs a bistochastic coupling
matrix P € R™*™ which is then used to re-shuffle the n pairs originally provided to be better coupled,
and which should help the velocity field fit better trajectories, with less training steps. The procedure
is summarized in Algorithm 2 and adapted to our setup and notations. The choice I,,/n corresponds
to IFM. More recently, [Davtyan et al., 2025] has proposed to keep a memory of that matching effort
across mini-batches, by updating a large (of the size of the entire dataset) assignment permutation
between noise and full-batch data that is locally refreshed with the output of the Hungarian method
run on a small batch. A crucial aspect of the batch-OT methodology is that this pairing is disconnected
from the training of vy itself. Indeed, as currently implemented, OT variants of FM can be interpreted
as meta-dataloaders that do a selective pairing of noise and data, without considering 6 at all. In that
sense, training and preparation of coupled noise/data pairs can be done independently.
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3 Prepping Sinkhorn for Large Batch-size and Dimension.

The Necessity of Large Batch Size. The motivation to use larger batch sizes for OT-FM lies in
the fundamental bias introduced by using small batches in the context of the curse of dimensional-
ity [Chewi et al., 2024, Fatras et al., 2019]. That bias cannot be traded off with more iterations on the
flow matching loss. The necessity of varying € accordingly is that this regularization is known to
offset that bias to some extent, with more favorable sample complexity [Genevay et al., 2018, Mena
and Niles-Weed, 2019, Rigollet and Stromme, 2025].

Automatic Rescaling of c. A practical problem arising when running the Sinkhorn algorithm lies
in choosing the ¢ parameter. As described earlier, while P¢ does follow a path from the optimal
permutation return by the Hungarian algorithm to the independent coupling as ¢ varies from 0 oo,
what matters is what actual values are chosen in between those two ends. To avoid using a fixed grid
that risks becoming irrelevant as we move n and d, we revisit the strategy used in [Cuturi, 2013]
to divide the cost matrix C by its mean, median or maximal value, as implemented for instance
in [Flamary et al., 2021]. While needed to avoid underflow when instantiating a kernel matrix
K = e~ C/¢ that strategy is not relevant when using the log-sum-exp operator in our implementation
(as advocated in [Peyré and Cuturi, 2019, Remark 4.23]), since the min, in our implementation is
invariant to a constant shift in C, whereas mean, median and max statistics are not. We propose
instead to use the standard deviation (STD) of the cost matrix, which has this property: dispersion of
costs around its mean has more relevance than mean itself. The STD can be computed in (n + m)d>
time/ memory, without having to instantiate the cost matrix. When this memory cost increase from
d to d? is too high, we subsample n = 2'4 = 16384 points. In what follows, we always pass the &
value to the Sinkhorn algorithm 1 as £ := std(C) X ¢, where ¢ is now a scale-free quantity selected
in a grid [0.001, 1.0]. See appendix for plots that report instead ¢.

Scale-Free Renormalized Coupling Entropy. While useful to keep computations stable across runs,
the rescaling of ¢ still does not provide a clear idea of whether a computed coupling P¢ between
n X n points is sharp or close to independent. While a distance to the independent coupling can be
easily computed, that to the optimal Hungarian permutation cannot, of course, be derived. Instead, we
resort to a fundamental information inequality used in [Cuturi, 2013]: if P is a valid coupling between
two marginal probability vectors a, b, then one has by 1 (H (a) + H (b)) < H(P) < H(a) + H(b).
As aresult, for any €, we can define a renormalized entropy £ for any coupling of a, b:

2H(P)

) A+ )

—1€(0,1].

When a = b = 1,,/n, as considered here, this simplifies to £(P) := H(P)/log n—1. Independently
of the size n and of the scale of ¢, £(P¢) provides a simple measure of the proximity of P¢ to an
optimal assignment matrix (as £ gets closer to 0) or to the independent coupling matrix (as £ reaches
1). As aresult we report £(P¢) rather than € in our plots (or to be more accurate, the average of
E(P?) computed over multiple mini-batches).

From Squared Euclidean Costs to Dot-products Using the notation T (1, v) introduced in (2),
we notice an equivariance property of Monge maps. Fors € R? and r € R we write L, s for the
dilation and translation map L, s(x) = rx +s. Naturally, L, 1 (x) = (x —s)/r = Ly, _s/-(x), but
also L, s = Vw,, s where w, s(x) := £ ||x[|? — s”x is convex.

Lemma 2. The Monge map T'(u, v) is equivariant w.r.t to dilation and translation maps, as

T*(Lys#pt, Ly g #v) = Lyr g 0o T*(p,v) 0 Ly 4.

Proof. Following Brenier’s theorem, let u be a convex potential from y to v such that 7* (i, v) = V.
Set F':= L, s oVuoL, L. Fis the composition of the gradients of three convex functions. Because
the Jacobians of L, ; and L, } are respectively rI, and I;/r, they commute with the Hessian of .
Therefore the Jacobian of F' is symmetric positive definite, and F is the gradient of a convex potential
that pushes L, s#u to L, o #v. It is therefore their Monge map by Brenier’s theorem. O

In practice, this equivariance means that when focusing on permutation matrices (which can be
seen as the discrete counterparts of these Monge maps), one is free to rescale and shift either point
cloud. This remark has a practical implication when running Sinkhorn as well. When using the
squared-Euclidean distance matrix, the cost matrix is a sum of a correlation term with two rank-1
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norm terms, C = —XYT%(S 1L +1,47) where ¢ and y are the vectors composed of the n squared
norms of vectors in X and Y. Yet, due to the constraints P1,, = a, P”1,, = b, any modification
to the cost matrix of the form C = C — c1? — 1,,d”, where ¢ € R",d € R™ only shifts the (3)
objective by a constant, (P,C) = (P,C) — £1%7¢ — 217d. In practice, this means that norms
can only perturb Sinkhorn computations, and one should focus on the negative correlation matrix
C := —XTY, replacing Line 2 in Algorithm 1. We do observe significant stability gains of these
properly rescaled costs when comparing two point clouds (see Appendix A.1).

Scaling Up Sinkhorn to Millions of High-Dimensional Points. Our ambition, when guiding flow
matching with batch-OT as presented in Algorithm 2, is to vary n and ¢ so that the coupling P used
to sample indices can be both large (n =~ 10°) and sharp if needed, i.e. with a ¢ that can be brought
to arbitrarily low levels so that £(P¢) = 0. To that end, we leverage the OTT-JAX implementation
of the Sinkhorn algorithm [Cuturi et al., 2022], which can be natively sharded across multi-GPUs,
or more generally multiple nodes of GPU machines equipped with efficient interconnect. In that
approach, inspited by the earlier mono-GPU implementation of [Feydy, 2020], all n points from
source and target are sharded across GPUs and nodes (we have used either 1 or 2 nodes of 8 GPUs
each, either Nvidia H100 or A100). A crucial point in that implementation is that the cost matrix
C = —XY7 (following remark above) is never instantiated globally, and recomputed instead at each
min, operation in Lines 4 and 5 of Algorithm 1 locally, for these shards. All sharded results are
then gathered to recover f, g newly assigned after that iteration. When outputted, we use f* and g°
and, analogously, never instantiate the full P¢ matrix (this would be impossible at sizes n ~ 10° we
consider) but instead, materialize it blocks of rows by blocks of rows to do index sampling. We use
the Gumbel-softmax trick to vectorize and speed up efficiently the n categorical sampling of these
potentially very large unnormalized probability vectors.

4 Experiments

We revisit the application of Algorithm 2 using the modifications to the Sinkhorn algorithm outlined
in Section 3 to various I-FM benchmark tasks. We consider synthetic tasks in which the ground-
truth Monge map is known, and benchmark unconditioned image generation using CIFAR-10 and
ImageNet-32 generation, with a limited number of total integration steps.

Sinkhorn Hyperparameters. To track precisely whether the Sinkhorn algorithm converges for low
€ values, we set the maximal number of iterations to 50, 000. We use the momentum rule introduced
in [Lehmann et al., 2022] beyond 2000 iterations to speed-up harder runs. Overall, all of the runs
below converge, and therefore, even for low €, we never experience convergence issues. The threshold
7 is set to 0.001 and we observe that it remains relevant for all dimensions, as we use the 1-norm to
quantify convergence. Convergence statistics are reported in Appendix A.2.

4.1 Evaluation Metrics for v

All metrics used in our experiments can be interpreted as lower is better. Negative log-likelihood.
Given a trained flow model vy (¢, x), the density p;(x) obtained by pushing forward py(x) along the
flow map of vy can be computed by solving

1
log p¢(x¢) = log po(x0) — / (Va - ve)(t, x¢) dt, Xy = vo(t,Xy¢), @
0

Similarly, given a pair (¢, x), the density p;(x) can be evaluated by backward integration [Grathwohl
et al., 2018, Section 2.2]. The divergence (V. - vy)(t,x;) requires computing the trace of the
Jacobian of vy(t,-). As commonly done in the literature, we use the Hutchinson trace estimator
with a varying number of samples to speed up that computation without materializing the entire
Jacobian and use either an Euler solver with 50 steps for synthetic tasks or a Dopri5 adaptive solver
for image generation tasks, both implemented in the Diffrax toolbox [Kidger, 2021]. Given n points
x1,...,x7 ~ v and integrated backwards, the negative log-likelihood (NLL) of that set is

L(0) := =1 logpi(x}).
=1

subject to (4) and pg the law of p. We alternatively report the bits per dimension (BPD) statistic,
which is £ divided by d log 2.
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Curvature. We use the curvature of the field vy as defined by [Lee et al., 2023]: for n integrated
trajectories (X}, ..., x}) starting from samples at ¢ = 0 from p, the curvature is defined as

R(0):= 13" / Ive(t, x) — (< — x{)|2dt,
=1

where the integration is done with an Euler solver with 50 steps for synthetic tasks and the Dopri5
solver evaluated on a grid of 8 steps for image generation tasks. The smaller the curvature, the more
the ODE path looks like a straight line.

Reconstruction loss. For synthetic tasks in Sections 4.2, we have access to the ground-truth transport
map Ty that generated the target measure v. In both cases, that map is parameterized as the gradient
of a convex Brenier potential, respectively a piecewise quadratic function and an input convex
neural network, ICNN [Amos et al., 2017]. For a starting point xg, we can therefore compute a
reconstruction loss (a variant of the £2-UVP in Korotin et al. [2021]) as the squared norm of the
difference between the true map 7™ (x¢) and the flow map Ty obtained by integrating vy (¢, -) (using
50 steps with a Euler solver), defined using n points sampled from p as

RO) = 5 D I1Toxb) = To(xh)II5 -

FID. We report the FID metric [Heusel et al., 2017] in image generation tasks. For CIFAR-10 we use
the train dataset of 50k images, for ImageNet-32 we subset a random set of 50k images from the train
set. For generation we consider four integration solvers, Euler with 4, 8 and 16 steps and a Dopri5
solver from the Diffrax library [Kidger, 2021].

4.2 Synthetic Benchmark Tasks, d = 32 ~ 256

We consider in this section synthetic benchmarks of medium dimensionality (d = 64 ~ 256). In
this evaluation, we prioritize these tasks in controlled settings over other data sources at similar
dimensions (e.g. PCA reduced single-cell data [Bunne et al., 2024]) because we want to compute a
ground-truth reconstruction loss, and therefore elucidate the impact of OT batch size n and € on this
important practical aspect in practical applications.

Piecewise Affine Brenier Map. The source is a standard Gaussian and the target is obtained by
mapping it through the gradient of a potential, itself a (convex) piecewise quadratic function obtained
using the pointwise maximum of k rank-deficient parabolas:

u(x) = maxu;(x) = g[lx|* + 5[ Ai(x — mi)[* — [|Amg]|*, ®)

where A; ~ Wishart(%, I;),m; ~ N(0,31;),¢; ~ N(0,1) and all means are centered around zero
after sampling. In practice, this yields a transport map of the form Vu(x) = x+ A;» (x — m;+ ) where
i* is the potential selected for that particular x (i.e. the argmax in (5)). The correction — || A;m,||? is
designed to ensure that these potentials are sampled equally when moving away from 0. The number
of potentials k is equal to d/16. Examples of this map are shown in Appendix A.3. We consider this
setting in dimensions d = 32, 64, 128, 256.

Korotin et al. Benchmark. We use the set of pre-trained ICNNs introduced in [Korotin et al.,
2021] along with their predefined Gaussian mixtures as sources. We consider the benchmark in
d = 32, 64,128, 256 using their checkpoints to generate the ground-truth maps. This problem setting
is more challenging, however, since both the source and target distributions have multiple modes.

Velocity Field Parameterization and Training. The velocity fields are parameterized as MLPs with
5 hidden layers, of sizes 512 for d = 32,64 and 1024 for d = 128, 256. Time in [0, 1] is encoded
using d/8 Fourier encodings. All models are trained with unpaired batches: the sampling in Line
1 of Algorithm 2 is done as X ~ p while for Line 2, X; := T(X()) where X{, is a new sample
from p. All models are trained for 8192 steps, with effective batch sizes of 2048 samples to average
a gradient, a learning rate of 103 (we tested with 1072 or 10~%, both were either unstable or less
efficient on a subset of runs). The model marked as A in the plots is a flow model trained with perfect
supervision, i.e. given ground-truth paired samples Xo ~ p and X; := T(Xp), provided in the
correct order. I-FM is marked as V. For all other runs, we vary ¢ (reporting renormalized entropy &)
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Figure 1: Results on the piecewise affine OT Map benchmark. The three top rows present (in that
order) curvature, reconstruction and BPD metrics. Below, we provide compute times associated with
running the Sinkhorn algorithm as a per-example cost. This per-example cost is the total time needed
to run Sinkhorn to get n x n coupling divided by n. That cost would be O when using I-FM. We
observe across all dimensions improvements of all metrics.

260 and the batch size n used to compute couplings, somewhere between 256 and 2, 097, 152. These runs
261 are carried out on a single node with 8 GPUs, and therefore the data is sharded in blocks of size n/8.

262 Results. The results displayed in Figures | and 2 paint a homogeneous picture: as can be expected,
263 increasing n is generally impactful and beneficial for all metrics. The interest of decreasing ¢, while
264 beneficial in smaller dimensions, can be less pronounced in higher dimensions. Indeed, we find that
265 renormalized entropies around ~ 0.2 should be advocated, if one has in mind the computational
266 effort needed to get these samples.
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Figure 2: Results on the Korotin benchmark. As with Figure 1, we compute curvature and
reconstruction metrics, and compute times below. Some of the runs for largest OT batch sizes n
are provided in the supplementary. These runs suggest that to train OT models in these dimensions
increasing n is overall beneficial across the board.

4.3 Unconditioned Image Generation, d = 3072

CIFAR-10. As done originally in [Lipman et al., 2023], we consider unconditional generation of the
CIFAR-10 dataset. Results are presented in Figure 3. Compared to results reported in [Tong et al.,
2023] we observe slightly better FID scores (about 0.1) for both I-FM and OT-FM.

ImageNet-32. As also considered in [Lipman et al., 2023], we also evaluate the impact of Batch-
OT in unconditional generation of the ImageNet-32 dataset. We report results with under-trained
models (120k steps vs. 438k advocated in their paper) in Figure 4 and present later checkpoints in
Appendix A.6. Compared to results reported in [Tong et al., 2023] we observe slightly better FID
scores (about 0.1 when using the Dopri5 solver for instance) for both I-FM and OT-FM.

Velocity Field Parameterization and Training. We use the network parameterization given in [Tong
et al.] for CIFAR-10 and we replicate the network parameterization given in [Pooladian et al., 2023],
including learning rate choices. We follow their recommendations on setting learning rates as well as
total number of iterations.

Limitations. Our results rely on training of neural networks. In the interest of comparison, we have
used the same model across all changes advocated in the paper (on n and €). However, and due to the
scale of our experiments, we have not been able to ablate important parameters such as learning rates
when varying n and €.

Conclusion. Our experiments suggest that guiding flow models with large scale Sinkhorn couplings
can prove beneficial for downstream performance. We have tested this hypothesis by computing and
sampling from both crisp and blurry n x n Sinkhorn coupling matrices for sizes n in the millions of
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Figure 3: Experiment metrics for CIFAR-10 image generation. We evaluate the trained models using
the Euler solver with three different number of steps, and with the Dopri5 solver and adaptive steps.
The plots demonstrate the benefits of a larger OT batch size to achieve significantly smaller curvature,
and moderately smaller FID at low number of integration steps. Our experiments also suggest that in
this setting, lower renormalized entropy generally benefits the performance.
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Figure 4: Early ImageNet-32 experiment metrics obtained at a checkpoint of 120k iterations (150k
for I-FM). We provide later checkpoint results and settings in Appendix A.6.

points, placing them on an intuitive scale from O (close to using an optimal permutation as returned
e.g. by the Hungarian algorithm) to 1 (equivalent to the independent sampling approach popularized
by Lipman et al. [2023]). This involved efficient multi-GPU parallelization, realizing scales which,
to our knowledge, were never achieved previously in the literature. Although the scale of these
computations may seem large, they are still relatively cheap compared to the price one has to pay
to optimize the FM loss, and, additionally, are completely independent from model training. As a
result, they should be carried out prior to any training. While we have not explored the possibility of
launching multiple jobs with them (to ablate, e.g., for other fundamental aspects of model training
such as learning rates), we leave a more careful tuning of these training runs for future work. We
claim that paying this relatively small price to log and sample paired indices obtained from large
scale couplings results for mid-sized problems in great returns in the form of faster training and faster
inference, thanks to the straightness of the flows learned with the batch-OT procedure. For larger
sized problems, the conclusion is not so clear, although we quickly observe benefits when using
middle values for n (in the thousands) and renormalized entropies around 0.2 which forms, at the
time of writing, our main practical recommendation for end users.
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4 Please look at supplementary material zip file for appendix.

4

s NeurIPS Paper Checklist

416 1. Claims

417 Question: Do the main claims made in the abstract and introduction accurately reflect the
418 paper’s contributions and scope?

419 Answer: [Yes]

420 Justification: The paper proposes to revisit an existing method by scaling up significantly its
421 hyperparameters and study their interplay when measuring final performance.

422 2. Limitations

423 Question: Does the paper discuss the limitations of the work performed by the authors?
424 Answer: [Yes]

425 Justification: Yes, in the sense that the method works when scaling n (minibatch size of OT)
426 up to a point.

427 3. Theory assumptions and proofs

428 Question: For each theoretical result, does the paper provide the full set of assumptions and
429 a complete (and correct) proof?

430 Answer: [NA]

431 Justification: We do not include any proofs.

432 4. Experimental result reproducibility

433 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
434 perimental results of the paper to the extent that it affects the main claims and/or conclusions
435 of the paper (regardless of whether the code and data are provided or not)?

436 Answer: [Yes]

437 Justification: All of our experiments rely on config files previously presented in the literature
438 or on simple MLP architectures.

439 5. Open access to data and code

440 Question: Does the paper provide open access to the data and code, with sufficient instruc-
441 tions to faithfully reproduce the main experimental results, as described in supplemental
442 material?

443 Answer: [Yes]

444 Justification: The data is either synthetically generated or widely available. Our code builds
445 on OTT-JAX and will be released in coming months.

446 6. Experimental setting/details

447 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
448 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
449 results?

450 Answer: [Yes]

451 Justification: We provide details of each experiment in Section 4 and in the Appendices.
452 7. Experiment statistical significance

453 Question: Does the paper report error bars suitably and correctly defined or other appropriate
454 information about the statistical significance of the experiments?

455 Answer:

456 Justification: Due to the scale of our experiments (each points in our plots is a run takes a
457 single node for a few hours to sometimes a full day) we are not able to report error bars.
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12.
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15.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use standard GPU nodes (A100, H100).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We do.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The only societal impact we envision is faster inference time of flow models.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not see such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We exclusively build on top of OTT-JAX [Cuturi et al., 2022], Diffrax [Kidger,
2021] and Flax [Heek et al., 2024].

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not provide any new assets.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing nor research with human
subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing nor research with human
subjects.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does not involve LLMs as any as any important, original, or
non-standard components.
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