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ABSTRACT

Self-organized spatial patterns, ubiquitous in biological and chemical systems,
are often modeled via reaction-diffusion equations. However, real-world scenar-
ios frequently provide only partial observations—such as a single component’s
steady-state snapshot—challenging the discovery of underlying dynamics. In this
work, we address the inverse problem of identifying reaction-diffusion systems
from partial observations. We establish the theoretical feasibility of identifying
reaction terms and their corresponding coefficients, and introduce a constructive
two-stage approach that combines hidden component inference with reaction co-
efficient identification. Numerical experiments validate the approach’s effective-
ness. This work provides a novel framework with theoretical guarantees, advanc-
ing the study of pattern dynamics with limited data and offering new perspectives
for uncovering unknown reaction-diffusion dynamics in real-world scenarios.

1 INTRODUCTION

Spatial pattern formation is a fundamental phenomenon in both natural and engineered systems,
underlying diverse processes such as microbial gene expression, tissue organization, animal pig-
mentation, and chemical reactions (Elowitz & Leibler, [2000; Green & Sharpel, 2015} [Epstein &
Pojman| (1998} |Turing), [1990; Briscoe & Smalll 2015)). Reaction-diffusion models provide a mathe-
matical framework for studying these emergent patterns, capturing the interplay of local interactions
and diffusion (Kondo & Miura, 2010; [Nakamasu et al., |2009). Understanding these mechanisms
is crucial for deciphering the functional relationships governing pattern formation (Castets et al.,
1990).

Reconstructing reaction-diffusion dynamics from incomplete data, however, remains a significant
challenge (Stuart, 2010). Observations in real-world scenarios are often constrained to a single sys-
tem component and limited to steady-state configurations(Chen et al.| [2020; |Yue et al.| [2020), as
transient dynamics are either too brief to capture experimentally (Battaglia et al.|[2018)) or computa-
tionally intractable to resolve (Kutz et al., [2016)). This challenge is exacerbated in multi-component
systems where unobservable variables introduce structural uncertainty, making the inverse problem
of identifying reaction-diffusion parameters inherently ill-posed (Engl et al.| [1996; Brunton et al.,
2020). The steady-state data alone provide little information about temporal evolution, further com-
plicating inference. Additional background on Turing patterns and reaction-diffusion systems, along
with related work discussions, is provided in Appendix [A]

To address these challenges, we propose a novel framework for identifying reaction-diffusion sys-
tems from partial steady-state observations. Unlike conventional approaches that require full spa-
tiotemporal data, our method reconstructs hidden system components and estimates reaction kinetics
and diffusion coefficients solely from steady-state spatial distributions. Our contributions include:

* Hidden component reconstruction: A latent-space representation, designed specifically
for steady-state behavior, enables the recovery of unobserved species while preserving
physical consistency.

* Physics-informed optimization: By incorporating priors from the reaction-diffusion sys-
tem, our method ensures theoretical rigor and mitigates the ill-posedness of the inverse
problem.
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Figure 1: Inverse Problem: System Identification for Reaction-Diffusion Models from Partial
Steady-State Observations. (a) Activation-inhibition regulation diagrams illustrating interaction
mechanisms and their Governing partial differential equations. (b) The challenge of system iden-
tification: only the steady-state spatial distribution of one component (v, observable) is available,
while historical dynamics and other components (ur, hidden) remain unknown. Our framework
aims to reconstruct underlying dynamics (f(u,v), g(u,v)) from limited observations.

« Joint parameter identification: Reaction kinetics and diffusion coefficients are inferred
simultaneously, capturing both estimation accuracy and physics interpretability.

We validate our method on canonical reaction-diffusion models, including systems exhibiting Turing
instabilities and multistability. Numerical experiments demonstrate that our approach effectively
reconstructs hidden dynamics and system parameters from highly limited data, offering a principled
solution for studying reaction-diffusion processes in biological, chemical, and ecological systems.

2 PROBLEM FORMULATION

The study of spatial pattern formation originates from Turing’s pioneering work on morphogenesis
(Turing| [1990). Turing demonstrated that reaction and diffusion processes can destabilize uniform
steady states, leading to the emergence of regular spatial patterns, now known as Turing patterns.
These processes are typically modeled as coupled partial differential equations

{atu =diAu+ f(’LL,’U)7

Do — oo+ (), (B0 ERX (0,00), (1)

where u and v represent chemical or biological components and f and g shape their reaction process.
Under specific parameter regimes, such systems can generate stable spatial patterns. Please see
Appendix [C.2] for a brief mathematical illustration for the mechanism of pattern formation.

The primary focus of our study is the inverse problem of identifying system parameters from par-
tial, steady-state observations. Specifically, let u(x,t),v(z,t) € C?(Q) x (0,00) represent the
trajectories of (I)) under homogeneous Neumann boundary conditions
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Given access to only a single snapshot vy € C?() of the component v(x, t) at time ¢ = T, the task
is to reconstruct the corresponding ur and identify the reaction terms f(u,v) and g(u, v).

2.1 ASSUMPTIONS AND CONSTRAINTS

In general, observing only vr is insufficient to uniquely determine f, g, and up. To address this
challenge, we incorporate additional knowledge and assumptions about the system to make the
inverse problem solvable.

1. (up,vr) are steady-state Turing Patterns.

2. Diffusive coefficients d,, and d,, are accessible.
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3. The space average [, updx/|2] is known.

4. f and g belong to a finite-dimensional family F.

By the first assumption, the time derivative of w and v vanish at ¢ = T, therefore we have the
following correspondences,

{duAuT + f(ur,vr) =0, 3)

dyAvp + g(up,vr) = 0.

These equations act as foundations for inferring wp, and reaction terms f and g. The second and
third assumptions are necessary to avoid non-uniqueness of the solution. Refer to Appendix [B.T]for
constructions of counter-examples without these constraints.

2.2  FINITE-DIMENSIONAL BASIS REPRESENTATION

Following the fourth assumption from Section we define the reaction terms (f, g) as elements
of a function family F, spanned by a set of basis functions,

F = {Zaiqﬁi(u,v) fa; € R} : 4)

i=1

The basis functions {¢;(u,v)}?_, are selected as candidates to represent specific terms appearing
in reaction functions. This formulation is motivated by both practical and theoretical considera-
tions. From a physical perspective, reaction-diffusion systems are governed by physical laws that
naturally restrict the functional forms of f and g to the combinations of interpretable components,
such as polynomials, exponential functions, or Hill-type terms. From a mathematical standpoint,
this finite-dimensional representation ensures the problem’s well-posedness (please see details in
Appendix [B.3); without such constraints, the inverse problem could become highly ill-posed and
computationally intractable.

After specifying the set of candidate basis functions {¢; }I"_;, our task reduces to identifying both the
steady-state ur € C?() and the coefficients {a; }?_, and {b;}"_,, such that the observed snapshot
vy is consistent with the reaction-diffusion system (IJ). It has the form

{duAuT + 30 aidi(ur, vr) =0,

n 5
dyAvr + > bigi(ur,vr) = 0. ©)

3 METHODOLOGY

We propose a framework for identifying reaction-diffusion systems by integrating neural network-
based state estimation with physics-informed optimization to infer hidden dynamics and estimate
reaction terms. Let v be the observable state at time 7', and wr the latent state. For simplicity, we
denote them as v and u, with * representing estimations. Basis functions {¢;}?_; span the function
family F.

3.1 ARCHITECTURE DESIGN

Our framework consists of two modules: State Estimator and Reaction Term Estimators, de-
signed for hidden state reconstruction and reaction term estimation.

The State Estimator is a CNN-based network uxy : RV *Nux2 — RNa XNy mapping (v, Av) to
an estimated state

4 = unn(v, Av; 0,,), (6)

where 6, are trainable parameters. Importantly, uny performs a mapping between functions rather
than point-wise values, such that in each forward step, it takes the entire functions v and Av as
inputs and returns the function @. This approach ensures that the inference process has access
to local information, which is necessary since there is no guaranteed one-to-one correspondence
between v(x), Av(z), and u(z).
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Figure 2: Overview of the proposed identification framework for reaction-diffusion systems.

The Reaction Term Estimators approximate the reaction functions f, g and their coefficient
{a;}1 4, {b;} !, respectively using a neural-basis hybrid
f(r,s) = afun(r,s;07) + (1 — @) fs(r, s:a)
g(r,s) = agan(r, 8564) + (1 — @) ge(r, s;b)
where fyn and gnn are fully connected neural networks with learnable parameters ¢, 0,. « € [0,1]
is a mixing parameter. fy and g, are given as follows,

fo=) b, gs=) bids, ®)
=1 1=1

where @ = {a;}? ; and b = {b;}}; are learnable coefficients. By using 7 and s instead of u and
v, it is remarked that Reaction Term Estimators take point-wise inputs (r,s) € R x R, which are
different from the State Estimator.

(7

In a forward step, the State Estimator first takes the input v and Awv to give @ as the estimation.
Next, = 4(x) and s = v(x) for x € § are forwarded into the Reaction Term Estimators to give

the estimation of f(@(z),v(z)) and g(a(z), v(z)).

3.2 PHYSICS-INFORMED OPTIMIZATION

Training is guided by physics-informed loss functions. Let © denote all learnable parameters. The

steady-state PDE residuals enforce physical constraints,
La(0) = [[dutri + f(@,0)[13, o)
£,(0) = [|dvAv + (@, v)II3-

To enforce the function family assumption, we require the estimators f and g to closely resemble
functions within F and expect the neural networks fyn and gnn to be consistent with f, and gy,
which yields the following consistency loss,

Leons(©) =1/ (@, 0) = fo (@, 03 @) |3 + (8, v) — gs (@, v; b) - (10)

Additional losses enforce integral constraints and correlation priors:

a(z)dx — [, u(z)dz\>
Lin(©) = fﬂ @) fﬂ @) )
Jo u(z)dz

Leorr(©) = Corryunmir() (ﬁ(x), v(x))

Here, Unif(2) stands for the uniform distribution on €). By combining all the loss terms, we formu-
late the overall loss function to guide the training process, L@ = Z?:l NLi.

(1)
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3.3 Two-STAGE TRAINING PROTOCOL
Our training protocol implements a physics-informed hierarchical strategy that systematically inte-
grates neural approximation with symbolic regression.

The first stage is a domain-aware coefficient estimation. A moving-window least squares method
initializes basis coefficients a, b. For each spatial window 2., solve

2

. duAu+ 3", i (u, v)
min E H[d Av v ’ . (12)
Qo i i v + ; bw iPi\U, v
{owbu} S0 > buw,i®i(u,v) |||,
Global coefficients are aggregated via spatial averaging
a; = Ky, [aw,i]7 by = Ey [bw,i}- (13)

The second stage involved a joint optimization. All parameters © = {6,,,60;,6,,a, b, a} are opti-
mized via Adam with adaptive learning rate scheduling

M = 1o - BH/P (14)

where p governs the decay interval. Training terminates when validation loss plateaus for pp
consecutive epochs.

4 IDENTIFIABILITY

We analyze the identifiability of our inverse problem from both theoretical and practical perspec-
tives, with particular attention to the challenges posed by partial observations.

4.1 IDENTIFIABILITY CONDITIONS UNDER FULL OBSERVABILITY

We first consider the idealized case where both states (u,v) are fully observable. In this setting,
we need to determine whether the basis functions ¢; and their coefficients a,b can be uniquely
identified from the observed patterns. We rigorously address this through the following

Let X € R2N»*2n denote the design matrix constructed from basis evaluations across N, spatial
points (see Appendix [B.2). The parameters 3 = (a, b) are identifiable if and only if

rank(X) = 2n. (15)
This rank condition requires
1) Non-degenerate Patterns: Spatial variations in v must excite all basis functions.
2) Minimum Observation Scale: N, > n, with non-redundant spatial sampling.

3) Basis Independence: {¢;(u,v)} are linearly independent over the observed (u,v). Note that the
independence of {¢;} is distinct from the independence of {¢;(u,v)}.

4.2 REGULARIZED IDENTIFIABILITY UNDER PARTIAL OBSERVATION

With only v observed, we address ill-posedness via

1. Symmetry-Breaking Conditions: Knowledge of the diffusion coefficients d,, d, and the spa-
tial average [, udx/|Q| helps eliminate affine symmetry, which avoids non-uniqueness from affine
transformation.

2. Adaptive Coefficient Thresholding: Insignificant coefficients are pruned via

_ 16
0  otherwise, (16)

P =

R {ai if |a;| > 7 - MAD(a)

where MAD is the median absolute deviation and 7 is a sensitivity parameter. This suppresses
spurious terms while preserving dominant dynamics.
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Ground Truth

Table 1: Reconstruction errors and computa-
tional costs (N,: spatial resolution).

Dot Pattern

Pattern N, Error Time (s)

u f g

75  4.56e-3 1.39%-3 6.2le-4  43.05
Stripe 100 5.54e-3  1.79e-3  7.48e-4 7227
150 1.27e-2 3.59%-3 1.64e-3  116.20

75 3.19e-3  5.16e-4 5.19e-4  43.09
Dot 100 1.39e-2  4.04e-4 2.2le-4 5591
150 6.36e-3  1.63e-5 8.52e-5 124.56

75 234e-3  1.24e-4 2.00e-4  43.89
Maze 100 2.22e-3 6.38e-4 5.54e-4  56.69
150 1.28e-2 4.58e-3 691e-4 127.78

3
s
£
3
g
3

Figure 3: State reconstruction performance for
Turing pattern models.

3. Local-Global Basis Alignment: The moving-window least squares in Stage 1 ensures local coef-
ficient diversity, preventing rank collapse from global symmetries. This is critical for patterns with
spatially varying dominant terms (e.g., transitioning between activator-inhibitor regimes).

Traditional least squares methods fail under partial observations due to rank deficiency (e.g., unob-
served u). Our approach circumvents this limitation by 1) Jointly estimating u and reaction terms,
2) Constraining the solution space via physics-informed losses, 3) Exploiting the inductive bias of
convolutional architectures for pattern completion.

5 EXPERIMENTS

We conduct comprehensive experiments to evaluate our framework’s effectiveness in identifying
reaction-diffusion systems from partial observations. All experiments were performed on a compu-
tational setup with an Intel Xeon Gold 6334 CPU (32 cores, 64 threads) and 64GB RAM. We test
the Gray-Scott, Brusselator, and FitzHugh-Nagumo models, generating patterns at spatial resolu-
tions N, = 75,100, 150. Model and implementation details appear in Appendix[Cland Appendix[D]
respectively.

5.1 PATTERN RECONSTRUCTION AND DYNAMIC IDENTIFICATION

Figure[3|demonstrates accurate hidden state reconstruction (ur) across pattern types. Table[T|reveals
counterintuitive scaling behavior: reconstruction errors increase with domain size due to reduced
boundary information impact in larger domains. For stripes, the u error rises from 4.56e-3 (N, =
75) to 1.27e-2 (N, = 150). This counterintuitive trend stems from the scale-invariant nature of
the Turing mechanism. Under non-periodic boundaries, asymmetries introduce informative features
near the edges, while repetitive interior patterns provide less information. As the domain grows,
the interior region expands, reducing the relative influence of boundary-induced information on
reconstruction.
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Figure 5: Latent variable correlation: Estimated

Figure 4: Reaction term identification: Ground L . .
8 vs. true u distributions align with p = —0.99.

truth vs. reconstruction for f(u,v) and g(u,v).
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Figure [] demonstrates accurate recovery of reaction terms across nonlinear regimes, with recon-
struction fidelity directly tied to u-estimation accuracy (Table [T). The strong u-v anti-correlation
in Figure [5] confirms precise latent variable reconstruction, showing >95% distribution overlap be-
tween estimated and true w values in critical regions (u € [0.3,0.7]).

5.2 NOISE ROBUSTNESS EVALUATION

We conduct comprehensive experiments to evaluate the robustness of our proposed method under
various noise conditions. In our experiments, we consider additive zero-mean Gaussian noise with
standard deviation o times the mean absolute value of the data. The noise level o is systematically
varied from 0.01 to 0.20 to evaluate the impact of noise on performance. Please see the detailed
visualization of field reconstructions and sensitivity analysis of reconstruction performance under
different noise scenarios in Appendix

Metric Trends with Varying Noise Error Distribution Across Noise Levels
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Figure 6: Noise robustness analysis of the dynamic identification framework. Left: quantitative
metrics (RMSE and SSIM) with respect to noise level. Right: The distribution of reconstruction
errors at different noise levels.

In Figure @ the proposed method is evaluated under additive Gaussian noise with ¢ € [0.01, 0.1].
Figure [6{a) demonstrates the relationship between noise levels and reconstruction quality metrics.
The Root Mean Square Error (RMSE) exhibits a logarithmic relationship with noise intensity (R? =
0.98), confirming the method’s noise robustness, while the Structural Similarity Index Measure
(SSIM) maintains values above 0.96 even under significant noise conditions (¢ < 0.1), indicating
robust preservation of structural information. Figure [6(b) further reveals that 78% of estimation
errors remain within £0.05 even at ¢ = 0.1, indicating strong robustness against outliers. These
results collectively validate the method’s applicability in real-world noisy environments.

6 CONCLUSION

We introduce a novel framework for reconstructing reaction-diffusion systems from partial, steady-
state observations, addressing a fundamental challenge in dynamical system identification. Our
approach infers both hidden variables and reaction terms from a single-component snapshot — an
ill-posed problem — by integrating physics-informed learning frameworks with symbolic regres-
sion. We establish theoretical identifiability guarantees and demonstrate robust recovery of spatial
patterns and governing dynamics across diverse systems. Key innovations include (i) simultaneous
learning of latent states and reaction terms via interconnected estimators and (ii) a dual represen-
tation of reaction terms for improved accuracy and efficiency. Physical constraints guide learning
toward physically consistent solutions, enabling our method to operate under observational spar-
sity—particularly valuable for biological and chemical systems where transient dynamics are inac-
cessible.

Limitations include reliance on predefined basis functions, restricting reaction term flexibility, and
challenges with high-dimensional hidden states or spatially heterogeneous diffusion. However, the
modular design allows future integration of domain-specific constraints. Despite these challenges,
our approach opens new avenues for studying self-organization behaviors in experimental systems,
enabling researchers to reverse-engineer pattern formation mechanisms. More broadly, it highlights
the potential of hybrid machine learning and physics-based methods in tackling foundational inverse
problems in complex systems.
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A RELATED WORK

Recent theoretical breakthroughs have advanced the identifiability of reaction-diffusion systems un-
der partial observations. Kaltenbacher and Rundell (Kaltenbacher & Rundell, |2019; [2020) estab-
lished uniqueness conditions for reconstructing source terms from sparse temporal data, building on
foundational work in elliptic inverse problems (Isakov, 2006). Feizmohammadi et al. (Feizmoham-
madi et al., 2024) resolved partial-boundary identifiability in semilinear parabolic systems using
Carleman estimates. While these works provide rigorous mathematical foundations for address-
ing ill-posedness in reaction-diffusion inverse problems (Benning & Burger, 2018), computational
methods for steady-state systems with hidden variables remain underdeveloped.

Concurrently, machine learning has reshaped dynamical system identification through data-driven
and physics-informed approaches. Neural ODEs (Chen et al., 2018)) introduced neural parameter-
izations of vector fields, while sparse regression techniques like SINDy (Brunton et al., [2016) and
PDE-FIND (Rudy et al, [2017) enable equation discovery from spatiotemporal data with conver-
gence guarantees under certain functional assumptions (Schaeffer, 2017). Physics-Informed Neural
Networks (PINNs) (Raissi et al., [2019) further integrate PDE constraints into training losses, al-
though spectral bias remains a significant challenge (Wang et al.,|2021). Hybrid architectures, such
as physics-encoded recurrent networks (Rao et al.,2023) and symbolic regression hybrids (Lu et al.,
2022} |Champion et al.| 2019), aim to balance interpretability with flexibility.

Despite these advancements, most approaches rely on extensive spatiotemporal data, making them
impractical for cases where only sparse or single steady-state observations are available. Gradient-
based inverse methods (Pathak et al.l 2018)) and latent variable models (Girin et al., 2020) offer
potential solutions for limited-data scenarios but lack a unified framework for steady-state system
identification. Furthermore, theoretical insights into the ill-posed nature of inverse problems have
yet to be fully leveraged in this context. Although these approaches have substantially advanced
the field, they predominantly rely on multiple temporal snapshots or rich spatio-temporal data. The
fundamental challenge of reconstructing dynamics from partial steady-state observations, along with
the mathematical well-posedness of such reconstruction, remains an open problem.

B DERIVATIONS AND ANALYSIS

B.1 NON-UNIQUENESS STATEMENT

We provide a simple illustration showing that, given only the steady-state observation vy and the
function family constraints on the reaction terms, multiple combinations of (ur, f,g) € C?(Q) x
F x F can satisfy the steady-state reaction-diffusion equation. Suppose ur € C?(Q2) and f,g € F
form one such valid combination. Then, we have,

{duAuT + f(uT, UT) =0, (17)
dvAUT + g(UT, UT) =0.

By the function family assumption, there exist sets of coefficients {a;}? , and {b;}?_; such that
f =Y a¢;and g = > ", b;p;. Furthermore, we assume that the basis functions {¢;}?_, on

[R? are separable, which means they can be expressed as {¢; (u, v)}"; = {¢p; (u)i//k(v)}z:?:l. We
rewrite as follows,

m l
dyAur + Y > aep(ur)dr(vr) =0,
k=1j=1

(13)
m l
dyAvr + Z Z birp;(ur)r(vr) = 0.

k=1 j=1

11
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Let c be an arbitrary constant. We check whether i = wr + ¢ can be another solution, such that
there exist sets of coefficients {&jk}é’;l:l and {bjk}z’f:l satisfying,

m 1
duDur + Y Y ae;(ur + )i (vr) =0,
k: j:ll (19
dyAvr + Y > binp;(ur + )k (vr) = 0.
k=1j=1
Combine and together, we have,
m
Z (Z ajepi(ur + ¢) — ajrp; (UT)])d’k(UT) =0,
k=1 j=1 20)

> (Z by (ur + ¢) = bjucp; (ur)] )i (vr) = 0.
k=1 j=1

A sufficient condition for the existence of {d]k}l’zl , and {Bjk}“,? 1 is that the function space

spanned by {¢; ( ) 1 is exactly the space spanned by {¢; (7 + c) . In this case, the coefficient

terms for 1y (vr) can vamsh in Q. This condition holds true for polynomial basis {r/~'},_, and

exponential basis {ecir}?zl. Therefore, the solutions given only v and function family constrains
are not unique, further assumption should be applied.

B.2 LEAST SQUARES INITIALIZATION AND RANK ANALYSIS

Given N, spatial points, the least squares problem for reaction term identification can be formulated
as,

y=XB+e,
where,
@u(ul, ’Ul) 0 —duA’LLl
0 ‘I)v (ul, ’Ul) —dUAvl
a
@u(uNp, UNP) 0 —duAuNp

0 (bv(uNp>va> —dvA’UNp
Here ®,(u, 171) = [p1(u,v), -, ¢pn(u,v)] denotes basis evaluations. The solution B =
(X T X)~1X Ty exists uniquely when,

rank(X) = 2n.

This condition requires spatial variations in v to sufficiently excite all basis functions. For degenerate
patterns (e.g., uniform states), we employ the integral constraint to break translational symmetry.

B.3 WELL-POSEDNESS CONDITIONS

Let Q C R? be a bounded domain with smooth boundary 9). The general form of reaction-diffusion
system is given as,

8tui — diAui = fl(u)7 (a:,t) €0 x (O,T)7
Vu; -v =0, x,t) € 90 x (0,7T), 21
ui(x,0) = u; o(2), x €1,

where u = (u1,us),d; > 0 are diffusion coefficients, v is the unit outward normal vector on

09, u; o are bounded, non-negative initial data. Here, we study the global existence of classical
solution to (21)). Note that the nonlinearities satisfy the following conditions,

1. (Local Lipschitz continuity) f; : R? — R is locally Lipschitz.

12
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2. (Quasi-positivity) f1(0,uz) > 0, fa(u1,0) = 0.
3. (Mass control) There exists a constant K such that

fi(w) + fo(u) < K(L+u+0).

4. (Polynomial bounded) There exist C' > 0 and p > 0 such that
fi(w), falw) < C (1 +[ul”),

where |u| = |u1| + |uzl.

We first mathematically define the classical solution.

Definition B.1 (Classical Solution). A vector-valued function u = (ug,us) is called a classical
solution to the system on ) x (0,T) if we have for i = 1 and 2,

1. u; € C2L(Q x (0,7)) N C%Q x [0,T)).
2. wuy satisfies each equation in pointwise on 2 x (0, 7).

Let us first recall the classical local existence result under the above assumptions (Henryl, 2006}
Rothel [2006)

Theorem B.2 (Local Existence). Assume that the nonlinearities f; satisfy the assumptions[I}[2| For
any bounded and non-negative initial data u; o € L>(Q), ¢ = 1,2, there exists a time T > 0 such
that the system has a unique classical solution u = (uy, uz) on Q2 x (0,T). Moreover,

if limsup |[u;(¢) || o () < 00 foralli=1,...,m then Tiax = +o0. (22)

7= Tmax

Then we give the global existence results as follows.

Theorem B.3. Assume that conditions hold. Then for any bounded, nonnegative initial data,
(21) has a unique nonnegative, global strong solution.

The proofs could be found in (Morgan, [1989; |[Morgan & Tang|,[2020).

C TURING PATTERNS AND REACTION-DIFFUSION SYSTEMS

Reaction-diffusion systems describe the interaction between local reactions and spatial diffusion,
leading to the emergence of complex spatiotemporal patterns. These models play a fundamental role
in understanding self-organization across various scientific domains, including biology (Meinhardt
& Gierer,|1974), chemistry (Zaikin & Zhabotinsky,|1970), and ecology (Rietkerk et al., 2021} |Klaus-
meier, [1999). In this section, we review three classical reaction-diffusion models: the Gray-Scott
(Gray & Scott, |1984), Brusselator (Prigogine & Lefever, [1968)), and FitzZHugh-Nagumo (FitzHugh)
1961) models, providing their mathematical formulations and explaining the characteristic patterns
they generate.

C.1 THREE CANONICAL REACTION-DIFFUSION MODELS

GRAY-SCOTT MODEL

The Gray-Scott model describes an autocatalytic reaction system involving two interacting chemical
species,

% = D,Au — uwv? + F(1 —u),
% = D,Av + ww? — (F + k),

where u and v are the reactant concentrations, D,, and D,, are their respective diffusion coefficients,
F is the feed rate, and k is the removal rate. The system exhibits a variety of spatiotemporal behav-
iors, including spot replication, stripe formation, and chaotic wave interactions.

13
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BRUSSELATOR MODEL

The Brusselator model usually is used to describe chemical oscillations,

% = DyAu+a— (b+ 1)u + u?v,
% = D,Av + bu — v*v.

where @ and b are control parameters governing the system’s stability. When b > 1 + a2, a Hopf
bifurcation occurs, leading to sustained oscillations. The inclusion of diffusion introduces spatial
inhomogeneities, resulting in Turing patterns.

FiTzZHUGH-NAGUMO MODEL

Derived as a simplification of the Hodgkin-Huxley equations for neuronal activity, the FitzHugh-
Nagumo model describes excitable media,

% =D, Au+u(l —u)(u—a)— v,
ov
5= D,Av + e(bu — v).

In this system, u represents the membrane potential, while v is the recovery variable. The parameters
a € (0,1) and b > 0 regulate excitability, and e controls the time scale separation. The model
supports traveling waves, pulse propagation, and wavefront interactions.

C.2 PATTERN FORMATION AND STABILITY ANALYSIS

Reaction-diffusion systems exhibit rich pattern formation behavior due to diffusion-driven insta-
bility. This section examines the conditions for instability and the mechanisms underlying pattern
selection.

C.2.1 HOMOGENEOUS STEADY STATES AND STABILITY

A homogeneous steady state (u*, v*) satisfies the equilibrium conditions,
fw vy =0, gu*,v*)=0.

Linearize the system around (u*, v*), yielding the Jacobian matrix,

=l )
The stability of (u*,v*) in the absence of diffusion is determined by,
tr(Jr) = fu+ g0 <0, det(Jr) = fugo — fogu > 0.
When diffusion is introduced, the dispersion relation for small perturbations takes the form,
det(\ — Jgr + k*D) =0,
where D = diag(D,,, D,) is the diffusion matrix.

C.2.2 TURING INSTABILITY AND PATTERN FORMATION

Turing instability occurs when a homogeneous steady state, stable in the absence of diffusion, be-
comes unstable due to spatial perturbations. The necessary conditions for this instability are,

tr(Jgr) < 0,
det(Jg) > 0, (23)

Dugv + Dufu > 2 Du-Dv det(JR)

When these conditions hold, a band of wavenumbers & exists for which perturbations grow expo-
nentially, leading to spatially periodic structures.

14
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C.2.3 LINEAR STABILITY AND WAVELENGTH SELECTION

To determine the most unstable mode, we consider small perturbations of the form,

(0)-() ()
Solving for the growth rate X yields

det(A\ — k*D + Jg) = 0.
The wave number corresponding to the fastest-growing mode is given by,

2 — det(JR)
¢ D.,D,

However, the system size L imposes constraints,

T 27
ke€ |—,—|.
This determines the characteristic wavelength of the emergent pattern. Beyond the linear regime,

nonlinear interactions influence the final pattern selection. Depending on system parameters, pat-
terns may evolve into spots, labyrinthine structures, or traveling waves.

The onset of diffusion-driven instability can be analyzed by considering the perturbed system,

7 (6) = (%07 o) (2) =0 (2).

The system is unstable if the real part of at least one eigenvalue becomes positive for some wavenum-
ber k, leading to pattern formation.

D IMPLEMENTATION DETAILS

D.1 ALGORITHM

The following pseudocode(T)) outlines our approach.

D.2 DISCRETIZATION

The numerical simulations were conducted on a uniform 75 x 75, 100 x 100, 150 x 150 spatial grid.
We employed a second-order central difference scheme to approximate the Laplacian operator. For
spatial coordinates (i, j), the discretized system takes the form

ou; ; Ui j—1 + Ui 1 + Wim1,5 + Wig1 5 — 4

a;a =d, ( iy —1 4,5 +1 (Alaj;; it1,5 m) + fuij,vij),
0v; Vij—1 + Vi1 + Vo1 + Vg1, — 4vi

8;1] =d, ( o (Azm;; e w) + 9(ui g, vi),

where we assume uniform spatial discretization with Az = Ay. The domain boundaries are treated
with no-flux Neumann boundary conditions.

D.3 INITIAL CONDITIONS AND TIME INTEGRATION

The simulation initializes states with spatially structured perturbations,
ui,j(O) =u*+ 77?’]'7
Ui,j(O) =" + T];?)Jy

where (z;,y;) denote grid coordinates. This deterministic initialization ensures reproducible pattern
formation while breaking spatial symmetry.

(24)

For time integration, we apply explicit Euler scheme. Fixed time step At = 0.2 with CFL constraint

2
At < (Az)

~ 2max(D,, D,)’ (25)
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Algorithm 1 Hierarchical Optimization for Pattern Dynamics

1: Input: Observed state v, diffusion coefficients d,,, d,,
2: Qutput: Estimated state 4, reaction functions f g
3: Stage 1: Initial Coefficient Estimation
4: for each local window 2., do
5: Solve {ay, ;, b9, ;} < argmin Lioca () {window-wise least squares }
6: end for
7: Aggregate global coefficients: af < Ey[ay, ], b) < By [0, ;]
8: Stage 2: Joint Optimization
9: Initialize 6, < 0, {a;,b;} < {a?, b0}
10: Setmng, B,p, k + 0
11: repeat
12:  Compute state estimate: 4 < uyn ([v, Av]; )
13:  Calculate @ + sigmoid(y) {Adaptive mixing}
14:  Evaluate PDE residuals R, R.:

150 f < afan(i,v; G}t)) +(1-a)d,; agt)gbi(f&, v)

16: § < agan(,0;05) + (1 —a) 3, 089651, v)

17:  Compute Lo < Y NiL;

18:  Update 08V, 9;’”1), oFTY @) pk+1) (k+1) yia Adam
19: k<« k+1

20: until [AL|| < ¢ OR ||AQ|| < 6
21: Output: Thresholded coefficients a; < a; - I(|a;| > 7)

ooooo

v
3 8 8 8 B ¥ 3 o

ooooo

Figure 7: State reconstruction performance for Turing pattern models(75x75 grid). From top to
bottom panel: dot, stripe, and maze patterns. From left to right panel: observed state, ground truth,
estimated hidden state, reconstruction error.
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E.1

EXPERIMENT RESULTS
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Figure 8: State reconstruction performance for Turing pattern models(150x 150 grid). From top to
bottom panel: dot, stripe, and maze patterns. From left to right panel: observed state, ground truth,
estimated hidden state, reconstruction error.

E.2 ROBUSTNESS TO NOISE

We evaluate the robustness of reconstructing the reaction equations f(u, v), g(u, v), and hidden state
u under varying noise conditions. The reconstruction error exhibits a controlled growth pattern as
noise levels increase, with errors remaining bounded up to 0 = 0.2. This behavior demonstrates
the method’s resilience to measurement uncertainties, particularly within the practical range of o €
[0.01,0.15], where most real-world applications operate.
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Figure 9: Sensitivity analysis of the reconstruction performance.
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Figure [10] presents a detailed visualization of field reconstructions under four different noise sce-
narios (o = {0.01,0.05,0.1,0.15}). For each noise level, we show (a) the observed field, (b) the
reconstructed field, and (c) the corresponding reconstruction error. At o = 0.01, the reconstruction
closely matches the observed field with minimal error patterns. We could observe that, as noise lev-
els increase, the reconstruction quality gradually degrades, though the method maintains reasonable

fidelity even at o = 0.15.

(a) Observed Field

(0=0.01)
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(a) Observed Field
(0=0.1)
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(a) Observed Field
(0=0.15)

(b) Reconstructed Field
(0=0.01)

(b) Reconstructed Field
(0=0.15)

(c) Reconstruction Error
(0=0.01)

(c) Reconstruction Error
(0=0.05)

(c) Reconstruction Error
(0=0.1)
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Figure 10: Comparison of field reconstructions under varying noise conditions.
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