
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEMANTIC VISUAL ANOMALY DETECTION AND REA-
SONING IN AI-GENERATED IMAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid advancement of AI-generated content (AIGC) has enabled the synthesis
of visually convincing images; however, many such outputs exhibit subtle seman-
tic anomalies, including unrealistic object configurations, violations of physical
laws, or commonsense inconsistencies, which compromise the overall plausibility
of the generated scenes. Detecting these semantic-level anomalies is essential for
assessing the trustworthiness of AIGC media, especially in AIGC image analysis,
explainable deepfake detection and semantic authenticity assessment. In this pa-
per, we formalize semantic anomaly detection and reasoning for AIGC images
and introduce AnomReason, a large-scale benchmark with structured annotations
as quadruples (Name, Phenomenon, Reasoning, Severity). Annotations are pro-
duced by a modular multi-agent pipeline (AnomAgent) with lightweight human-
in-the-loop verification, enabling scale while preserving quality. At construc-
tion time, AnomAgent processed approximately 4.17 B GPT-4o tokens, provid-
ing scale evidence for the resulting structured annotations. We further show that
models fine-tuned on AnomReason achieve consistent gains over strong vision-
language baselines under our proposed semantic matching metric (SemAP and
SemF1). Applications to explainable deepfake detection and semantic reasonable-
ness assessment of image generators demonstrate practical utility. In summary,
AnomReason and AnomAgent serve as a foundation for measuring and improv-
ing the semantic plausibility of AI-generated images. We will release code, met-
rics, data, and task-aligned models to support reproducible research on semantic
authenticity and interpretable AIGC forensics.

1 INTRODUCTION

The rapid advancement of AI-generated content (AIGC) has led to striking progress in photorealis-
tic image synthesis, powered by large-scale generative models such as Stable Diffusion (Rombach
et al., 2022), DALL·E (Ramesh et al., 2021), Midjourney (Midjourney, Inc., 2025), and Flux (Labs,
2024). These models can generate high-quality images and are being widely adopted in design, edu-
cation, media, and science. However, despite visual realism, many AIGC-generated images exhibit
subtle but significant semantic-level anomalies, such as logical contradictions, physical implau-
sibilities, or commonsense violations, that compromise their authenticity. These inconsistencies
highlight the need for structured semantic anomaly detection in AIGC images, which not only fa-
cilitates a deeper analysis of such images but also lays the groundwork for explainable deepfake
detection and evaluating generative models’ reasoning capabilities regarding commonsense knowl-
edge. Furthermore, this approach holds potential for enhancing the semantic coherence of image
generation models. Our proposed task directly supports these goals by identifying content-aware
violations that compromise semantic authenticity.

As illustrated in Fig. 1(a), such semantic anomalies include hybrid semantics (e.g., mixing sports
equipment), violations of physics (e.g., gravity-defying climbers), and anatomical implausibilities.
These issues are not captured by traditional low-level forensic cues (Tan et al., 2023; 2024; Durall
et al., 2020; Wang et al., 2020; Ojha et al., 2023), yet they critically affect human trust and decision-
making when AIGC is used in factual or sensitive domains.

This work introduces the task of semantic visual anomaly detection and reasoning for AIGC
image, which seeks to identify and explain semantic-level anomalies present in synthetic images.
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Football and rugby Defying gravity

Error mirror Three arms

(a) Content-aware semantic anomalies

User: Determine whether this image was generated by artificial intelligence and 
provide a list of reasons.

GPT-5: Likely NOT AI-generated 
(appears to be a real photo).
1. Lighting & shadows are consistent 
with a single sun source ...
2. Atmospheric perspective looks 
natural—distant hills are hazier and less  
saturated than the foreground.... 
3. Fine, coherent detail in the granite 
(no smeared/repeating textures); 
micro-pitting ...
4. Gear realism: the harness, rope, 
carabiners, cams, and chalk bag have 
correct proportions ...
5. Anatomy & pose are clean (hands, 
fingers, feet, and ...
6. Lens/film characteristics like 
gentle ...

(b) Detection example using GPT-5, Qwen2.5vl-7B, and AnomAgent 

AnomAgent’s structured anomaly descriptions

Qwen2.5vl-72B: This image appears 
to be a photograph rather than an AI-
generated image. Here are some 
reasons why:
1. Realistic Details: The textures of the 
rocks, the climber's clothing, and the 
landscape in the background ...
2. Lighting and Shadows: The lighting 
on the climber and the rock face ...
3. Perspective and Depth: The 
perspective of the image, including ...
4. Human Features: The climber's 
features, posture, and equipment 
appear natural and functional,...
5. Background Elements: The distant 
mountains and the desert landscape 
in the background have a level of ...

@1 Name:  Missing climbing rope attachment
Phenomenon:  The climbing rope is visible hanging loosely below 
the climber but is not attached to the climber's harness or visibly 
anchored to the rock face. ...
Reasoning:  In real-world climbing, the rope must be securely 
attached to the climber's harness and anchored to the rock or a 
belay system to ensure safety. The absence of this connection ...
Severity Score:  20/100

@2 Name:  Lack of visible handholds or interaction with rock
Phenomenon:  The climber's hands are in contact with the rock 
face but do not appear to grip any visible cracks, ledges, or 
protrusions. The rock surface near the climber's ...
Reasoning:  Climbers rely on physical features of the rock, such as 
cracks or edges, to grip and support their weight. The absence 
of such features near the climber's hands makes the ...
Severity Score:  25/100

Surface-level Anomalies Semantic-level Anomalies 

. . . . .

Figure 1: Semantic anomaly detection in AIGC-generated images. (a) Illustration of high-level
semantic anomalies that are context-dependent and subtle, such as inconsistent physics, anatomy,
and reflections—challenges that go beyond surface-level visual artifacts. (b) Comparison of detec-
tion performance between general-purpose vision-language models (e.g., GPT-5, Qwen2.5vl-72B)
and the proposed AnomAgent. While the former focus on surface-level cues such as lighting and
textures, AnomAgent identifies fine-grained semantic inconsistencies and provides structured, ex-
plainable outputs with severity ratings.
These anomalies pertain specifically to violations of commonsense knowledge, physical plausibility,
and logical coherence. Formally defined, given an AIGC-generated image as input, the system is
required to produce a set of structured anomaly descriptions comprising four components: Name,
Phenomenon, Reasoning, and a corresponding Severity Score, capturing what is wrong, why it
is wrong, and how severe it is, as illustrated in Fig. 1(b). Specifically, Name provides a concise
summary of the anomaly, while Phenomenon offers a detailed description at the semantic level.
Reasoning explains the underlying causes of the anomaly. Finally, Severity Score quantifies the
anomaly by assigning a score that reflects its authenticity. This formulation underscores not only
the importance of detecting anomalies but also providing explanations alongside detailed semantic
evaluations.

Several studies (Wen et al., 2025; Gao et al., 2025; Zhang et al., 2025; Zhou et al., 2025) have at-
tempted to extract forgery-related evidence using vision-language models (VLMs) (Bai et al., 2025)
from images to support classification outcomes. However, their performance on anomaly detec-
tion frequently relies on surface-level irregularities, such as global lighting conditions or shadow
patterns—subtle statistical artifacts in texture that are typically imperceptible to human observers
(see Fig. 1(b), Left). In contrast, our task focuses on content-level semantic anomalies, implausible
object interactions, physical violations, or commonsense errors, that are directly visible to humans
and therefore more aligned with human judgment (refer to Fig. 1(b), Right). Furthermore, instead
of shallow descriptions, the defined structured anomaly representation makes anomaly analysis in-
terpretable and accessible, moving beyond detection to structured reasoning.

To support this task, we build AnomReason, the first large-scale benchmark for content-aware se-
mantic anomaly detection in AIGC images. AnomReason consists of diverse synthetic scenes an-
notated with structured semantic anomalies. Each anomaly entry describes what is wrong, why it
is wrong, and how severe the inconsistency is—capturing errors in object composition, spatial ar-
rangement, interaction logic, or physical constraints. This benchmark is enabled by AnomAgent,
a modular multi-agent framework that decomposes anomaly reasoning into object perception, at-
tribute analysis, relational reasoning, and anomaly synthesis. To ensure the reliability of annotations
produced by AnomAgent, we incorporate a lightweight human-in-the-loop verification stage. This
hybrid pipeline balances scale and accuracy by filtering and refining automatically generated results.
Compared with purely manual annotation or fully automated generation, our multi-agent plus human
verification strategy achieves both interpretability and scalability, allowing AnomReason to provide
high-quality structured annotations at unprecedented scale. Furthermore, we propose novel anomaly
semantic detection metrics based on Average Precision (AP) and F1-score, referred to as SemAP and
SemF1, respectively, to facilitate the evaluation of anomaly semantic detection performance.

By shifting the focus from surface-level artifacts to content-level reasoning, our framework opens
new research directions in semantic authenticity, explainable forensics, and commonsense reasoning
for generative media. Our proposed benchmark and system, AnomReason and AnomAgent, enable
several critical applications: (i) training semantic anomaly detector to gain deeper understanding
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Figure 2: Overview of the AnomAgent pipeline for semantic anomaly annotation. Stage 1 parses
visual entities and yields an object list O. Stage 2 performs multi-perspective anomaly mining,
producing attribute candidates Cattr and relational candidates Crel, which are scored and pruned to
C+. Stage 3 consolidates candidates (merging near-duplicates to Ĉ) and outputs structured anomalies
A = {(y, o, r, v)} (Name, Phenomenon, Reasoning, Severity).

AIGC images, (ii) developing explainable deepfake detectors that not only classify but also provide
semantic-level justifications for their predictions, and (iii) conducting AIGC semantic reasonable-
ness assessment to evaluate the logical coherence of image generation models. These applications
strengthen content authenticity auditing and help guide future AIGC model development.

2 ANOMAGENT FRAMEWORK

Detecting semantic anomalies in AI-generated images requires not only visual recognition but also
reasoning about commonsense knowledge, physical feasibility, and multi-object interactions. To
address this challenge, we propose AnomAgent, a modular multi-agent framework designed to
emulate human perception and reasoning through structured processes.

As shown in Fig. 2, AnomAgent decomposes the anomaly detection process into three stages: entity
parsing, anomaly mining, and structured output generation. Each stage involves specialized agents
that collaborate to produce interpretable, high-precision semantic anomaly annotations.

Given an input image I , AnomAgent outputs a set of structured anomalies:

A = {(yi, oi, ri, vi)}mi=1 (1)

where yi is the anomaly name, oi the described anomaly phenomenon, ri the reasoning explains
why o is considered anomalous, and vi ∈ [0, 100] indicates the severity. A score of 0 denotes
implausibility, while 100 represents full realism.

2.1 STAGE 1: VISUAL ENTITY PARSING

Semantic inconsistencies are often object-centric. However, objects in AIGC images can be en-
tangled, distorted, or hallucinated—making entity extraction unreliable. The Object Recognition
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Agent (ObjectPerceiver) identifies all semantically distinct entities in the image, with empha-
sis on human-related objects.

To reduce false negatives, the detection is repeated T times with varying prompts and merged:

O(t) = ObjectPerceiver(I), t = 1, . . . , T ; O =

T⋃
t=1

O(t) (2)

Each object oi ∈ O is represented by an object name and a detailed description.

2.2 STAGE 2: MULTI-PERSPECTIVE ANOMALY MINING

Anomalies in AIGC images may arise from incorrect attributes or implausible inter-object interac-
tions. In this stage, we iterate over each object oi ∈ O and perform two complementary forms of
semantic consistency analysis: intra-object (attribute-based) and inter-object (relation-based).

Attribute-Level Analysis. The Attribute Analysis Agent (AttributeAnalyzer) examines
visual attributes of oi such as shape, material, and functionality. It identifies internal inconsistencies
and produces a set of attribute anomaly candidates:

C(i)
attr = AttributeAnalyzer(oi) (3)

Relationship-Level Analysis. The Relationship Reasoning Agent (RelationReasoner) eval-
uates spatial, semantic, and functional interactions between oi and the rest of the scene, guided by
its own attribute anomalies C(i)

attr as contextual priors:

C(i)
rel = RelationReasoner

(
oi,O \ {oi}, C(i)

attr

)
(4)

The agent first enumerates pairwise and groupwise relations, then filters semantically implausi-
ble ones using both visual context and object-specific inconsistencies. We define the intermediate

anomaly lists across all objects as: Lattr =
{
C(i)

attr

}|O|

i=1
, Lrel =

{
C(i)

rel

}|O|

i=1
The total set of candidate

anomalies is: C =
⋃|O|

i=1

(
C(i)

attr ∪ C(i)
rel

)
. In addition, to mitigate hallucinations and reduce abnor-

mal omissions, we implement a two-step process in AttributeAnalyzer and RelationReasoner. First,
anomalies are comprehensively identified from multiple perspectives; subsequently, these anomalies
are verified and structurally outputted.

2.3 STAGE 3: ANOMALY CONSOLIDATION AND STRUCTURING

Raw anomaly candidates are noisy, redundant, and linguistically inconsistent. Annotations require
clean, standardized outputs. We next consolidate and structure the raw candidate set C into inter-
pretable anomaly annotations.

Integration. The Anomaly Integration Agent (AnomalyIntegrator) consolidates overlap-
ping or redundant candidates and removes noise: Ĉ = AnomalyIntegrator(C).
Formatting. The Anomaly Formatting Agent (AnomalyFormatter) maps each anomaly can-
didate c ∈ Ĉ into a structured four-field annotation: A = {(yi, oi, ri, vi)}|Ĉ|i=1 . In Fig. 3, we present
examples of structured anomalies. This structured output enables applications such as quality as-
sessment and deepfake detection.

AnomAgent provides a modular, interpretable, and scalable solution to semantic anomaly detection.
By decomposing the reasoning process across multiple agents, it aligns with human judgment and
supports practical applications such as quality auditing and explainable detection. Additional details
about AnomAgent are provided in Appendix E.

3 ANOMREASON BENCHMARK

Despite growing interest in semantic anomaly detection, there is no standardized benchmark de-
signed to evaluate semantic-level anomalies in AIGC content. We construct AnomReason, a large-
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Phenomenon: Two large cylindrical pipes are resting on the individual's shoulder without visible 
stabilization or grip. The pipes appear precariously balanced, showing no deformation of the 
jacket or adjustment in posture to account for their weight.

Severity Score: 15

Reasoning: Cylindrical pipes of this size and material would exert significant downward force, 
causing visible compression of the jacket fabric and requiring the individual to tilt their body or 
adjust their posture for balance. Additionally, the lack of hand contact or securing mechanism 
makes it physically implausible for the pipes to remain stable on the shoulder without rolling off.

Name: Implausible pipe placement on shoulder

Figure 3: Example of structured anomalies. This figure illustrates a detected anomaly where
two cylindrical pipes are unrealistically balanced on the individual’s shoulder. By structuring the
anomaly as {Name, Observed Phenomenon, Reasoning, Severity Score}, the model not only pro-
vides a clear description of the anomaly but also offers an interpretable reasoning process, making
it easier to understand why this arrangement is physically implausible. The severity score quantifies
the degree of implausibility, enhancing the model’s ability to observe and explain semantic-level
anomalies. This structure allows for transparent and interpretable anomaly detection, improving the
detection model’s trustworthiness and explainability.

scale dataset of photorealistic AIGC images annotated with structured semantic anomalies across
attribute, relational, and commonsense dimensions.

3.1 DATA CONSTRUCTION

We collect a diverse set of image-text pairs by crawling approximately 600K user prompts and their
corresponding outputs from Midjourney (Midjourney, Inc., 2025). To ensure content realism and
diversity, we apply CLIP-based (Radford et al., 2021) filtering on embedding alignment, extract-
ing 109,058 visually realistic samples. A subset of 9,911 images is further manually verified for
semantic richness and authenticity.

To enhance generative diversity, we synthesize additional samples using Stable Diffusion 3.5 (AI,
2024) and Flux (Labs, 2024), using the same prompt pool. After automated and manual filtering, we
construct a photorealistic dataset comprising 21,539 images: 9,911 from Midjourney, 4,645 from
SD3.5, and 6,983 from Flux.

3.2 AUTOMATIC ANNOTATION WITH ANOMAGENT

We apply the GPT-4o-based AnomAgent framework (Sec. 2) on the full image set, producing
174,872 structured candidate anomalies across 21,539 images. Across the full corpus, the pipeline
consumed about 4.17 billion GPT-4o tokens to generate and refine candidate anomalies before HITL
screening.1 Each anomaly contains a textual name, observed phenomenon, commonsense-based
reasoning, and a severity rating in [0, 100].

To ensure annotation reliability, we introduce a lightweight human-in-the-loop (HITL) quality con-
trol stage. Each candidate anomaly a is screened by a trained annotator answering a single-choice
question: “Is this structured description correct for the given image¿‘ with three options: AC-
CEPT/REJECT/UNSURE.

h(a) ∈ {1, 0,⊥} for ACCEPT, REJECT, UNSURE, Afinal = { a ∈ A : h(a) = 1 }. (5)

This low-cost protocol removes implausible hallucinations while preserving structured quality. After
HITL filtering, the average valid annotations per image drops from 8 to 5.9, indicating refined
semantic focus (Fig. 4).

Dataset Split. We retain 21,533 images for training/testing after removing six duplicates/corrupted
items. We adopt a deterministic 50/50 train/test split (|D| = 21,533), comprising 10,765 images for
training and 10,774 for testing. Each split includes image-level metadata, anomaly counts, sever-
ity scores, and intermediate agent outputs to support replicability and ablation studies. We will
release all results encompassing intermediate outputs from AnomAgent nodes alongside structured
annotations filtered through HIL processing mechanisms.

1We report tokens as aggregated API usage logs, including both prompt and completion.
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(a) Total Image Count per Category (b) Annotations Before and After Human Evaluation (c) Severity Distribution: Before vs After Human Evaluation

Figure 4: AnomReason statistics. (a) Total image count per category: Flux contains 6983 images,
Sdv3.5 contains 4645, and Midjourney has the most with 9911 images. (b) Annotations before
and after human evaluation: Flux has a reduction from 8.20 to 5.88 annotations per image, Sdv3.5
decreases from 8.11 to 5.86, and Midjourney shows a slight drop from 8.07 to 5.96 annotations per
image. (c) Severity distribution before and after human evaluation: It showing a shift towards lower
severity values after human evaluation, reflecting the refinement process in the annotation quality.

3.3 EVALUATION PROTOCOL

We propose a structure-aware evaluation protocol tailored for semantic-level anomaly reasoning.
Each annotation tuple (y, o, r, v) contains a description o and a reasoning field r, which are compared
against ground truth using BERTScore (Zhang* et al., 2020). We define three evaluation views: Phe
(Phenomenon), Rea (Reasoning), and Full (combined fusion).

We perform one-to-one anomaly matching at the image level based on similarity thresholds τ ∈
{0.7, 0.8, 0.9}, and compute precision/recall curves to derive:

SemAPv =
1

|D|
∑
I∈D

APv(I), SemF1v =
1

|D|
∑
I∈D

F1v(I) (6)

Severity scores v can optionally serve as confidence scores in ranking tasks. We adopt the “distilbert-
base-uncased” model for computing BertScore. Comprehensive details are provided in Appendix C.

4 EXPERIMENTS

We conduct comprehensive experiments to evaluate the effectiveness of our benchmark, methodol-
ogy, and task formulation in three progressively structured settings. These experiments are designed
to assess both the capabilities of current VLMs and the benefits of targeted fine-tuning for semantic
anomaly analysis. First, we evaluate structured semantic anomaly detection and reasoning on the
AnomReason benchmark, measuring whether VLMs can both identify anomalous phenomena and
explain their semantic violations (Sec. 4.1). Second, we extend this reasoning capability to a more
applied setting: explainable deepfake detection on AnomReason-Deepfake, which requires accurate
AI-generated content classification and grounded explanation (Sec. 4.2). Third, we audit modern
text-to-image generators by quantifying semantic plausibility and anomaly severity in their outputs
using structured reasoning (Sec. 4.3).

4.1 AIGC SEMANTIC VISUAL ANOMALY DETECTION AND REASONING

The first task evaluates whether VLMs can detect and explain semantic anomalies using struc-
tured outputs. The core challenge lies in not only localizing errors but also providing plausi-
ble reasoning chains grounded in commonsense or physical priors. We adopt the AnomReason
test set and use SemAP and SemF1 metrics across phenomenon (Phe), reasoning (Rea), and
full (Phe+Rea) views. We fine-tune Qwen2.5-VL-7B via LoRA on the train split, resulting in a
baseline AnomReasonor-7B (AR-7B). (training details in App. D)

Results. Table 1 presents comprehensive results on semantic anomaly detection and reason-
ing. Overall, most off-the-shelf VLMs struggle with the full task (SemAPFull), with values typ-
ically below 0.42, indicating limited semantic understanding in the absence of targeted supervi-
sion. Among open-source models, Qwen2.5-VL-72B performs best (SemAPFull= 0.4568), fol-
lowed by InternVL3-8B and InternVL2-26B. However, they still lag behind the top-performing
AnomReasonor-7B, which achieves a new state-of-the-art SemAPFull= 0.5162 and the highest rea-
soning score SemAPRea= 0.5130, demonstrating the effectiveness of fine-tuning on our structured

6
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Table 1: Comparative performance on the AnomReason-Test.

Model SemAPPhe SemAPRea SemAPFull SemF1Phe SemF1Rea SemF1Full

LongVA-7B (Zhang et al., 2024) 0.2579 0.2593 0.2494 0.1641 0.1617 0.1578
LLaVA-OV-7B (Li et al., 2024) 0.3280 0.2987 0.3012 0.2044 0.1837 0.1867
Phi-3.5-Vision (Abdin et al., 2024) 0.3466 0.3040 0.3117 0.2960 0.2572 0.2647
MiniCPM-V-2.6 (Hu et al., 2024) 0.3898 0.3501 0.3537 0.1891 0.1698 0.1715
InternVL2-8B (Wang et al., 2024b) 0.3697 0.3424 0.3424 0.3789 0.3500 0.3507
InternVL2.5-8B (Chen et al., 2024b) 0.3343 0.3070 0.3087 0.3008 0.2733 0.2764
InternVL3-8B (Zhu et al., 2025) 0.4552 0.3676 0.3927 0.1948 0.1614 0.1703
InternVL3-9B (Zhu et al., 2025) 0.3871 0.3371 0.3514 0.3953 0.3456 0.3595
mPLUG-Owl3-7B (Ye et al., 2024) 0.4026 0.3661 0.3678 0.1247 0.1141 0.1144
Qwen2-VL-7B (Wang et al., 2024a) 0.4090 0.3564 0.3678 0.1307 0.1208 0.1207
InternVL2-26B (Wang et al., 2024b) 0.4209 0.3728 0.3865 0.4048 0.3590 0.3722
Qwen2.5-VL-7B (Bai et al., 2025) 0.4674 0.3902 0.4155 0.4240 0.3548 0.3775
Qwen2.5-VL-72B (Bai et al., 2025) 0.4926 0.4353 0.4568 0.4423 0.3912 0.4104

Gemini-2.5-pro (Google, 2025) 0.3755 0.3127 0.3384 0.1995 0.1674 0.1806
GPT-o3 (OpenAI, 2024) 0.4470 0.3762 0.4058 0.4431 0.3724 0.4021
GPT-5 (OpenAI, 2025) 0.3760 0.3212 0.3469 0.4407 0.3762 0.4065
GPT-4o (Hurst et al., 2024) 0.4908 0.4562 0.4727 0.5304 0.4930 0.5109
AnomReasonor-7B 0.5221 0.5130 0.5162 0.5066 0.4977 0.5009

anomaly supervision. Notably, AnomReasonor-7B also surpasses GPT-4o in all SemAP metrics.
In terms of SemF1 (alignment quality), GPT-4o retains a slight edge (SemF1Full= 0.5109), but
AnomReasonor-7B is highly competitive (SemF1Full= 0.5009), particularly excelling in reasoning
(SemF1Rea= 0.4977 vs. 0.4930 for GPT-4o). This highlights that our fine-tuned model closes the
gap to proprietary systems not only in detection but also in the quality of generated descriptions.

Interestingly, most models show stronger anomaly observation (SemAPPhe) than reasoning
(SemAPRea), with some (e.g., InternVL3-8B) showing a wide gap (0.4552 vs. 0.3676), suggesting
that identifying “something wrong” is easier than articulating “why”. In contrast, AnomReasonor-
7B exhibits the most balanced profile, with reasoning performance nearly matching observation.
This reflects the benefit of our structured annotation format and supervision signal, which jointly
improve both detection and explanation.

Table 2: Explainable deepfake detection on AnomReason-Deepfake.

Models Acc CSemAPPhe CSemAPRea CSemAPFull CSemF1Phe CSemF1Rea CSemF1Full

LongVA-7B (Zhang et al., 2024) 53.45 0.0722 0.0714 0.0688 0.0458 0.0448 0.0436
LLaVA-OV-7B (Li et al., 2024) 66.26 0.1235 0.1124 0.1141 0.0818 0.0738 0.0752
Phi-3.5-Vision (Abdin et al., 2024) 41.33 0.0685 0.0602 0.0616 0.0570 0.0497 0.0511
MiniCPM-V-2.6 (Hu et al., 2024) 55.05 0.0233 0.0205 0.0209 0.0109 0.0100 0.0100
InternVL2-8B (Wang et al., 2024b) 59.46 0.0739 0.0702 0.0697 0.0720 0.0680 0.0678
InternVL2.5-8B (Chen et al., 2024b) 63.61 0.1165 0.1085 0.1089 0.0988 0.0911 0.0919
InternVL3-8B (Zhu et al., 2025) 62.84 0.2949 0.2394 0.2559 0.1240 0.1031 0.1089
InternVL3-9B (Zhu et al., 2025) 64.04 0.2293 0.1987 0.2081 0.2343 0.2041 0.2132
mPLUG-Owl3-7B (Ye et al., 2024) 55.96 0.0445 0.0411 0.0404 0.0130 0.0120 0.0117
Qwen2-VL-7B (Wang et al., 2024a) 67.21 0.1710 0.1421 0.1496 0.0524 0.0458 0.0467
InternVL2-26B (Wang et al., 2024b) 54.73 0.0194 0.0172 0.0179 0.0180 0.0160 0.0166
Qwen2.5-VL-7B (Bai et al., 2025) 65.41 0.1295 0.1085 0.1155 0.1124 0.0943 0.1004
Qwen2.5-VL-72B (Bai et al., 2025) 77.60 0.2626 0.2337 0.2453 0.2427 0.2159 0.2266

Gemini-2.5-pro (Google, 2025) 85.65 0.2631 0.2192 0.2382 0.1488 0.1249 0.1351
GPT-o3 (OpenAI, 2024) 85.60 0.3189 0.2690 0.2898 0.3187 0.2685 0.2895
GPT-5 (OpenAI, 2025) 75.22 0.1790 0.1535 0.1658 0.2114 0.1811 0.1957
GPT-4o (Hurst et al., 2024) 87.76 0.3750 0.3487 0.3612 0.4054 0.3770 0.3905

AnomReasonor-7B 82.61 0.3684 0.3574 0.3613 0.4048 0.3929 0.3972

4.2 EXPLAINABLE DEEPFAKE DETECTION

We extend our semantic anomaly reasoning framework (Sec. 4.1) to an explainable deepfake detec-
tion setting. The goal is twofold: (i) determine whether an image is AI-generated, and (ii) return
structured anomaly explanations aligned with Sec. 3.3. To this end, we construct AnomReason-
Deepfake, where real images sampled from LAION/reLAION-HR (LAION e.V., 2023) are paired
with content-based structured descriptions. The task therefore probes both AIGC detection and
semantic explanation within a unified benchmark.

Metrics. In addition to binary detection accuracy (Acc), we introduce classification-aware variants
of our semantic metrics, denoted as CSemAPv and CSemF1v for v ∈ {Phe,Rea,Full}. Explana-
tions are scored only when detection is correct, and assigned zero otherwise. This ties explanation
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quality to valid classification, discouraging post-hoc rationalization for mispredictions and promot-
ing joint interpretability.

Results. Table 2 presents results across Acc and classification-aware semantics metrics. GPT-4o
achieves the best overall detection accuracy (87.76%) and strong CSemF1Full(0.3905), establishing
a strong proprietary baseline. Notably, our fine-tuned AnomReasonor-7B attains competitive accu-
racy (82.61%) and surpasses GPT-4o on CSemAPRea(0.3574 vs. 0.3487) and CSemF1Rea(0.3929 vs.
0.3770), highlighting its strength in generating causally grounded explanations. Open-source VLMs
show large variance. Larger models like Qwen2.5-VL-72B achieve decent detection (77.60%) and
moderate explanation ability (CSemF1Full: 0.2266), but remain behind task-aligned models. Some
models (e.g., InternVL3-8B) perform reasonably on CSemAPFull(0.2559) but poorly on F1, suggest-
ing limited calibration between confidence and semantic consistency. Overall, AnomReasonor-7B
offers a high-accuracy, interpretable alternative to closed models. These results underscore the util-
ity of AnomReason-Deepfake as a testbed for joint detection and structured explanation, and
support our pipeline’s effectiveness for training explainable AIGC detectors.

Table 3: Semantic Reasonableness of AIGC Image Generators.

AIGC Model AnomReasonor AnomAgent
MAI (↓) AF(↓) CAP(↓) MAI (↓) AF(↓) CAP(↓)

Sana 1.5 (Xie et al., 2025) 4.55 6.29 28.62 6.66 9.09 60.49
SDXL Lightning (Lin et al., 2024) 4.40 6.06 26.66 6.47 8.84 57.21
Sana Sprint 1.6B (Chen et al., 2025a) 4.32 6.09 26.31 6.42 8.78 56.35
Qwen-lmage (Wu et al., 2025a) 4.45 6.20 27.59 6.37 8.72 55.61
HiDream-1-Fast (Cai et al., 2025) 4.44 6.19 27.48 6.32 8.81 55.68
SDv3.5 Large (Esser et al., 2024) 4.60 6.44 29.62 6.23 8.54 53.19
Janus Pro 7B (Chen et al., 2025b) 4.28 6.75 28.89 6.49 8.69 56.39
Janus Pro 1B (Chen et al., 2025b) 4.19 6.43 26.94 6.40 8.41 53.83
FLUX.1 [dev] (Wu et al., 2025a) 4.36 6.08 26.51 6.22 8.67 53.92
BRIA-3.2 (Bria AI, 2025) 4.38 6.14 26.89 6.11 8.60 52.61
SDv3.5 Large Turbo (Esser et al., 2024) 4.40 6.12 26.93 6.10 8.44 51.48
Lumina lmage V2 (Qin et al., 2025) 4.30 6.05 26.01 6.07 8.40 51.03
HiDream-1-Dev (Cai et al., 2025) 4.42 6.15 27.18 6.00 8.44 50.62
OmniGen V2 (Wu et al., 2025b) 4.21 5.89 24.80 6.11 8.49 51.86
HunyuanImage-2.1 (Team, 2025b) 4.10 5.95 24.40 6.14 8.55 52.51

4.3 AIGC SEMANTIC REASONABLENESS ASSESSMENT

Beyond instance-level evaluation (Sec. 4.1), we assess the semantic reasonableness of text-to-
image generators. Perceptual metrics overlook commonsense, physics, and interaction plausibility,
whereas structured outputs (Name/Phenomenon/Reasoning/Severity Score) enable semantics-aware
auditing at scale.

We curate 246 prompts from Midjourney public galleries that correspond to real-photo style content.
We first deduplicate/cluster candidate prompts via CLIP embeddings, then filter to photo-realistic
style using the Qwen3-30B (Team, 2025a). This yields diverse prompts covering multi-object in-
teractions, human articulation, and physical dynamics. Each generated image is evaluated indepen-
dently by two assessors: (i) AnomReasonor-7B (fine-tuned in Sec. 4.1) and (ii) AnomAgent. Both
produce anomalies with an Severity Score s ∈ [0, 100].

Semantic Metrics. We define three complementary metrics to quantify the semantic plausibility of
an image I: (i) MeanAnomalyImplausibility (MAI): MAI(I) =

∑
â∈Â(I)

100−s(â)
100 (ii) Anoma-

lyFrequency (AF): Total number of anomalies â identified in I . (iii) CumulativeAnomalyPenalty
(CAP): CAP(I) = MAI(I) × AF(I) The MAI captures the aggregated implausibility of all de-
tected anomalies. CAP reflects both the severity and frequency of semantic violations. All scores
are designed such that lower is better, with zero indicating flawless realism.

Results. Table 3 reveals clear differences in semantic plausibility across AIGC models.
HunyuanImage-2.1 and OmniGen V2 achieve the lowest CAP scores under AnomReasonor, in-
dicating fewer and less severe semantic anomalies, particularly in commonsense and physical inter-
actions. In contrast, models like Sana 1.5 and SDXL Lightning exhibit higher anomaly frequency
and implausibility, suggesting challenges in compositional reasoning and realism. Interestingly,
we observe distinct failure modes: some models (e.g., Janus Pro 7B) exhibit higher AF but lower
MAI, implying frequent yet subtle errors, while others (e.g., SDv3.5 Large) show fewer but more
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severe implausibilities. These insights go beyond perceptual quality, revealing gaps in physical
logic and social commonsense. While both AnomReasonor and AnomAgent show consistent rel-
ative rankings, AnomAgent tends to produce higher anomaly counts across the board, reflecting
its greater sensitivity and fully automated nature. Despite this, their strong rank-order alignment
supports AnomAgent’s robustness and suitability for scalable zero-shot auditing. Notably, Anom-
Reasonor benefits from supervised training on human-curated explanations, whereas AnomAgent
operates without any human intervention—highlighting the promise of fully automatic, semantics-
aware evaluation pipelines for future alignment assessments.

5 RELATED WORK

AIGC visual anomaly detection and reasoning: With the proliferation of AI-generated con-
tent (AIGC), recent research (Liu et al., 2024; Huang et al., 2025a; Wen et al., 2025; Kang et al.,
2025; Gao et al., 2025; Huang et al., 2025b; Zhang et al., 2025; Zhou et al., 2025; Tan et al., 2025b;
Guo et al., 2025; Chen et al., 2024a) has shifted beyond low-level forensics to explore semantic-level
anomalies in AIGC images. Some methods leverage VLM interpretability to highlight suspicious re-
gions (Liu et al., 2024; Huang et al., 2025a; Kang et al., 2025), while others combine manual inspec-
tion with LLM-based post-processing (Li et al., 2025; Tan et al., 2025a). Prompt-engineering and
commonsense-injection techniques have also been used to elicit finer-grained descriptions (Zhang
et al., 2025; Gao et al., 2025; Wen et al., 2025; Zhou et al., 2025).

However, existing benchmarks such as FakeClue and Ivy-Fake focus on authenticity classification
or artifact explanation. They provide coarse labels or clues for real/fake discrimination, but lack
structured quadruple annotations that capture commonsense, physical and relational inconsistencies.
Consequently, models trained on them struggle to perform detailed reasoning or severity assess-
ment. Our work differs by modelling anomalies at the object–attribute–relation level and offering
interpretable explanations, thus enabling downstream tasks like semantic reasonableness auditing.
We also adopt a multi-agent annotation framework with human verification, which yields more con-
sistent and scalable annotations than directly prompting a monolithic LLM.

AIGC Image Semantic Reasonableness Assessment: Assessing the semantic reasonableness of
AI-generated images (AIGC-ISRA) involves determining whether the visual content aligns with
real-world commonsense, object plausibility, and coherent inter-object relationships. While current
AIGC image quality assessment efforts (Peng et al., 2024; Liu et al., 2023; Lu et al., 2023; Yang
et al., 2024; Yu et al., 2024) focuses primarily on image–prompt alignment and perceptual quality,
but overlook semantic plausibility. For example, (Peng et al., 2024) propose CLIP-based metrics
to assess prompt consistency, yet they fail to capture scene-level semantic inconsistencies. (Liu
et al., 2023) explore chain-of-thought evaluation for NLG tasks, offering improved human align-
ment but lacking grounding and localized reasoning for visual content. Our work addresses this gap
via a structured and content-aware evaluation framework that builds upon a multi-agent annotator
(AnomAgent) to detect and explain attribute violations, spatial logic failures, and inter-object contra-
dictions. This enables interpretable and fine-grained assessment of semantic plausibility, bridging a
key limitation of existing AIGC-IQA and VLM-based approaches.

6 CONCLUSION

We introduce the task of semantic anomaly detection and reasoning in AI-generated image. To en-
able this task, we built AnomReason, a benchmark annotated via a multi-agent framework (AnomA-
gent) and human verification, providing structured quadruples (Name, Phenomenon, Reasoning,
Severity). Unlike existing authenticity datasets, AnomReason targets commonsense, physical and
relational violations and includes severity scores, enabling finer-grained reasoning beyond real/fake
classification. We propose semantics-aware metrics and showed that off-the-shelf vision-language
models struggle on this task; a model fine-tuned on AnomReason (AnomReasonor-7B) outper-
formed open-source baselines and approached proprietary systems. We also demonstrated appli-
cations in explainable deepfake detection and generator assessment. Current limitations include the
dataset’s moderate scale and focus on images; future work will extend to videos and refine annota-
tion quality. We will release code, data and models to foster research into semantic plausibility and
more trustworthy multimodal systems.
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ETHICS STATEMENT

This work adheres to ethical principles surrounding data usage, model training, and large-scale
evaluation. All datasets used in this study are either synthetic, automatically generated from text
prompts (e.g., via Midjourney), or released under open-source licenses. No personally identifiable
information (PII), biometric data, or user-generated content is used. All visual data used in training
or evaluation is publicly available or synthesized, and filtered to avoid unsafe or offensive content.

Human annotations used in the AnomReason dataset were collected through internal quality-
controlled pipelines, focusing solely on semantic inconsistencies in AI-generated content. These
annotations are descriptive, non-judgmental, and pertain to visual plausibility, physics, and common-
sense violations rather than identity or sensitive topics. Annotators were not exposed to real-world
sensitive content. Additionally, we introduced the AnomAgent, an automated system that detects
and explains semantic anomalies in images without human involvement, relying on large vision-
language models (e.g., GPT-4o, Qwen2.5-VL). While the AnomReasonor model was fine-tuned on
filtered, verified annotations, AnomAgent is entirely zero-shot, demonstrating generalization without
human bias injection during training.

This work also uses LLMs (e.g., GPT-4o) for data annotation and linguistic refinement. For annota-
tion, LLMs are used under structured prompts that enforce semantic rigor and reduce hallucination.
For writing, they were used only for grammar polishing, as stated in Section A, and did not con-
tribute conceptually.

The proposed methods aim to improve the semantic transparency and quality of AIGC systems.
While our anomaly detection framework could assist in automated auditing or filtering pipelines,
we explicitly caution against its use in high-stakes decision-making or content moderation without
human oversight. We strongly discourage deployment for surveillance or enforcement purposes, and
advocate for responsible use aligned with human-centered values, fairness, and transparency.

REPRODUCIBILITY STATEMENT

In accordance with the ICLR Author Guide, we provide a detailed reproducibility statement for this
work.

Dataset Availability. The AnomReason benchmark was constructed from 21,539 AI-generated
images, sourced from Midjourney, Stable Diffusion 3.5, and Flux. All images are synthetic and
filtered for realism using CLIP-based selection and manual checks. We will release the complete
dataset, including raw images, structured anomaly annotations, severity scores, and metadata.

Annotation Pipeline. Annotations were generated using the AnomAgent multi-agent system with
GPT-4o, refined through human-in-the-loop (HITL) verification. The pipeline produced 174,872
candidate anomalies, reduced to an average of 5.9 verified anomalies per image. Intermediate out-
puts from each agent stage will also be released to support ablation studies.

Model Training. We fine-tuned Qwen2.5-VL-7B using LoRA adapters inserted at every fourth
transformer layer. The visual encoder was frozen. Training used 4 NVIDIA A6000 GPUs, batch
size of 4, and gradient accumulation of 8, for one epoch over the training split. LoRA rank was
8 with scaling factor α = 16 and dropout 0.5. All hyperparameters and training scripts will be
provided.

Evaluation Protocol. We designed semantic evaluation metrics, SemAP and SemF1, based on
BERTScore similarity between predicted and ground-truth anomaly fields. We tested thresholds
τ ∈ {0.7, 0.8, 0.9} and reported averages. We will release the full evaluation toolkit, including
BERTScore settings, matching rules, and baseline implementations.

Released Artifacts. We will publicly release:

• The AnomReason dataset and splits.
• All anomaly annotations with HITL verification.
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• The AnomReasonor-7B fine-tuned model weights.

• Code for training, evaluation.

Limitations to Reproducibility. Some annotation stages depend on external APIs (e.g., GPT-4o),
which may introduce variability due to model updates. To mitigate this, we release all intermediate
outputs used in the dataset construction. The HITL step, while low-cost, involves subjective human
judgment and may not be identically reproducible.

Summary. All code, data, models, and evaluation protocols will be released under an open-source
license to maximize reproducibility and transparency.
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Phenomenon: The tennis racket grip appears overly tight, with the hand positioned unnaturally 
close to the handle. The wristband on the left arm is also misaligned, overlapping the wrist and 
extending awkwardly over the forearm.

Severity Score: 25

Reasoning: In real-life tennis, players grip the racket loosely for better control and flexibility. The 
tight grip and misaligned wristband suggest an artificial overlay rather than a natural interaction 
between the hand and racket.

@5 Name: Tennis Racket Grip and Hand Positioning

Phenomenon: Human forearms and wrists naturally curve slightly due to muscle tension and 
bone structure. The rigid posture disrupts the anatomical plausibility of the arm's movement.

Severity Score: 30

Reasoning: In real-life tennis, players grip the racket loosely for better control and flexibility. The 
tight grip and misaligned wristband suggest an artificial overlay rather than a natural interaction 
between the hand and racket.

@6 Name: Forearm and Wrist Alignment

Phenomenon: The right arm is extended outward, but the wrist and fingers are unnaturally stiff 
and lack visible motion or tension. The wristband is also misaligned, overlapping the wrist and 
extending awkwardly over the forearm.

Severity Score: 25

Reasoning: In real-life tennis, players use their arms and wrists dynamically during swings, with 
visible tension and motion. The stiffness and misalignment of the right arm and wristband 
suggest an artificial overlay rather than a natural interaction.

@4 Name: Right Arm and Wrist Movement

Phenomenon:  The lighting on the tennis court foreground is bright and even, while the 
background wall appears dimmer and less illuminated. This creates a noticeable contrast that 
disrupts the scene's coherence.

Severity Score: 20

Reasoning: In real-world photography, foreground and background elements should share 
similar lighting conditions to maintain visual consistency. The stark difference in illumination 
suggests a mismatch between the generated elements.

@1 Name: Foreground and Background Lighting Mismatch

Phenomenon: The tennis court foreground appears sharply defined and in focus, while the 
background wall lacks depth and detail. The transition between the two areas is abrupt, creating 
a sense of separation rather than integration.

Severity Score: 20

Reasoning: Real-world scenes typically exhibit gradual depth changes, with objects in the 
foreground appearing sharper and more defined, while those in the background become 
progressively softer and less detailed. The abrupt transition here disrupts spatial coherence.

@2 Name: Foreground and Background Depth Mismatch

Phenomenon: The tennis court foreground has a uniform blue color, while the background wall 
appears green. This color inconsistency is particularly noticeable around the edges where the 
two areas meet.

Severity Score: 20

Reasoning:	Real-world scenes typically exhibit consistent color gradients across adjacent 
surfaces. The abrupt change in color at the edge of the court and wall suggests a mismatch 
between the generated elements.

@3 Name: Foreground and Background Color Mismatch

Figure 5: Structured visual anomalies in a tennis scene. AnomReasonor-7B identifies both
surface-level inconsistencies (e.g., lighting and color mismatch) and deeper semantic-level anoma-
lies, such as biomechanically implausible wrist articulation and unnatural hand–racket interaction.
Each anomaly is described with a structured triplet: Name, Phenomenon, Reasoning.
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3160
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Phenomenon: The person wearing the orange jacket appears to be partially obscured by the 
table, yet their arm and hand remain visible and in focus. This creates an optical illusion where 
the person's body seems to pass through the table.

Severity Score: 30

Reasoning: Objects cannot physically pass through solid surfaces like tables. The visibility of 
the person's arm and hand defies the laws of physics and spatial logic, making the scene appear 
unrealistic.

Name: Person in orange jacket

Phenomenon: The character’s hair appears unnaturally stiff and straight, with no visible motion 
or interaction with the wind or surrounding environment. The strands do not bend, sway, or align 
with the character’s posture or the canyon’s airflow.

Severity Score: 20

Reasoning: Human hair responds dynamically to environmental factors like wind, gravity, and 
movement. The absence of these effects makes the hair appear artificial and out of place within 
the scene.

Name: Unrealistic Hair Dynamics

Phenomenon: The water spray created by the jet ski is directed primarily forward and slightly 
upward, rather than creating a more dynamic arc or fan-like pattern. The spray appears less 
dispersed and lacks the expected turbulence and motion associated with high-speed water.

Severity Score: 20

Reasoning: High-speed jet skis typically create a more pronounced and dynamic spray pattern 
due to the force exerted on the water. The observed spray direction and dispersion are 
inconsistent with real-world physics, making it appear artificial and unrealistic.

Name: Water spray directionality

Phenomenon:  The seedlings being planted appear unusually tall and slender compared to 
typical young plants. They lack natural curvature or branching, and their leaves are 
disproportionately large relative to the stems.

Severity Score: 20

Reasoning: Young plants typically grow in a more compact and robust manner, with leaves 
developing gradually as they mature. The exaggerated height and leaf size suggest an artificial 
exaggeration rather than a realistic representation of plant growth.

Name: Plant growth anomaly

Phenomenon: The horse appears to be lying down, but its front legs are unnaturally positioned, 
with one leg bent at an angle that defies natural anatomy and weight distribution. Additionally, the 
horse’s head is tilted forward, which does not align with typical resting behavior for a horse.

Severity Score: 25

Reasoning: Horses naturally lie down by bending their front legs at the knees and placing them 
under their bodies. The observed positioning suggests either a mechanical error or an attempt to 
create a more dynamic pose, which is inconsistent with the horse's anatomy and behavior.

Name: Anatomical inconsistency in the horse's body posture

Phenomenon: The shuttlecock appears to be in mid-air but lacks realistic motion blur, 
suggesting it was not recently hit. Additionally, the shuttlecock's position relative to the players 
does not align with typical badminton gameplay dynamics.

Severity Score: 25

Reasoning:	Shuttlecocks typically exhibit significant motion blur when in flight due to their fast 
speed and aerodynamic properties. Furthermore, the shuttlecock’s position suggests it was hit by 
one player but not yet returned, which is inconsistent with the active gameplay depicted.

Name: Inconsistent ball trajectory and motion blur

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 6: Generalization across diverse semantic anomaly types. AnomReasonor-7B detects
inconsistencies in plant growth patterns (a), horse anatomy (b), shuttlecock dynamics (c), water
spray physics (d), occlusion logic (e), and hair movement (f). These outputs demonstrate the model’s
capability to reason over visual semantics beyond surface-level cues.
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The use of LLMs is strictly bounded to assistive roles; they are not involved in authorship, nor in
the scientific reasoning or conclusions of this work.

B DETECTION RESULTS OF ANOMREASONOR

We present qualitative results from AnomReasonor-7B, trained on our proposed AnomReason
dataset, to analyze its ability to detect and explain semantic-level visual anomalies in AI-generated
images. Unlike surface-level cues—such as pixel artifacts, texture mismatches, or inconsistent
lighting—semantic-level anomalies reflect inconsistencies with real-world physical laws, common-
sense reasoning, spatial logic, and anatomical plausibility.

Figures 5–6 highlight how structured reasoning outputs—composed of Name, Phenomenon,
Reasoning, and Severity Score—enable fine-grained interpretation of visual errors that
would be challenging to localize using traditional classification-based or pixel-level approaches.

Figure 5 presents a synthesized tennis court scene containing a variety of both surface- and semantic-
level anomalies. The model detects lighting, depth, and color mismatches between foreground and
background, indicating surface inconsistencies. More critically, it identifies human-centric semantic
anomalies including biomechanically implausible wrist articulation, unnatural racket grip tension,
and anatomically misaligned arm–forearm joints. These violations of physical and anatomical real-
ism are explicitly explained, demonstrating the model’s understanding of dynamic human interaction
and contextual coherence.

Figure 6 demonstrates the model’s ability to generalize across diverse contexts and anomaly types.
Examples include:

(a) exaggerated plant growth violating botanical development norms,
(b) a horse in an anatomically impossible lying posture,
(c) a shuttlecock trajectory inconsistent with typical gameplay physics,
(d) jet ski spray patterns that defy real-world water dynamics,
(e) human limbs passing through occluding surfaces,
(f) static hair ignoring environmental effects such as gravity or wind.

These structured explanations go beyond low-level discrepancies, offering human-aligned insight
into the visual implausibility of each scene.

These results showcase the benefit of semantic-level anomaly detection for building interpretable
and trustworthy AIGC assessment systems. By explicitly modeling and articulating inconsistencies
in visual semantics—rather than relying on post-hoc explanations or pixel cues—AnomReasonor-7B
provides rich, localized, and human-aligned insights into failure modes in AI-generated images.

C EVALUATION PROTOCOL DETAILS

This appendix provides a comprehensive description of our semantic evaluation protocol, used to
score structured visual anomaly predictions as described in Sec. 3.3.

C.1 SEMANTIC SIMILARITY: BERTSCORE CONFIGURATION

We instantiate all field-wise similarities with BERTScore (F1 variant). Unless noted, we freeze the
backbone and preprocessing across all experiments to ensure comparability. Given hypothesis h and
reference r, we use the BERTScore F1:

BERTScore(h, r) =
2P (h, r)R(h, r)

P (h, r) +R(h, r)
∈ [0, 1], (7)

and define
simPhe = BERTScore(ô, o),

simRea = BERTScore(r̂, r),

simFull = α simPhe + (1− α)simRea.
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The balanced mean for Full provides a smooth joint signal while discouraging over-optimizing a
single field. We use α = 0.5 unless otherwise stated.

C.2 MATCHING AND CONTINGENCY COUNTS

For a view v ∈ {Phe,Rea,Full} and threshold τ ∈ {0.7, 0.8, 0.9}, define the indicator

Tv(â, a; τ) = ⊮{simv(â, a) ≥ τ}. (8)

Ranking. Sort predictions Â(I) = {â(k)}KI

k=1 by confidence ŝ in descending order. Assignment.
Scan k = 1 . . .KI ; for each â(k) choose the unmatched ground-truth a⋆ ∈ A(I) maximizing
simv(â(k), a) subject to Tv = 1. If such a⋆ exists, mark a true positive (TP) and lock both; else,
mark a false positive (FP). Unmatched ground truths are false negatives (FN). Tie-breaking. If
multiple a achieve the same similarity, prefer the one with the highest simFull (then smallest index).
This one-to-one greedy rule prevents multi-matching and implicitly penalizes duplicates.

C.3 PER-IMAGE AP/F1, PER-THRESHOLD AGGREGATION, DATASET AGGREGATION

For image I at threshold τ , let cumulative counts at rank k be TPI(k, τ) and FPI(k, τ). Define

PI(k, τ) =
TPI(k, τ)

TPI(k, τ) + FPI(k, τ)
, RI(k, τ) =

TPI(k, τ)

|A(I)|
. (9)

AP at τ .
APv(I, τ) =

∑
k: new TP at k

PI(k, τ)
(
RI(k, τ)−RI(k−1, τ)

)
. (10)

Per-image SemAP (average over thresholds).

SemAPv(I) =
1

|T |
∑
τ∈T

APv(I, τ), T = {0.7, 0.8, 0.9}, |T | = 3. (11)

Dataset SemAP (macro over images).

SemAPv =
1

|D|
∑
I∈D

SemAPv(I). (12)

Per-image F1 at τ .

F1v(I, τ) =
2PI(τ)RI(τ)

PI(τ) +RI(τ)
, PI(τ) =

TPI

TPI + FPI
, RI(τ) =

TPI

|A(I)|
. (13)

Dataset SemF1. We report the simple average across images and thresholds:

SemF1v =
1

|D| |T |
∑
I∈D

∑
τ∈T

F1v(I, τ), (14)

with per-threshold breakdowns provided below.

In Sec. 4.2, we introduce classification-aware variants of our semantic metrics, denoted as
CSemAPv and CSemF1v for v ∈ {Phe,Rea,Full}. Let y(I) ∈ {real,AI} be the ground-
truth source and ŷ(I) the predicted source. For a view v ∈ {Phe,Rea,Full} and threshold set
T = {0.7, 0.8, 0.9}, define

CSemAPv =
1

|D| |T |
∑
I∈D

∑
τ∈T

⊮{ŷ(I) = y(I)} APv(I, τ), (15)

CSemF1v =
1

|D| |T |
∑
I∈D

∑
τ∈T

⊮{ŷ(I) = y(I)} F1v(I, τ), (16)

Explanations are scored only when detection is correct, and assigned zero otherwise. This ties
explanation quality to valid classification, discouraging post-hoc rationalization for mispredictions
and promoting joint interpretability.
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D TRAINING DETAILS

D.1 DETAILS FOR SEC.4.1

We fine-tune Qwen2.5-VL-7B using LoRA modules inserted into the multimodal attention blocks,
while keeping the visual encoder frozen. Specifically, we adopt the official Qwen2.5-VL-7B back-
bone (7B parameters) with its native image projector, freezing the vision tower (ViT). LoRA is
applied to the attention projections (q proj, k proj, v proj) at every 4th transformer layer,
with a rank of 8, scaling factor α = 16, and dropout rate of 0.5. Fine-tuning is conducted for one
epoch using a batch size of 4 and gradient accumulation of 8 on 4 A6000 GPUs. Input resolution is
dynamically adjusted with a minimum of 50,176 pixels and a maximum of 614,656 pixels.

Supervision data and construction We use the official train split of the AnomReason dataset
for training, strictly retaining only verified anomalies to ensure label quality. For each image I , we
construct one or multiple training instances depending on sequence length constraints. When an
image contains m verified anomalies {(yj , oj , rj , vj)}mj=1, we pack them into a single instance in
randomized order unless token limits require splitting.

Human: Analyze the provided AI-generated image to
detect all semantic anomalies. Provide a detailed
list of anomalies using the following structure:
- @1. Name: [Phenomenon Name] - Phenomenon:
[Description of the visible anomaly] - Reasoning:
[Step-by-step explanation of why this phenomenon is
unrealistic or illogical] - Severity Score: [Rate
the issue from 0 (completely unnatural) to 100 (fully
realistic)]

The model is expected to produce responses such as:

@1. Name: Woman’s shirt fabric rigidity
Phenomenon: The shirt worn by the woman appears
overly smooth and rigid, showing no folds, creases,
or deformation where it interacts with the baby or the
reclining posture.
Reasoning: Soft fabrics typically conform to the body
and surrounding objects, creating visible folds and
compression due to gravity and physical contact. The
lack of such effects reduces the plausibility of the
material behavior.
Severity Score: 20.

@2. Name: Pillow compression inconsistency
Phenomenon: The pillow supporting the woman’s head
and shoulder appears unnaturally smooth and rigid,
showing no visible deformation or compression despite
the weight applied.
Reasoning: Pillows are designed to compress under
pressure, creating indentations and folds where
weight is applied. The lack of deformation suggests
unrealistic material behavior, detracting from the
plausibility of the scene.
Severity Score: 25.

This format ensures consistent alignment between training supervision and evaluation, facilitating
learning of structured anomaly descriptions and reasoning patterns. The use of step-wise justifica-
tions and severity scoring further supports interpretable and rank-aware detection.
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D.2 DETAILS FOR SEC.4.2

We fine-tune Qwen2.5-VL-7B using low-rank adapters (LoRA), following the same hyperpa-
rameters described in Appendix D.1, with the exception that we set the dropout rate for LoRA
(lora dropout) to 0.9 for this setting.

Turn 1: Source classification. The first turn asks the model to determine the image source in
binary form:

Q: Summarize whether this image is Generated by
Artificial Intelligence, please only return yes or
no.
A: <Yes, this image is generated by AI | No, this
image is a real photograph.>

Turn 2: Semantic anomaly explanation. If the image is AI-generated, the second turn prompts
the model to enumerate all semantic-level inconsistencies using a structured output format:

Q: If AI-generated, list semantic anomalies:
Name, Phenomenon, Reasoning, Severity.
A: [
{Name: <y1>, Observed: <o1>, Reasoning: <r1>,
Severity: <v1>},
...
]

If the image is labeled as real, the second answer defaults to a content-based explanation of what
is observed in the image without marking any anomaly. This dual-turn QA formulation enables the
model to explicitly separate generation source classification from semantic inconsistency identifica-
tion, promoting robust deepfake understanding and explainability.

E ADDITIONAL DETAILS ON ANOMALY DETECTION AGENTS

In this section, we provide detailed insights into the design and implementation of the anomaly
detection agents used in our framework. Each agent plays a crucial role in analyzing different aspects
of the input image, allowing for an in-depth semantic analysis of AI-generated images. The design of
these agents is driven by the need to model high-level perceptual reasoning and commonsense logic,
which are essential for detecting complex semantic anomalies that would otherwise go unnoticed by
traditional anomaly detection methods.

E.1 OBJECT PERCEIVER AGENT

The ObjectPerceiver agent is tasked with identifying and parsing all semantically distinct entities
within an input image. This is the first step in the anomaly detection pipeline, as it helps isolate the
relevant objects in the image for further analysis. By detecting objects in the image, the agent serves
as the foundation for all subsequent analysis.

Design Motivation: The motivation behind the Object Perceiver is to provide a structured identifi-
cation of objects in the image, which can then be used for deeper anomaly detection in subsequent
steps. The design intentionally focuses on high-level object semantics rather than low-level fea-
tures like lighting or texture inconsistencies, which might not be as impactful for detecting semantic
anomalies.

Task: Analyze all objects and individuals in the
image. For each object or individual, provide a
detailed, accurate, and comprehensive description,
while identifying any inconsistencies, anomalies, or
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illogical aspects. Ensure no object or body part is
omitted.

Follow the steps below and provide your analysis in
the structured format specified:

• Identify and describe all objects and individuals
in the image.

• For each object or individual, provide a detailed,
accurate, and comprehensive description.

• Highlight any inconsistencies, anomalies, or
illogical aspects in:

– Shape and Structure: Are there distortions,
missing parts, or unnatural forms?

– Material and Texture: Are there abrupt texture
changes or mismatches?

– Lighting and Shadows: Are the lighting and
shadows consistent with the environment?

– Physical Properties: Are there any violations
of real-world physics or logic (e.g., floating
objects)?

– Common Sense Verification: Are there any
semantic inconsistencies (e.g., a door handle
on a chair)?

– Human Anatomy (if applicable): Identify
unnatural features such as missing limbs, extra
fingers, or disproportionate body parts.

Output Format:
Each object/body part should be described individually
in the following structured format:

#Name#: Detailed Description.

#Name#: Detailed Description.

Example Output:

Person: A man with three arms, one of which is
unnaturally attached to his back. He wears a blue
jacket.
Chair: A wooden chair that appears to be floating
without support, casting no shadow.
Dog: A golden retriever with two tails, one of which
is blurry and semi-transparent.

Highlight all implausible, unnatural, or inconsistent
details while ensuring full coverage of the image
content. Only output the list in the specified
format.

Effectiveness: This prompt ensures that the Object Perceiver focuses on capturing the main objects
and entities in the image while disregarding irrelevant details. By emphasizing the semantics of each
object, the agent avoids common pitfalls of pixel-based anomaly detection and lays the groundwork
for higher-level analysis.

E.2 ATTRIBUTE ANALYZER AGENT

The Attribute Analyzer is responsible for detecting anomalies in the visual attributes of objects,
such as shape, texture, material, and other intrinsic properties. This agent examines internal incon-
sistencies within the objects themselves and identifies any attributes that deviate from the expected
real-world norms.
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Design Motivation: The rationale behind the Attribute Analyzer is that many semantic anomalies
manifest as inconsistencies in object attributes. For example, an object might appear out of place
because of an unusual shape or texture that violates expectations based on the scene context. By
focusing on attributes, this agent can detect low-level anomalies that might not be caught by higher-
level reasoning alone.

AttributeAnalyzer Step1 Prompt:

Task: Analyze {Current object} in the image.

Focus on analyzing and identifying any anomalies in
the following aspects:

1. Shape and Structure
• Are there unnatural forms or distortions?
• Are proportions consistent with the object’s
design?

2. Functionality
• Does the object behave logically in real-world
scenarios?

• Are there physical impossibilities (e.g.,
unsupported structures)?

3. Human Body Structure Verification (if applicable)
• Are limbs, fingers, and facial features
correctly placed and proportional?

• Are there unnatural fusions, duplications, or
disconnections?

Deliverable:

• Highlight all implausible, unnatural, or
inconsistent details.

• Ensure a thorough analysis that covers all aspects
of the image content.

• Provide concise, evidence-based explanations for
all findings.

AttributeAnalyzer Step2 Prompt:

Object: {Current object}
Description Input: {AttributeAnalyzer Step1 Response}

Task: Analyze the detailed description of {Current
object} and identify all unreasonable, contradictory,
or physically impossible details specific to this
object.

Provide a structured list of issues using the
following format:

• Abnormal Phenomenon Name: The name of the
observed anomaly.

• Observed Issue: The unnatural feature found.
• Explanation: Why this characteristic is
unrealistic.

Example Output:

1. Abnormal Phenomenon Name: Streetlight No Power
Observed Issue: The streetlight is glowing but
has no power source or wiring.
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Explanation: A streetlight requires an electrical
connection to function, and no wires or batteries
are visible.

Instructions:

• Analyze only {Current object}.
• Output only issues directly related to {Current
object}, using the specified format.

Effectiveness: This two-stage approach encourages detailed yet structured interpretation of each
object’s attributes. The separation of observation and reasoning mimics human perceptual processes
and aligns well with structured evaluation protocols introduced in Sec. 3.3.

E.3 RELATION REASONER AGENT

The RelationReasoner analyzes spatial, semantic, and functional relationships between objects in
the image. It checks if objects are interacting in a plausible way or if their relationships defy physical
or logical laws. This agent is critical for detecting anomalies that arise from the interaction between
objects.

Design Motivation: The design of the Relation Reasoner is motivated by the fact that many se-
mantic anomalies stem from the way objects relate to one another. For example, objects that should
interact, such as a hand holding a cup, may appear to be floating or not touching each other at all. By
modeling relationships, the agent detects high-level semantic inconsistencies that are often missed
by attribute analysis alone.

RelationReasoner Step1 Prompt:

Task: Analyze the spatial and logical relationships
between {Current object} and the following objects:
({all objects from ObjectPerceiver}).
You should evaluate:

• One-to-one relationships (e.g., {Current object}
with each object)

• One-to-many relationships (e.g., {Current object}
in relation to multiple objects collectively)

Context Descriptions:
{Object Descriptions from AttributeAnalyzer}

Focus Areas:

1. Perspective Errors: Are objects placed in
impossible or illogical locations relative to
{Current object}?

2. Physical Interactions: Are there unnatural
interactions (e.g., floating without support,
overlapping unnaturally)?

3. Logical Contradictions: Are there contradictions
with real-world behavior or common-sense logic?

Instructions:

• Focus analysis on {Current object} as the primary
subject.

• For one-to-one relationships, evaluate individual
pairings.

• For one-to-many relationships, consider collective
spatial, logical, and contextual coherence.
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Output Format (structured report for each issue):

• Relationship: Describe the relationship being
analyzed.

• Observed Issue: Detail the anomaly or
inconsistency.

• Explanation: Explain why the issue is illogical
or unrealistic.

Deliverables:

• Analyze all one-to-one and one-to-many
relationships involving {Current object}.

• Ensure detailed reasoning and structured output
for each detected issue.

RelationReasoner Step2 Prompt:

Relation Input: {RelationReasoner Step1 Response}

Focus Object: The primary subject of analysis
is {Current object}. All evaluations should
center on {Current object} and its relationships
with the following objects: ({all objects from
ObjectPerceiver}).

Task: Based on the prior relationship analysis,
analyze and summarize the relationships between
{Current object} and the listed objects. Emphasize
detection of logical contradictions, physical
impossibilities, and semantic anomalies.

Key Aspects to Evaluate:

1. Logical Coherence: Are the relationships
internally consistent?

• Example: An object cannot be both inside and
outside another simultaneously.

2. Physical Realism: Do the relationships conform to
real-world physical laws?

• Example: Objects should not float without
visible support.

3. Semantic Plausibility: Are the interactions
meaningful and contextually appropriate?

• Example: A dog \wearing" a cloud is not
semantically plausible.

4. Causal Consistency: Do object states logically
follow from their relationships?

• Example: A book balanced on a steep slope
should be expected to fall.

Output Format: For each detected anomaly, provide a
structured report as follows:

• Objects Involved: List the relevant objects
(including {Current object}).

• Observed Issue: Describe the logical, physical,
or semantic anomaly.

• Reasoning: Justify why this relationship is
unnatural, implausible, or illogical.
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Instructions:

• Focus exclusively on {Current object} and its
relationships.

• Evaluate both individual (one-to-one) and group
(one-to-many) relationships.

Effectiveness: By evaluating the spatial and functional relations between objects, the Relation Rea-
soner helps detect anomalies that would violate everyday common sense or physical laws. For
example, it would catch a cup floating in mid-air without any support or a person walking through a
solid wall. This agent significantly enhances the ability to detect high-level semantic anomalies that
go beyond object-level properties.

E.4 ANOMALY INTEGRATION AND FORMATTING

After the anomalies are detected by the Attribute Analyzer and Relation Reasoner, they are passed
to the Anomaly Integration and Anomaly Formatting agents. The Integration agent consoli-
dates similar or redundant anomalies and eliminates noise, while the Formatting agent structures the
anomalies into a final output format.

Design Motivation: The design of the Anomaly Integration and Formatting agents is driven by the
need to ensure that the detected anomalies are presented in a clear and interpretable manner. The
Integration agent helps combine similar anomalies into one, while the Formatting agent ensures the
final output is structured and easy to use for downstream applications like quality assessment or
dataset debugging.

AnomalyIntegrator Step1 Prompt:

Description for {Current object}: {AttributeAnalyzer
Response}
Relationships of {Current object} with other
objects ({all objects from ObjectPerceiver}):
{RelationReasoner Response}

Task: Review and analyze the detailed Description
and Relationships of {Current object}. Summarize
all unreasonable, contradictory, or physically
impossible details related to {Current object}, while
consolidating similar or repeated anomalies into a
comprehensive report.

Focus Areas:

1. Contradictory Details: Identify conflicting
statements or relationships (e.g., "floating" vs.
"resting on the ground").

2. Unnatural Behaviors: Highlight features or
actions implausible in real-world settings.

3. Spatial Inconsistencies: Detect impossible
locations or orientations for {Current object} or
others.

4. Illogical Physical Properties: Point out
violations of physics or reality (e.g., water
flowing upward).

Instructions:

• Consolidate similar anomalies from both
Description and Relationships.

• Center all findings around {Current object} and
its interactions with other objects.
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Output Format (structured list):

1. Observed Phenomenon: Brief summary of the
inconsistency

• Sources: Indicate if the issue comes from the
Description, Relationships, or Both.

• Details: Provide specific observations related
to the anomaly.

• Explanation: Justify why the phenomenon is
contradictory, unnatural, or implausible.

Deliverables:

• Focus exclusively on {Current object}.
• Consolidate and summarize issues across
Description and Relationships.

• Output only the structured list in the specified
format.

AnomalyIntegrator Step2 Prompt:

Anomalies: {AnomalyIntegrator Step1 Response}

Task: Summarize and categorize all detected
unnatural, illogical, or inconsistent phenomena in
the image.

For each issue, provide:

1. Object Name: Clearly identify the object(s)
involved.

2. Phenomenon: Describe the unnatural or illogical
aspect of the object(s).

3. Explanation: Explain why this phenomenon is
unrealistic, referencing real-world physics,
anatomy, perspective, or common sense.

Output Format: Provide a structured list using the
format below:

Example Output:

1. Object Name: Tree
Phenomenon: The tree trunk bends at an impossible
90-degree angle.
Explanation: Real trees cannot grow in this shape
due to gravitational constraints.

2. Object Name: Dog
Phenomenon: The dog has three tails, one of which
is semi-transparent.
Explanation: This is anatomically impossible for
dogs.

Instructions:

• Only output the list in the specified format.

• Ensure each anomaly is clearly tied to a specific
object.

• Exclude unrelated content or commentary.

AnomalyFormatter Prompt:
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The following are a list of pre-selected anomalies:
{List of AnomalyIntegrator Step2 Response}

Task: From the list above, identify and summarize
the visually prominent and semantically significant
anomalies observed in the image.
You must analyze, consolidate, and explain each
anomaly in a way that is logical, detailed, and
persuasive, as if communicating to both experts and
non-experts.

Instructions:

1. Merge Similar or Redundant Anomalies
• Group phenomena sharing a common cause, concept,
or visual effect.

• Avoid repetition by merging entries describing
the same core issue.

2. Resolve Contradictions Thoughtfully
• If descriptions conflict, reconcile them using
physical laws, biological plausibility, and
visual logic.

• Summarize both viewpoints if both are partially
valid.

3. Filter Out Non-Visible or Insignificant Issues
• Omit anomalies that are not visually apparent
(e.g., minor texture noise).

• Focus on what is clearly and prominently
visible.

4. Justify with Real-World Logic
• Support each anomaly with logical, physical,
anatomical, or functional reasoning.

5. Do Not Parrot the Input
• Rephrase and reinterpret anomalies based on
visual evidence and contextual understanding.

6. Ensure Coverage
• All input anomalies must be included, either
directly or through consolidation.

Output Format: Write a numbered list. For each
entry, use the following structure:

@1. **Name**: [Descriptive title of the anomaly]
- **Observed Phenomenon**:

- Describe what is visibly wrong in visual terms.
- Include positions, shapes, textures, or contextual oddities.
- Ensure clarity without needing to see the image.

- **Reasoning**:
- Explain why this is implausible.
- Support with physical laws, anatomy, real-world logic,
or social context.

- **Severity Score**: [0{100; 0 = fully unrealistic,
100 = fully realistic]

Example Output:

1. Name: Abnormal number of hands
Observed Phenomenon: The individual on the left
has two left hands, one emerging from the elbow
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and overlapping with the sleeve. Both hands
share identical orientation and lack anatomical
continuity.
Reasoning: Human anatomy allows one left
and one right hand. Two left hands in such
arrangement violate biological symmetry and visual
plausibility.
Severity Score: 5/100 (highly unrealistic)

2. Name: Suspended chair without support
Observed Phenomenon: A wooden chair is floating
approximately 30 cm above the ground without
visible support or shadows.
Reasoning: Gravity requires contact or
suspension; absence of legs, shadows, or wires
defies physical realism.
Severity Score: 10/100 (extremely unnatural)

Final Notes:

• Output only the structured list in the format
above.

• Think critically. Be precise, complete, and
persuasive.

• Provide a human-understandable summary of core
visual anomalies in the image.

Effectiveness: These final stages ensure that the output of the anomaly detection process is both
precise and interpretable. The integration step reduces redundancy and focuses on the most signif-
icant anomalies, while the formatting step makes it easier to present and use the results for further
analysis.

Overall Design and Significance: The design of the anomaly detection agents is driven by the need
for both local and global anomaly detection in AI-generated images. By breaking down the process
into three main agents—Object Perceiver, Attribute Analyzer, and Relation Reasoner—each agent
can focus on a specific aspect of the image, from identifying objects and their attributes to analyzing
how they interact in a scene. This modular approach allows for greater flexibility and interpretability
in the detection process. Furthermore, the integration and formatting stages ensure that the final
output is structured and usable for real-world applications.

The multi-agent design enables a more nuanced and robust detection of semantic anomalies, making
the framework capable of handling complex image generation models like those used in deepfake
detection and other high-level image assessments.

F COMPARATIVE ANALYSIS: HUMAN VS. ANOMAGENT ANNOTATIONS

To evaluate the effectiveness and consistency of our proposed anomaly detection pipeline, we con-
ducted a comparative study between AnomAgent and human annotators. We used a benchmark
set of 1,000 AI-generated images with rich semantic content and potential visual inconsistencies.

F.1 ANNOTATION TASK AND SETUP

Each image was annotated independently by:

• Human annotators, we select several annotators with advanced academic backgrounds in
computer vision, specifically individuals holding master’s or doctoral degrees..

• AnomAgent, using the pipeline described in Appendix E.

Annotators were instructed to identify any implausible, inconsistent, or unnatural visual features,
along with a brief description of the issue. AnomAgent, in contrast, automatically generated struc-
tured reports with descriptions, reasoning, and severity.
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Phenomenon:  The seedlings being planted appear unusually tall and slender compared to 
typical young plants. They lack natural curvature or branching, and their leaves are 
disproportionately large relative to the stems.

Severity Score: 20

Reasoning: Young plants typically grow in a more compact and robust manner, with leaves 
developing gradually as they mature. The exaggerated height and leaf size suggest an artificial 
exaggeration rather than a realistic representation of plant growth.

Name: Plant growth anomaly

Phenomenon:  A chicken is positioned on a table in a clinical environment, surrounded by 
medical furniture and individuals who appear to be engaged in a discussion. The chicken is 
treated as though it is part of the consultation.

Severity Score: 20

Reasoning: Chickens are farm animals and are not typically present in sterile medical 
environments. Their inclusion in this setting contradicts hygiene standards and the expected 
purpose of the space, which is designed for human healthcare. The lack of veterinary-specific 
tools further emphasizes the implausibility of the scene.

Name: Presence of a chicken in a medical consultation setting

(a) Human Annotation

Phenomenon: The elderly person and the medical professional do not display any visible 
reaction to the presence of the chicken, despite its unusual placement and context. Their body 
language suggests they are engaged in a normal conversation, ignoring the chicken entirely.

Severity Score: 25

Reasoning: In real-world scenarios, the presence of a chicken in a clinical environment would 
likely provoke curiosity, surprise, or interaction from the individuals present. The lack of 
acknowledgment creates a semantic disconnect and undermines the plausibility of the scene.

Name: Lack of reaction from individuals to the chicken

Phenomenon: The table is covered with a cloth, which is unusual for a medical environment. 
Clinical tables are typically designed with easy-to-clean surfaces to maintain hygiene.

Severity Score: 15

Reasoning:	The use of a tablecloth contradicts standard practices in medical settings, especially 
in the presence of an animal, which could introduce contaminants. This detail undermines the 
functional coherence of the scene.

Name: Use of a tablecloth in a clinical setting

(b) AnomAgent Annotation

Figure 7: Comparison of human annotations and AnomAgent outputs. AnomAgent identifies more
anomalies with detailed explanations. 29
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F.2 QUALITATIVE COMPARISON

Figure 7 shows side-by-side comparisons of annotations from AnomAgent and human annotators.
Each example highlights different strengths:

• Fine-grained detection: AnomAgent captured subtle anomalies (e.g., missing shadows,
unnatural finger joints) often missed by humans.

• Consistency: Across images with similar anomalies (e.g., floating objects), AnomAgent
produced structurally similar descriptions, whereas human annotations varied in terminol-
ogy and detail.

• Reasoning support: Human annotators often provided short descriptions without justifi-
cation, while AnomAgent included structured, interpretable explanations.

For a dataset comprising 1000 images, human annotators identified 4884 anomalies, whereas
AnomAgent detected 8290 anomalies. AnomAgent not only detects more anomalies, but does so
with higher consistency and full interpretability with structured anomaly description.

G COMPARISON OF BERTSCORE BACKBONES FOR SEMANTIC EVALUATION

Our semantic evaluation framework (Section 3.3) relies on BERTScore to compare structured textual
anomaly explanations. However, BERTScore’s output depends heavily on the underlying language
model used to compute embeddings. To assess the stability of our evaluation metrics, we bench-
mark several pre-trained language models as BERTScore backbones. This analysis tests whether
the relative performance trends of vision-language models (VLMs) hold across different similarity
functions.

In addition to the default distilbert-base-uncased model used in the main paper, we eval-
uate two widely used and diverse backbones:

• roberta-large-mnli

• google/mt5-large

We use the exact same evaluation pipeline as in Section 3.3, computing SemAPand SemF1metrics
between human-verified ground truth anomalies and predictions from each model.

Table 4 and Table 5 present semantic detection and reasoning performance for all evaluated models
across both backbones.

The absolute values of SemAPand SemF1vary across backbones. For example, mt5-large con-
sistently yields lower scores due to its multilingual and less fine-grained English representations.
In contrast, roberta-large-mnli produces more moderate values, balancing semantic sen-
sitivity with surface-level alignment. However, the relative ranking of models—e.g., GPT-4o,
AnomReasonor-7B, and Qwen2.5 variants—remains largely unchanged, confirming the robustness
of our evaluation findings.

Metrics related to reasoning quality (SemAPRea, SemF1Rea) show greater variation across backbones
than observation-only metrics. This aligns with the expectation that free-form reasoning texts intro-
duce more lexical and structural variability, making similarity estimation more dependent on model
semantics.

Across both backbones, AnomReasonor-7B achieves top-tier performance, closely tracking or sur-
passing proprietary models on reasoning-related submetrics. This reinforces its strong generalization
in structured explanation tasks and validates the effect of fine-tuning on our anomaly supervision.

While the choice of BERTScore model influences raw scores, the relative performance trends among
models remain stable. Thus, our benchmark conclusions are not overly sensitive to the specific
similarity function used—providing evidence of metric robustness and cross-backbone reliability.
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Table 4: Performance comparison using roberta-large-mnli as BERTScore backbone.

Model SemAPPhe SemAPRea SemAPFull SemF1Phe SemF1Rea SemF1Full

LongVA-7B 0.2243 0.2002 0.2176 0.1372 0.1185 0.1325
LLaVA-OV-7B 0.2487 0.2107 0.2358 0.1514 0.1269 0.1435
Phi-3.5-Vision 0.2427 0.2129 0.2324 0.2074 0.1798 0.1984
MiniCPM-V-2.6 0.2949 0.2621 0.2844 0.1417 0.1244 0.1366
InternVL2-8B 0.2620 0.2297 0.2512 0.2674 0.2346 0.2563
InternVL2.5-8B 0.2455 0.2079 0.2320 0.2179 0.1843 0.2062
InternVL3-8B 0.3320 0.2811 0.3127 0.1405 0.1190 0.1332
InternVL3-9B 0.2697 0.2313 0.2507 0.2738 0.2352 0.2542
mPLUG-Owl3-7B 0.3102 0.2768 0.2984 0.0965 0.0857 0.0928
Qwen2-VL-7B 0.3156 0.2749 0.3006 0.1032 0.0914 0.0989
InternVL2-26B 0.2876 0.2532 0.2727 0.2760 0.2434 0.2621
Qwen2.5-VL-7B 0.3190 0.2791 0.3017 0.2893 0.2531 0.2739
Qwen2.5-VL-72B 0.3379 0.2906 0.3125 0.3033 0.2607 0.2809

Gemini-2.5-pro 0.2485 0.2290 0.2360 0.1330 0.1221 0.1264
GPT-o3 0.2860 0.2578 0.2860 0.2834 0.2555 0.2834
GPT-5 0.2322 0.2156 0.2207 0.2718 0.2526 0.2582
GPT-4o 0.3434 0.2955 0.3083 0.3707 0.3188 0.3325

AnomReasonor-7B 0.3342 0.3197 0.3151 0.3243 0.3103 0.3059

Table 5: Performance comparison using google/mt5-large as BERTScore backbone.

Model SemAPPhe SemAPRea SemAPFull SemF1Phe SemF1Rea SemF1Full

LongVA-7B 0.0535 0.0635 0.0393 0.0315 0.0331 0.0214
LLaVA-OV-7B 0.0993 0.1044 0.0834 0.0613 0.0599 0.0500
Phi-3.5-Vision 0.1326 0.0853 0.0943 0.1092 0.0666 0.0743
MiniCPM-V-2.6 0.1289 0.0926 0.0884 0.0598 0.0426 0.0407
InternVL2-8B 0.1224 0.1243 0.1076 0.1252 0.1243 0.1089
InternVL2.5-8B 0.1029 0.1024 0.0869 0.0911 0.0844 0.0743
InternVL3-8B 0.1642 0.1764 0.1488 0.0661 0.0706 0.0596
InternVL3-9B 0.1391 0.1121 0.1125 0.1428 0.1125 0.1143
mPLUG-Owl3-7B 0.1173 0.1267 0.0964 0.0350 0.0379 0.0287
Qwen2-VL-7B 0.1306 0.1393 0.1136 0.0403 0.0427 0.0348
InternVL2-26B 0.1774 0.1417 0.1488 0.1701 0.1341 0.1420
Qwen2.5-VL-7B 0.2034 0.1697 0.1775 0.1839 0.1531 0.1605
Qwen2.5-VL-72B 0.2078 0.1798 0.1850 0.1864 0.1611 0.1662

Gemini-2.5-pro 0.1905 0.1402 0.1632 0.0989 0.0718 0.0839
GPT-o3 0.1811 0.0991 0.1330 0.1793 0.0973 0.1311
GPT-5 0.1724 0.0999 0.1346 0.2031 0.1177 0.1587
GPT-4o 0.2708 0.2171 0.2387 0.2933 0.2352 0.2586

AnomReasonor-7B 0.2736 0.2612 0.2653 0.2655 0.2532 0.2574
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