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Abstract

Few-shot named entity recognition (NER) sys-
tems aim to recognize new classes of entities
with limited labeled samples. However, these
systems face a significant challenge of overfit-
ting compared to tasks with abundant samples.
This overfitting is mainly caused by the spuri-
ous correlation resulting from the bias in select-
ing a few samples. To address this issue, we
propose a causal intervention-based few-shot
NER method in this paper. Our method, based
on the prototypical network, intervenes in the
context to block the backdoor path between
context and label. In the one-shot scenario,
where no additional context is available for in-
tervention, we employ incremental learning to
intervene on the prototype, which also helps
mitigate catastrophic forgetting. Our experi-
ments on various benchmarks demonstrate that
our approach achieves new state-of-the-art re-
sults.

1 Introduction

Named entity recognition (NER) is a fundamen-
tal task in information extraction, which involves
identifying and classifying named entities in un-
structured text. Several methods (Chiu and Nichols,
2016; Ma and Hovy, 2016; Lample et al., 2016; Pe-
ters et al., 2017) have been developed to achieve
efficient results in NER.

In practical applications, few-shot named entity
recognition has gained significant attention due to
challenges in label collection and the high cost
of manual labeling. Recent years have witnessed
numerous studies focusing on few-shot NER. The
current approaches primarily revolve around metric
learning models, particularly prototypical networks.
These models compute a prototype representation
(Snell et al., 2017) for each class and assign labels
to query samples based on their distance to the
prototypes of each class (Fritzler et al., 2019; Yang
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Figure 1: (a) An example of spurious correlation. "Pi-
geons" are easily associated with "square", but not all
animals are associated with "square". (b) Causal graph
of the example. Contexts T ( such as the "square"), enti-
ties E (such as "pigeons"), and class label Y (such as the
"animal" class type), C means confounders brought by
samples selection bias in the few-shot task. (c) Causal
graph after do-operation

and Katiyar, 2020; Hou et al., 2020). Moreover,
span-based methods (Wang et al., 2021a; Yu et al.,
2021; Ma et al., 2022) have emerged to facilitate
the accurate identification of entity boundaries in
few-shot named entity recognition.

However, these existing methods tend to over-
look the issue of overfitting caused by spurious
correlation in few-shot tasks. While this problem
is less prominent in tasks with abundant samples, it
becomes crucial to address it in few-shot scenarios
due to the bias introduced by the limited sample se-
lection. As illustrated in Figure 1(a), we provide an
example of spurious correlation. In this particular
example, the context "square" is linked to the entity
"pigeon" and the entity "pigeon" is associated with
the label "animal". It is worth noting that in some
NER tasks, there may be cases where the "animal"
label is mistakenly associated with the semantic
feature of "square", but this correlation does not
apply to all animal entities.



The aforementioned issues can be attributed to
the overfitting of the model to confounders present
in the limited number of samples. Specifically, the
few samples selection bias acts as a confounder
that leads the few-shot NER model to learn spuri-
ous correlations between contexts and labels. For
instance, in Figure 1(a), the context "square" be-
comes associated with the ground-truth entity "pi-
geon". This denoted as P (E

∣∣T ), tends to create a
positive association between the context and certain
entities. When encountering the context "square",
it increases the likelihood that it belongs to the en-
tity "pigeon". However, this association based on
the confounder misguides the model to associate
the non-causal but positively correlated context T
with the class label Y, resulting in P (Y

∣∣E, T ). In
other words, the context "square" is incorrectly
perceived as a stable and intrinsic feature of the
class label "animal", even though it is a non-causal
feature in the "animal" class.

Current metric-based methods fail to address the
underlying confounders present in the few samples,
particularly the few samples selection bias. In or-
der to tackle the aforementioned challenges, we
approach few-shot named entity recognition from
a causal perspective. Figure 1(b) depicts the corre-
sponding causal graph, which represents the causal
relationships among the entity E, relevant context
T, class label Y, and confounders C. The direct link
between two nodes signifies the existence of causal
relation between them.

In Figure 1(b), a backdoor path T ← C→ Y is
present, indicating that previous methods may erro-
neously learn spurious correlations caused by this
backdoor path. To address this issue, we propose a
model based on causal interventions. Specifically,
we utilize context-based interventions to mitigate
the spurious correlation between contexts and class
labels. From a causal inference perspective, as
depicted in Figure 1(c), we employ P (E

∣∣do(T ))
instead of P (E

∣∣T ) to eliminate the influence of
confounders. The do-operation, denoted as do(T ),
allows us to establish the causal relationship be-
tween the contexts T and the class labels Y with-
out the interference of confounders (Pearl, 2009).
By calculating P (Y

∣∣E, do(T )), we can block the
backdoor path and eliminate the spurious correla-
tion arising from confounders. For the one-shot
task, obtaining additional contexts is challenging.
To overcome this, we draw inspiration from in-
cremental learning (Thrun, 1995; French, 1999;

de Masson D’Autume et al., 2019) and employ the
previous prototype to intervene in the current pro-
totype to obtain the final prototype. This approach
also prevents catastrophic forgetting (Thrun, 1995)
in the model. Our contributions can be summarized
as follows:

• From a causal perspective, we redefine the
task and introduce context-based intervention
for 5-shot. This intervention replaces the con-
text and effectively prevents overfitting. By
reducing the spurious correlation caused by
selection bias in few shot samples, our method
significantly enhances the model’s generaliza-
tion.

• For 1-shot, we use prototype-based interven-
tion to reduce the spurious correlation be-
tween the current prototype and the label. We
also apply sample reweighting to obtain more
representative prototypes. Additionally, we
utilize GPT for data augmentation to finetune
the 1-shot data and further improve the accu-
racy.

• Our model was evaluated on the Few_NERD
and SNIP datasets, and the results demon-
strate its superiority, surpassing previous state-
of-the-art methods. Through comprehensive
experiments, we observed a significant im-
provement in generalization, with an average
increase of 2% and up to 13% improvement
across all tasks.

2 Related Work

2.1 Few-Shot Learning and Meta-Learning
Few-shot learning has gained significant popular-
ity in natural language processing (NLP) research
(Chen et al., 2019; Gao et al., 2020; Brown et al.,
2020; Schick and Schütze, 2020; Lin et al., 2022).
However, overfitting is a common challenge in few-
shot learning. To mitigate this issue, researchers
often incorporate source domain data (Han et al.,
2018; Geng et al., 2019; Wang et al., 2021b). Ini-
tially, meta-learning techniques were widely ap-
plied in computer vision. The introduction of pro-
totype networks led to the adoption of metric-based
methods (Kulis et al., 2013; Vinyals et al., 2016;
Snell et al., 2017). These methods involve encod-
ing support set vectors, generating prototype rep-
resentations, and calculating the distance between
prototypes and query data using various metrics.



Finally, the query is classified based on the nearest
prototype.

2.2 Few-shot Named Entity Recognition

Previous research in few-shot named entity recog-
nition has explored various token-level approaches
(Fritzler et al., 2019; Yang and Katiyar, 2020;
Hou et al., 2020; Gong et al., 2021). One pop-
ular method is the use of prototype networks
(Snell et al., 2017). Building upon this, NNShot
and StructShot (Yang and Katiyar, 2020) intro-
duced feature extraction and nearest neighbors tech-
niques. The development of Few-NERD (Ding
et al., 2021), a large-scale human-annotated few-
shot NER dataset, allowed for the evaluation of
ProtoBERT, NNShot, and StructShot methods. Ad-
ditionally, prompt-based technologies (Cui et al.,
2021) have emerged in this field. However, these
methods have shown limited generalization capabil-
ities. To improve the accuracy of few-shot named
entity recognition, the method proposed in (Das
et al., 2021) incorporates Gaussian embedding and
contrast learning. Notably, these approaches of-
ten overlook the integrity and boundaries of en-
tities. In response, span-level approaches (Wang
et al., 2021a; Yu et al., 2021; Athiwaratkun et al.,
2020; Wang et al., 2021c) have been proposed.
For instance, ESD (Wang et al., 2021a) leverages
span representation and matching to enhance entity
recognition completeness. Similarly, Decomposed-
MetaNER (Ma et al., 2022) fine-tunes parameters
using support instances and focuses solely on entity
localization during span detection.

However, the aforementioned methods primarily
focus on the current support and query instances,
neglecting the influence of context on entities. This
oversight can result in the overfitting of both con-
texts and entities.

2.3 Causal Inference

Causal inference, as described by Pearl (2009),
aims to eliminate confounders and obtain causal
effects between variables, enabling accurate predic-
tions in tasks. In light of the challenges posed by
fitting issues and causal effects in few-sample sce-
narios, our objective is to leverage causal inference
to enhance the robustness and transferability of our
model. Many prior works have employed causal
theory to improve model robustness, employing
techniques such as counterfactual analysis, unbi-
ased estimation, visual cues, and front-back door

adjustment to eliminate spurious correlations and
identify causal effects between variables.

3 Methods

We give a few shot named entity recognition task
descriptions in Appendix A. In the subsequent sec-
tions, we outline our method for few-shot named
entity recognition.

3.1 Causal Intervention

The few-shot named entity recognition task is
plagued by a significant selection bias in the data,
leading to the emergence of spurious correlations
that can mislead the model’s overfitting. To ad-
dress this issue, we propose a causal intervention-
based approach. Figure 1 depicts the problem in
the task, where T represents the context, E denotes
the entity, Y signifies the predicted label, and C
represents confounders, such as the few samples
selection bias.

T→ E→ Y The entity representation is learned
in terms of contexts. The model uses the entity
representation to get the predicted label.

T← C→ Y There exists a backdoor path in the
model that creates a spurious correlation. The vari-
able C encompasses the few samples selection bias.
These biases cause the context to overly focus on
the current data, misleading the prediction of labels.
This backdoor path results in a spurious correlation
between the context and the predicted class label.

To address the backdoor path T ← C→ Y , we
perform interventions on T. However, intervening
on T directly is challenging due to the confounders
C being difficult to capture. Therefore, we employ
front-door adjustment in the calculation, as shown
in Equation 1.

P (Y = y|do(T = t)) =
∑
E

P (Y = y|E = e, do(T = t))

P (E = e|do(T = t)) (1)

Based on the principles of causal inference, we
have derived Eq 2 as the final result. The detailed
derivation process can be found in Appendix B,
providing a comprehensive explanation of the equa-
tion.

P (Y = y|do(T = t)) =
∑
E

P (E = e|T = t)∑
t′

P (Y = y|E = e, T = t′)P (T = t′) (2)
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Figure 2: (a) The causal structure, where T is the context, E is the entity representation, Y is the predicted label.
Besides, there exists C, the confounders, such as samples selection bias. (b) Our context-based intervention, to
block the spurious correlation between context and predicted label. We replace entities of the same type to get a
new sample and feed it into the prototype network to get the predicted label.

Based on the three terms on the right of Eq 2, we
introduce three important components: entity detec-
tion, context-based causal intervention, and sample
reweighting. Each component has its specific role,
and we will provide a detailed explanation of each
below.

In the expression
∑

E P (E = e|T = t), e is the
entity of the current sample. t is the context of e.
If we consider E as a binary classification (entity
vs. non-entity), this term denotes entity detection.
It represents the probability of the entity E being
equal to e given the context T being equal to t.

In the expression
∑

t′ P (Y = y|E = e, T = t′),
t′ refers to the contexts of other entities that belong
to the same type as e. This term indicates that to
obtain the final prediction label y, we need to tra-
verse t′ when E is equal to e. So we propose the
context-based causal intervention that involves
replacing the contexts to observe the resulting pre-
dicted labels. This allows us to analyze the impact
of different contexts on the prediction when the
entity is fixed.

In the expression P (T = t′), with the calcu-
lation of the prototype, we propose the sample
reweighting to take into account the weights as-
signed to different samples. This is done to ad-
dress the potential differences between the source
domain and the target domain distribution. By cal-
culating the weights, the prototype is representative
and takes into account the variations in the context
distribution.

In the case of 1-shot, where no additional entities
are available for intervention, we analyze the model.
Figure 3 provides an illustration of the problem
within the model. In this figure, P denotes the

entity prototype, Y represents the predicted label,
and C corresponds to the confounders.

P→ Y The model calculates the Euclidean dis-
tance through the entity prototype and gets the pre-
dicted label.

P← C→ Y The presence of confounders, such
as sample selection bias, can distort the calculation
of the entity prototype, leading to a spurious cor-
relation between the prototype and the predicted
label. This spurious correlation, in turn, contributes
to overfitting in the model.

To block the backdoor path P← C→ Y, we use
the intervention which is similar to T. The interven-
tion on P follows a similar approach in Eq 2.

In the 1-shot, where we don’t have additional
entities to intervene on, we focus on intervening on
the prototype P. Since there is a direct causal path
between P and Y, we can simplify the intervention
by directly modifying the prototype. Specifically,
we propose the prototype-based causal interven-
tion to consider both the previous prototype and
the current prototype. Our experimental results
confirms the importance of prototype intervention
in improving the performance.

3.2 Entity Detection

In order to address the limitations of traditional pro-
totype networks in capturing cross-class common-
alities, we propose an entity detection mechanism.
While the traditional prototype network averages
the vectors of entities belonging to the same class
to obtain class-specific prototypes, it overlooks the
common features that may exist across different
classes.

The entity detection approach, on the other hand,
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Figure 3: (a) Prototype-based intervention, where P is the entity prototype, Y is the predicted label, C is the
confounders. (b) We intervene in the prototype to block the spurious correlation between the prototype and the
predicted label. During the current episode, the previous prototype is introduced to the current episode as knowledge.
The two prototypes are combined as the current prototype. In the next episode, this prototype is introduced as the
previous prototype.

aims to identify all named entities within the in-
put sequence, without differentiating their specific
classes. It takes into account the potential simi-
larities between entities of all classes. To achieve
this, we feed all the entities as a whole into the
prototype network, as well as all the non-entities,
to identify and locate all entities in the sequence.
This approach allows us to uncover features that
are common to all entities, which can be used for
the initial filtering of the input.

When integrating the predicted labels, it is im-
portant to consider the dimensionality matching
problem. Therefore, we expand the entity detection
results to match the dimensionality of the class, en-
suring compatibility for subsequent processing and
classification tasks.

3.3 Context-based Causal Intervention

In the few-shot task, limited samples can lead to
overfitting and hinder generalization. This is es-
pecially problematic when the entities are embed-
ded within the contexts, as the model may overly
adapt to specific context-entity relationships. To
address this, we need to consider the causal rela-
tionships between entities, contexts, and predicted
labels. Causal inference helps mitigate overfitting
by removing spurious correlations and improving
generalization.

In Figure 2(a), we present our approach for the
few-shot named entity recognition task. The pres-
ence of confounders, such as the few samples se-
lection bias, creates a backdoor path T← C→ Y
between the context and predicted label. This back-
door path introduces spurious correlations, leading
to the overfitting of both the context and the pre-
dicted label. To address this issue, our method

focuses on blocking the backdoor path. We achieve
this by intervening on the context variable T, effec-
tively blocking the influence of the confounders C
on the predicted label Y. We refer to this interven-
tion strategy as context-based causal intervention.

The method outlined in Equation 2 involves it-
erating over each T to calculate the final predicted
label Y for a given entity E. To accomplish this, we
employ a traversal process illustrated in Figure 2(b).
During training, for each sentence, we replace the
entities in the sentence with other entities of the
same type, one at a time, in order to explore all pos-
sible combinations. This traversal process allows
us to consider the impact of different context-entity
pairs on the predicted label. However, it’s impor-
tant to note that this process is only applied during
training. During testing, we use the original data
without any entity replacements.

3.4 Prototype-based Causal Intervention

In 1-shot experiments, context-based causal inter-
vention is not possible due to the lack of additional
samples. Instead, we use prototype-based inter-
vention (Figure 3). Previous methods average sup-
port instances to calculate prototypes and rely on
prototype-query distances for entity recognition.
However, these methods can be influenced by con-
founders, leading to spurious correlations and over-
fitting.

To overcome this, we propose a prototype-based
causal intervention. We intervene on prototypes
(P) to block the P← C→ Y path, reducing spuri-
ous correlations. Our method incorporates prior
knowledge by saving prior prototypes and combin-
ing them with the current class representation. This
approach mitigates overfitting by considering both



current and previous data.
Prototype-based causal intervention effectively

blocks spurious correlations between prototypes
and predicted labels. It improves generalization
and prevents overfitting in prototype calculation.

3.5 Sample Reweighting

We propose sample reweighting to address the is-
sue of sample weighting. Instead of treating all
samples equally, we assign different weights to
each sample based on their relevance to the proto-
type calculation. This is done by calculating the
distances between support samples and the query
and using Softmax to determine the weights.

We also incorporate Maximum Mean Discrep-
ancy (MMD) into the loss calculation to reduce the
distribution difference between the training and test
support data. The Softmax and MMD in Eq 3. By
combining the MMD loss with the classification
loss, we aim to improve domain adaptation.

Furthermore, we perform fine-tuning using the
support instances from the test data to better adapt
to the target domain. In the 1-shot scenario, where
no additional data is available for fine-tuning, we
use GPT for data enhancement before fine-tuning.

αi = softmax(hθ(xq)− hθ(xsi)) (3)

L(θ) =
1

N

N∑
i=1

CrossEntropy(yi, hθ(αixi))

+ sup
∥f∥H≤1

Ep[f(s)]− Eq[f(t)] (4)

Where h is our network, y is the true label, p
denotes the distribution of the source domain s, q
denotes the distribution of the target domain t.

4 Experiments

4.1 Dataset

Few-NERD (Ding et al., 2021) dataset1 consists
of two tasks: FewNERD-INTRA and FewNERD-
INTER. FewNERD-INTRA has entities of differ-
ent coarse-grained types in the training, valida-
tion, and test sets, while FewNERD-INTER allows
overlapping coarse-grained types but disjoint fine-
grained entity types. In FewNERD, the N-way
K∼2K shots approach is used, where N represents

1https://github.com/thunlp/Few-NERD

the number of classes and K is the number of sup-
port examples per class. The dataset includes four
settings: 5-way 1∼2-shot, 5-way 5∼10-shot, 10-
way 1∼2-shot, and 10-way 5∼10-shot. We fine-
tuned the model following (Ma et al., 2022) parti-
tion. However, we found that their dataset contains
overlapping portions. To provide a better repre-
sentation, we have included additional results after
removing the overlaps, which are indicated in Table
1 with ’†’.

SNIPS dataset (Coucke et al., 2018) focuses on
slot filling and includes seven domains: D = {D1,
D2, ..., D7}. The leave-one-out strategy is followed,
where a target domain is tested using a randomly se-
lected validation domain, and the model is trained
on the remaining source domains. In the few-shot
slot-filling task of SNIPS, K examples per class are
used in the support set. The task has 1-shot and
5-shot settings.

4.2 Parameter Settings

In our implementation, we utilized the Bert-base-
uncased model (Devlin et al., 2018) as our base
model. We set the maximum sequence length to 32.
For optimization, we used AdamW (Loshchilov
and Hutter, 2017). For further information on the
parameter settings, please refer to Appendix C.

4.3 Evaluation metrics

For the evaluation of Few-NERD and SNIP, we
followed ESD (Wang et al., 2021a), calculated the
F1-score(F1).

4.4 Baselines

For a comprehensive comparison in Few_NERD,
We select the top six state-of-the-art methods2,
such as ProtoBERT (Ding et al., 2021), NNShot
(Ding et al., 2021), StructShot in Few-NERD (Ding
et al., 2021), CONTAINER (Das et al., 2021), ESD
(Wang et al., 2021a) and DecomposedMetaNER
(Ma et al., 2022). To ensure a fair comparison, we
reproduce DecomposedMetaNER using our maxi-
mum sequence length of 32. For SNIP, we choose
the moethods including TransferBERT (Hou et al.,
2020), MN+BERT (Hou et al., 2020), ProtoBERT
(Hou et al., 2020), Ma2021 (Ma et al., 2021), L-
TapNet+CDT (Hou et al., 2020), ESD (Wang et al.,
2021a), Retriever (Yu et al., 2021) and ConVEx
(Henderson and Vulić, 2020). The detailed base-
line descriptions can be found in Appendix D.

2https://paperswithcode.com/task/few-shot-ner



Models
Intra Inter

1∼2-shot 5∼10-shot Avg. 1∼2-shot 5∼10-shot Avg.
5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

ProtoBERT∗ 20.71±1.16 15.32±0.68 37.08±1.01 28.02±0.56 25.28 37.49±1.63 26.98±0.79 52.42±0.60 56.29±0.79 43.30
NNShot∗ 21.58±0.70 15.72±0.53 25.66±0.78 19.82±1.11 20.70 40.31±2.30 31.54±1.63 42.66±1.07 37.09±0.13 37.90

StructShot∗ 23.95±2.39 12.31±0.72 29.68±1.11 17.10±1.75 20.76 38.78±5.70 22.61±0.95 35.95±1.09 42.75±0.62 36.02
CONTAINER 40.00±0.71 35.89±0.16 54.28±0.64 48.48±0.69 44.66 52.17±2.74 50.00±1.46 61.11±0.76 59.84±0.36 55.78

ESD 37.12±0.89 31.26±0.53 50.50±1.79 33.38±4.71 38.07 57.56±2.52 52.89±1.11 69.92±0.56 66.90±0.60 61.82
DecomposedMetaNER† 45.06±1.38 39.55±0.73 55.08±1.71 48.26±2.25 46.99 61.74±0.13 57.40±1.77 66.20±0.58 61.38±0.15 61.68
DecomposedMetaNER 46.97±2.36 41.30±0.89 59.40±2.48 50.71±4.24 49.60 62.76±2.61 59.57±2.88 70.90±0.28 66.76±0.54 64.70

Ours† 52.21±1.07 41.47±0.98 67.32±0.04 59.78±0.23 55.20 65.31±1.01 59.91±0.11 79.21±0.38 73.47±0.59 69.48
Ours 54.00±1.14 43.58±1.20 70.34±0.27 61.33±0.47 57.31 69.41±1.24 60.67±0.73 81.89±0.33 75.86±0.10 71.96

Ours+GPT-Aug 73.72±2.64 62.61±1.33 - - - 80.85±2.14 67.63±0.59 - - -

Table 1: Performance of state-of-art models on Few-NERD. The "-" indicates that in order to have sufficient data
fine-tuning, we use GPT for data augmentation (Ours+GPT-Aug) and generate an additional example. The "*"
indicates that the results were directly obtained from the original paper. The ’†’ represents the experimental results
obtained after removing the overlapping portions in the test set. The best results among the methods without using
GPT are in Bold.

4.5 Results and Analysis

Our method achieves state-of-the-art results in both
the FewNERD and SNIPS datasets, as shown in
Table 1 and Table 2. In FewNERD, we observe
significant improvements of 11% for the 5-shot
setting and 1-8% for the 1-shot setting. These im-
provements demonstrate the effectiveness of our
context-based causal intervention, entity detection,
prototype-based causal intervention, and sample
reweighting techniques. Similarly, in the SNIPS
dataset, our method achieves an average improve-
ment of approximately 13% for the 5-shot set-
ting and an average improvement of 2% for the
1-shot setting. These results highlight the abil-
ity of our method to block spurious correlations,
prevent overfitting, and improve overall perfor-
mance. Meanwhile, GPT data enhancement im-
proved our method by 2-20%. When we removed
the overlapping portions, we observed that our re-
sults had a smaller decrease compared to Decom-
posedMetaNER, which further demonstrates the
effectiveness of our model.

4.6 Ablation Study

The setting of the ablation study can be found in
Appendix E. Table 3 demonstrates the contribution
of each component in our method. Notably, we
observed the following findings: Entity detection
greatly enhances the effectiveness of context-based
intervention, leading to an improvement of approx-
imately 8% compared to not using entity detection
in 5 shot. Context-based causal intervention helps
resolve spurious correlation and leads to a 10% im-

provement. Prototype-based causal intervention is
particularly effective in 1-shot scenarios, contribut-
ing to an 8% improvement. Sample reweighting
enhances the model’s performance by 4%. These
results highlight the significance of each compo-
nent in our proposed method.

4.7 Experimental Analysis
How does entity detection improve entity recog-
nition Entity detection is essential for dealing with
boundary cases. For example, it helps distinguish
instances where "the" is part of an entity, like "the
Porcellian Club" from cases where "the" is used as
a common article, such as "the year". Similarly, en-
tity detection can correctly identify specific entities
like "American League" while ignoring irrelevant
words like airline names in phrases like"American
airline". By performing entity detection, the model
can improve the accuracy.

(a) Proto (b)Context-interven�on Proto

building-theater building-hotel event-a!ack building-sportsfaclity building-library

Figure 4: t-SNE visualization of entity replacing on
Few-NERD Intra, 5-way 5∼10-shot.

How does context-based causal intervention
improve entity recognition In Figure 4, we pro-
vide t-SNE visualizations of the original proto-
type network and the prototype network with the
context-based causal intervention. In the original



Models We Mu Pl Bo Se Re Cr Avg.
1-

sh
ot

TransferBERT 55.82±2.75 38.01±1.74 45.65±2.02 31.63±5.32 21.96±3.98 41.79±3.81 38.53±7.42 39.06±3.86

MN+BERT 21.74±4.60 10.68±1.07 39.71±1.81 58.15±0.68 24.21±1.20 32.88±0.64 69.66±1.68 36.72±1.67

ProtoBERT 46.72±1.03 40.07±0.48 50.78±2.09 68.73±1.87 60.81±1.70 55.58±1.56 67.67±1.16 55.77±1.70

L-TapNet+CDT 71.53±4.04 60.56±0.77 66.27±2.71 84.54±1.08 76.27±1.72 70.79±1.60 62.89±1.88 70.41±1.97

ESD 78.25±1.50 54.74±1.02 71.15±1.55 71.45±1.38 67.85±0.75 71.52±0.98 78.14±1.46 70.44±0.47

Ours 75.44±1.45 58.64±0.84 69.22±1.34 84.61±0.23 68.57±0.44 74.73±1.29 78.79±0.27 72.86±0.91

Ours+GPT-Aug 73.30±1.17 53.56±0.17 88.98±0.44 84.62±0.53 70.22±0.39 73.52±0.61 76.57±0.28 74.40±0.13

5-
sh

ot

TransferBERT 59.41±0.30 42.00±2.83 46.07±4.32 20.74±4.36 28.20±0.29 67.75±1.28 58.61±3.67 46.11±2.29

MN+BERT 36.67±3.64 33.67±6.12 52.60±2.84 69.09±2.36 38.42±4.06 33.28±2.99 72.10±1.48 47.98±3.36

ProtoBERT 67.82±4.11 55.99±2.24 46.02±3.19 72.17±1.75 73.59±1.60 60.18±6.96 66.89±2.88 63.24±3.25

Retriever 82.95(unk) 61.74(unk) 71.75(unk) 81.65(unk) 73.10(unk) 79.54(unk) 51.35(unk) 71.72(unk)

ConVEx 71.50(unk) 77.60(unk) 79.00(unk) 84.50(unk) 84.00(unk) 73.80(unk) 67.40(unk) 76.80(unk)

Ma2021 89.39(unk) 75.11(unk) 77.18(unk) 84.16(unk) 73.53(unk) 82.29(unk) 72.51(unk) 79.17(unk)

L-TapNet+CDT 71.64±3.62 67.16±2.97 75.88±1.51 84.38±2.81 82.58±2.12 70.05±1.61 73.41±2.61 75.01±2.46

ESD 84.50±1.06 66.61±2.00 79.69±1.35 82.57±1.37 82.22±0.81 80.44±0.80 81.13±1.84 79.59±0.39

Ours 94.67±1.33 90.34±0.45 91.73±0.82 94.70±1.55 94.75±1.82 93.18±1.63 89.75±0.28 92.73±0.11

Table 2: Below are the F1 scores with standard deviations on 7 domains of SNIPS. Please note that some methods
do not provide deviation information in their paper (marked as ’unk’). The baselines for 1-shot and 5-shot settings
differ because they did not report the 1-shot results in their paper.

Setting Entity Context-based Sample Prototype-based F1
Detection Intervention Reweighting Intervention score

1∼2-shot

✓ × ✓ ✓ 54.00
✓ × × ✓ 50.00
✓ × ✓ × 46.09
× × ✓ ✓ 45.53
× × ✓ × 43.82
× × × ✓ 41.57

5∼10-shot
✓ ✓ × × 70.34
× ✓ × × 62.80
✓ × × × 60.44

Table 3: Ablation study: F1 scores on Few-NERD

prototype network, the embeddings are scattered
and lack clear boundaries, making it prone to con-
fusion. However, after applying the context-based
causal intervention, the embeddings become more
compact and exhibit clear boundaries. Entities of
the same type are grouped closer together, while
the distance between different types is increased.
This optimization of the embedded space helps to
distinguish and classify entities accurately.

How does prototype-based causal interven-
tion improve entity recognition When analyzing
the word "German" in the given query, the current
prototype calculation may lead to misclassifica-
tion. However, by intervening in the prototype and
incorporating information from previous support
data, we can improve the accuracy. For instance,
if "German" was previously classified correctly as
other-language, we can use that knowledge to re-

fine the current classification. By performing the
prototype-based causal intervention, we can rec-
tify the error and accurately classify "German" as
other-language in the current query.

(a)Proto

(b)Sample Reweigh!ng Proto

support query

support query

Figure 5: histogram of sample reweighting on Few-
NERD Intra, 5-way 5∼10-shot.

How does sample reweighting improve entity
recognition In Figure 5, we present histograms
depicting the data distributions of the source and
the target domain before and after applying sam-
ple reweighting. By comparing the histograms, we
observe that after sample reweighting, the distri-
butions of the source and target domains become
more aligned, reducing the gap between them. This
alignment is beneficial for the model’s ability to
transfer knowledge from the source domain to the
target domain effectively.



5 Conclusion and Future Work

In this paper, we propose a method for few-
shot named entity recognition that addresses the
problem of overfitting by using causal interven-
tions. We introduce entity detection, context-based
and prototype-based interventions, and sample
reweighting to improve performance. Our experi-
ments show significant improvements in handling
few-shot scenarios and transferring to new domains.
Future work includes exploring dimensionality re-
duction techniques to reduce memory usage.

Limitations

One limitation of our method is the increased mem-
ory usage due to context-based intervention. How-
ever, our method still offers an advantage compared
to other methods that require a maximum length
of 128, as we achieve good results with only 32.
This helps mitigate the memory issue to some ex-
tent. In addition, compared to the significant im-
provement observed in the 5-shot, the boost for the
1-shot relatively smaller. We can use GPT. GPT
data enhancement proves to be particularly helpful
in improving performance in 1-shot scenarios. By
leveraging GPT to enhance the limited amount of
available data, we are able to achieve better results.
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A Task Formulation

Named Entity Recognition (NER) is commonly
formulated as a sequence labeling problem, where
given a sequence {x1.. .xn}, the goal is to assign a
label to each xi. These labels indicate whether xi
belongs to a named entity category (e.g., person,
location) or is not part of any entity (O class).

Few-shot NER aims to identify unknown entity
classes using only a limited amount of training data,
typically employing N-way K-shot learning. In this
approach, episodes are iteratively constructed to de-
fine N-way K-shot training scenarios. During train-
ing, each episode consists of N entity classes, with
each class containing K samples. This construc-
tion yields the support set, Strain = {(x(i),y(i))}N∗Q

i=1 .
The query set is formed by sampling Q samples
from each of the N classes, resulting in Qtrain =
{ (x(i),y(i))}N∗Q

i=1 . It should be noted that Strain
⋂

Qtrain =∅.
The model is trained based on predictions made

on the query set Qtrain during training. During test-
ing, a few samples Stest are used, and predictions
are made for the corresponding query set Qtest.
Similarly, Stest

⋂
Qtest=∅. Importantly, the entity



classes present in the test set are not present in the
training set, i.e., Ytrain

⋂
Ytest=∅.

We expect to block the backdoor path T← C→
Y and P← C→ Y. So, we intervene on T and P.
First, when we intervene with T, considering C as
the confounders are hard to catch. Therefore, we
use the front-door adjustment for the calculation,
shown in the Eq 5. The intervention for P is similar.

B Causal Inference Formula

P (Y = y|do(T = t)) =
∑
E

P (Y = y|do(T = t), E = e)

P (E = e|do(T = t)) (5)

Intervention of E, taking T and E as conditions,
the conditional probability of Y is constant. So we
get the Eq 6.

P (Y = y|do(T = t)) =
∑
E

P (Y = y|do(T = t),

do(E = e))P (E = e|do(T = t)) (6)

Given that there is a direct causal path between
T and E, the do-operation on T can be removed to
get the Eq 7.

P (Y = y|do(T = t)) =
∑
E

P (Y = y|do(T = t),

do(E = e))P (E = e|T = t) (7)

Meanwhile, considering that there is no direct
causal path between T and Y. The do-operation
on T will not affect the distribution of Y, so the
formula can be further eliminated into Eq 8.

P (Y = y|do(T = t)) =∑
E

P (Y = y|do(E = e))P (E = e|T = t) (8)

Next, apply the total probability formula again
to get the Eq 9.

P (Y = y|do(T = t)) =
∑
t′

∑
E

P (Y = y|do(E = e),

T = t′)P (T = t′|do(E = e))P (E = e|T = t) (9)

Reusing the previous direct causality between T
and E, we get the Eq 10.

P (Y = y|do(T = t)) =
∑
t′

∑
E

P (Y = y|do(E = e),

T = t′)P (T = t′)P (E = e|T = t) (10)

Similarly, according to the previous causality
theorem, we can also remove the do operation on
E, we get the final Eq 11.

P (Y = y|do(T = t)) =
∑
E

P (E = e|T = t)∑
t′

P (Y = y|E = e, T = t′)P (T = t′) (11)

C Parameter Settings

Table 4: The hyperparameters of experiments

Name Value

Batch_size 20
Max_length 32
Learning rate 1e-4
Embedding dimension 768
Dropout 0.1

D Baselline

ProtoBERT (Ding et al., 2021) uses BERT to get
the vector representation of each token, and then
averages all vectors of the same type as the the
class representation according to the prototype net-
work. Finally, calculate the distance between each
category representation and query, and judge based
on the nearest class.

NNShot (Ding et al., 2021) gets the feature repre-
sentation for each token and calculates the distance
between the query and each representation. Finally,
the class is judged based on the nearest distance.

StructShot (Ding et al., 2021) adds an additional
Viterbi decoder to the NNShot.

CONTAINER (Das et al., 2021) also uses
BERT, and additionally uses contrast learning and
Gaussian embedding to get the representation of
each token. Then, fine-tuning on the support set
and inference using the nearest neighbor method.

ESD (Wang et al., 2021a) uses inter and cross-
span attention based on prototypes to get span rep-
resentations. Also, it constructs multi-prototypes
for O label.

DecomposedMetaNER (Ma et al., 2022) con-
siders the few shot as a sequence labeling problem.
MAML is used to initialize the model parameters,
and meanwhile uses DecomposedMetaNER to find
the optimal embedding space for entity recognition.



TransferBERT (Hou et al., 2020) is a model
that applies BERT directly to few-shot sequence
labeling through fine-tuning.

Matching Net (MN)+BERT (Hou et al., 2020)
is a model that combines the Matching Network
(MN) approach with BERT for token classification.
It is similar to ProtoBERT but utilizes the matching
network instead of prototype-based classification.
This approach enhances the token classification
task in few-shot sequence labeling.

Ma2021 (Ma et al., 2021) approaches sequence
labeling by formulating it as a machine reading
comprehension problem. They propose a method
that involves generating specific questions to ex-
tract slots from the query sentence. This approach
allows for effective slot extraction in the sequence
labeling task.

L-TapNet+CDT (Hou et al., 2020) is an ad-
vanced model that combines different techniques to
improve classification in few-shot sequence label-
ing. It uses task-adaptive projection, pair-wise em-
bedding, and collapsed dependency transfer mech-
anisms to enhance performance and capture task-
specific information.

Retriever (Yu et al., 2021) is a retrieval-based
method that performs classification by finding the
most similar example in the support set. It uses a
retrieval mechanism to identify the most relevant
support instance and assigns the same label to the
query based on this similarity.

ConVEx (Henderson and Vulić, 2020) is a
model that follows a fine-tuning approach. It is
initially pre-trained on the Reddit corpus using se-
quence labeling objective tasks and then fine-tuned
on both the source and target domain annotated
data to perform few-shot sequence labeling.

E Ablation study setting

In order to evaluate the contribution of the differ-
ent components of the proposed method, we per-
formed the following baseline as an ablation study:
for 1∼2-shot, 1) We use the basic prototype net-
work and do the entity detection, prototype-based
intervention and sample reweighting. 2) Without
sample reweighting, we use the basic prototype
network and do the entity detection and prototypr-
based intervention. 3) we use the entity detection
and sample reweighting. 4) Without entity detec-
tion, we only use the basic prototype network and
do sample reweighting and prototype-based inter-
vention. 5) We only do the sample reweighting.

6) We only use prototype-based intervention. For
5∼10-shot, 1) Without sample reweighting, we
make a context-based intervention and do the en-
tity detection. 2) We only make a context-based
intervention for the basic prototype network. 3) We
only use the basic prototype network and do the
entity detection.


