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Abstract

Flow models transform data gradually from a modality (e.g. noise) onto another1

(e.g. images). Such models are parameterized by a time-dependent velocity field,2

trained to fit segments connecting pairs of source & target points. When a pairing3

between source and target points is known, the training boils down to a supervised4

regression problem. When no such pairing exists, as is the case when generating5

data from noise, training flows is much harder. A popular approach lies in picking6

in that case source and target points independently [Lipman et al., 2023]. This can,7

however, lead to velocity fields with high variance that are difficult to integrate. In8

theory, one would greatly benefit from training flow models by sampling pairs from9

an optimal transport (OT) measure coupling source and target, since this would lead10

to a highly efficient flow solving the Benamou and Brenier dynamical OT problem.11

Practically, recent works have proposed to sample mini-batches of n source and n12

target points and reorder them using an OT solver to form “better” pairs. These13

works have advocated using batches of size n ≈ 256, and considered couplings14

that are both “hard” (permutations obtained with the Hungarian algorithm) or15

“soft” (computed with the Sinkhorn algorithm). We follow in the footsteps of16

these works by exploring the benefits of increasing this mini-batch size n by17

several orders of magnitude, and look more carefully on the effect of the entropic18

regularization ε used in Sinkhorn. Our analysis and computations are facilitated19

by new scale invariant quantities to present results and sharded computations20

parallelized over multiple GPU nodes. We uncover various dimensional regimes21

where flow matching benefits from OT guiding, using proper scales for n and22

suitable entropic regularization ε, to be set so that it approximates 0.2 in the novel23

renormalized entropy scale we propose.24

1 Introduction25

Finding a map that can transform a source into a target measure is a task at the core of generative26

modeling and unpaired modality translation. Following the widespread popularity of GAN formula-27

tions [Goodfellow et al., 2014], the field has greatly benefited from a gradual, time-dependent parame-28

terization of these transformations as neural-ODEs [Chen et al., 2018] or normalizing flows [Rezende29

and Mohamed, 2015]. Such flow models are now commonly estimated using flow matching [Lipman30

et al., 2024]. While time parameterization substantially increases the expressivity of these models,31

this comes typically with a higher cost at inference time due to the additional cost of running an32

ODE solver with potentially dozens of steps. On the theoretical side, the golden standard for such33

time parameterized transformation is given by the Benamou and Brenier dynamical optimal transport34

(OT) solution, which would collapse in practice in a 1-step generation achieved by the Monge map35

formulation [Santambrogio, 2015]. In practice, while the mathematics [Villani, 2003] of optimal36

transport have contributed to the understanding of these methodsLiu et al., the jury seems to be still37

out on ruling whether tools from the computational OT toolbox [Peyré and Cuturi, 2019], which is38

typically used to compute large scale couplings from data [Klein et al., 2025], can decisively help39

with the estimation of flows in high-dimensions.40
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Stochastic interpolants. The flow matching (FM) framework [Lipman et al., 2024], introduced41

in concurrent seminal papers [Peluchetti, 2022, Lipman et al., 2023, Albergo and Vanden-Eijnden,42

2023, Neklyudov et al., 2023] proposes to estimate a flow model by leveraging a time-dependent43

interpolation µt between source µ0 and target µ1 —the stochastic interpolant following the terminol-44

ogy of Albergo and Vanden-Eijnden [2023]. That interpolation is the crucial ingredient used to fit a45

parameterized velocity field, with a regression loss. In practice, such an interpolation can be formed46

by sampling X0 ∼ µ0 independently of X1 ∼ µ1, to define µt as the law of Xt := (1− t)X0 + tX1.47

One can then fit a parameterized time-dependent velocity field vθ(t,x) that minimizes the expectation48

of ∥X1 −X0 − vθ(XT , T )∥2 w.r.t. X0, X1 and T a random time variable in [0, 1]. This procedure49

(hereafter abbreviated as Independent-FM, IFM) has been immensely successful, but can suffer from50

high variance, as highlighted by [Liu, 2022] (that loss can never be 0), and does not result in an51

optimal transport: this can be measured by noticing a high curvature when integrating the ODE52

needed to form an output from an input sample point x0.53

Blending FM and OT Solvers. To fit exactly the OT framework, it would be best to choose µt54

to be the McCann interpolation between µ0 and µ1, which would be µt := ((1− t)Id + tT ⋆)#µ0,55

where T ⋆ is the Monge map connecting µ0 and µ1. Unfortunately, this insight is irrelevant, since56

knowing T ⋆ would mean that no flow needs to be trained at all. Adopting a more practical perspective,57

Pooladian et al. [2023] and Tong et al. [2023] have proposed in their seminal works to carefully select58

pairs of observations using OT solvers. Concretely, they sample mini-batches x1
0 . . . ,x

n
0 from µ0 and59

x1
1, . . . ,x

n
1 from µ1; compute a n× n OT coupling matrix; sample pairs of indices (iℓ, jℓ) from that60

bistochastic matrix, and feed the flow model with pairs x0
iℓ
,x1

jℓ
. This approach was recently used and61

adapted in [Tian et al., 2024, Generale et al., 2024, Klein et al., 2023, Davtyan et al., 2025]. Despite62

their appeal, these modifications have not yet been widely adopted. The consensus stated recently63

by Lipman et al. [2024] seems to be still that "the most popular class of affine probability paths is64

instantiated by the independent coupling".65

Can mini-batch OT really help? We try to answer this question by noticing first that the evaluations66

carried out in all of the references cited above use batch sizes of 28 = 256 points, more rarely67

210 = 1024. We believe that this might be the case because these works rely on the Hungarian68

algorithm (complexity O(n3)). We also notice that while these works also consider entropic OT69

(EOT) [Cuturi, 2013], they choose a single ε value throughout their work. We go back to the drawing70

board in this paper, and study whether batch-OT FM can work at all, and if so at which regimes of71

mini-batch size n, regularization ε, and for which data dimensions d. Our contributions are:72

• Rather than drawing a line between Batch-OT (in Hungarian or EOT form) and independent FM, we73

leverage the fact that all of these approaches can be interpolated using EOT: Hungarian corresponds74

to the case where ε→ 0 while IFM is recovered with ε→∞.75

• We propose a modification of the Sinkhorn algorithm when used with for the squared-Euclidean76

norm, by dropping norms and focusing on the dot-product between points. We propose the definition77

of a renormalized entropy for couplings, to pin them efficiently on a scale of 0 (bijective assignment78

induced by a permutation, e.g. that returned by a Hungarian algorithm) to 1 (independent coupling).79

This quantity is useful because unlike transport cost or entropy regularization ε, it is bounded in80

[0, 1] and is invariant to data dimension d or number of points n.81

• We explore in our experiments substantially different regimes for n and ε. We vary the mini-batch82

size from n = 211 = 2, 048 to n = 221 = 2, 097, 152 and consider a more ample adaptive grid for83

ε that captures the range [0, 1] range of our renormalized entropy.84

2 Background Material on Optimal Transport and Flow Matching85

Let P2(Rd) denote the space of probability measures over Rd with a finite second moment. Let86

µ, ν ∈ P2(Rd), and let Γ(µ, ν) be the set of joint probability measures in P2(Rd × Rd) with87

left-marginal µ and right-marginal ν. The OT problem in its Kantorovich formulation is:88

W (µ, ν) := inf
π∈Γ(µ,ν)

∫∫
1
2∥x− y∥2dπ(x, y) . (1)

A minimizer of (1) is called an OT coupling measure, denoted π⋆. If µ was a source (e.g. noise) and89

ν a target (e.g. images), π⋆ would be the perfect coupling to sample pairs of noise and image to learn90

flow models: e.g. sample x0,x1 ∼ π⋆ and ensure the flow models bring x0 to x1 along a straight91

path. Such of these couplings π⋆ are in fact induced by pushforward maps, i.e. a point x0 can only92
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be paired with a T (x0), where T : Rd → Rd. We say that such T pushes µ forward to ν, T#µ = ν,93

when for X ∼ µ one has T (X) ∼ ν. The Monge formulation of OT is:94

T ⋆(µ, ν) := argmin
T :T#µ=ν

∫
1
2∥x− T (x)∥2dµ(x) (2)

where the minimizers are referred to as Monge or OT maps. Such maps can be characterized:95

Theorem 1 ([Brenier, 1991]). If µ ∈ P2(Rd) has an absolutely continuous density then (2) is solved96

by a map T ⋆ of the form T ⋆ = ∇u, where u : Rd → R is convex. Moreover if u is a convex potential97

that is such that∇u#µ = ν then∇u solves (2).98

As a result of this theorem, one can choose a convex potential u, a starting measure µ, and train flow99

matching models between µ and ν := ∇u♯µ to define synthetic tasks for which the coupling π⋆ is100

known, as proposed in [Korotin et al., 2021]. We consider this in Section 4.2 to benchmark batch-OT.101

Entropic OT. Entropic regularization [Cuturi, 2013] has become the most popular approach102

to estimate a finite sample analog of π⋆ using samples (x1, . . . ,xn) and (y1, . . . ,yn). Using a103

regularization strength ε > 0, a cost matrix C := [12∥xi − yj∥2]ij between these samples, the104

entropic OT (EOT) problem can be presented in primal form (1) or in dual form:105

min
P∈Rn×n

+ ,P1n=PT 1n=1n/n
⟨P,C⟩−εH(P), max

f∈Rn,g∈Rn

1
n ⟨f+g,1n⟩−ε⟨exp

(
C−f⊕g

ε

)
,1n×n⟩. (3)

Algorithm 1 SINK(X ∈ Rn×d,Y ∈ Rm×d, ε, τ)

1: f ,g← 0n,0m.
2: C← [ 12∥xi − yj∥2]ij , i ≤ n, j ≤ m

3: while ∥ exp
(

C−f⊕g
ε

)
1m − 1

n1n∥1 < τ do
4: f ← ε log 1

n1n −minε(C− f ⊕ g) + f

5: g← ε log 1
n1n−minε(C

⊤− g⊕ f) + g
6: end while
7: return f ,g,P = exp ((C− f ⊕ g)/ε)

The optimal solutions to (3) are usually found106

with the Sinkhorn algorithm, as presented in Al-107

gorithm 1, where for a matrix S = [Si,j ] we108

write minε(S) := [−ε log
(
1⊤e−Si,·/ε

)
]i, and109

⊕ is the tensor sum of two vectors, i.e. f ⊕110

g := [fi + gj ]ij . The optimal dual variables (3)111

(fε,gε) can then be used to instantiate a valid112

coupling matrix Pε = exp ((C− fε ⊕ gε)/ε),113

which approximately solves the finite-sample114

counterpart of (1). An important remark is115

that as ε → 0, the solution Pε converges to116

the optimal transport matrix solving 1, while117

Pε → 1
n21n×n as ε→∞. These two limiting points coincide with the optimal assignment matrix118

(or optimal permutation as returned e.g. by the Hungarian algorithm [Kuhn, 1955]), and the uniform119

independent coupling used implicitly in I-FM.120

Algorithm 2 FM 1-Step(µ0, µ1, n, OT-SOLVE)

1: X0 = (x1
0, . . . ,x

n
0 ) ∼ µ0

2: X1 = (x1
1, . . . ,x

n
1 ) ∼ µ1

3: P← OT-SOLVE(X0,X1) or In/n
4: (i1, j1), . . . , (in, jn) ∼ P
5: t1, . . . , tn ← TIMESAMPLER

6: x̃k ← (1− tk)x
ik
0 + tkx

jk
1 , for k ≤ n

7: L(θ) =
∑

k ∥x
jk
1 − xik

0 − vθ(x̃
k, tk)∥2

8: θ ← GRADIENT-UPDATE(∇L(θ))

Independent and Batch-OT Flow Matching.121

A stochastic interpolant µt with law Xt := (1−122

t)X0 + tX1 is used in flow matching to solve123

a regression loss minθ ET,X0,X1
∥X1 − X0 −124

vθ(XT , T )∥2 where the expectation is taken w.r.t.125

X0 ∼ µ0, X1 ∼ µ1 and T a random variable in126

[0, 1]. In I-FM, this interpolant is implemented by127

taking independent batches of samples x1
0 . . . ,x

n
0128

from µ0, x1
1, . . . ,x

n
1 from µ1, and t1, . . . , tn time129

values sampled in [0, 1], to form the loss values130

∥xk
1 − xk

0 − vθ((1− tk)x
j
0 + tkx

k
1 , tk)∥2. In the131

formalism of Pooladian et al. [2023] and Tong et al. [2023], the same samples x1
0 . . . ,x

n
0 and132

x1
1, . . . ,x

n
1 are first fed into a discrete optimal matching solver. This outputs a bistochastic coupling133

matrix P ∈ Rn×n which is then used to re-shuffle the n pairs originally provided to be better coupled,134

and which should help the velocity field fit better trajectories, with less training steps. The procedure135

is summarized in Algorithm 2 and adapted to our setup and notations. The choice In/n corresponds136

to IFM. More recently, [Davtyan et al., 2025] has proposed to keep a memory of that matching effort137

across mini-batches, by updating a large (of the size of the entire dataset) assignment permutation138

between noise and full-batch data that is locally refreshed with the output of the Hungarian method139

run on a small batch. A crucial aspect of the batch-OT methodology is that this pairing is disconnected140

from the training of vθ itself. Indeed, as currently implemented, OT variants of FM can be interpreted141

as meta-dataloaders that do a selective pairing of noise and data, without considering θ at all. In that142

sense, training and preparation of coupled noise/data pairs can be done independently.143
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3 Prepping Sinkhorn for Large Batch-size and Dimension.144

The Necessity of Large Batch Size. The motivation to use larger batch sizes for OT-FM lies in145

the fundamental bias introduced by using small batches in the context of the curse of dimensional-146

ity [Chewi et al., 2024, Fatras et al., 2019]. That bias cannot be traded off with more iterations on the147

flow matching loss. The necessity of varying ε accordingly is that this regularization is known to148

offset that bias to some extent, with more favorable sample complexity [Genevay et al., 2018, Mena149

and Niles-Weed, 2019, Rigollet and Stromme, 2025].150

Automatic Rescaling of ε. A practical problem arising when running the Sinkhorn algorithm lies151

in choosing the ε parameter. As described earlier, while Pε does follow a path from the optimal152

permutation return by the Hungarian algorithm to the independent coupling as ε varies from 0∞,153

what matters is what actual values are chosen in between those two ends. To avoid using a fixed grid154

that risks becoming irrelevant as we move n and d, we revisit the strategy used in [Cuturi, 2013]155

to divide the cost matrix C by its mean, median or maximal value, as implemented for instance156

in [Flamary et al., 2021]. While needed to avoid underflow when instantiating a kernel matrix157

K = e−C/ε, that strategy is not relevant when using the log-sum-exp operator in our implementation158

(as advocated in [Peyré and Cuturi, 2019, Remark 4.23]), since the minε in our implementation is159

invariant to a constant shift in C, whereas mean, median and max statistics are not. We propose160

instead to use the standard deviation (STD) of the cost matrix, which has this property: dispersion of161

costs around its mean has more relevance than mean itself. The STD can be computed in (n+m)d2162

time/ memory, without having to instantiate the cost matrix. When this memory cost increase from163

d to d2 is too high, we subsample n = 214 = 16384 points. In what follows, we always pass the ε164

value to the Sinkhorn algorithm 1 as ε̃ := std(C)× ε, where ε is now a scale-free quantity selected165

in a grid [0.001, 1.0]. See appendix for plots that report instead ε.166

Scale-Free Renormalized Coupling Entropy. While useful to keep computations stable across runs,
the rescaling of ε still does not provide a clear idea of whether a computed coupling Pε between
n× n points is sharp or close to independent. While a distance to the independent coupling can be
easily computed, that to the optimal Hungarian permutation cannot, of course, be derived. Instead, we
resort to a fundamental information inequality used in [Cuturi, 2013]: if P is a valid coupling between
two marginal probability vectors a,b, then one has by 1

2 (H(a) +H(b)) ≤ H(P) ≤ H(a) +H(b).
As a result, for any ε, we can define a renormalized entropy E for any coupling of a,b:

E(P) :=
2H(P)

H(a) +H(b)
− 1 ∈ (0, 1].

When a = b = 1n/n, as considered here, this simplifies to E(P) := H(P)/ log n−1. Independently167

of the size n and of the scale of ε, E(Pε) provides a simple measure of the proximity of Pε to an168

optimal assignment matrix (as E gets closer to 0) or to the independent coupling matrix (as E reaches169

1). As a result we report E(Pε) rather than ε in our plots (or to be more accurate, the average of170

E(Pε) computed over multiple mini-batches).171

From Squared Euclidean Costs to Dot-products Using the notation T ⋆(µ, ν) introduced in (2),172

we notice an equivariance property of Monge maps. For s ∈ Rd and r ∈ R+ we write Lr,s for the173

dilation and translation map Lr,s(x) = rx+ s. Naturally, L−1
r,s (x) = (x− s)/r = L1/r,−s/r(x), but174

also Lr,s = ∇wr,s where wr,s(x) :=
r
2∥x∥

2 − sTx is convex.175

Lemma 2. The Monge map T (µ, ν) is equivariant w.r.t to dilation and translation maps, as

T ⋆(Lr,s#µ,Lr′,s′#ν) = Lr′,s′ ◦ T ⋆(µ, ν) ◦ L−1
r,s .

Proof. Following Brenier’s theorem, let u be a convex potential from µ to ν such that T ⋆(µ, ν) = ∇u.176

Set F := Lr′,s′ ◦∇u◦L−1
r,s . F is the composition of the gradients of three convex functions. Because177

the Jacobians of Lr,s and L−1
r,s are respectively rId and Id/r, they commute with the Hessian of u.178

Therefore the Jacobian of F is symmetric positive definite, and F is the gradient of a convex potential179

that pushes Lr,s#µ to Lr′,s′#ν. It is therefore their Monge map by Brenier’s theorem.180

In practice, this equivariance means that when focusing on permutation matrices (which can be181

seen as the discrete counterparts of these Monge maps), one is free to rescale and shift either point182

cloud. This remark has a practical implication when running Sinkhorn as well. When using the183

squared-Euclidean distance matrix, the cost matrix is a sum of a correlation term with two rank-1184
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norm terms, C = −XYT 1
2 (ξ1

T
m + 1nγ

T ) where ξ and γ are the vectors composed of the n squared185

norms of vectors in X and Y. Yet, due to the constraints P1m = a,PT1n = b, any modification186

to the cost matrix of the form C̃ = C − c1T
m − 1nd

T , where c ∈ Rn,d ∈ Rm only shifts the (3)187

objective by a constant, ⟨P, C̃⟩ = ⟨P,C⟩ − 1
n1

T
nc − 1

n1
T
nd. In practice, this means that norms188

can only perturb Sinkhorn computations, and one should focus on the negative correlation matrix189

C := −XTY, replacing Line 2 in Algorithm 1. We do observe significant stability gains of these190

properly rescaled costs when comparing two point clouds (see Appendix A.1).191

Scaling Up Sinkhorn to Millions of High-Dimensional Points. Our ambition, when guiding flow192

matching with batch-OT as presented in Algorithm 2, is to vary n and ε so that the coupling Pε used193

to sample indices can be both large (n ≈ 106) and sharp if needed, i.e. with a ε that can be brought194

to arbitrarily low levels so that E(Pε) ≈ 0. To that end, we leverage the OTT-JAX implementation195

of the Sinkhorn algorithm [Cuturi et al., 2022], which can be natively sharded across multi-GPUs,196

or more generally multiple nodes of GPU machines equipped with efficient interconnect. In that197

approach, inspited by the earlier mono-GPU implementation of [Feydy, 2020], all n points from198

source and target are sharded across GPUs and nodes (we have used either 1 or 2 nodes of 8 GPUs199

each, either Nvidia H100 or A100). A crucial point in that implementation is that the cost matrix200

C = −XYT (following remark above) is never instantiated globally, and recomputed instead at each201

minε operation in Lines 4 and 5 of Algorithm 1 locally, for these shards. All sharded results are202

then gathered to recover f ,g newly assigned after that iteration. When outputted, we use fε and gε203

and, analogously, never instantiate the full Pε matrix (this would be impossible at sizes n ≈ 106 we204

consider) but instead, materialize it blocks of rows by blocks of rows to do index sampling. We use205

the Gumbel-softmax trick to vectorize and speed up efficiently the n categorical sampling of these206

potentially very large unnormalized probability vectors.207

4 Experiments208

We revisit the application of Algorithm 2 using the modifications to the Sinkhorn algorithm outlined209

in Section 3 to various I-FM benchmark tasks. We consider synthetic tasks in which the ground-210

truth Monge map is known, and benchmark unconditioned image generation using CIFAR-10 and211

ImageNet-32 generation, with a limited number of total integration steps.212

Sinkhorn Hyperparameters. To track precisely whether the Sinkhorn algorithm converges for low213

ε values, we set the maximal number of iterations to 50, 000. We use the momentum rule introduced214

in [Lehmann et al., 2022] beyond 2000 iterations to speed-up harder runs. Overall, all of the runs215

below converge, and therefore, even for low ε, we never experience convergence issues. The threshold216

τ is set to 0.001 and we observe that it remains relevant for all dimensions, as we use the 1-norm to217

quantify convergence. Convergence statistics are reported in Appendix A.2.218

4.1 Evaluation Metrics for vθ219

All metrics used in our experiments can be interpreted as lower is better. Negative log-likelihood.220

Given a trained flow model vθ(t,x), the density pt(x) obtained by pushing forward p0(x) along the221

flow map of vθ can be computed by solving222

log pt(xt) = log p0(x0)−
∫ 1

0

(∇x · vθ)(t,xt) dt, ẋt = vθ(t,xt), (4)

Similarly, given a pair (t,x), the density pt(x) can be evaluated by backward integration [Grathwohl
et al., 2018, Section 2.2]. The divergence (∇x · vθ)(t,xt) requires computing the trace of the
Jacobian of vθ(t, ·). As commonly done in the literature, we use the Hutchinson trace estimator
with a varying number of samples to speed up that computation without materializing the entire
Jacobian and use either an Euler solver with 50 steps for synthetic tasks or a Dopri5 adaptive solver
for image generation tasks, both implemented in the Diffrax toolbox [Kidger, 2021]. Given n points
x1
1, . . . ,x

n
1 ∼ ν and integrated backwards, the negative log-likelihood (NLL) of that set is

L(θ) := − 1
n

n∑
i=1

log p1(x
i
1).

subject to (4) and p0 the law of µ. We alternatively report the bits per dimension (BPD) statistic,223

which is L divided by d log 2.224
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Curvature. We use the curvature of the field vθ as defined by [Lee et al., 2023]: for n integrated
trajectories (x1

t , . . . ,x
n
t ) starting from samples at t = 0 from µ, the curvature is defined as

κ(θ) := 1
n

N∑
i=1

∫ 1

0

∥vθ(t,x
(i)
t )− (x

(i)
1 − x

(i)
0 )∥22dt,

where the integration is done with an Euler solver with 50 steps for synthetic tasks and the Dopri5225

solver evaluated on a grid of 8 steps for image generation tasks. The smaller the curvature, the more226

the ODE path looks like a straight line.227

Reconstruction loss. For synthetic tasks in Sections 4.2, we have access to the ground-truth transport
map T0 that generated the target measure ν. In both cases, that map is parameterized as the gradient
of a convex Brenier potential, respectively a piecewise quadratic function and an input convex
neural network, ICNN [Amos et al., 2017]. For a starting point x0, we can therefore compute a
reconstruction loss (a variant of the L2-UVP in Korotin et al. [2021]) as the squared norm of the
difference between the true map T ⋆(x0) and the flow map Tθ obtained by integrating vθ(t, ·) (using
50 steps with a Euler solver), defined using n points sampled from µ as

R(θ) := 1
n

n∑
i=1

∥Tθ(x
i
0)− T0(x

i
0)∥22 .

FID. We report the FID metric [Heusel et al., 2017] in image generation tasks. For CIFAR-10 we use228

the train dataset of 50k images, for ImageNet-32 we subset a random set of 50k images from the train229

set. For generation we consider four integration solvers, Euler with 4, 8 and 16 steps and a Dopri5230

solver from the Diffrax library [Kidger, 2021].231

4.2 Synthetic Benchmark Tasks, d = 32 ∼ 256232

We consider in this section synthetic benchmarks of medium dimensionality (d = 64 ∼ 256). In233

this evaluation, we prioritize these tasks in controlled settings over other data sources at similar234

dimensions (e.g. PCA reduced single-cell data [Bunne et al., 2024]) because we want to compute a235

ground-truth reconstruction loss, and therefore elucidate the impact of OT batch size n and ε on this236

important practical aspect in practical applications.237

Piecewise Affine Brenier Map. The source is a standard Gaussian and the target is obtained by238

mapping it through the gradient of a potential, itself a (convex) piecewise quadratic function obtained239

using the pointwise maximum of k rank-deficient parabolas:240

u(x) := max
i≤k

ui(x) :=
1
2∥x∥

2 + 1
2∥Ai(x−mi)∥2 − ∥Aimi∥2 , (5)

where Ai ∼Wishart(d2 , Id),mi ∼ N (0, 3Id), ci ∼ N (0, 1) and all means are centered around zero241

after sampling. In practice, this yields a transport map of the form∇u(x) = x+Ai⋆(x−mi⋆) where242

i⋆ is the potential selected for that particular x (i.e. the argmax in (5)). The correction −∥Aimi∥2 is243

designed to ensure that these potentials are sampled equally when moving away from 0. The number244

of potentials k is equal to d/16. Examples of this map are shown in Appendix A.3. We consider this245

setting in dimensions d = 32, 64, 128, 256.246

Korotin et al. Benchmark. We use the set of pre-trained ICNNs introduced in [Korotin et al.,247

2021] along with their predefined Gaussian mixtures as sources. We consider the benchmark in248

d = 32, 64, 128, 256 using their checkpoints to generate the ground-truth maps. This problem setting249

is more challenging, however, since both the source and target distributions have multiple modes.250

Velocity Field Parameterization and Training. The velocity fields are parameterized as MLPs with251

5 hidden layers, of sizes 512 for d = 32, 64 and 1024 for d = 128, 256. Time in [0, 1] is encoded252

using d/8 Fourier encodings. All models are trained with unpaired batches: the sampling in Line253

1 of Algorithm 2 is done as X0 ∼ µ while for Line 2, X1 := T0(X
′
0) where X′

0 is a new sample254

from µ. All models are trained for 8192 steps, with effective batch sizes of 2048 samples to average255

a gradient, a learning rate of 10−3 (we tested with 10−2 or 10−4, both were either unstable or less256

efficient on a subset of runs). The model marked as ▲ in the plots is a flow model trained with perfect257

supervision, i.e. given ground-truth paired samples X0 ∼ µ and X1 := T0(X0), provided in the258

correct order. I-FM is marked as ▼. For all other runs, we vary ε (reporting renormalized entropy E)259
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Figure 1: Results on the piecewise affine OT Map benchmark. The three top rows present (in that
order) curvature, reconstruction and BPD metrics. Below, we provide compute times associated with
running the Sinkhorn algorithm as a per-example cost. This per-example cost is the total time needed
to run Sinkhorn to get n × n coupling divided by n. That cost would be 0 when using I-FM. We
observe across all dimensions improvements of all metrics.

and the batch size n used to compute couplings, somewhere between 256 and 2, 097, 152. These runs260

are carried out on a single node with 8 GPUs, and therefore the data is sharded in blocks of size n/8.261

Results. The results displayed in Figures 1 and 2 paint a homogeneous picture: as can be expected,262

increasing n is generally impactful and beneficial for all metrics. The interest of decreasing ε, while263

beneficial in smaller dimensions, can be less pronounced in higher dimensions. Indeed, we find that264

renormalized entropies around ≈ 0.2 should be advocated, if one has in mind the computational265

effort needed to get these samples.266
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Figure 2: Results on the Korotin benchmark. As with Figure 1, we compute curvature and
reconstruction metrics, and compute times below. Some of the runs for largest OT batch sizes n
are provided in the supplementary. These runs suggest that to train OT models in these dimensions
increasing n is overall beneficial across the board.

4.3 Unconditioned Image Generation, d = 3072267

CIFAR-10. As done originally in [Lipman et al., 2023], we consider unconditional generation of the268

CIFAR-10 dataset. Results are presented in Figure 3. Compared to results reported in [Tong et al.,269

2023] we observe slightly better FID scores (about 0.1) for both I-FM and OT-FM.270

ImageNet-32. As also considered in [Lipman et al., 2023], we also evaluate the impact of Batch-271

OT in unconditional generation of the ImageNet-32 dataset. We report results with under-trained272

models (120k steps vs. 438k advocated in their paper) in Figure 4 and present later checkpoints in273

Appendix A.6. Compared to results reported in [Tong et al., 2023] we observe slightly better FID274

scores (about 0.1 when using the Dopri5 solver for instance) for both I-FM and OT-FM.275

Velocity Field Parameterization and Training. We use the network parameterization given in [Tong276

et al.] for CIFAR-10 and we replicate the network parameterization given in [Pooladian et al., 2023],277

including learning rate choices. We follow their recommendations on setting learning rates as well as278

total number of iterations.279

Limitations. Our results rely on training of neural networks. In the interest of comparison, we have280

used the same model across all changes advocated in the paper (on n and ε). However, and due to the281

scale of our experiments, we have not been able to ablate important parameters such as learning rates282

when varying n and ε.283

Conclusion. Our experiments suggest that guiding flow models with large scale Sinkhorn couplings284

can prove beneficial for downstream performance. We have tested this hypothesis by computing and285

sampling from both crisp and blurry n× n Sinkhorn coupling matrices for sizes n in the millions of286
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Figure 3: Experiment metrics for CIFAR-10 image generation. We evaluate the trained models using
the Euler solver with three different number of steps, and with the Dopri5 solver and adaptive steps.
The plots demonstrate the benefits of a larger OT batch size to achieve significantly smaller curvature,
and moderately smaller FID at low number of integration steps. Our experiments also suggest that in
this setting, lower renormalized entropy generally benefits the performance.
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Figure 4: Early ImageNet-32 experiment metrics obtained at a checkpoint of 120k iterations (150k
for I-FM). We provide later checkpoint results and settings in Appendix A.6.

points, placing them on an intuitive scale from 0 (close to using an optimal permutation as returned287

e.g. by the Hungarian algorithm) to 1 (equivalent to the independent sampling approach popularized288

by Lipman et al. [2023]). This involved efficient multi-GPU parallelization, realizing scales which,289

to our knowledge, were never achieved previously in the literature. Although the scale of these290

computations may seem large, they are still relatively cheap compared to the price one has to pay291

to optimize the FM loss, and, additionally, are completely independent from model training. As a292

result, they should be carried out prior to any training. While we have not explored the possibility of293

launching multiple jobs with them (to ablate, e.g., for other fundamental aspects of model training294

such as learning rates), we leave a more careful tuning of these training runs for future work. We295

claim that paying this relatively small price to log and sample paired indices obtained from large296

scale couplings results for mid-sized problems in great returns in the form of faster training and faster297

inference, thanks to the straightness of the flows learned with the batch-OT procedure. For larger298

sized problems, the conclusion is not so clear, although we quickly observe benefits when using299

middle values for n (in the thousands) and renormalized entropies around 0.2 which forms, at the300

time of writing, our main practical recommendation for end users.301
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paper’s contributions and scope?418

Answer: [Yes]419

Justification: The paper proposes to revisit an existing method by scaling up significantly its420

hyperparameters and study their interplay when measuring final performance.421

2. Limitations422

Question: Does the paper discuss the limitations of the work performed by the authors?423

Answer: [Yes]424

Justification: Yes, in the sense that the method works when scaling n (minibatch size of OT)425

up to a point.426

3. Theory assumptions and proofs427

Question: For each theoretical result, does the paper provide the full set of assumptions and428

a complete (and correct) proof?429

Answer: [NA]430

Justification: We do not include any proofs.431

4. Experimental result reproducibility432

Question: Does the paper fully disclose all the information needed to reproduce the main ex-433

perimental results of the paper to the extent that it affects the main claims and/or conclusions434

of the paper (regardless of whether the code and data are provided or not)?435

Answer: [Yes]436

Justification: All of our experiments rely on config files previously presented in the literature437

or on simple MLP architectures.438

5. Open access to data and code439

Question: Does the paper provide open access to the data and code, with sufficient instruc-440

tions to faithfully reproduce the main experimental results, as described in supplemental441

material?442

Answer: [Yes]443

Justification: The data is either synthetically generated or widely available. Our code builds444

on OTT-JAX and will be released in coming months.445

6. Experimental setting/details446

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-447

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the448

results?449

Answer: [Yes]450

Justification: We provide details of each experiment in Section 4 and in the Appendices.451

7. Experiment statistical significance452

Question: Does the paper report error bars suitably and correctly defined or other appropriate453

information about the statistical significance of the experiments?454

Answer: [No]455

Justification: Due to the scale of our experiments (each points in our plots is a run takes a456

single node for a few hours to sometimes a full day) we are not able to report error bars.457
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societal impacts of the work performed?471

Answer: [Yes]472
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11. Safeguards474

Question: Does the paper describe safeguards that have been put in place for responsible475

release of data or models that have a high risk for misuse (e.g., pretrained language models,476
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Answer: [NA]478
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12. Licenses for existing assets480
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subjects.498
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)502

approvals (or an equivalent approval/review based on the requirements of your country or503

institution) were obtained?504

Answer: [NA]505
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subjects.507
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scientific rigorousness, or originality of the research, declaration is not required.512

Answer: [NA]513
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A Appendix / supplemental material516

A.1 Sinkhorn517

Here put minimal evidence that dropping norm terms helps with convergence and considering smaller518

ε519

A.2 Sinkhorn Convergence520

A.3 Gaussian Generation521

A.4 Korotin et al. Benchmark Examples522

A.5 Cifar 10 Detailed Results523

A.6 ImageNet32 Detailed Results524
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