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ABSTRACT

LLM-based multi-agent (LLM-MA) systems have demonstrated potential in com-
plex tasks such as reasoning and code generation. However, compared to single-
agent systems, LLM-MA systems incur significantly higher inference latency and
token costs due to repeated LLM calls. In this work, we identify duplicated tokens
as a major contributor to these inefficiencies, acting as a "communication tax"
that hinders scalability. To systematically analyze token duplication patterns, we
propose AgentTaxo, a taxonomy that categorizes agent roles into Planner, Rea-
soner, and Verifier across various applications. AgentTaxo dissects inter-agent
communication and identifies redundant reasoning results frequently reused for
validation. We benchmark and analyze token costs in popular LLM-MA systems,
quantifying the impact of this communication tax through experimental evaluation.
Our findings provide insights into optimizing efficiency and scalability in LLM-MA
architectures.

1 INTRODUCTION

LLM-MA systems (Wu et al., 2023b; Chen et al., 2023; Hong et al., 2024) leverage collaborative
interactions among multiple LLM agents to address many tasks. While these systems demonstrate
strong performance in domains such as code and math (Chen et al., 2023), their effectiveness is
hampered by the significantly higher token consumption (Singh & Strouse, 2024) and long latency
caused by dependency (Lin et al., 2024; Tan et al., 2024) between LLM agents as shown in Figure 1.
The significant latency hinders real-world deployment of LLM-MA systems especially in some
emergency scenarios, such as hospitals and natural disasters.

To understand where is the source of higher token consumption, we empirically measure three real-
world LLM-MA frameworks (Hong et al., 2024; Li et al., 2023b; Chen et al., 2023) in completing
three tasks. Table 1 shows token statistics, where the duplication rate reaches up to 86%. We call
these duplicated tokens as the Communication Tax, referring to the costs of scaling up the number of
agents to conduct tasks. Observing such duplicates, researchers have proposed application-aware
optimizations, including KV cache reuse via RadixAttention (Zheng et al., 2023), semantic variable
tracking for prompt reuse (Lin et al., 2024), predictive resource allocation (Wu et al., 2024), and
parallelized agent execution pipelines (Tan et al., 2024). From an algorithmic perspective, the
prevalence of repeated tokens suggests consolidating agent functions to reduce redundancy (Xue
et al., 2024; Wang et al., 2024b).

*Equal contribution
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[system prompt]: You are a project manager. Please hire a {Designer} 
and {Programmer} and divide the user task to them as {Task1} {Task2}
[Question prompt]: Please help me write codes to complete {Task}. 
Here is the requirement information: {Requirement}.
[Response]: The {Designer} should {Designer:Descriptions}, and
complete the {Task1:info}. The {Programmer} should 
{Programmer:Descriptions}, and complete the {Task2:info}.

Manager

Designer

Programmer

[Prompt]: You are a {Designer} with {Designer:Descriptions}. Here is 
the task you need to complete: {Task1:info}.
[Response]: The solution is {Solution1}.

[Prompt]: You are a {Programmer} with {Programmer:Descriptions}. 
Here is the task you need to complete: {Task2:info}.
[Response]: The solution is {Solution2}.

[Prompt]: You are a verifier to verify whether solutions {Solution1} 
and {Solution2} are correct for the {Task} that needs {Requirement}.
[Response]: The solution is {result}. This is the {analysis}.Verifier

… [Prompt]: …       [Response]: …
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Figure 1: An example of LLM-MA application (Hong
et al., 2023). Different colors indicate the communicated
messages towards different types of roles (real-world
case studies in Appendix B).

Table 1: Duplicate Token Statistics. Tokens as
duplicate if they appear in at least two LLM calls.

Framework Task Type # Tokens Duplicate(%)
MetaGPT (Hong et al., 2023) Code 30k ∼ 90k 72

CAMEL (Li et al., 2023b) Math 2k 86
AgentVerse (Chen et al., 2023) Reasoning 10k 53

However, these advanced LLM-MA optimiza-
tions require a deeper understanding of token
distribution patterns across agents: an aspect
largely overlooked in current literature. This
gap motivates us to explore the following funda-
mental research question:

How can we classify sequences in LLM-MA and
analyze their occurrence patterns? What are the
sources of token duplication?

Current LLM-based multi-agent frameworks
employ diverse role definitions tailored to specific applications like code generation (Hong et al.,
2023), academic projects (Wang et al., 2024c) and business management (Xu et al., 2024). This
complicates direct comparisons and obscuring underlying patterns in token distributions. To unify
these variations, we propose a general benchmark framework AgentTaxo to help answer above
questions.

First, inspiring from philosophy of the divide-and-conquer problem solving, AgentTaxo generalizes
various agent roles into three common agents: the planner for task decomposition; the reasoner for
direct solving sub-tasks; and the verifier checks results and provides reflection (Section 3.1). This
generalization enables systematic analysis of how role specialization impacts token allocation across
different LLM-MA frameworks.

Second, with these general role definitions, AgentTaxo taxonomizes different sequences in the inputs
and outputs of these agents into system problems, context, questions, plan, results, verification
analysis (Section 3.3). Built upon them, we can dissect how these sequences are communicated
between different agents to enable the divide-and-conquer problem solving. These categories also
align with the semantic variables in (Lin et al., 2024) or the primitives in (Zheng et al., 2023),
providing opportunities for future system optimization.

Based on AgentTaxo, we analyze token distribution across three LLM-MA systems: MetaGPT
(linear), CAMEL (flat), and AgentVerse (hierarchical). Our evaluation includes extensive tasks
including code generation, reasoning, and role-playing, following established experimental settings
Chang et al. (2024); Hong et al. (2024); Li et al. (2023a); Chen et al. (2023). We categorize tokens into
planner, reasoner, and verifier phases to systematically assess token distribution and communication
overhead in their interactions.

Results show that reasoning and verification dominate token consumption. Input tokens consistently
outnumber output tokens by a 2:1 to 3:1 ratio, indicating inefficiencies in prompt design. Verification
phases disproportionately consume input tokens, as seen in MetaGPT’s 2048 development experiment,
where 72% of tokens are used for verification. Communication overhead mainly arises from repeated
reasoning results appearing in verification, leading to duplicate tokens. Our contributions are:
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• First Taxonomy of LLM-MA Token Distribution: We propose AgentTaxo that pioneers a
systematic dissection of token distribution across planner, reasoner, and verifier phases.

• Communication Tax Quantification: With AgentTaxo and comprehensive benchmarking, we rig-
orously quantify redundant token costs from inter-agent interactions, introducing “communication
tax” as a metric.

• Empirical Optimization Guidelines: We conduct empirical benchmarking across diverse tasks in
MetaGPT, CAMEL, and AgentVerse, providing quantitative evidence of token inefficiencies and
offering insights for optimizing LLM-MA frameworks.

2 RELATED WORK

LLM-MA Systems. Recent LLM advances (Achiam et al., 2023; Team et al., 2023) have spurred
LLM-MA systems that coordinate specialized agents for complex tasks like code generation and
planning (Hong et al., 2023; Chen et al., 2023). Enhanced by persona design (Chen et al., 2024; Chan
et al., 2024), strategic planning (Yuan et al., 2023), and memory architectures (Zhang et al., 2023a;
Hatalis et al., 2023), these systems outperform single-agent approaches. Frameworks like MetaGPT
(Hong et al., 2023), AutoGen (Wu et al., 2023b), AgentVerse (Chen et al., 2023), and MegaAgent
(Wang et al., 2024a) exemplify effective multi-agent coordination.

LLM Token Costs. LLM-MA systems amplify high token consumption of LLMs (Liu et al., 2024b;
Keith et al., 2024; Han et al., 2024c), with added overhead from role definitions (Cheng et al., 2024),
system prompts and inter-agent communication (Zhang et al., 2024a). Recent work challenges
multi-agent necessity (Wang et al., 2024b) by showing single agents with optimized prompts can
match multi-agent performance while saving tokens.

Divide and Conquer. Multi-step reasoning requires decomposing problems into sequential sub-tasks.
LLMs act as meta-agents to autonomously decompose and schedule tasks (Hong et al., 2024; Wu
et al.), augmented by symbolic reasoning for optimized planning (Zhang et al., 2023b). Many
approaches leverage multiple calls for answer aggregation (Brown et al., 2024), including majority
voting in CoT-SC (Wang et al., b), structured reasoning frameworks like Tree or Graph-of-Thought
(Yao et al., 2024; Besta et al., 2024) and knowledge graph integration (LUO et al.; Sun et al.).
Triplet-formatted prompts (Jiang et al., 2023) and decentralized LLM collaborations (Li et al., 2023a;
Hong et al., 2024; Du et al.) further enhance reasoning.

LLM-MA Serving. Recently, because of the population of LLM-MA frameworks, researchers begin
to focus on their serving system. Different from single LLM call, LLM-MA frameworks introduce
multiple calls dependent on each other and can be formulated as directed acyclic graphs (DAGs).
Thus, the serving latency of one complete MA is significantly larger than the one LLM call. Many
works have noticed this and propose the application-aware optimization including KV cache reuse via
RadixAttention (Zheng et al., 2023), semantic variable tracking (Lin et al., 2024) for prompt reuse,
predictive resource allocation (Wu et al., 2024), parallelization and pipelining of different agent calls
(Tan et al., 2024).

Despite these literature, no benchmark systematically evaluates token distribution across task stages,
limiting the efficiency of LLM-MA system design. To address this, we establish a comprehensive
benchmark for evaluating token distribution in LLM-MA systems. We leave more detailed discussion
in Appendix A due to limited space.

3 METHODOLOGY

As different LLM-MA agents have many different role definitions based on different downstream
applications like coding (Hong et al., 2023), academic research (Wang et al., 2024c), business
project (Xu et al., 2024), it is difficult to generally analyze how tokens are costed of different stages.
To this end, we present AgentTaxo as a systematic framework for analyzing token LLM-based Multi-
Agent systems. Our methodology consists of three key components: (1) A general formalization
of individual LLM-based agents as shown in Figure 2; (2) Unified categories of different input and
output sequences as shown in Figure 4; (3) different topologies of multi-agent system architecture.
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3.1 LLM-BASED AGENTS

Language Modeling. Current widely used language modeling (Achiam et al., 2023) is the next word
prediction, which predicts the next token xt given the previous tokens x1:t−1 for all t = 1, . . . , T .
Formally, a LLM parameterized by θ is a language modeling distribution fθ(xt|x1:t−1). Each token
xt is sampled from a vocabulary O. In this work, we temporarily assume that all agents utilize the
same language modeling distribution f . In other words, we assume that all agents utilize the same
backbone LLM, which is a common practice in current works Zhao et al. (2023); Zhou et al. (2024).
Thus, we write fθ as f for simplicity.
Definition 3.1 (LLM Call). An LLM call is to sample a sequence from a language modeling
distribution as R ∼ f(R|S), in which the S is usually called the prompt or say input sequence, while
the R is called the response or say output sequence. The maximum length of the input sequence is
Lmax
inp while the maximum length of the output sequence is Lmax

out .

We write S = S1 ◦ S2 ◦ · · · ◦ Sn as the concatenation of n sequences. For simplicity, we also directly
write a concated sequence as S = S1S2 · · ·Sn.
Definition 3.2 (LLM-based Agent). An LLM-based agent is a language modeling distribution
f(R|Ssys ◦ S) with a fixed prefix system prompt Ssys, and input sequence S with the maximum
length Lmax

S < Lmax
inp − L(Ssys). With input sequence S, the agent can generate a sequence R ∼

f(R|Ssys ◦ S).

Calling an LLM-based agent means sampling a sequence from the language modeling distribution
defined by the agent.

[prompt]: {𝑆!"!: You are … , please divide the question to … (role 
definition)}{𝑆#$%: The background is… (context)}{𝑆&'(!$:What is the 
answer of …(question)}{Outputs should follow … in Json (formats)}.
[Response]: {𝑅sys1: The first one …}{𝑅ctx1: The The background 
is…}{𝑅&'(!$/: The sub question 1 is:}……{𝑅!"!0}{𝑅#$%0}{𝑅&'(!$0}

[Prompt]: {𝑆!"!/: You are … need to … (role definition)}{𝑆#$%/: The sub 
question 1 information is… (context)}{ S&'(!$/ : The sub question 1 is … }.
[Response]: {𝑅result1: The solution is…}.

[Prompt]: {𝑆!"!: You are … need to … (role definition)}{𝑆#$%: The 
background is… (context)}{S5(!'6$: The solution is …}.
[Response]: {𝑅#7(#8: The solution is …}{𝑅9096"!:!: The Reason is …}.

Verifier

Communication 
 token costs)

…
[Prompt]: {𝑆!"!0: You are … need to … (role definition)}{𝑆#$%0: The sub 
question n information is… (context) with (𝑅5(!'6$	<=/…)}{S&'(!$0: The sub 
question n is…}.
[Response]: {𝑅result: The solution is…}.

Communication 
(Repeated token costs)

…
Output 

Analyzer

Agent 
Engine

LLM

LLM

LLM

LLM

Planner

Reasoner

Verifier

LLM-MA
Framework

Figure 2: An example of unified linear communication
topology and sequence categories as in MetaGPT. Differ-
ent colors indicate the communicated messages towards
different types of roles.

Agent Roles. Current multi-agent systems usu-
ally define agents with different roles like prod-
uct manager, code architect, programmer in a
code writing project (Hong et al., 2023), or PhD
student, Postdoc, Professor in a paper writing
project (Wang et al., 2024c), or CEO, CFO,
CTO, sales, marketing, supply chain in a busi-
ness project (Xu et al., 2024). As shown in
Figure 2, we generalize these different roles into
the planner fplan, reasoner freason, and verifier
fverify. To solve a task, these agents collabora-
tively work together to output the final result
Rresult. According to different role definitions
and the concrete application requirements, dif-
ferent agents will be assigned different system
prompts Ssys.

3.2 MULTI-AGENT SYSTEM

Agent Runtime Engine. Because LLM based
agents themselves cannot call or activate another
agents, or manage and construct new messages,
there should be some external programs as an engine to call LLMs and manage messages between
them (Chen et al., 2023; Lin et al., 2024). As shown in Figure 2, an agent is actually a LLM equipped
with different system prompt including role definitions. The agent engine calls LLMs with different
inputs, and receives their outputs, then process messages with given formats. Then, the extracted
information with some other texts are constructed as new prompts to other agents.

Standard Operating Procedures (SOPs). SOP serves as foundational guidelines for orchestrating
agent behaviors and communication protocols in LLM-MA systems. By defining step-by-step
workflows, SOPs ensure consistency, coordination, and scalability across agents. Critically, these
procedures rely on the agent engine to mediate interactions between LLMs, enabling agents to
exchange information, resolve dependencies, and align their outputs with system-wide objectives.

Predefined SOPs are manually crafted protocols that govern agent roles, task decomposition, and
communication patterns. Pioneering works like (Hong et al., 2023; Huang et al., 2023; Park et al.,
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2023) demonstrate their effectiveness in structuring specialized agents for code generation, collabora-
tive problem-solving, and workflow automation. Automated SOPs. dynamically generate and refine
agent workflows using real-time system feedback or learned policies. These protocols leverage the
external control system to analyze agent capabilities, task requirements, and interaction histories,
enabling on-the-fly adjustments to role assignments and communication rules (Piatti et al., 2024;
Mou et al., 2024; Pan et al., 2024).

In the overall agent workflow, agents interact by exchanging information to accomplish tasks col-
laboratively. The planner fplan decomposes the task and assigns responsibilities to different agents.
The reasoner freason processes the task description and generates a solution. The fverify then evaluates
both the question and the generated result to ensure correctness. We detail how different agents are
equipped with these components and how their inputs and outputs interact within the system in the
following:

Definition 3.3 (Planner). A planner fplan is an LLM-based agent f(Rplan|SsysSctxSquest) with
a fixed system prompt Ssys, and varied context Sctx and query Squest. The Rplan =
Rsys1Rctx1Rquest1 · · ·RsysnRctxnRquestn is the partition of the task.

Definition 3.4 (Reasoner). A reasoner freason is an LLM-based agent f(Rresult|SsysSctxSquest) with a
fixed system prompt Ssys, and varied context Sctx and query Squest.

Definition 3.5 (Verifier). A verifier fverify is an LLM-based agent f(Rverify|SsysSctxSquestSresult) with
a fixed system prompt Ssys, and varied context Sctx and query Squest.

Definition 3.6 (Composite Agent). A composite agent is an LLM-based agent that both conduct mul-
tiple functions include planning, reasoning and verification. Given the system prompt Ssys, and varied
context Sctx and query Squest, it can be defined as distribution f(RplanRresultRverify|SsysSctxSquestSresult).

3.3 DISSECTING TOKEN COST DISTRIBUTION

[prompt]: {𝑆!"!: You are … , please divide the question to … (role 
definition)}{𝑆#$%: The background is… (context)}{𝑆&'(!$:What is the 
answer of …(question)}{Outputs should follow … in Json (formats)}.
[Response]: {𝑅sys1: The first one …}{𝑅ctx1: The The background 
is…}{𝑅&'(!$/: The sub question 1 is:}……{𝑅!"!0}{𝑅#$%0}{𝑅&'(!$0}

[Prompt]: {𝑆!"!/: You are … need to … (role definition)}{𝑆#$%/: The sub 
question 1 information is… (context)}{ S&'(!$/ : The sub question 1 is … }.
[Response]: {𝑅result1: The solution is…}.

…
[Prompt]: {𝑆 : You are … need to … (role definition)}{𝑆#$% : The sub 

Communication 
(Repeated token costs)

LLM

LLM

LLM

Planner

Reasoner

LLM LLM
Prefill Decode Prefill Decode

LLM
Prefill Decode

LLM
Prefill Decode

𝑅!"!#

Time

Prefill Decode
Prefill Decode

Prefill Decode
Prefill Decode

Time Time

LLM

Prefill Decode

(a) Agent Engine Sequentially Calls Agents

(b) Parallel Overlapped Calls 
(System perspective acceleration)

(c) Aggregating in One Call 
(Algorithmic token reduction)

’’Communication’’
𝑅!"!𝑅#$%𝑅&'(!$ 𝑅)(!'*$ 𝑅)(!'*$S#$%𝑆&'(!$

Figure 3: (a) An example of timeline of linear commu-
nication topology (Hong et al., 2023); (b) The system
optimization of multiple agent calls (Lin et al., 2024;
Zheng et al., 2023); (c) Solving the problem within one
call.

Communication Tax. Regardless of the agent
framework design, agents must exchange token
sequences to collaboratively solve tasks. This
shared information often appears redundantly
in both input and output stages, as illustrated
in Figure 2. For instance, the planner’s out-
put RctxRquest is divided and reformulated into
sub-tasks, which are then structured as context
Sctx and question Squest for the reasoner freason.
While this divide-and-conquer approach facil-
itates complex problem-solving, it also incurs
significant token costs for communication be-
tween agents and the agent engine. We define
these additional token costs as the Communica-
tion Tax in LLM-MA systems.

LLM inference requires processing input (pre-
filling) generating output (decoding) and save
previous Key Value attention tensors. As shown in Figure 3(a), repeated sequences in different agents
increase redundant computation and memory costs, and enlarge the LLM serving latency due to
launching different agent calls sequentially.

Optimization Opportunities of Communication Tax. Figure 3(b) shows that some recent works
propose the application-aware optimization including KV cache reuse (Zheng et al., 2023) and
parallel calls (Lin et al., 2024). Figure 3(c) shows it is possible to aggregate different agent calls
into one thus avoiding redundant computation and storage such as Definition 3.6. To provide further
support on the both systematic and algorithmic for LLM-MA systems, understanding the token cost
distribution is critical, which lacks discussion in current literature.

Agent-level Token Cost Comparison. As shown in Figure 2, different agent roles can be generalized
as the planner fplan, reasoner freason, and verifier fverify of Definition 3.3, 3.4 and 3.5 in Section 3.2.
With this definition, we can compare the token cost distribution with agent-level in different LLM-MA
frameworks uniformly.
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[Prompt]:
{#Role Definition} 
{#Output Formats} 
{#Context}
{#Questions}

[Response]:
{#Plan}
{#Reasoning Results}
{#Verify Analysis}

Planner

Reasoner

Verifier

… [Prompt]: …       [Response]: …

Communication 
(Repeated token costs)

Unified Role Definitions Unified Sequence Categories Different Topologies of 
Real-world MA Frameworks

Project Manager
Urban Planner
Software Architect
University President

Code Developer
Business Analyst
Research Assistant
Company Intern
Quality Assurancer
Technical Inspector
Code Reviewer
Journal Editor

…

Repeat

Figure 4: Three different dimensions of our benchmark, which unifies different agent roles and sequence
categories, identifies typical topologies of current LLM-MA frameworks (Hong et al., 2023), and various tasks.

Sequence-level Token Cost Comparison. To enable fine-grained optimization of LLM-MA systems,
one needs to know how different sequences* appear in prompts and responses of agents. As shown
in Figure 4, we divide the prompts into Role Definition, Output Formats, Context,
Plan, Question, Reasoning Results and Verify Analysis. All agents receive the
Role Definition, Output Formats as the system prompt Ssys. Input and output sequences
of the planner, reasoner and verifier are categorized as follows.

• The planner fplan receives Context Sctx as the background or descriptions, and Question
Squest and output Rplan = Rsys1Rctx1Rquest1 · · ·RsysnRctxnRquestn to divide original question into
sub-questions and define a group of reasoners to solve them. For convenience of comparison, we
also regard the Plan Rplan as a kind of Reasoning Results of the fplan in Section 4.

• The reasoner receives inputs SctxSquest which might be generated by the planner fplan, or predefined
by the framework, and it returns Reasoning Results Rresult. After reasoning, the engine will
receive and identify the result Rresult for further processing.

• The verifier receives both SctxSquest and the result Sresult from the reasoner for verification. It outputs
the verification results Verify AnalysisRverify = RckcRanalysis. In which the Rckc is the check
operation that indicates whether the result is correct, and the Ranalysis is the reflection analysis of
the verifier. If the Rckc is identified as true, the question Squest is seen as solved. Otherwise, the
original question and the analysis Ranalysis might be input to the planner or reasoner to solve the
problem again, in which the process depends on the concrete SOPs.

Communication Topology. The communication flow decides which sequences are repeatedly shared
between agents. Figure 2 shows a linear communication topology, where the planner divides the
problem to be solved by reasoners sequentially as a chain structure. Thus, the intermediate reasoning
results are sent to the next reasoner. As it is difficult to define a topology (or say DAG) that can
generally cover different frameworks, we choose to choose three typical existing LLM-MA framework
with different topologies to benchmark including Linear, Flat and Hierarchical in Section 4.

4 EXPERIMENTS

We analyze the token distribution characteristics in LLM-MA systems through three research ques-
tions (RQs). RQ1: What are the token distributions across planner, reasoner, and verifier in LLM-MA
systems? RQ2: How does communication tax influence token consumption in LLM-MA systems?
RQ3: How does LLM-MA system topology influence token distribution and communication tax?

4.1 PRELIMINARY

General Tasks in LLM Evaluation. To evaluate the performance of LLMs, researchers have curated
a diverse range of datasets spanning multiple domains. These datasets are broadly categorized into
several key areas, including code generation, mathematical reasoning, logical reasoning, general
understanding, and role-playing tasks, each designed to assess specific capabilities of LLMs (Chang
et al., 2024).

*The sequences can be scheduled as semantic variables in (Lin et al., 2024) or the primitives in (Zheng
et al., 2023).
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Choices of LLM-MA Systems. Building on the message-passing mechanisms of LLM-MA systems
(Huang et al., 2024), we systematically analyze three fundamental topologies, chosen as they represent
the core frameworks in this domain: (1) Linear (A→B→C), featuring sequential one-way communi-
cation for task specialization; (2) Flat (A↔B↔C), enabling fully bidirectional peer coordination;
and (3) Hierarchical (A→(B↔C)), combining vertical command flow with lateral collaboration to
transcend purely linear models.

In alignment with this classification, we select the following LLM-MA systems:

Linear: MetaGPT (Hong et al., 2023) employs Standard Operating Procedures (SOPs) to establish
an efficient workflow within a simulated software company, utilizing five agents for code generation.

Flat: CAMEL (Li et al., 2023b) introduces a framework where a “User” agent iteratively refines
outputs provided by an “Assistant” agent. It is applicable for many tasks.

Hierarchical: AgentVerse (Chen et al., 2023) implements a dynamic recruitment process, selecting
agents for multi-round collaboration as required, and the agent number is flexible for each task.

Token Categories in LLM-MA Systems Tokens exchanged in LLM-MA can be systematically
categorized based on their functional roles in LLM calls. These categories reflect the distinct purposes
of agents and their interactions, enabling a clearer understanding of communication patterns and
computational overhead. The primary token categories include:

Role Definition. specify the responsibilities and constraints of agents within a system call. They
define how an agent should behave in a given context, ensuring alignment with the task. For example,
an instruction like "You are responsible for verifying calculations and providing feedback" explicitly
assigns a role to an agent.

Questions. represent actionable items or requests assigned to agents, such as generating code,
solving problems, or completing specific tasks. These tokens drive the agent’s primary functionality
and output. Examples include "Generate a Python function to calculate Fibonacci numbers" or
"Summarize the key points from this document."

Output Formats. dictate the structure of responses in LLM calls. They ensure consistency across
agent outputs by enforcing predefined formats. For instance, an instruction like "Format the answer in
JSON with a reasoning explanation" guides the agent to produce structured and standardized results.

Reasoning Result. encapsulate intermediate or final reasoning outputs generated during an LLM call.
These tokens reflect the agent’s thought process as it derives solutions. An example might be "If A
implies B and B is true, then A must also be true."

Verification Analysis. is used to evaluate and validate reasoning results within LLM calls. They
ensure logical consistency and correctness, enhancing the reliability of outputs. For example, an
agent might state, "Disagree. Rechecking the derivation: Step 2 contradicts Step 5, suggesting an
inconsistency."

Other/Metadata. include auxiliary information necessary for system-level coordination, such as
session management or role assignment. These tokens often contain system logs or metadata, like
"Session ID: 12345".

4.2 EXPERIMENT SETTINGS

Downstream Tasks. We evaluate the task-solving abilities of LLM-MA systems using a diverse set
of general tasks:

General Reasoning: MGSM (Cobbe et al., 2021) is a subset of GSM-8k designed to evaluate agents’
mathematical reasoning capabilities. This dataset contains grade-school-level math problems to test
multi-step problem-solving skills.

Code Generation: HumanEval (Chen et al., 2021) includes 164 hand-crafted programming problems
to assess LLMs’ ability to synthesize correct and functional Python code.

Software Development: 2048 (Hong et al., 2024) involves developing a fully functional 2048 game.
Similarly, Blackjack (Hong et al., 2024) focuses on creating a casino banking game based on standard
blackjack rules.
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Logical Reasoning: Logic Grid (Srivastava et al., 2022) contains multi-step logic problems to evaluate
agents’ logical reasoning capabilities.

General Understanding: FED (Mehri & Eskenazi, 2020) is a dialogue response dataset where agents
or agent groups are required to generate responses based on multi-round chat histories.

Role Playing: AI Society (Li et al., 2023b) requires developing a Python trading bot that uses machine
learning to analyze historical stock data, predict future price movements, and automatically execute
buy/sell orders. Additionally, Code (Li et al., 2023b) involves creating a function that enables users
to generate survey questions.

Please note that not all systems support all the tasks listed here. Therefore, we follow the experimental
settings described in their respective papers to conduct the corresponding experiments.

We use GPT-4-Turbo* as the backbone for all experiments, setting the temperature to zero to ensure
consistent and robust results.

4.3 RQ1: TOKEN DISTRIBUTION

Table 2: Token Distribution across Models and Tasks. The most dominant phase is highlighted in red.
Model Task # Agents # Tokens # Input # Output # Planner # Reasoner # Verifier Max Input Phase Max Output Phase

MetaGPT 2048 5 31,852 24,664 (77%) 7,188 (23%) 1,237 (4%) 7,526 (24%) 23,089 (72%) Verifier Reasoner
Blackjack 5 90,112 63,628 (71%) 26,483 (29%) 2,633 (3%) 17,607 (19%) 69,872 (78%) Verifier Reasoner

CAMEL Code 2 2,250 1,051 (47%) 1,199 (53%) 1,048 (47%) 1,202 (53%) 0 (0.00%) Planner Reasoner
AI Society 2 1,325 689 (52%) 636 (48%) 601 (45%) 724 (55%) 0 (0.00%) Planner Reasoner

AgentVerse

HumanEval 4 15,423 10,582 (69%) 4,840 (31%) 2,761 (18%) 8,416 (55%) 4,246 (29%) Verifier Reasoner
MGSM 2 9,871 7,649 (78%) 2,222 (23%) 1,280 (13%) 2,150 (22%) 6,461 (65%) Verifier Reasoner

LogicGrid 2 7,657 4,834 (63%) 2,823 (37%) 860 (11%) 4,714 (62%) 2,083 (27%) Reasoner Reasoner
FED 2 11,230 9,193 (82%) 2,037 (18%) 1,166 (10%) 2,973 (26%) 7,091 (63%) Verifier Reasoner

To analyze token distributions across planning, reasoning, and verification, we examine two key
aspects: (1) phase-specific token distribution and (2) input-output token distribution. Based on the
results in Table 2, we derive the following key findings:

Finding 1: Reasoning or verification dominates token consumption. Across all frameworks and
datasets, reasoning or verification accounts for the largest share of token consumption. This finding
highlights the varying priorities across frameworks, with reasoning or verification driving resource
usage depending on the task, while planning consistently accounts for a smaller share.

Finding 2: Verification introduces significant token overhead. Frameworks incorporating explicit
verification mechanisms, such as MetaGPT and AgentVerse, incur significant token costs. For in-
stance, AgentVerse (MGSM) dedicates nearly two-thirds of its tokens to verification, while MetaGPT
(2048) similarly exhibits verification as the dominant token consumer. In contrast, frameworks that
deprioritize verification, such as CAMEL, allocate negligible tokens to this phase. These findings
indicate that verification introduces substantial overhead.

Finding 3: Input tokens dominate. Input tokens consistently exceed output tokens, often by a ratio
of 2:1 to 3:1 across various tasks and frameworks. This emphasizes the heavy reliance of LLM-MA
systems on extensive prompts, including role definitions, instructions, and task contexts, to guide
agent behavior. These findings highlight potential inefficiencies in input tokens.

Finding 4: Verification phases disproportionately consume input tokens compared to output tokens.
In most cases, verification phases account for a substantial share of input tokens, likely due to their
design, which involves format checking and performing repetitive validations for each reasoning
output. This highlights the importance of analyzing the input tokens consumed during verification to
identify opportunities for optimization.

Finding 5: Reasoner occupies the most output tokens. Across all frameworks, the reasoning phase
consistently generates the highest proportion of output tokens. This reflects the role of the reasoner in
synthesizing information and generating responses. This is also intuitive as the reasoner would give
the detailed responses to the questions.

*https://platform.openai.com/docs/models/gpt-4
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4.4 RQ2: COMMUNICATION TAX
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Figure 5: Analysis of token categories within each phase.

To analyze communication tax, we investigate the sources of exchanged tokens, including role
definitions, context, formatting, reasoning, verification, and other components. Additionally, we
identify communication-induced overhead, such as reasoning results reappearing in the verifier phase,
leading to repeated token consumption. Based on Figure 5, we present the following findings.

Finding 6: Verification Overhead Mirrors Reasoning Redundancy. Verification phases consume
tokens not through novel validation but by reprocessing reasoning outputs. In AgentVerse (MGSM),
about 5-% of verification tokens fund recursive checks of prior reasoning steps, such as re-evaluating
arithmetic in multi-step calculations. MetaGPT (2048) exhibits similar inefficiencies, with 20%
of verification tokens reinvested in reasoning results. This redundancy aligns with Finding 5’s
observation that verification dominates input tokens—not because it introduces new logic, but
because it recycles reasoning.

Finding 7: Output Formatting Decreases Efficiency. Token allocation to formatting instructions
reveals a systemic tension between usability and efficiency. MetaGPT dedicates 15% of Planner
tokens to structuring code outputs, while CAMEL spends about 25% of Planner tokens on dialogue
organization. These investments, though critical for human interpretability, expose a trade-off: strict
formatting requirements anchor tokens to syntactic compliance rather than semantic problem-solving.

4.5 RQ3: TOPOLOGY INFLUENCES

To analyze the impact of topology on token distribution and overhead, we examine Table 2 alongside
Figure 5. From this analysis, we derive the following findings:

Finding 8: Linear systems reduce verifier communication tax compared to hierarchical systems. A
comparison of verifier token usage between MetaGPT and AgentVerse reveals that MetaGPT incurs
lower percentage reasoning token costs, which is the communication tax. This reduction is attributed
to the linear system’s lack of iterative communication loops, which are prevalent in hierarchical
systems and contribute to increased token consumption.

Finding 9: Code tasks favor linear topologies for minimizing communication tax. For structured
programming tasks, linear topologies optimize token efficiency by enforcing a strict one-way pipeline.
In contrast, AgentVerse incurs significant overhead due to the repeated use of reasoning results in
verification and the propagation of verification results back into reasoning, as shown in HumanEval
chart in Figure 5. However, when linear structures reduce redundant token consumption, they trade
off adaptability.

Finding 10: Topologies exhibit distinct reasoning and verification patterns. Linear systems
enforce a structured workflow, reducing redundant verification but limiting adaptability. Flat systems

9



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

enhance reasoning flexibility through iterative exchanges but risk higher token costs due to extended
reasoning interactions. Hierarchical structures distribute reasoning across specialized agents yet
accumulate verification overhead through multi-stage validation. These differences highlight the need
for topology-specific optimizations to balance efficiency and adaptability.

5 CONCLUSION

AgentTaxo is the first taxonomy for analyzing token distribution in LLM-based multi-agent systems,
providing a structured understanding of how tokens are allocated across planner, reasoner, and verifier
roles. Through communication tax quantification, we identify and measure the inefficiencies arising
from inter-agent interactions, revealing that a substantial fraction of verification tokens is consumed
by redundant revalidation rather than novel insights. Finally, our findings derived from extensive
experiments provide actionable strategies to enhance token efficiency in LLM-MA frameworks. By
systematically dissecting and quantifying token usage, our work paves the way for more cost-effective
and scalable multi-agent LLM systems.
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APPENDIX

A MORE RELATED WORKS

A.1 LLM-MA SYSTEMS

Recent breakthroughs in LLMs (Achiam et al., 2023; Team et al., 2023) have catalyzed the de-
velopment of LLM-MA systems. These systems orchestrate multiple specialized agents to tackle
complex tasks ranging from code generation to mathematical reasoning and real-world planning
(Hong et al., 2023; Chen et al., 2023). By integrating advanced components such as persona design
(Chen et al., 2024; Chan et al., 2024), strategic planning mechanisms (Yuan et al., 2023), and memory
architectures (Zhang et al., 2023a; Hatalis et al., 2023), LLM-MA systems have demonstrated superior
problem-solving capabilities compared to single-agent approaches. Representative frameworks like
MetaGPT (Hong et al., 2023), AutoGen (Wu et al., 2023b), AgentVerse (Chen et al., 2023), and
MegaAgent (Wang et al., 2024a) showcase how specialized agent roles can be effectively coordinated
for complex task completion.

However, current LLM-MA systems lack theoretical foundations in their design approaches. While
existing frameworks typically assign agent profiles and establish connection patterns (flat, hierarchical,
or nested structures) (Han et al., 2024b; Huang et al., 2024), this design is based on human common
practices (Hong et al., 2023; Li et al., 2023a), and lacks systematic guidance. The current classification
of agent structures remains superficial, and there exists no comprehensive methodology to inform
structural design decisions. This gap between practice and theory highlights the need for a more
rigorous analytical framework in LLM-MA system design.

LLM Token Costs. LLMs have much token consumption during inference (Xue et al., 2024; Liu
et al., 2024b; Keith et al., 2024; Han et al., 2024c), a challenge that becomes even more severe in LLM-
MA systems. This is due to additional token overhead such as agent role definitions (Cheng et al.,
2024) and inter-agent communication (Zhang et al., 2024a). Recent research has even questioned the
necessity of multi-agent architectures; for example, (Wang et al., 2024b) demonstrates that single
agents, when equipped with well-crafted prompts, can not only match the performance of multi-agent
systems but also achieve significant token savings.

Despite these findings, a critical gap persists in understanding the token costs associated with LLM-
MA systems. Currently, no comprehensive analysis benchmarks token consumption across different
frameworks, leaving several fundamental questions unanswered: How are tokens distributed across
various stages of task execution? What are the comparative token efficiencies of different LLM-MA
architectures? Addressing these questions is essential for designing more efficient and scalable
LLM-MA systems.

SOPs in LLM-MA Systems. Allocating SOPs is a common approach in designing agent profiles
and tasks within LLM-based multi-agent (LLM-MA) systems (Hong et al., 2023; Huang et al.,
2023; Park et al., 2023; Zhuge et al., 2024; Shi et al., 2024). These systems define SOPs for both
individual agents and their communication protocols. While this method has proven effective in
previous works, it has two major limitations: (1) Agents may possess unforeseen capabilities that
cannot be anticipated during the human design stage but become relevant during task execution
(Rivera et al., 2024; Sypherd & Belle, 2024; Piatti et al., 2024); (2) As the scale of LLM-MA systems
grows—potentially involving thousands or even billions of agents—designing SOPs manually for
each agent becomes infeasible (Mou et al., 2024; Pan et al., 2024).

A.2 LLM REASONING

The Chain-of-Thought (CoT) reasoning framework illustrates that detailed reasoning conducted
in multiple stages is notably beneficial for the effectiveness of Large Language Models (LLMs),
particularly when compared to the limitations of single-step reasoning (Wei et al., 2022). The
advantage stems from the tendency of single-step methods to overlook essential intermediate stages
that are vital for effective problem-solving (Wei et al., 2022; Wang et al., 2023; Li et al., 2024a). By
emulating the cognitive processes observed in humans, the multi-step reasoning approach significantly
boosts LLM performance (Wei et al., 2022).
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Single LLM Call. The CoT method serves as a prime example of a single invocation of an LLM,
where the model is utilized once. Recent investigations go beyond merely prompting LLMs for
detailed reasoning and suggest methods for enabling advanced search strategies, such as Monte-Carlo
Tree Search (MCTS) (Leblond et al., 2021) or Q-star search (Chakraborty et al., 2024), during the
decoding process. Moreover, there is research advocating for the use of backtracking algorithms,
which permit LLMs to revisit and reassess prior decisions, thus refining their overall outcomes (Fu
et al.).

Multiple LLM Calls. In contrast, certain methodologies favor the use of multiple independent LLM
calls, each potentially arriving at accurate answers (Brown et al., 2024). In addition to the solitary
CoT application, the CoT-SC variant introduces the concept of multiple CoT-based LLM calls, which
select the best answer from a range of options to enhance final results (Wang et al., b). Nevertheless,
answers from these calls can exhibit direct dependencies. To improve the organization and execution
of the reasoning process, techniques such as Tree-of-Thought (ToT) reasoning (Yao et al., 2024) and
Graph-of-Thought (GoT) reasoning (Besta et al., 2024) have been proposed, which arrange reasoning
steps into tree or graph formats. Additionally, some research indicates that integrating knowledge
graphs can empower LLMs to reason within graph-based systems, further improving their reasoning
capabilities (LUO et al.; Sun et al.). Prompt structuring into triplet formats using LLMs has also
been shown to enhance reasoning performance (Jiang et al., 2023). In scenarios lacking a centralized
controller, other studies suggest simulating collaborations between multiple LLM agents to jointly
tackle problems (Li et al., 2023a; Hong et al., 2024; Liang et al., 2023; Du et al.).

Planning and Scheduling. Central to the concept of multi-step reasoning is the breakdown of
a complex problem into smaller, manageable sub-problems, which are then resolved sequentially.
This necessitates effective planning and scheduling. Recent research indicates a trend towards
utilizing LLMs as meta-agents, which can independently orchestrate planning and scheduling by
decomposing the original issue and allocating sub-problems to various LLMs according to a defined
schedule (Hong et al., 2024; Wu et al.; Zhou et al.; Wang et al., a). Additionally, by leveraging external
symbolic reasoning, LLMs can engage in planning and scheduling processes to tackle problems more
effectively (Zhang et al., 2023b).

A.3 INFERENCE COSTS OF LLMS.

LLM Compression. Model Pruning (Frantar & Alistarh, 2023; Sun et al., 2024; Shao et al., 2024;
Zhang et al., 2024b; Dong et al.; Tang et al., 2020) refers to the systematic elimination of less
significant parameters. Pruning enhances the model’s efficiency by removing redundancies, all while
maintaining its performance. Overall, pruning methods will evaluate the importance of each parameter
using some specific metrics like Tarloy expansion (Sun et al., 2024; Shao et al., 2024; Ma et al., 2023)
or Fisher information (Dong et al., 2019) and remove the unimportant ones. Model Quantization
(Park et al., 2024; Frantar & Alistarh, 2022; Lee et al., 2024a; Kim et al., 2023; Lin et al., 2023; Dong
et al., 2024) involves lowering the precision of model weights and activations from high-precision
formats, such as 32-bit floating-point representations, to 8-bit integers. LLM compression can save
the computational and memory costs, and it is orthogonal to the agent systems. The upper-level
plannig and scheduling and prompt engineering are decoupled from LLM compression.

Prefilling and decoding. Prefilling and decoding are crucial steps in the process of deploying large
language models (LLMs) for various applications. Prefilling refers to the preparatory phase during
which initial context or input data is provided to the model to compute the kay-value attention states
cache (Pope et al., 2023). This phase is essential in applications where context and coherence are
paramount, such as in conversational agents or document completion systems. It ensures that the
model can conduct next word prediction without recomputing the KV vectors of all previous tokens.

The decoding phase follows prefilling and involves the generation of output sequences based on the
prepared context. Various decoding strategies, including greedy decoding, beam search (Pryzant
et al., 2023), and sampling (Brown et al., 2024) methods, can be employed to balance the trade-off
between diversity and quality of the generated text.

Computation Efficiency. The computation efficiency of large language models (LLMs) has garnered
substantial attention in recent literature. Various studies have examined how optimizations at both the
architectural and algorithmic levels can reduce the computational burden during inference. Techniques
such as model pruning, quantization, and knowledge distillation stand out as prominent strategies
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that help reduce the number of operations required for inference without significantly compromising
performance (Dong et al.; Lin et al., 2023). Additionally, researchers have explored the use of more
efficient transformer architectures, such as the Longformer (Beltagy et al., 2020) and Reformer
(Kitaev et al., 2019), which are designed to mitigate the quadratic computational complexity inherent
in traditional transformer models, thus improving computation efficiency.

KV Cache Management. The management of the KV cache, which dynamically adjusts in size as
new tokens are produced, is highlighted by PagedAttention (Kwon et al., 2023a). It treats the KV
cache as a series of non-contiguous memory blocks according to the duration and length of request
generations. Current LLM serving frameworks, such as TGI (tgi, 2023), vLLM (Kwon et al., 2023a),
and TensorRT-LLM (ten), have adopted this approach.

KV Compression. To address the substantial memory requirements of LLM serving, many works
propose to compress the KV cache. Some works utilize the quantization techniques to compress the
KV cache (Kang et al., 2024; Liu et al., 2024c; Sheng et al., 2023; Liu et al., 2024a). Different works
estimate the KV cache quantization value based on different clusters, including groupwise quanti-
zation (Sheng et al., 2023), asymmetric quantization techniques for the Key and Value caches (Liu
et al., 2024c), per-channel basis (Liu et al., 2024c). KV cache pruning and sparsification aims to
remove unimportant tokens from the KV cache, which can be further compressed (Xiao et al., 2024;
Han et al., 2024a; Yang et al., 2024; Cai et al., 2024). Some works observe that the initial and recent
tokens consistently have high attention scores between different layers and attention heads (Xiao
et al., 2024; Han et al., 2024a) which can be attained during inference. Some works propose dynamic
KV cache pruning based on evaluating the attention scores (Zhang et al., 2023c; Li et al., 2024b). And
it is observed that the long-context scenarios show different KV cache compression patterns (Yang
et al., 2024; Cai et al., 2024).

Long-context KV Cache. The long context KV cache is a critical component in the serving of LLMs,
especially in scenarios where the context exceeds the GPU’s memory capacity. Most systems choose
to transfer the KV cache to the CPU to handle this issue. InfiniGen (Lee et al., 2024b) proposes
anticipating the crucial KV cache entries by simulating the attention computation. LoongServe (Wu
et al., 2024) dynamically adjusts the varying resource usage across different requests and phases
(including pre-filling and decoding), minimizing KV cache migration overhead and the fragmentation
of the KV cache when processing lengthy sequences.

Longer sequence will result to the long context KV cache, which will lead to the KV cache migration
overhead. This significantly reduces the serving througputs because the cloud server has limited
GPU memory. Besides, the latency will increase due to the longer sequence. Thus, it is important to
understand the token costs in the multi-agent system.

A.4 OPTIMIZATION OF SERVING LLMS

LLM serving has seen a surge of research activity in recent years, with many systems developed to
address the different challenges. The systems include Clockwork (Gujarati et al., 2020), AlpaServe (Li
et al., 2023c), Orca (Yu et al., 2022a), vllm (Kwon et al., 2023b), SGLang (Zheng et al., 2023)
and others. These serving systems explore many aspects including batching, caching, placement,
scheduling, model parallelism for the serving of single or multiple models.

Serving Metrics. Key metrics in LLM serving include SLO, Latency, Throughput, TTFT (Time To
First Token), and TPOT (Time Per Output Token) (Databricks, 2023). Different systems implement
attention kernels uniquely, influencing their respective performances (Liu et al., 2023). For instance,
TGI (tgi, 2023) directly imports Flash and Paged attention (Kwon et al., 2023a) libraries, while
other systems like LightLLM (lig, 2023) and MLC-LLM (team) use customized implementations or
optimizations. Balancing low latency and high throughput is crucial, as these dual objectives often
conflict and require a strategic approach to achieve optimal performance (Miao et al., 2024).

Scheduling Requests. Effective request scheduling in LLM serving aims to maximize resource
utilization while ensuring responsiveness within latency service level objectives (SLO) (Ali et al.,
2020). Unique challenges arise from the iterative nature of LLMs, necessitating innovative solutions
such as selective batching and iteration-level scheduling (Yu et al., 2022b). Techniques such as
FastServe prioritize shorter input lengths to enhance job completion times, addressing the complexities
of varying request loads (Wu et al., 2023a). Batching multiple requests can improve GPU utilization,
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but variable response lengths may lead to inefficiencies during processing (Zheng et al., 2024).
Techniques like Response Length Perception and continuous batching at the token level help mitigate
these issues by grouping similar request lengths together (Jin et al., 2023). Continuous batching,
now an industry standard, allows for the dynamic joining of new requests to active batches without
halting ongoing computations. This adaptability ensures that computational resources are used more
effectively, leading to reduced waiting times and better overall throughput.

Prefilling-Decoding Decoupling. Decoupling the prefill and decoding stages allows for independent
processing, minimizing interference and optimizing resource allocation (Hu et al., 2024). Systems
like TetriInfer employ scheduling algorithms that predict resource usage, further enhancing efficiency
during the decoding phase. By partitioning these tasks, distinct hardware can be utilized for each
stage, as demonstrated by Splitwise approach to separating machines based on phase requirements
(Patel et al., 2023). This specialization not only improves performance but also significantly reduces
costs and energy consumption.

A.5 OPTIMIZATION OF SERVING AGENTS

The previous serving frameworks discussed in Section A.4 mainly focus on optimizing single LLM
call as the prompt-response pair. However, the real-world agent applications usually have multiple
LLM calls and interactions with external resources and tools.

Multi-Agent Workflow Orchestrator. Multi-agent systems utilizing large language model (LLM)
calls can be effectively represented as directed acyclic graphs (DAGs), with each node symbolizing
an LLM call (or agent) and the edges indicating the interdependencies between these calls (lan, 2024).
This graphical representation helps in systematically estimating system latency and throughput,
allowing for more efficient processing. Unlike traditional single LLM call architectures, which
handle requests in isolation, multi-agent workflows involve chains of requests that are interdependent.
PromptFlow pro (2023) supports chains of native and semantic functions and visualizes them as a
graph

Traditional DAG-Aware Serving Systems. Prior DAG-aware serving systems have implemented var-
ious optimization techniques to enhance the efficiency of request processing. These systems(Apache,
2019; Isard et al., 2007; Mahgoub et al., 2021) leverage task dependency to improve scheduling
and execution, optimizing the use of parallel processing and minimizing communication overheads.
However, they typically lack the understanding of application-specific request correlations, yielding
suboptimal performance.

DAG-aware LLM Serving. Recent advancements in LLM orchestration have introduced novel
frameworks to optimize efficiency and programmability. Parrot (Lin et al., 2024) introduces semantic
variables (SVs), a mechanism to encapsulate task-specific context (e.g., instructions, examples)
and expose dependencies and commonalities across LLM requests. By explicitly modeling these
relationships, Parrot enables intelligent scheduling, reduces redundant computations, and facilitates
shared prompt reuse. Traditional systems often overlook such correlations, leading to latency and
resource inefficiencies.

Complementing this, SGLang (Zheng et al., 2023) addresses runtime inefficiencies in executing
Language Model (LM) programs through RadixAttention, a technique for reusing Key-Value (KV)
caches across LLM calls. Unlike conventional inference engines that discard KV caches post-
execution, SGLang maintains an LRU-managed radix tree to cache and reuse these tensors. This
approach efficiently identifies shared prefixes across requests, reducing redundant computations
and memory overhead. Combined with cache-aware scheduling, RadixAttention enables significant
throughput improvements, particularly in multi-call LM programs with overlapping contexts.

B PROMPT-RESPONSE EXAMPLES

We provide prompt response examples in Table 3, Table 4, and Table 5.
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C IMPACT STATEMENTS

Societal Impacts and Ethical Concerns. Our research did not involve any human subjects, data
collection from individuals, or experiments on protected groups. We conducted all experiments
using publicly available resources. The models and basic datasets utilized in this study are widely
recognized and publicly accessible within the research community. All experiments were performed
using resources that are publicly available. We would like to state that there are no conflicts of
interest regarding this work. The datasets and models employed in this research are not only publicly
available but also commonly used by others in the field.

Broader Impacts. Our analysis of token distribution in LLM-MA systems uncovers inefficiencies in
inter-agent communication, exposing redundant tokens across Planner, Reasoner, and Verifier roles.
By identifying token duplication, we provide insights for reducing token waste, enhancing agent
coordination, and optimizing resource usage. This work advances multi-agent system development,
benefiting dialogue systems, collaborative AI, and autonomous decision-making in large-scale LLM
applications.
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Table 3: Examples of using MetaGPT to program blackjack game.

Planner

Prompts: You are a Product Manager, named Alice, your goal is efficiently create a successful product that meets
market demands and user expectations. the constraint is utilize the same language as the user requirements for seamless
communication.
### Original Requirements Create a 2048 game
”Language”: ”en_us”, ”Programming Language”: ”Python”, ”Original Requirements”: ”Create a 2048 game”, ”Product
Goals”: [ ”Create an engaging user experience”, ”Improve accessibility, be responsive”, ”More beautiful UI” ], ”User
Stories”: [ ”As a player, I want to be able to choose difficulty levels”,... ], ”Competitive Analysis”: [ ”2048 Game A:
Simple interface, lacks responsive features”, ”play2048.co: Beautiful and responsive UI with my best score shown”,
”2048game.com: Responsive UI with my best score shown, but many ads” ], other requirements...
## constraint
Language: Please use the same language as Human INPUT. Format: output wrapped inside [CONTENT][/CONTENT]
like format example......
## action
Follow instructions of nodes, generate output and make sure it follows the format example.
Response: ## Design {”Implementation approach”:”We will develop the 2048 game in Python utilizing the popular
library ’pygame’ for UI rendering and handling user input efficiently. The game will focus on delivering responsive design
compatible with different screen sizes and devices, ......”} ## Task {”Required packages”:[”pygame”,”kivy”],”Required
Other language third-party packages”:[”No third-party dependencies required”],”Logic Analysis”:[[”main.py”,”Contains
Main class with run() method to start the game. Imports Game and UI.”],[”game.py”,”Contains Game class with methods
for game logic, including move_tiles, generate_tile, check_game_over. Others .....}

Reasoner

Prompts: You are a Engineer, named Alex, your goal is write elegant, readable, extensible, efficient code. the constraint
is the code should conform to standards like google-style and be modular and maintainable. Use same language as user
requirement. You are a professional engineer; the main goal is to write google-style, elegant, modular, easy to read and
maintain code Language: Please use the same language as the user requirement, but the title and code should be still in
English. For example, if the user speaks Chinese, the specific text of your answer should also be in Chinese. ATTENTION:
Use ’##’ to SPLIT SECTIONS, not ’#’. Output format carefully referenced ”Format example”.
## Design {”Implementation approach”:”We will develop the 2048 game in Python utilizing the popular library ’pygame’
for UI rendering and handling user input efficiently. The game will focus on delivering responsive design compatible with
different screen sizes and devices, ......”}
## Task {”Required packages”:[”pygame”,”kivy”],”Required Other language third-party packages”:[”No third-party
dependencies required”],”Logic Analysis”:[[”main.py”,”Contains Main class with run() method to start the game. Imports
Game and UI.”],[”game.py”,”Contains Game class with methods for game logic, including move_tiles, generate_tile,
check_game_over. Others .....}
Response: ## Legacy Code “‘Code —– main.py “‘## main.py
import pygame
from game import Game
from ui import UI...
{Other Code Snippets....}

Verifier

Prompts: You are a professional software engineer, and your main task is to review and revise the code. You need to
ensure that the code conforms to the google-style standards, is elegantly designed and modularized, easy to read and
maintain. Language: Please use the same language as the user requirement, but the title and code should be still in English.
For example, if the user speaks Chinese, the specific text of your answer should also be in Chinese. ATTENTION: Use
’##’ to SPLIT SECTIONS, not ’#’. Output format carefully referenced "Format example"
## Design {”Implementation approach”:”We will develop the 2048 game in Python utilizing the popular library ’pygame’
for UI rendering and handling user input efficiently. The game will focus on delivering responsive design compatible with
different screen sizes and devices, ......”}
## Task {”Required packages”:[”pygame”,”kivy”],”Required Other language third-party packages”:[”No third-party
dependencies required”],”Logic Analysis”:[[”main.py”,”Contains Main class with run() method to start the game. Imports
Game and UI.”],[”game.py”,”Contains Game class with methods for game logic, including move_tiles, generate_tile,
check_game_over. Others ...... }
## Code to be Reviewed: main.py
import pygame
from game import Game
from ui import UI...
{Other Code Snippets....}
# Instruction: Based on the actual code, follow one of the "Code Review Format example". Note the code filename should
be ’main.py’. Return the only ONE file ’main.py’ under review.
## Code Review: Ordered List. Based on the "Code to be Reviewed", provide key, clear, concise, and specific answer. If
any answer is no, explain how to fix it step by step. 1. Is the code implemented as per the requirements? If not, how to
achieve it? Analyse it step by step. 2. Is the code logic completely correct? If there are errors, please indicate how to
correct them. 3. Does the existing code follow the "Data structures and interfaces"? ...
Response: ## Code Review: main.py: 1. No, we should fix the logic of class A due to ... 2. ... 3. ...
## Actions 1. Fix the ’handle_events’ method to update the game state only if a move is successful.
”’python
def handle_events(self):

for event in pygame.event.get():
if event.type == pygame.QUIT:

Other code revision...
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Table 4: Examples of using MetaGPT to program blackjack game.

Planner

Prompts: You are a Product Manager, named Alice, your goal is efficiently create a successful product that meets
market demands and user expectations. the constraint is utilize the same language as the user requirements for seamless
communication.
### Original Requirements Write a cli Blackjack Game
”Language”: ”en_us”, ”Programming Language”: ”Python”, ”Original Requirements”: ”Create a 2048 game”, ”Product
Goals”: [ ”Create an engaging user experience”, ”Improve accessibility, be responsive”, ”More beautiful UI” ], ”User
Stories”: [ ”As a player, I want to be able to choose difficulty levels”,... ], ”Competitive Analysis”: [ ”2048 Game A:
Simple interface, lacks responsive features”, ”play2048.co: Beautiful and responsive UI with my best score shown”,
”2048game.com: Responsive UI with my best score shown, but many ads” ], other requirements...
## constraint
Language: Please use the same language as Human INPUT. Format: output wrapped inside [CONTENT][/CONTENT]
like format example......
## action
Follow instructions of nodes, generate output and make sure it follows the format example.
Response: ## Design { ”Implementation approach”: ”We will utilize Python to create a command-line Blackjack game.
Our focus will be on implementing a user-friendly interface and the core Blackjack rules, such as hit, stand, double down,
and split. }
”Required packages”: [ ”argparse”, ”pickle”, ”rich” ], ”Required Other language third-party packages”: [ ”No third-party
dependencies required” ], ”Logic Analysis”: [ [ ”main.py”, ”Contains the entry point of the program, utilizes other modules
to manage game flow. Entry function start_game() is defined here.” ], Others...

Reasoner

Prompts: You are a Engineer, named Alex, your goal is write elegant, readable, extensible, efficient code. the constraint
is the code should conform to standards like google-style and be modular and maintainable. Use same language as user
requirement. You are a professional engineer; the main goal is to write google-style, elegant, modular, easy to read and
maintain code Language: Please use the same language as the user requirement, but the title and code should be still in
English. For example, if the user speaks Chinese, the specific text of your answer should also be in Chinese. ATTENTION:
Use ’##’ to SPLIT SECTIONS, not ’#’. Output format carefully referenced ”Format example”.
## Design { ”Implementation approach”: ”We will utilize Python to create a command-line Blackjack game. Our focus
will be on implementing a user-friendly interface and the core Blackjack rules, such as hit, stand, double down, and split. }
”Required packages”: [ ”argparse”, ”pickle”, ”rich” ], ”Required Other language third-party packages”: [ ”No third-party
dependencies required” ], ”Logic Analysis”: [ [ ”main.py”, ”Contains the entry point of the program, utilizes other modules
to manage game flow. Entry function start_game() is defined here.” ], Others...
Response:
## Code: models.py
“‘python
## models.py
class Card:

"""Represents a single playing card, identified by its suit and value."""
def __init__(self, suit: str, value: str):

"""
Initialize a new card.

{Other Code Snippets....}

Verifier

Prompts: You are a professional software engineer, and your main task is to review and revise the code. You need to
ensure that the code conforms to the google-style standards, is elegantly designed and modularized, easy to read and
maintain.
Language: Please use the same language as the user requirement, but the title and code should be still in English. For
example, if the user speaks Chinese, the specific text of your answer should also be in Chinese. ATTENTION: Use ’##’ to
SPLIT SECTIONS, not ’#’. Output format carefully referenced "Format example"
## Design { ”Implementation approach”: ”We will utilize Python to create a command-line Blackjack game. Our focus
will be on implementing a user-friendly interface and the core Blackjack rules, such as hit, stand, double down, and split. }
”Required packages”: [ ”argparse”, ”pickle”, ”rich” ], ”Required Other language third-party packages”: [ ”No third-party
dependencies required” ], ”Logic Analysis”: [ [ ”main.py”, ”Contains the entry point of the program, utilizes other modules
to manage game flow. Entry function start_game() is defined here.” ], Others...
## Code: models.py
“‘python
## models.py
class Card:

"""Represents a single playing card, identified by its suit and value."""
def __init__(self, suit: str, value: str):

"""
Initialize a new card.

{Other Code Snippets....}
# Instruction: Based on the actual code, follow one of the "Code Review Format example". Note the code filename should
be ’main.py’. Return the only ONE file ’main.py’ under review.
## Code Review: Ordered List. Based on the "Code to be Reviewed", provide key, clear, concise, and specific answer. If
any answer is no, explain how to fix it step by step. 1. Is the code implemented as per the requirements? If not, how to
achieve it? Analyse it step by step. 2. Is the code logic completely correct? If there are errors, please indicate how to
correct them. 3. Does the existing code follow the "Data structures and interfaces"? ...
Response: ## Code Review: main.py: 1. No, we should fix the logic of class A due to ... 2. ... 3. ...
## Code Review: models.py
1. Yes, the code is implemented as per the requirements. It defines the classes ‘Card‘ and ‘Hand‘ which encapsulate the
necessary attributes and methods as per the design.
2. Yes, the code logic is correct, however, there is a slight optimization...
3. Yes, the existing code correctly follows...
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Table 5: Examples of using AgentVerse to generate code of HumanEval.

Planner

Prompts: You are the leader of a group of experts, now you need to recruit a small group of experts with diverse identity
to correctly write the code to solve the given problems:
from typing import List
def below_zero(operations: List[int]) -> bool:

""" You’re given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is
to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it
should return False. »> below_zero([1, 2, 3]) False »> below_zero([1, 2, -4, 5]) True """
You can recruit 4 expert in different fields. What experts will you recruit to better generate an accurate solution? Here are
some suggestion: No advice yet." }, { "role": "user", "content": "# Response Format Guidance You should respond with a
list of expert description. For example: 1. an electrical engineer specified in the filed of xxx. 2. an economist who is good
at xxx. 3. a lawyer with a good knowledge of xxx. ... Only respond with the description of each role. Do not include your
reason."
Response:
1. A software engineer experienced in algorithm design and complexity analysis to provide an efficient solution. 2.
A financial expert specializing in banking operations who can understand the application of the problem in real-world
scenarios and propose appropriate assumptions. 3. A cybersecurity expert who can guide the team in implementing the
solution securely, especially if the problem has applications in sensitive financial systems. 4. A test engineer with expertise
in writing unit and system tests to ensure the final system is robust and passes all edge cases.

Reasoner

Prompts: Can you complete the following code?
from typing import List
def below_zero(operations: List[int]) -> bool:

""" You’re given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is
to detect if at any point the balance of account falls below zero, and at that point function should return True. Otherwise it
should return False. »> below_zero([1, 2, 3]) False »> below_zero([1, 2, -4, 5]) True """
{ "role": "user", "content": "You are A software engineer experienced in algorithm design and complexity analysis to
provide an efficient solution. Provide a correct completion of the code. Explain your reasoning. Your response should
contain only Python code. Do not give any additional information. Use “‘python to put the completed Python code in
markdown quotes. When responding, please include the given code and the completion." }
Response: Here is the code with a simple modification. The function below_zero keeps track of the running balance. If
the balance ever turns negative, it returns True. If it has processed all operations and the balance is still non-negative, it
returns False.
from typing import List
def below_zero(operations: List[int]) -> bool:

""" You’re given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is
to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it
should return False. »> below_zero([1, 2, 3]) False »> below_zero([1, 2, -4, 5]) True """

balance = 0
for operation in operations:

balance += operation
if balance < 0:

return True
return False

This solution scans the list once, meaning its time complexity is O(n).

Verifier

Prompts: Problem Complete the following function
from typing import List
def below_zero(operations: List[int]) -> bool:

""" You’re given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is
to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it
should return False. »> below_zero([1, 2, 3]) False »> below_zero([1, 2, -4, 5]) True """
# Experts The experts recruited in this turn includes: A software engineer experienced in algorithm design and complexity
analysis to provide an efficient solution A financial expert specializing in banking operations who can understand the
application of the problem in real-world scenarios and propose appropriate assumptions A cybersecurity expert who can
guide the team in implementing the solution securely, especially if the problem has applications in sensitive financial
systems A test engineer with expertise in writing unit and system tests to ensure the final system is robust and passes all
edge cases
# Writer’s Solution:
from typing import List
def below_zero(operations: List[int]) -> bool:

""" You’re given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is
to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it
should return False. »> below_zero([1, 2, 3]) False »> below_zero([1, 2, -4, 5]) True """

balance = 0
for operation in operations:

balance += operation
if balance < 0:

return True
return False

# Tester’s Feedback: Execution timed out."
You must respond in the following format: Score: (0 or 1, 0 for incorrect and 1 for correct) Response: (give your advice on
how to correct the solution, and your suggestion on what experts should recruit in the next round)
Response: Score: 1 Response: The solution provided by the writer is correct. It iterates over the operations array, adding
each operation to the balance. If at any point the balance falls below zero, it returns True.
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