
LM Agents for Coordinating Multi-User Information Gathering

Anonymous ACL submission

Abstract
This paper introduces PEOPLEJOIN, a bench-001
mark for evaluating LM-mediated collaborative002
problem solving. Given a user request, PEO-003
PLEJOIN agents must identify teammates who004
might be able to assist, converse with these005
teammates to gather information, and finally006
compile a useful answer or summary for the007
original user. PEOPLEJOIN comprises two eval-008
uation domains: PEOPLEJOIN-QA, focused on009
questions about tabular data, and PEOPLEJOIN-010
DOCCREATION, focused on document creation011
tasks. The two domains are adapted from ex-012
isting NLP benchmarks for database question013
answering and multi-document summarization;014
here, however, the information needed to com-015
plete these tasks is distributed across synthetic016
“organizations” of 2–20 users, simulating natu-017
ral multi-user collaboration scenarios. We im-018
plemented several popular LM agent architec-019
tures, evaluating their accuracy and efficiency020
at completing tasks, and highlight new research021
questions that can be studied using PEOPLE-022
JOIN.1023

1 Introduction024

In today’s fast-paced and interconnected world,025

effective collaboration is essential for achieving026

complex tasks and making informed decisions027

(Papachristou et al., 2023; Gemp et al., 2024).028

Many decision-making, content creation, and029

information-gathering tasks require collecting in-030

formation from multiple people. For example,031

preparing a list of interns across teams in an or-032

ganization by reaching out to the leader of each033

team; preparing a newsletter for project updates034

might necessitate coordinating with multiple con-035

tributors; identifying a suitable time to meet might036

require several rounds of negotiations (Lin et al.,037

2024). Identifying what information is available,038

judiciously determining who to contact, asking pre-039

cise questions, and compiling research results can040

1Code and data will be publicly released.

be a challenging and time-consuming process— 041

especially when real-time interaction between team 042

members is difficult to coordinate. 043

At the same time, recent large language mod- 044

els (LLMs), such as GPT-4 (OpenAI, 2023), Phi-3 045

(Abdin et al., 2024), LLaMa (Touvron et al., 2023), 046

and Gemini (Team et al., 2023), are becoming a cru- 047

cial building block in developing automated agents 048

that can assist human users with complex tasks 049

(Xi et al., 2023; Wang et al., 2024; Butler et al., 050

2023). These tasks include chat applications for 051

assisting individual users with searching and sum- 052

marizing information (such as in Microsoft Copilot 053

Chat2), and even supporting these users in work- 054

place decision-making (Butler et al., 2023; Kim 055

and Hsu, 2024). Could these agents be extended to 056

improve collaboration among multiple users? 057

In this paper, we introduce PEOPLEJOIN, an 058

evaluation framework for studying effectiveness 059

of LLM-powered agents to assist with multi-user 060

collaboration tasks. Each PEOPLEJOIN task takes 061

place within a fictitious organization with 2–20 062

employees, some of whom possess a collection of 063

documents necessary to solve some task. One of 064

the users (the initiating user) communicates the 065

task to an agent (Fig. 1). Agents have direct ac- 066

cess to the initiating user’s documents, and can 067

engage in conversations with other users to gather 068

relevant information. They must rely on limited 069

descriptions of other users, and potentially previ- 070

ous interactions, to determine who to contact for a 071

given task. PEOPLEJOIN comprises two families 072

of tasks: PEOPLEJOIN-QA and PEOPLEJOIN- 073

DOCCREATION, derived from the SPIDER (Yu 074

et al., 2018) and MULTINEWS (Fabbri et al., 2019) 075

datasets respectively. It evaluates agents’ ability 076

to answer questions involving complex relational 077

reasoning and document summarization. 078

Our initial benchmark release also includes ref- 079

2https://copilot.microsoft.com/

1

https://copilot.microsoft.com/

AliceAlice’s Agent Bhushan ChenKnowledge Base

Can you find a list of students with pet dogs?

doc_search(“students with pet dogs”)

Pet records:
{id: PET017, name: Fido, type: Dog}

people_search(“knows about students
 or dogs”)

[“Chen might know about student
records”, “Bhushan might know about
student pet IDs”, “Emilia might
know about faculty salaries”]

Bhushan and Chen might be able to help. I
will reach out to them.

Hi Bhushan, can you share the names of students with pet dogs?

I don’t know about pet types, but here’s a list of student IDs and
pet IDs: {00158: PET027, 10532: PET015, 09731: PET008}

Hi Chen, I’m helping Alice get information about dog owners.
Can you tell me the names of the students with the IDs 00158, ….

1
2

3

4

5 6

7

8

9

Figure 1: A sequence diagram illustrating a conversation in PEOPLEJOIN framework, where Alice issues a request
to her agent. Documents available to Alice’s agent are insufficient to answer the user request. The agent uses a
people search tool, after which it decides what subset of people to contact, in which order, what questions to pose,
etc. The temporal ordering of tool calls and message exchanges is denoted by #i.

erence agent implementations based on popular080

prompting and orchestration strategies, and a suite081

of evaluation metrics. We report evaluation results082

using Phi-3-medium (Abdin et al., 2024), GPT-4-083

turbo and GPT-4o (OpenAI, 2023) language mod-084

els to implement these agents. Our results indicate085

that LM-powered agents can struggle to coordinate086

with multiple users to correctly address information087

seeking and document authoring requests. Major088

research questions remain around how to optimally089

determine which people to contact and in what or-090

der, how to ask high-quality questions, and how to091

learn and adapt to the structure of an organization.092

PEOPLEJOIN thus provide a test-bed for building093

AI-driven systems that can enhance human collabo-094

ration, and will also enable future work on learning095

from interaction, distributing tasks equitably, and096

maintaining user privacy in such agentic systems.097

2 Challenges in Effectively Steering098

Multi-User Information Gathering099

The problem of answering user queries by syn-100

thesizing information distributed across heteroge-101

neous data sources is most often studied through102

the lens of database systems (Zaniolo, 1997). Work103

on query optimization and federated databases104

(Sheth and Larson, 1990) has sought to address105

the specific question of how to efficiently answer106

structured queries without access to a centralized107

knowledge store. The problem we study in PEO-108

PLEJOIN may be viewed as a generalization of this109

task to the setting where the relevant information 110

is possessed by people, not structured knowledge 111

bases, and must be obtained via conversation rather 112

than structured queries. An agent to help a user 113

with such requests must address several challenges: 114

• Information fragmentation: In a typical or- 115

ganization, information is often siloed across 116

multiple users, because of differing roles and 117

responsibilities. Some requests may require 118

gathering information from multiple people. 119

• Partial observability: To gather this infor- 120

mation, it is often necessary to first deter- 121

mine which collaborators hold relevant infor- 122

mation, under incomplete and potentially im- 123

precise information of what information each 124

collaborator might have. Agents for collabo- 125

rative decision-making might have to engage 126

in multi-turn conversations with various users, 127

refining and adapting requests as needed. 128

• Communication costs: Requests for infor- 129

mation require human effort to process and 130

answer; effective collaboration requires effi- 131

cient communication: effective agents should 132

judiciously send information requests to other 133

collaborators, and avoid asking questions that 134

are likely to be unanswerable. 135

• Complex reasoning and planning: Efficient 136

communication requires reasoning: establish- 137

ing what information is available in accessi- 138

2

ble documents, dynamically predicting which139

collaborators are likely to have relevant infor-140

mation for specific questions, identifying the141

best order in which to ask these questions, and142

re-planning based on collaborators’ responses.143

Below, we present a benchmark for evaluating144

these skills.145

3 Data146

Each PEOPLEJOIN domain comprises a set of orga-147

nizations. Each organization contains a set of col-148

laborators, and each collaborator has privileged149

access to a set of documents. The benchmark pro-150

vides LLM-based simulators for each collaborator,151

a search interface that can be used to find collabora-152

tors, and a messaging interface that can be used to153

ask collaborators about their documents. Then an154

agent must take as input a query from one collab-155

orator, use the search and messaging interfaces to156

interact with other collaborators, and finally return157

an answer to the originator.158

Drawing analogies between multi-user159

collaboration tasks and existing multi-data-160

source tasks commonly studied in NLP, we161

develop PEOPLEJOIN by re-purposing existing162

high-quality resources for database question163

answering (to produce PEOPLEJOIN-QA) and164

multi-document summarization (to produce165

PEOPLEJOIN-DOCCREATION).166

3.1 PEOPLEJOIN-QA167

The PEOPLEJOIN-QA dataset evaluates LM168

agents’ abilities to answer questions by aggregating169

information from multiple collaborators. We con-170

struct it by re-purposing SPIDER (Yu et al., 2018),171

a text-to-SQL benchmark. We transform SPIDER172

into a multi-user information gathering task by re-173

casting SPIDER tables as “documents”, distributed174

among several users, and interpreting SPIDER ques-175

tions as queries from an initiating user to an AI176

agent. In this scenario, answering questions re-177

quires identifying which users possess the relevant178

pieces of information (similar to selecting tables in179

a database), and then engaging in multi-turn conver-180

sations with these users to ask targeted questions181

(akin to constructing joins between tables).182

SPIDER consists of a set of 200 databases, with183

a total of over 10K questions. Each database in184

SPIDER is transformed into an “organization” con-185

taining a set of 2–20 distinct users, each with access186

to a distinct set of documents.187

Documents Each table in a SPIDER database is 188

converted to one or more documents.3 We addition- 189

ally apply the following transformations to elicit a 190

diverse set of information-gathering behaviors: 191

1. Split Documents: One of the randomly se- 192

lected tables is split into two parts (each con- 193

taining half the rows). This simulates a sce- 194

nario in which information about a given topic 195

is distributed across multiple individuals. For 196

instance, in Fig. 2, the information in the table 197

department is split between Alice and Dante. 198

2. Redirection: We construct scenarios in which 199

a (“redirecting”) user does not have direct ac- 200

cess to some information (e.g. Chen in Fig. 2), 201

but does have knowledge of which other (“tar- 202

get”) user might have this information (Dante 203

in Fig 2). To answer questions about these ta- 204

bles, agents cannot always contact knowledge- 205

able users directly, and must navigate organi- 206

zational knowledge hierarchies to find them. 207

Information about other users is available to 208

the redirecting user as an additional document. 209

3. Missing Information: In each database, we 210

omit a randomly selected table, making a sub- 211

set of the queries associated with that organi- 212

zation unanswerable, simulating a scenario 213

in which required information is simply not 214

present (Levy et al., 2017; Rajpurkar et al., 215

2018) in the organization. 216

In PEOPLEJOIN-QA, each user is allocated one 217

document, and no two users have access to the 218

same document. After we have assigned each orga- 219

nization member a set of documents, we populate 220

the collaborator search interface with hints about 221

what information they might have access to (e.g. 222

Chen likely has information about teacher salaries). 223

We begin by constructing templated descriptions 224

specifying the table name and names of columns, 225

then use GPT-4 to convert these to simpler English 226

statements using a few-shot prompting setup.These 227

transformations by design sometimes result in im- 228

precise or incomplete descriptions, simulating the 229

challenges of selecting a good subset of people to 230

contact under limited information. For example, 231

Chen might know about student demographics fails 232

to specify what specific demographic information 233

is there, and how it is associated with students (e.g., 234

using a student ID, name, or other identifier). For 235

3Represented as a sequence of JSON objects, one per row.

3

SPIDER datum

Query: What are the names and budgets of
departments with more than 10 courses?

course instructor …

… … …

name dept_id budget …

… … … …

… … … …

id name dept_id salary …

… … … … …

courses
departments

instructors

Alice Bhushan Chen DanteKnowledge Base

Goal: I want to find
names and budgets
of departments with
more than 10
courses.

Private note:
Dante knows about
departmental finances.

[“Alice might know about
 department budgets”,

 “Bhushan might know about
 courses”,

 “Chen might know about
 departmental finances”]

split table
Alice’s
Agent

redirection

PEOPLEJOIN datum

Figure 2: Illustration of a transformation of a Spider datum into PEOPLEJOIN-QA.

redirections as described above, these descriptions236

state that the redirecting user has the information237

that is in fact possessed by the target user.238

Task and Evaluation Each organization is as-239

sociated with multiple problem instances, one for240

each question in the underlying SPIDER dataset.241

For example, in Fig 2, the task issued by Alice to242

their agent is What are the name and budgets of243

the department..., which must then be answered by244

reasoning about the contents of both Alice’s docu-245

ments and the other users’. Ground-truth answers246

are derived from the underlying SPIDER annota-247

tions, except in the case of un-answerable queries.248

Our primary evaluation metric measures the accu-249

racy with which agents can recover ground-truth250

answers and identify unanswerable questions; sec-251

ondary evaluations measure whether the right users252

were contacted, and the efficiency (in terms of mes-253

sages sent) with which agents identify these users.254

Statistics Though the SPIDER dataset has several255

thousands of questions paired with databases, we256

restrict to 500 test tasks to enable efficient eval-257

uation.4 A typical task requires agent to interact258

with 0–5 people (excluding the initiating user) to259

arrive at the answer (mean of 1.54 with a variance260

of 1.12). 9% of test instances in PEOPLEJOIN-QA261

are unanswerable, 22% of the test instances require262

an agent to handle a redirection to arrive at correct263

answer, while 25% of the test instances require an264

agent to handle a document split between multiple265

people to answer the user question correctly. Note266

that a data instance could belong to more than one267

category (for example, a task might require access268

to split documents as well as access to information269

from another document that needs to be accessed270

through redirection).271

4Our code release makes it possible to generate additional
organizations for training and evaluation.

3.2 PEOPLEJOIN-DOCCREATION 272

The PEOPLEJOIN-DOCCREATION task evaluates 273

agents not on structured QA, but instead on more 274

open-ended document creation tasks. We derive it 275

from MULTINEWS (Fabbri et al., 2019), a multi- 276

document summarization dataset consisting of sets 277

of news articles on a related topic and single sum- 278

maries that aggregate information across the ar- 279

ticles. We distribute source news articles across 280

multiple users, and require agents to gather these 281

documents (or excerpts from them) and combine 282

them into a target summary. 283

Task and Evaluation As in PEOPLEJOIN-QA, 284

each organization is derived from underlying 285

MULTINEWS problem instances. Here, however, 286

multiple problem instances are combined into a 287

single organization: some users have articles on 288

one subject, some users have articles about mul- 289

tiple subjects, and some may have no articles at 290

all. Each organization possesses information about 291

3 topics, and contains 1–7 users, with documents 292

randomly partitioned across users. 293

Also as in PEOPLEJOIN-QA, we create user 294

descriptions for collaborator search by presenting 295

user documents to GPT-4 and querying it for a list 296

of keywords that the user is knowledgeable about 297

(e.g. governor election, GOP, health care). 298

Statistics Because of the relatively large size of 299

the documents that must be exchanged to complete 300

these tasks, we construct 200 test instances dis- 301

tributed across 67 organizations. Summaries are 302

derived from an average of 2.7 documents (vari- 303

ance of 1.1), which must be located within organi- 304

zations with an average of 5.1 users (variance of 305

4.5) and 6.4 total documents (variance of 4.1) or 306

1.25 documents per user. 307

4

4 Baseline Agent Architectures308

To demonstrate the usefulness of PEOPLEJOIN as309

a research platform, we develop and evaluate a ref-310

erence LM-powered agent implementation to per-311

form tasks by coordinating interactions, retrieving312

relevant information, and posing targeted queries313

to other organization members. We consider an314

event-based reactive agent, which is triggered by315

user actions: upon getting a message from any or-316

ganization member, the agent follows ReAct-style317

prompting loop (Yao et al., 2023), taking actions,318

making observations, and performing reflection,319

until it decides to pause and wait for a next event,320

or terminate the session.321

4.1 Actions322

The agent can perform a few types of actions.323

Document Retrieval: agents have access to324

documents accessible to the initiating user, by325

invoking a function search_documents(query:326

str). Documents are indexed using a standard327

BM25 index, and the tool call returns a fixed328

number (upto 3) of documents with the high-329

est matching score. People Retrieval: agents330

can search through a repository of employee pro-331

files and knowledge areas, by invoking a function332

search_relevant_people(query: str). How-333

ever, these expertise profiles may be outdated or334

imprecise, requiring the agent to navigate uncer-335

tainty while coordinating queries. As in document336

retrieval, descriptions are retrieved using a standard337

BM25 index. A fixed number (up to 10) of highest-338

scoring results are returned. Sending Messages:339

the agent is capable of exchanging messages with340

any person in the organization. Person Resolu-341

tion: the agent can resolve a person name to get342

their user ids, to be used to send messages to them.343

Turn and Session Completion: agent can mark344

the current turn or the entire session as completed.345

Signatures of Python functions corresponding to346

the allowed actions are provided in the prompt. See347

Appendix A.1 for the full set of action descriptions.348

4.2 Observations and Reflection349

After each action is taken, the agent receives a350

textual observation. These include retrieved docu-351

ments or descriptions of collaborators. As is typical352

in LLM-based agent architectures, these observa-353

tions are simply appended to the agent’s prompt.354

Before invoking additional actions, the agent may355

perform reflection actions, corresponding to text-356

based (“scratchpad” or “chain-of-thought”) reason- 357

ing about its future plans. Our agent represents 358

reflection as tool calls that return no value but re- 359

main in the agent’s prompt at future timesteps. 360

4.3 Prompt Structure 361

The prompt has 3 parts: action descriptions (out- 362

lined above); exemplars; and interaction history. 363

Exemplars: In each domain, we manually an- 364

notated four exemplars (See Appendix A.2 for a 365

full exemplar) with events, actions, and observa- 366

tions. The exemplars are designed to reflect all rel- 367

evant phenomena in the domain in question, such 368

as dealing with fragmented information, handling 369

unanswerable questions, and managing redirection. 370

Interaction History: An event (receiving a mes- 371

sage from an employee) triggers LLM into a loop 372

of action prediction, observation, and reflection, 373

till an end of turn or session is predicted. Actions 374

are executed immediately after they are predicted; 375

events, action, and observation are incrementally 376

appended in the prompt in the order in which they 377

occur (see Appendix A). 378

5 Evaluation 379

PEOPLEJOIN provides metrics for evaluating the 380

efficiency and correctness of user interactions. 381

5.1 Outcome Metrics 382

The most important measure of an agent’s effective- 383

ness is its ability to provide the correct response to 384

the user’s query. We characterize correctness in dif- 385

ferent ways for the domains within PEOPLEJOIN. 386

Answer match: For PEOPLEJOIN-QA, we 387

prompt an LLM-based evaluator to compare the 388

agent’s final response to the reference answer and 389

output a score in {0,50,100}, where a score of 100 390

refers to a perfectly matched score (all the expected 391

information was present), a score of 50 refers to a 392

partial match (for example, if only few of the ex- 393

pected list of items were correctly provided), while 394

a score of 0 refers to incorrect results (for example, 395

if the agent claimed it could not find the requested 396

information but gold answer suggests otherwise). 397

The score is predicted by an LLM (gpt-4-turbo), 398

conditioned upon the agent response to the initi- 399

ating user and the expected gold answer, certain 400

prompt instructions and three examples. More de- 401

tails are available in the Appendix B.1. 402

5

Method Outcome Task Efficiency Info Source

Match ↑ MsgCnt ↓ MsgSize ↓ #People ↓ P-Prec↑ P-Rec↑

LLM: gpt-4-turbo
Reactive 54.8 9.0 193 1.5 0.61 0.89
Reactive-NoRef 48.0 9.2 187 1.5 0.55 0.82

LLM: gpt-4o
Reactive 48.7 9.7 179 1.2 0.60 0.83
Reactive-NoRef 40.4 10.4 209 2.0 0.52 0.78

LLM: phi-3-medium
Reactive 24.4 6.7 122 1.0 0.23 0.52
Reactive-NoRef 20.0 16.3 295 1.7 0.39 0.62

Table 1: Results on PEOPLEJOIN-QA.

Method Outcome Task Efficiency Info Source

Rouge ↑ G-Eval ↑ MsgCnt ↓ MsgSize ↓ #People ↓ P-Prec↑ P-Rec↑

LLM: gpt-4-turbo
Reactive 16.3 4.00 / 4.16 / 4.07 12.6 1330 1.5 0.99 0.88
Reactive-NoRef 16.5 4.20 / 4.33 / 4.14 12.4 1281 1.5 0.97 0.87

LLM: gpt-4o
Reactive 12.2 2.99 / 3.33 / 3.00 9.9 1180 1.4 0.95 0.80
Reactive-NoRef 12.6 3.15 / 3.42 / 2.65 10.9 1268 1.7 0.90 0.90

LLM: phi-3-medium
Reactive 11.5 2.84 / 3.31 / 2.81 11.0 996 1.7 0.66 0.69
Reactive-NoRef 11.3 2.71 / 2.64 / 3.20 11.3 948 1.7 0.65 0.67

Table 2: Results on PEOPLEJOIN-DOCCREATION. G-Eval consists of three scores (Relevance/Consistency/Coher-
ence).

ROUGE AND G-EVAL For the PEOPLEJOIN-403

DOCCREATION task, we require agents to output a404

final summary enclosed by special delimiter tokens,405

then report the ROUGE-L score (Lin, 2004) of this406

summary relative to the reference summary. If the407

agent produces no summary, it obtains a score of408

0; if it produces multiple summaries on different409

turns,we score only the final one. We also report G-410

EVAL scores (Liu et al., 2023), a set of automated411

metrics that evaluate the relevance, consistency,412

and coherence of a summary using an LM with ac-413

cess to source documents. G-Eval has been found414

to correlate highly with human summarization rat-415

ings (Song et al., 2024).416

5.2 Efficiency Metrics417

An effective agent should not only produce correct418

answers, but do so while minimizing effort from419

collaborators. We quantify this using three metrics.420

Message count (Msg): measures the total number421

of messages exchanged during the task. Message422

size (MsgSize): message count alone does not pe-423

nalize requests requiring lengthy responses from424

collaborators, so we additionally report the total425

number of words exchanged (tokenized using the426

NLTK (Bird et al., 2009) word tokenizer). Peo- 427

ple contacted (#People): the count of people that 428

the agent exchanged messages with (including the 429

initiating user), averaged across the test set. 430

5.3 Information Source Metrics 431

In both PEOPLEJOIN-QA and PEOPLEJOIN- 432

DOCCREATION, the gold set of documents re- 433

quired to answer a task correctly are known, which 434

also allows us to infer the optimal set of people an 435

agent must contact to arrive at the correct outcome. 436

We collect the set of distinct users contacted by 437

the agent, then compute the precision (P-Prec) and 438

recall (P-Rec) relative to the ground-truth people 439

set, averaged across queries. 440

6 Experiments 441

The PEOPLEJOIN framework includes user simu- 442

lators that represent collaborators within an orga- 443

nization, along with scaffolding code that enables 444

an agent to search through the initiating user’s doc- 445

uments and identify and contact relevant collabo- 446

rators. All experiments use a gpt-4-turbo model 447

(OpenAI, 2023), prompted with each collaborator’s 448

description and document collection, to implement 449

6

these simulators (full prompt in Appendix B.2). We450

then evaluate our reference agent architecture using451

the metrics described above.452

We compare several alternative implementations453

of this reference architecture, including variations454

in task orchestration and planning strategies. Reac-455

tive is the full agent architecture (Yao et al., 2023),456

and Reactive-NoRef is a variant of this architec-457

ture which performs no reflection actions. We com-458

pare gpt-4-turbo (OpenAI, 2023), gpt-4o (Ope-459

nAI, 2023), and phi-3-medium (Abdin et al., 2024)460

as LLMs. We use greedy decoding.461

6.1 Results on PEOPLEJOIN-QA462

The max score on Match metric across all methods463

is only 54.8 (Table 1), achieved by Reactive464

when used with gpt-4-turbo, demonstrating465

the overall challenging setup. Moreover, for the466

same configuration, P-Prec and P-Rec scores are467

0.61 and 0.89 respectively, demonstrating scope468

of further improvement in optimal selection of469

people to contact. Comparing LLM choices for470

Reactive, gpt-4-turbo performed better than471

gpt-4o, while phi-3-medium is generally worse472

on Match and information source selection. Finally,473

Reactive generally performs similar or better than474

Reactive-NoRef across LLMs on Match, efficiency,475

and optimal selection of information sources,476

demonstrating the usefulness of a reflection step.477

478

Additional Comparisons: To put these results479

in perspective, we additionally compare with480

following techniques:481

(1) MessageAllOnce , an agent that is encouraged482

(through prompt instructions and exemplars) to483

message each person in the organization exactly484

once, with the same question the user asked.485

MessageAllOnce results highlight the importance486

of judiciously choosing who to contact (MsgCnt487

of 11.4 compared to 9.0 for Reactive), framing488

the correct questions and engaging in multi-turn489

conversations with collaborators when needed490

(Match score is much lower than that of Reactive).491

(2) MessageNone , an agent that attempts to492

Match ↑ MsgCnt ↓ P-Prec ↑

Reactive 54.8 9.0 0.61
MessageAllOnce 34.6 11.4 0.37
MessageNone 19.2 4.1 N/A
IdealAgent 100 7.0 1.0

Table 3: Additional Comparisons (using gpt-4-turbo)

complete the task with the user’s documents alone 493

(i.e. without contacting any collaborator). Mes- 494

sageNone results provide a baseline performance 495

when no collaborator is contacted. 496

(3) IdealAgent , which is defined as the one that 497

always gets the correct answers by contacting the 498

optimal set of relevant collaborators, formulating 499

perfect questions, etc. will get a Match score of 500

100, #People count of 1.5 (equals count of the 501

optimal set of people to contact), and MsgCnt of 7. 502

503

Analysis: We analyzed Match scores on subsets of 504

PEOPLEJOIN-QA for Reactive with gpt-4-turbo: 505

(1) Document Split: 50.0; (2) Redirection: 38.0; (3) 506

Unanswerable: 87.5. The results demonstrate that 507

Reactive does particularly well in identifying unan- 508

swerable questions, but struggles with information 509

fragmentation and knowledge hierarchies required 510

to correctly handle the redirection category. 511

We include a few qualitative examples in Ap- 512

pendix B.3. Additionally, we analyzed 40 ran- 513

dom examples with imperfect Match scores in 514

PeopleJoin-QA when using Reactive and the most 515

common failure modes were: (1) Failing to contact 516

all relevant users and arriving at an incorrect an- 517

swer [30% of cases]. (2) Poorly worded or overly- 518

specific queries from the agent causing other users 519

to conclude that they didn’t have relevant informa- 520

tion [25% of cases]. For example, the Listing 9 in 521

Appendix B.3. (3) Failing to reach out to all the rel- 522

evant people and telling the user it couldn’t get all 523

the information [20% of cases]. (4) Orchestration 524

errors, such as not predicting tools for people or 525

document search [10%] (Listing 8 is an example). 526

6.2 Results on PEOPLEJOIN-DOCCREATION 527

On PEOPLEJOIN-DOCCREATION, among the 528

LLM choices, gpt-4-turbo performs better 529

than gpt-4o, which in turn performs better 530

than phi-3 (Table 2). In contrast to results in 531

PEOPLEJOIN-QA, Reactive and Reactive-NoRef 532

variants perform similar, suggesting no usefulness 533

of the reflection step in the document creation 534

task. On this task, an IdealAgent should obtain 535

G-Eval scores of 5, MsgCnt of 6.3, MsgSize of 536

1592, and #People of 1.7. These results indicate 537

that the document creation task is also challenging, 538

with significant scope for improvement in output 539

quality and communicative efficiency. 540

541

Analysis: Here, the most common failure modes 542

(in 40 analyzed examples) were (1) failing to ask 543

7

follow-up questions in cases where one user had544

multiple documents on a given topic [38% of cases],545

(2) poorly worded or overly-specific queries, caus-546

ing other users to conclude that they didn’t have547

relevant documents [24%], and (3) orchestration548

failures in which the agent was distracted by a549

user comment and ended the conversation early550

or stopped pursuing the original goal [38%].551

6.3 Case Study with Human Participants552

The experiments discussed above rely on simulated553

users. To complement this, we conducted a hu-554

man evaluation study in which real users took on555

the roles of certain collaborators in the experiment.556

The goal of this study was to assess whether the557

agents perform the task with similar efficacy when558

interacting with human users compared to a fully559

simulated environment. Like simulated users, hu-560

man participants (Appendix B.4) had access to the561

documents associated with their assigned personas.562

Messages from the agent indicated that they were563

generated by an automated system. While partic-564

ipants were free to respond as they saw fit, they565

were instructed to engage as respectful colleagues566

within a business setting.567

The study was conducted on 100 randomly se-568

lected examples from the PEOPLEJOIN-QA dataset.569

In each instance, one collaborator role was played570

by a human participant. To ensure meaningful inter-571

action, rather than selecting personas randomly—572

which could result in cases where the human collab-573

orator was not contacted by the agent— we specifi-574

cally picked the human collaborator to be among575

the gold set of individuals the agent needed to con-576

tact for the test example in question.577

Table 4 presents results, comparing performance578

metrics between human-in-the-loop interactions579

and the fully simulated setup, when using Reac-580

tive with gpt-4-turbo. Human collaborators pro-581

vided slightly longer responses and asked more582

clarification questions than simulated collaborators,583

leading to a higher number of messages from the584

agent as well. We also observed slightly better av-585

erage Match score with human users compared to586

full simulation. But together, these results suggest587

the simulated setup produces qualitatively similar588

dialogs and outcomes to human interactions.589

7 Related Work590

AI-mediated collaboration and negotiations: Re-591

cent research in human-AI collaboration has ex-592

Match ↑ MsgCnt ↓ MsgSize ↓

Human Participant 50 10.0 198
Simulation 44 9.3 187

Table 4: Human Evaluation Case Study

plored various strategies for facilitating decision- 593

making and negotiations among multiple users. Lin 594

et al. (2024) examines how AI assistants can assist 595

humans through natural language interactions to 596

make complex decisions, such as planning a multi- 597

city itinerary or negotiating travel arrangements 598

among friends. Gemp et al. (2024) focus on how 599

game-theoretic approaches that can guide LLMs in 600

tasks like meeting scheduling and resource alloca- 601

tion. Past work (Papachristou et al., 2023) has also 602

explored the role of LLMs in facilitating group de- 603

cisions, such as selecting a meeting time or venue, 604

where LLM agents analyze individual preferences 605

from conversations. In contrast, PEOPLEJOIN fo- 606

cuses on LM agents for coordinating multi-user 607

information gathering. 608

Multi-hop reasoning and task decomposition: 609

In our setup, an agent needs to compile information 610

from multiple sources, a theme shared with prior 611

work in multi-hop QA (Welbl et al., 2018; Yang 612

et al., 2018) and multi-document summarization 613

(Liu et al., 2018; Fabbri et al., 2019). Past work on 614

solving complex tasks by decomposing them (via 615

prompting) into simpler sub-tasks (Wolfson et al., 616

2020; Khot et al., 2022; Jhamtani et al., 2024) is 617

also relevant. Compared to such past work, our 618

setup requires additional steps of finding the rel- 619

evant users, posing apt questions, compiling the 620

gathered information, and doing so with minimum 621

communication overhead possible. 622

8 Conclusions 623

PEOPLEJOIN is a new benchmark designed to 624

evaluate the role of language model (LM) agents 625

in facilitating collaborative information gather- 626

ing within multi-user environments. It comprises 627

two domains, PEOPLEJOIN-QA and PEOPLEJOIN- 628

DOCCREATION, which challenge LM agents to 629

handle tasks related to question-answering and doc- 630

ument creation. Experiments with popular LM 631

agent architectures revealed both their potential and 632

limitations in accurately and efficiently completing 633

complex collaborative tasks. 634

8

Limitations635

PEOPLEJOIN consists of two tasks and is in one lan-636

guage (English). Future work could explore further637

expanding the domains and supported languages.638

We make the simplifying assumption that an agent639

in our setup can engage only in dyadic conversa-640

tions. Exploring more topologies such as group641

chats (Wu et al., 2023) would bring-in additional642

challenges. We designed the domains and the ex-643

periment setup to study the effectiveness of the LM644

agents on a diverse set of information gathering645

behaviors. However, our analysis did not model all646

the possible factors in a real-world. Future work647

can explore additional factors such as turn-around648

speed and reliability of the response from a col-649

laborator, how busy a person is, and various social650

dynamics that can be at play in organizations.651

Ethics Statement652

Allowing AI agents the capability to send mes-653

sages to other users without fine-grained super-654

vision presents a trade-off between saving user655

time and maintaining control. While autonomy can656

streamline workflows by eliminating the need for657

constant user confirmation, verifying key actions658

helps ensure accuracy and user oversight. While659

we studied the task in a sand-boxed environment,660

practitioners should carefully choose the degree of661

autonomy granted (for example, a more conserva-662

tive approach would be to get user confirmation663

before every message that is sent).664

References665

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,666
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,667
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-668
rat Behl, et al. 2024. Phi-3 technical report: A highly669
capable language model locally on your phone. arXiv670
preprint arXiv:2404.14219.671

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-672
ural language processing with Python: analyzing text673
with the natural language toolkit. " O’Reilly Media,674
Inc.".675

Jenna Butler, Sonia Jaffe, Nancy Baym, Mary Czerwin-676
ski, Shamsi Iqbal, Kate Nowak, Sean Rintel, Abigail677
Sellen, Mihaela Vorvoreanu, Najeeb G. Abdulhamid,678
Judith Amores, Reid Andersen, Kagonya Awori,679
Maxamed Axmed, danah boyd, James Brand, Georg680
Buscher, Dean Carignan, Martin Chan, Adam Cole-681
man, Scott Counts, Madeleine Daepp, Adam Four-682
ney, Daniel G. Goldstein, Andy Gordon, Aaron L683

Halfaker, Javier Hernandez, Jake Hofman, Jenny Lay- 684
Flurrie, Vera Liao, Siân Lindley, Sathish Manivannan, 685
Charlton Mcilwain, Subigya Nepal, Jennifer Neville, 686
Stephanie Nyairo, Jacki O’Neill, Victor Poznanski, 687
Gonzalo Ramos, Nagu Rangan, Lacey Rosedale, 688
David Rothschild, Tara Safavi, Advait Sarkar, Ava 689
Scott, Chirag Shah, Neha Parikh Shah, Teny Shapiro, 690
Ryland Shaw, Auste Simkute, Jina Suh, Siddharth 691
Suri, Ioana Tanase, Lev Tankelevitch, Adam Troy, 692
Mengting Wan, Ryen W. White, Longqi Yang, Brent 693
Hecht, and Jaime Teevan. 2023. Microsoft new fu- 694
ture of work report 2023. Technical Report MSR- 695
TR-2023-34, Microsoft. 696

Alexander Richard Fabbri, Irene Li, Tianwei She, Suyi 697
Li, and Dragomir Radev. 2019. Multi-news: A large- 698
scale multi-document summarization dataset and ab- 699
stractive hierarchical model. In Proceedings of the 700
57th Annual Meeting of the Association for Compu- 701
tational Linguistics, pages 1074–1084. 702

Ian Gemp, Yoram Bachrach, Marc Lanctot, Roma Patel, 703
Vibhavari Dasagi, Luke Marris, Georgios Piliouras, 704
and Karl Tuyls. 2024. States as strings as strate- 705
gies: Steering language models with game-theoretic 706
solvers. arXiv preprint arXiv:2402.01704. 707

Harsh Jhamtani, Hao Fang, Patrick Xia, Eran Levy, Ja- 708
cob Andreas, and Ben Van Durme. 2024. Natural 709
language decomposition and interpretation of com- 710
plex utterances. IJCAI. 711

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao 712
Fu, Kyle Richardson, Peter Clark, and Ashish Sab- 713
harwal. 2022. Decomposed prompting: A modular 714
approach for solving complex tasks. In The Eleventh 715
International Conference on Learning Representa- 716
tions. 717

Yujin Kim and Chin-Chia Hsu. 2024. Leveraging large 718
language models for hybrid workplace decision sup- 719
port. Preprint, arXiv:2402.03616. 720

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke 721
Zettlemoyer. 2017. Zero-shot relation extraction via 722
reading comprehension. In Proceedings of the 21st 723
Conference on Computational Natural Language 724
Learning (CoNLL 2017), pages 333–342, Vancouver, 725
Canada. Association for Computational Linguistics. 726

Chin-Yew Lin. 2004. Rouge: A package for automatic 727
evaluation of summaries. In Text summarization 728
branches out, pages 74–81. 729

Jessy Lin, Nicholas Tomlin, Jacob Andreas, and Jason 730
Eisner. 2024. Decision-oriented dialogue for human- 731
ai collaboration. Transactions of the Association for 732
Computational Linguistics, 12:892–911. 733

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben 734
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam 735
Shazeer. 2018. Generating wikipedia by summariz- 736
ing long sequences. In International Conference on 737
Learning Representations. 738

9

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://www.microsoft.com/en-us/research/publication/microsoft-new-future-of-work-report-2023/
https://www.microsoft.com/en-us/research/publication/microsoft-new-future-of-work-report-2023/
https://www.microsoft.com/en-us/research/publication/microsoft-new-future-of-work-report-2023/
https://aclanthology.org/P19-1102.pdf
https://aclanthology.org/P19-1102.pdf
https://aclanthology.org/P19-1102.pdf
https://aclanthology.org/P19-1102.pdf
https://aclanthology.org/P19-1102.pdf
https://arxiv.org/pdf/2402.01704
https://arxiv.org/pdf/2402.01704
https://arxiv.org/pdf/2402.01704
https://arxiv.org/pdf/2402.01704
https://arxiv.org/pdf/2402.01704
https://arxiv.org/pdf/2305.08677
https://arxiv.org/pdf/2305.08677
https://arxiv.org/pdf/2305.08677
https://arxiv.org/pdf/2305.08677
https://arxiv.org/pdf/2305.08677
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2402.03616
https://arxiv.org/abs/2402.03616
https://arxiv.org/abs/2402.03616
https://arxiv.org/abs/2402.03616
https://arxiv.org/abs/2402.03616
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://aclanthology.org/W04-1013.pdf
https://aclanthology.org/W04-1013.pdf
https://aclanthology.org/W04-1013.pdf
https://arxiv.org/pdf/2305.20076
https://arxiv.org/pdf/2305.20076
https://arxiv.org/pdf/2305.20076
https://openreview.net/pdf?id=Hyg0vbWC-
https://openreview.net/pdf?id=Hyg0vbWC-
https://openreview.net/pdf?id=Hyg0vbWC-

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,739
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:740
NLG evaluation using gpt-4 with better human align-741
ment. In Proceedings of the 2023 Conference on742
Empirical Methods in Natural Language Process-743
ing, EMNLP 2023, Singapore, December 6-10, 2023,744
pages 2511–2522. Association for Computational745
Linguistics.746

OpenAI. 2023. GPT-4 technical report. Computing747
Research Repository, arXiv:2303.08774.748

Marios Papachristou, Longqi Yang, and Chin-Chia749
Hsu. 2023. Leveraging large language models750
for collective decision-making. arXiv preprint751
arXiv:2311.04928.752

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.753
Know what you don’t know: Unanswerable ques-754
tions for squad. In Proceedings of the 56th Annual755
Meeting of the Association for Computational Lin-756
guistics (Volume 2: Short Papers), pages 784–789.757

Amit P Sheth and James A Larson. 1990. Federated758
database systems for managing distributed, heteroge-759
neous, and autonomous databases. ACM Computing760
Surveys (CSUR), 22(3):183–236.761

Hwanjun Song, Hang Su, Igor Shalyminov, Jason Cai,762
and Saab Mansour. 2024. Finesure: Fine-grained763
summarization evaluation using llms. In Proceed-764
ings of the 62nd Annual Meeting of the Association765
for Computational Linguistics (Volume 1: Long Pa-766
pers), ACL 2024, Bangkok, Thailand, August 11-16,767
2024, pages 906–922. Association for Computational768
Linguistics.769

Gemini Team, Rohan Anil, Sebastian Borgeaud,770
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,771
Radu Soricut, Johan Schalkwyk, Andrew M Dai,772
Anja Hauth, et al. 2023. Gemini: a family of773
highly capable multimodal models. arXiv preprint774
arXiv:2312.11805.775

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-776
bert, Amjad Almahairi, Yasmine Babaei, Nikolay777
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti778
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton779
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,780
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,781
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-782
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan783
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,784
Isabel Kloumann, Artem Korenev, Punit Singh Koura,785
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-786
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-787
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-788
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-789
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,790
Ruan Silva, Eric Michael Smith, Ranjan Subrama-791
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-792
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,793
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,794
Melanie Kambadur, Sharan Narang, Aurelien Ro-795
driguez, Robert Stojnic, Sergey Edunov, and Thomas796

Scialom. 2023. Llama 2: Open foundation and fine- 797
tuned chat models. Computing Research Repository, 798
arXiv:2307.09288. 799

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 800
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 801
Xu Chen, Yankai Lin, et al. 2024. A survey on large 802
language model based autonomous agents. Frontiers 803
of Computer Science, 18(6):186345. 804

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. 805
2018. Constructing datasets for multi-hop reading 806
comprehension across documents. Transactions of 807
the Association for Computational Linguistics, 6:287– 808
302. 809

Tomer Wolfson, Mor Geva, Ankit Gupta, Yoav Gold- 810
berg, Matt Gardner, Daniel Deutch, and Jonathan 811
Berant. 2020. Break it down: A question understand- 812
ing benchmark. Transactions of the Association for 813
Computational Linguistics, 8:183–198. 814

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, 815
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, 816
Xiaoyun Zhang, and Chi Wang. 2023. Auto- 817
gen: Enabling next-gen llm applications via multi- 818
agent conversation framework. arXiv preprint 819
arXiv:2308.08155. 820

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen 821
Ding, Boyang Hong, Ming Zhang, Junzhe Wang, 822
Senjie Jin, Enyu Zhou, et al. 2023. The rise and 823
potential of large language model based agents: A 824
survey. arXiv preprint arXiv:2309.07864. 825

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, 826
William Cohen, Ruslan Salakhutdinov, and Christo- 827
pher D Manning. 2018. Hotpotqa: A dataset for 828
diverse, explainable multi-hop question answering. 829
In Proceedings of the 2018 Conference on Empirical 830
Methods in Natural Language Processing. Associa- 831
tion for Computational Linguistics. 832

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 833
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023. 834
React: Synergizing reasoning and acting in language 835
models. In The Eleventh International Conference 836
on Learning Representations, ICLR 2023, Kigali, 837
Rwanda, May 1-5, 2023. OpenReview.net. 838

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 839
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 840
ing Yao, Shanelle Roman, et al. 2018. Spider: A 841
large-scale human-labeled dataset for complex and 842
cross-domain semantic parsing and text-to-sql task. 843
In Proceedings of the 2018 Conference on Empiri- 844
cal Methods in Natural Language Processing, pages 845
3911–3921. 846

Carlo Zaniolo. 1997. Advanced database systems. Mor- 847
gan Kaufmann. 848

10

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.153
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.153
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.153
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.153
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.153
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2311.04928
https://arxiv.org/abs/2311.04928
https://arxiv.org/abs/2311.04928
https://dl.acm.org/doi/pdf/10.1145/96602.96604
https://dl.acm.org/doi/pdf/10.1145/96602.96604
https://dl.acm.org/doi/pdf/10.1145/96602.96604
https://dl.acm.org/doi/pdf/10.1145/96602.96604
https://dl.acm.org/doi/pdf/10.1145/96602.96604
https://doi.org/10.18653/V1/2024.ACL-LONG.51
https://doi.org/10.18653/V1/2024.ACL-LONG.51
https://doi.org/10.18653/V1/2024.ACL-LONG.51
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2308.11432
https://aclanthology.org/Q18-1021.pdf
https://aclanthology.org/Q18-1021.pdf
https://aclanthology.org/Q18-1021.pdf
https://aclanthology.org/2020.tacl-1.13.pdf
https://aclanthology.org/2020.tacl-1.13.pdf
https://aclanthology.org/2020.tacl-1.13.pdf
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887

Appendix849

A Additional details on approach850

A.1 Action descriptions851

Listing 2 shows the signatures and docstrings of852

Python functions corresponding to the set of al-853

lowed actions.854

A.2 Exemplars855

A fully annotated exemplar for question answering856

domain is provided in Listing 3, while a fully anno-857

tated exemplar for summarization domain is shown858

in Listing 4.859

A.3 Action parsing failures860

We observed that parsing a predicted action into an861

allowed Python function and its parameters fails862

on a small fraction of cases. In such failure cases,863

we append a simple string ‘# Failed to parse the864

predicted action. I will predict the next action again,865

following the allowed function signatures only’ to866

the prompt, and decode the next action again. This867

process is followed upto a maximum of three times,868

post which the session is terminated.869

A.4 Overview of the prompt structure870

An overview of the prompt structure is available in871

Table 5.872

Action Descriptions

Exemplars

<Current Interaction>
{received-message}
>>> {action-1}
{observation-1}
>>> {reflection-1}
>>> {action-2}
. . .
>>> {turn-complete-action}
{received-message}
>>> {action-1}
. . .

Table 5: Overview of the prompt structure.

B Additional details on Experiment Setup873

B.1 Match score874

Prompt outline used to compute Match score is875

shown in Listing 1.876

Listing 1: Prompt to compute Match score
877

Task878

- Agent serves as a digital assistant for { 879
primary_user}. It can access different tools 880
to send messages to other users. It 881
interprets the user's intent and context 882
from the messages received and uses the 883
appropriate tools to fulfill the user's 884
request. 885

- You will be given a dialogue between Agent and 886
various human users. These are individual 887
conversations, where each message will be 888
labeled by sender and recipient in the 889
format: `sender-to-recipient: message`. Your 890
job is to rate Agent's response on a scale 891
from 0 to 100, based on the rubric provided 892
below. 893

894
Scoring Scale 895
0. The response does not satisfy the criterion. 896
50. The response partially meets the criterion. 897
100. The response fully meets the criterion. 898

899
Guidelines 900
- Format your output as follows using YAML: 901
``` 902
criteria: <Copy of the criterion> 903
rationale: <Brief explanation of why you gave 904

this score> 905
score: <Score between 0-100 based on how well 906

Agent's response meets the criterion> 907
``` 908
- Base your evaluation solely on the given 909

criteria. 910
- If the criterion is clearly satisfied without 911

any ambiguity, assign a full score of 100. 912
- Valid scores are 0, 50, or 100 only. 913
- Formatting of the response shouldn't affect 914

the score. 915
- Extra details that do not mislead or 916

contradict the answer should not lower the 917
score. 918

919
{examples} 920

921
Conversation 922
Conversation Date: {conversation_date} 923
{conversation} 924

925
Output 926
``` 927
criteria: Agent should inform the original user 928

that the answer to their question is {gold- 929
answer}. 930931

Correlation with Human Rating: One of the 932

authors manually labeled 50 randomly selected out- 933

puts from Reactive (with gpt-4-turbo as LLM) 934

considering the same reference instructions and 935

examples as in the prompt discussed above. We 936

observe Cohen’s Kappa score of 0.81 between man- 937

ual judgement ratings and Match score, suggesting 938

a high agreement of the LLM-based Match metric 939

with human judgement ratings. 940

Stability: We conducted an analysis where we 941

rerun the Match scores in Table 1 three times, and 942

the maximum change we observed in any value 943

11



was 0.5 (Match is on a scale of 1-100), signifying944

very low instability issues. Additionally, we ob-945

served that switching the underlying LLM from946

gpt-4-turbo to phi-3-medium to compute Match947

scores resulted in the exact same ranking of the948

methods as in the results tables (Table 1), suggest-949

ing that relative performance of the methods under950

Match metric is stable with respect to the choice of951

the underlying LLM used to compute the metric.952

B.2 User Simulators953

User simulator prompt, shown in Listings 5, con-954

sists of a basic set of instructions at the top, fol-955

lowed by five examples of diverse situations a user956

can face (either as the initiating user, or as a team-957

mate receiving a request). Each examples consists958

of a user description, the set of documents available959

to the user, and any conversation history so far.960

B.3 Qualitative Examples961

Listings 7 through 10 show randomly picked test962

examples from both the domains, demonstrating963

success as well as failure cases for Reactive .964

B.4 Human Evaluation Study965

Additional details about human participants: We966

recruited 5 participants, who each carried out 20967

human-in-the-loop tasks. All the human partici-968

pants are US graduates and well-versed with the969

English language. All participants are paid above970

the minimum wage requirements of the region. Par-971

ticipants were given the same instructions and ex-972

amples as in the simulated user prompt.973

C Additional details on datasets974

SPIDER dataset is available under CC BY-SA 4.0975

license.5. MULTINEWS dataset is available for re-976

search purposes.6977

5https://yale-lily.github.io/spider
6https://github.com/Alex-Fabbri/Multi-News/

blob/master/LICENSE.txt

12

https://yale-lily.github.io/spider
https://github.com/Alex-Fabbri/Multi-News/blob/master/LICENSE.txt
https://github.com/Alex-Fabbri/Multi-News/blob/master/LICENSE.txt


Listing 2: Action descriptions provided in the prompt, consisting of various function signatures and associated
docstrings

# You are a clever and helpful assistant helping a user. To accomplish the user request, you must use
the following Python functions:

class System:

# Functions
def finish() -> None:

"""Call this function to indicate that the current turn is complete."""

class Enterprise:

# Functions

def send_message(user_id: str, content: str, title: str | None) -> None:
"""Send a message to a user."""

def send_session_completed() -> None:
"""If the primary user indicates that they no longer need assistance, send a session

completed message."""

def resolve_primary_user() -> str:
"""Return the primary user details."""

def resolve_person(name: str) -> str:
"""Find list of persons matching a given name and return details of the first match."""

class EnterpriseSearch:

# Functions
def search_documents(query: str) -> tuple[str, ...]:

"""Returns the list of relevant documents (including document content/records)"""

def search_relevant_people(query: str) -> str:
"""Returns names of relevant person and any accompanying rationale"""

class Reflection:

# Functions
def thought(thought: str) -> None:

"""Assess the current state of the conversation and decide on the next action"""

Listing 3: An annotated exemplar in the question answering domain, with received messages, tool calls, and
observations.

978
# Event: Alice Anastasiou says: I need first name and ages of the students who have a dog but do not 979

have a cat as pet 980
>>> Reflection.thought("I will first resolve the primary user to get the right contact information") 981
>>> Enterprise.resolve_primary_user() 982
{"user_id":"alice@company.com", "email":"alice@company.com", "full_name": "Alice Anastasiou"} 983
>>> Reflection.thought("I will search user documents to see if the user request can be answered 984

directly") 985
>>> EnterpriseSearch.search_documents(query="name and age of students with dogs but no cats as pets") 986
[ 987
"Document:\nCollection name: pets 1\nTitle: pets\nRecord 1: {'pet id': 2001, 'pet type': 'cat', 'pet 988

age': 3, 'weight': 12.0}\nRecord 2: {'pet id': 2002, 'pet type': 'dog', 'pet age': 2, 'weight': 989
13.4}\nRecord 3: {'pet id': 2003, 'pet type': 'dog', 'pet age': 1, 'weight': 9.3}\n" 990

] 991
>>> Reflection.thought("User documents have relevant information about pet ids and pet types. But 992

there is not enough information to answer the query directly. I will search for relevant people 993
who may have more information") 994

>>> EnterpriseSearch.search_relevant_people(query='name and age of students with dogs but no cats as 995
pets') 996

{ 997
"Cassie Hicks": "User might have information about students and their pet IDs.", 998
"Dewei Peng": "The user might have information about students, including their personal details, 999

13



demographics, and academic information.",1000
"Hannah Jarvis": "User might have information about students and their pet IDs."1001

}1002
>>> Reflection.thought("I can reach out to Hannah and Cassie who seem to have more information about1003

pets owned by students. I might have to reach out to Dewei for the names and ages of students1004
since Dewei seems to have personal details about students")1005

>>> Enterprise.send_message("alice@company.com", "Hi Alice, I couldn't find enough information in1006
your documents to compile that directly. I can reach out to Hannah Jarvis, Cassie Hicks, and1007
Dewei Peng who may have more information. Sounds good?")1008

>>> System.finish()1009
1010

# Event: Alice Anastasiou says: Yes, that is fine.1011
>>> Reflection.thought("Both Hannah and Cassie have information about pets owned by students. Since I1012

would need the list of all students who have a dog but not a cat as pet, I will contact both1013
Hannah and Cassie. I will first resolve Hannah's contact information and then reach out to1014
Hannah")1015

>>> Enterprise.resolve_person('Hannah')1016
{"user_id": "hannah", "email": "hannah@company.com", "full_name": "Hannah Jarvis"}1017
>>> Enterprise.send_message("hannah", "Hi Hannah, Can you please tell me the list of students and1018

their pets?", title="Information needed about students")1019
>>> System.finish()1020

1021
# Event: Hannah Jarvis says: Sure. I know that student with `student id`: 1001 has a pet with `pet id1022

`: 2001 and student with `student id`: 1002 has a pet with `pet id`: 20021023
>>> Reflection.thought("Hannah has provided the information about the pets owned by students. Since I1024

need the list of all students who have a dog but not a cat as pet, I will reach out to Cassie1025
in case Cassie knows more about the pets owned by students")1026

>>> Enterprise.resolve_person('Cassie')1027
{"user_id": "cassie", "email": "cassie@company.com", "full_name": "Cassie Hicks"}1028
>>> Enterprise.send_message("cassie", "Hi Cassie, Can you please tell me the list of students and1029

their pets?", title="Information needed about students")1030
>>> System.finish()1031

1032
# Event: Cassie Hicks says: Sure. 1) `student id`: 1002 has a pet with `pet id`: 2002; 2) `student1033

id`: 1002 has a pet with `pet id`: 20031034
>>> Reflection.thought("From information provided by Hannah and Cassie, and information in user1035

documents, I can compile the list of students and their pet_ids as follows: `student id`: 10011036
-> `pet id`: 2001, `student id`: 1002 -> `pet id`: 2002, `student id`: 1002 -> `pet id`: 2003.1037
From Alice`s documents, I can get the type of animal for the pet ids: `pet id`: 2001 -> cat, `1038
pet id`: 2002 -> dog, `pet id`: 2003 -> dog. I can conclude that the student with `student id`:1039
1002 has a dog but not a cat as a pet. I will reach out to Dewei for the first name and age of1040
the student")1041

>>> Enterprise.resolve_person('Dewei')1042
{"user_id": "dewei", "email": "dewei@company.com", "full_name": "Dewei Peng"}1043
>>> Enterprise.send_message("dewei", "Hi Dewei, Can you please tell the name and age of student with1044

`student id`: 1002?", title="Information needed about students")1045
>>> System.finish()1046

1047
# Event: Dewei Peng says: Sorry, I do not have the information you are looking for. But you can try1048

contacting Bhushan Magar who I think might have the information you are looking for.1049
>>> Reflection.thought("Dewei does not have the requested information on student names and ages. I1050

will reach out to Bhushan Magar for the information. Since I haven't checked with Alice so far1051
about reaching out to Bhushan, I will confirm it now")1052

>>> Enterprise.send_message("alice@company.com", "Hi Alice, I couldn't find enough information after1053
reaching out to Dewei. I will now reach out to Bhushan Magar who may have more information.1054
Sounds good?", title="Re: Clarification needed")1055

>>> System.finish()1056
1057

# Event: Alice Anastasiou says: Sounds good, thanks for checking.1058
>>> Reflection.thought("Alice has confirmed that I can reach out to Bhushan. I will contact Bhushan1059

requesting for the first name and age of the specified students")1060
>>> Enterprise.resolve_person('Bhushan')1061
{"user_id": "bhushan", "email": "bhushan@company.com", "full_name": "Bhushan Magar"}1062
>>> Enterprise.send_message("bhushan", "Hi Bhushan, Can you please tell the first name and age of `1063

student id`: 1002?", title="Information needed about student")1064
>>> System.finish()1065

1066
# Event: Bhushan Magar says: {"student id": 1002, "first name": "Tracy"}1067
>>> Reflection.thought("Bhushan has provided the first name of the student but not the age. I will1068

reach out to Bhushan again for the age information. Since I already confirmed with Alice about1069

14



reaching out to Bhushan, I will not confirm again") 1070
>>> Enterprise.send_message("bhushan", "Thanks Bhushan! Can I also get the age information of ` 1071

student id`: 1002?", title="Re: Information needed about student") 1072
>>> System.finish() 1073

1074
# Event: Bhushan Magar says: Oh right, forgot about that. Age is 19. 1075
>>> Reflection.thought("Bhushan has provided the name and age of the student. I now have all the 1076

information to answer Alice's query") 1077
>>> Enterprise.send_message("alice@company.com", "Hi Alice, the first name and age of the student who 1078

has a dog but not a cat as a pet is:\n- First name: Tracy\n- Age: 19\nDo you need any more 1079
information?", title="Re: Information needed about student") 1080

>>> System.finish() 1081
1082

# Event: Alice Anastasiou says: Thanks! That would be all. 1083
>>> Enterprise.send_session_completed() 1084
>>> Reflection.thought("Alice has confirmed that no more information is needed. I will close the 1085

session") 1086
>>> System.finish() 10871088

Listing 4: An annotated exemplar in the summarization domain.
1089

# Event: Alice Anastasiou says: I'm interested in compiling a summary on the topics: 'unemployment 1090
rate, jobs report, economy'. 1091

>>> Reflection.thought("I will first resolve the primary user to get the right contact information") 1092
>>> Enterprise.resolve_primary_user() 1093
{"user_id": "alice", "email": "alice@company.com", "full_name": "Alice Anastasiou"} 1094
>>> Reflection.thought("I will search user's documents and find relevant people who may have more 1095

information") 1096
>>> EnterpriseSearch.search_documents(query="unemployment rate, jobs report, economy") 1097
[] 1098
>>> EnterpriseSearch.search_relevant_people(query="unemployment rate, jobs report, economy") 1099
{ 1100

"hannah": "Knows about the following topics:\nhiring, unemployment rate, job growth, economy, 1101
consumer spending\nGaithersburg, Maryland, jet crash, Montgomery County, FAA", 1102

"parker": "Knows about the following topics:\nShelly Sterling, LA Clippers sale, divorce\ 1103
nGaithersburg, plane crash, Marie Gemmell, Michael Rosenberg, Montgomery County Air Park", 1104

"eden": "Knows about the following topics:\njobs, unemployment rate, economy" 1105
} 1106
>>> Reflection.thought("The current user has no documents. Hannah and Eden have information about the 1107

economy, so I should reach out to them.") 1108
>>> Enterprise.send_message("alice", "Hi Alice, I couldn't find enough information in your documents 1109

to compile that information directly. I can reach out to Hannah and Eden who may have more 1110
information. Sound good?") 1111

>>> System.finish() 1112
1113

# Event: Alice Anastasiou says: sure! 1114
>>> Reflection.thought("I will reach out to Hannah to ask for information about the economy") 1115
>>> Enterprise.resolve_person("hannah") 1116
{"user_id": "hannah", "email": "hannah@company.com", "full_name": "Hannah Jarvis"} 1117
>>> Enterprise.send_message("hannah", "Hi Hannah, do you have any information about the unemployment 1118

rate, jobs report, or economy?", title="Information about economy") 1119
>>> System.finish() 1120

1121
# Event: Hannah Jarvis says: Sure, here's what I have: "employers pulled back sharply on hiring last 1122

month , a reminder that the u.s. economy may not be growing fast enough to sustain robust job 1123
growth . the unemployment rate dipped , but mostly because more americans stopped looking for 1124
work . the labor department says the economy added 120,000 jobs in march , down from more than 1125
200,000 in each of the previous three months . the unemployment rate fell to 8.2 percent , th e 1126
lowest since january 2009. the rate dropped because fewer people searched for jobs . the 1127
official unemployment tally only includes those seeking work . the economy has added 858,000 1128
jobs since december _ the best four months of hiring in two years . but federal reserve chairman 1129
ben bernanke has cautioned that the current hiring pace is unlikely to continue without more 1130

consumer spending ." 1131
>>> Reflection.thought("I will reach out to Eden to ask for information about the economy") 1132
>>> Enterprise.resolve_person("Eden") 1133
{"user_id": "eden", "email": "eden@company.com", "full_name": "Eden Berhe"} 1134
>>> Enterprise.send_message("cassie", "Hi Eden, do you have any information about the unemployment 1135

rate, jobs report, or economy?", title="Information about economy") 1136
>>> System.finish() 1137

1138

15



# Event: Eden Berhe says: Yes, I have an article with the following contents: "national archives yes1139
, it \u2019 s that time again , folks . it \u2019 s the first friday of the month , when for one1140
ever-so-brief moment the interests of wall street , washington and main street are all aligned1141

on one thing : jobs . a fresh update on the u.s. employment situation for january hits the wires1142
at 8 : 30 a.m. new york time offering one of the most important snapshots on how the economy1143

fared during the previous month . expectations are for 203,000 new jobs to be created ,1144
according to economists polled by dow jones newswires , compared to 227,000 jobs added in1145
february . the unemployment rate is expected to hold steady at 8.3 % . here at marketbeat hq ,1146
we \u2019 ll be offering color commentary before and after the data crosses the wires . feel1147
free to weigh-in yourself , via the comments section . and while you \u2019 re here , why don \1148
u2019 t you sign up to . enjoy the show"1149

>>> Reflection.thought("I have enough information to compile the summary. I will send a message to1150
Alice, with the summary enclosed in [[[ brackets ]]].")1151

>>> Enterprise.send_message("alice", "Hi Alice, here's the summary I put together: [[[ the1152
unemployment rate dropped to 8.2 % last month , but the economy only added 120,000 jobs , when1153
203,000 new jobs had been predicted , according to today ' s jobs report . reaction on the wall1154
street journal ' s marketbeat blog was swift : \" woah ! ! ! bad number . \" the unemployment1155
rate , however , is better news ; it had been expected to hold steady at 8.3 % . but the ap1156
notes that the dip is mostly due to more americans giving up on seeking employment ]]]", title="1157
Economy summary")1158

>>> System.finish()1159
1160

# Event: Alice Anastasiou says: Thanks! That would be all.1161
>>> Enterprise.send_session_completed()1162
>>> Reflection.thought("Alice has confirmed that no more information is needed. I will close the1163

session")1164
>>> System.finish()11651166

16



Listing 5: User simulator instructions.
1167

# Instructions 1168
- Given the user description, the messages history, and user documents, generate the next user 1169

response. 1170
- Respond with answer the question appropriately based on the the description, message history, and 1171

user documents. 1172
- Respond with to-the-point statements. Format the text as needed. 1173
- Respond by being a helpful colleague. If the exact information is not available, then respond with 1174

what type of related information you could provide. 1175
- Respond with a single line message. Always end the message with a <eos> 1176
- Respond with 'skip' only if agent's utterance is not a question 1177

1178
# Examples: 1179

1180
## Example 1181
### User Description: Alice Anastasiou is an employee at Company. She is interested in knowing the 1182

names and ages of the students who have a dog but do not have a cat as pet which may be 1183
available in her documents or notes or Agent might have to reach out to other people. When 1184
Agent initates interaction, start with 'I needs names and ages of the students who have a dog 1185
but do not have a cat as pet'. 1186

### Info: Today's date is Jan 1st, 2022, Monday. 1187
### User Documents: 1188
#### Document: 1189
Title: has pet 1190
Record 1: {'student id': 1001, 'pet id': 2001} 1191
Record 2: {'student id': 1002, 'pet id': 2002} 1192
Record 3: {'student id': 1002, 'pet id': 2003} 1193
### Messages History: 1194
Agent: Hello, I'm here to help you as your Agent. 1195
Alice: I needs names and ages of the students who have a dog but do not have a cat as pet 1196
Agent: Hi Alice, I couldn't find enough information in your documents to compile that informatiom 1197

directly. Bhushan and Cassey might have more information. Who should I contact? 1198
Alice: You can decide whom to contact. 1199
Agent: Sounds good. I will reach out if I need any clarifications. 1200
### Next Response: 1201
Alice: skip <eos> 1202

1203
## Example 1204
### User Description: Alice Anastasiou is an employee at Company. She is interested in knowing the 1205

names and ages of the students who have a dog but do not have a cat as pet which may be 1206
available in her documents or notes or Agent might have to reach out to other people. When 1207
Agent initates interaction, start with 'I needs names and ages of the students who have a dog 1208
but do not have a cat as pet'. 1209

### Info: Today's date is Jan 1st, 2022, Monday. 1210
### User Documents: 1211
#### Document: 1212
Title: has pet 1213
Record 1: {'student id': 1001, 'pet id': 2001} 1214
Record 2: {'student id': 1002, 'pet id': 2002} 1215
Record 3: {'student id': 1002, 'pet id': 2003} 1216
### Messages History: 1217
Agent: Hello, I'm here to help you as your Agent. 1218
Alice: I needs names and ages of the students who have a dog but do not have a cat as pet 1219
Agent: Hi Alice, I couldn't find enough information in your documents to compile that informatiom 1220

directly. I can reach out to Bhushan and Cassey who may have more information. Sounds good? 1221
Alice: yes 1222
Agent: Hi Alice, first name of students who have a dog but not a cat as pet: 1223
- "first name": "Tracy" 1224
Do you want to know their last names as well? 1225
Alice: Thanks! I had also asked for their age. 1226
Agent: Thanks for pointing that out. I found that Tracy's age is 19. Do you need any more 1227

information? 1228
### Next Response: 1229
Alice: No, that would be all. <eos> 1230

1231
## Example 1232
### User Description: Bhushan Magar is an employee at Company. Bhushan will provide Agent with 1233

specific relevant information if it is available in his documents or notes 1234
### User Documents: 1235

17



#### Document:1236
Title: student1237
Record 1: {'student id': 1001, 'major': 600}1238
Record 2: {'student id': 1002, 'major': 600}1239
Record 3: {'student id': 1003, 'major': 600}1240
### Messages History:1241
Agent: Hi Bhushan, Can you please tell how many total students are there in the university?1242
### Next Response:1243
Bhushan: I know about major of 3 students. I do not specifically know if that is the total count of1244

the students in the university. <eos>1245
1246

## Example1247
### User Description: Cassie Hicks is an employee at Company. Cassie will provide Agent with1248

specific relevant information if it is available in her documents or notes.1249
### Info: Today's date is Jan 1st, 2022, Monday.1250
### User Documents:1251
#### Document:1252
Collection name: pets1253
Title: pets1254
Record 1: {'pet id': 2001, 'pet type': 'cat', 'pet age': 3, 'weight': 12.0}1255
Record 2: {'pet id': 2002, 'pet type': 'dog', 'pet age': 2, 'weight': 13.4}1256
Record 3: {'pet id': 2003, 'pet type': 'dog', 'pet age': 1, 'weight': 9.3}1257
### Messages History:1258
Agent: Hi Cassie, can you please let me know which students have a dog as pet ?1259
Cassie: I do not have that information. But I do know about pet ids and their types if you need that.1260
Agent: Thanks Cassie! Can you please let me know the type of animal are the following `pet ids`?1261
`pet id`: 20011262
`pet id`: 20021263
`pet id`: 20031264
### Next Response:1265
Cassie: Sure. Please find details as follows:1266
- `pet id`: 2001 -> cat1267
- `pet id`: 2002 -> dog1268
- `pet id`: 2003 -> dog <eos>1269

1270
## Example1271
### User Description: Bhushan Magar is an employee at Company. Bhushan will provide Agent with1272

specific relevant information if it is available in his documents or notes1273
### User Documents:1274
#### Document:1275
Title: student1276
Record 1: {'student id': 1001, 'last name': 'Smith', 'first name': 'Linda', 'sex': 'F', 'major':1277

600, 'advisor': 1121, 'city code': 'BAL'}1278
Record 2: {'student id': 1002, 'last name': 'Kim', 'first name': 'Tracy', 'sex': 'F', 'major': 600,1279

'advisor': 7712, 'city code': 'HKG'}1280
Record 3: {'student id': 1003, 'last name': 'Jones', 'first name': 'Shiela', 'sex': 'F', 'major':1281

600, 'advisor': 7792, 'city code': 'WAS'}1282
### Messages History:1283
Agent: Hi Bhushan, Can you please tell the list of students who have a cat as pet ?1284
Bhushan: Sorry I do not have information about pet types. I have information on student ids and1285

associated personal and academic details of the students such as their name, sex, their major,1286
etc. Let me know if you need any of that information.1287

Agent: Hi Bhushan, Can you please tell the first name and age of `student id`: 1002 ?1288
### Next Response:1289
Bhushan: First name of student id 1002 is 'Tracy'. I do not know their age. <eos>1290

1291
# Task1292
## Example12931294

18



Listing 6: Qualitative Example 1: An example trace, with Reactive when using gpt-4-turbo as LLM. Agent is
able to correctly handle ‘redirection’ (Bhushan points to Sylvie) as well as ‘split document’ (Eden and Kerstin each
have information about different games.)

1295
# Alice Anastasiou says: For each injury accident, find the date of the game and the name of the 1296

injured player in the game, and sort the results in descending order of game season. 1297
>>> Reflection.thought("I will first resolve the primary user to get the right contact information") 1298
>>> Enterprise.resolve_primary_user() 1299
{"email": "alice@company.com", "full_name": "Alice Anastasiou", "user_id": "alice@company.com"} 1300
>>> Reflection.thought("I will search user documents to see if the user request can be answered 1301

directly") 1302
>>> EnterpriseSearch.search_documents(query="injury accidents game date injured player") 1303
('Document(url=\'game_injury/stadium\', title=\'stadium\', content=\'[{"id": 1, "name": "Cowboys 1304

Stadium", "home games": 8, "average attendance": 87047.0, "total attendance": 696377.0, 1305
"capacity percentage": 108.8}, {"id": 2, "name": "FedExField", "home games": 8, "average 1306
attendance": 83172.0, "total attendance": 665380.0, "capacity percentage": 90.7}, {"id": 3, 1307
"name": "New Meadowlands Stadium", "home games": 8, "average attendance": 79019.0, "total 1308
attendance": 632156.0, "capacity percentage": 95.8}, {"id": 4, "name": "New Meadowlands 1309
Stadium", "home games": 8, "average attendance": 78596.0, "total attendance": 628768.0, 1310
"capacity percentage": 95.3}, {"id": 5, "name": "Invesco Field at Mile High", "home games": 8, 1311
"average attendance": 74908.0, "total attendance": 599264.0, "capacity percentage": 98.4}, 1312
{"id": 6, "name": "Bank of America Stadium", "home games": 8, "average attendance": 72620.0, 1313
"total attendance": 580965.0, "capacity percentage": 98.4}, {"id": 7, "name": "M&T Bank 1314
Stadium", "home games": 8, "average attendance": 71227.0, "total attendance": 569817.0, 1315
"capacity percentage": 100.3}, {"id": 8, "name": "Reliant Stadium", "home games": 8, "average 1316
attendance": 71080.0, "total attendance": 568643.0, "capacity percentage": 100.0}, {"id": 9, 1317
"name": "Lambeau Field", "home games": 8, "average attendance": 70795.0, "total attendance": 1318
566362.0, "capacity percentage": 97.1}, {"id": 10, "name": "Louisiana Superdome", "home games": 1319
8, "average attendance": 70038.0, "total attendance": 560304.0, "capacity percentage": 96.0}, 1320
{"id": 11, "name": "Lincoln Financial Field", "home games": 8, "average attendance": 69144.0, 1321
"total attendance": 553152.0, "capacity percentage": 102.3}, {"id": 12, "name": "LP Field", 1322
"home games": 8, "average attendance": 69143.0, "total attendance": 553144.0, "capacity 1323
percentage": 100.0}, {"id": 13, "name": "Gillette Stadium", "home games": 8, "average 1324
attendance": 68756.0, "total attendance": 550048.0, "capacity percentage": 100.0}]\')',) 1325

>>> Reflection.thought("The document found does not contain information about injury accidents, 1326
game dates, or injured players. I will search for relevant people who may have more 1327
information") 1328

>>> EnterpriseSearch.search_relevant_people(query="injury accidents game date injured player") 1329
{"kerstin": " The user might have information about games, including the stadium, season, date, 1330

teams, score, and competition.", "eden": " The user might have information about games, 1331
including the stadium, season, date, teams, score, and competition.", "bhushan": " The user 1332
might have information about injury accidents, including the game id, player, injury, number of 1333
matches, and source."} 1334

>>> Reflection.thought("I can reach out to Kerstin, Eden, and Bhushan who seem to have more 1335
information about games and injury accidents. I will confirm with Alice if that is okay") 1336

>>> Enterprise.send_message("alice@company.com", "Hi Alice, I couldn't find enough information in 1337
your documents to compile that directly. I can reach out to Kerstin, Eden, and Bhushan who may 1338
have more information. Sounds good?") 1339

>>> System.finish() 1340
1341

# Alice Anastasiou says: Yes, please reach out to them. 1342
>>> Reflection.thought("Alice has confirmed that I can reach out to Kerstin, Eden, and Bhushan. I 1343

will start by reaching out to Bhushan for information about injury accidents") 1344
>>> Enterprise.resolve_person("Bhushan") 1345
{"email": "bhushan@company.com", "full_name": "Bhushan Magar", "user_id": "bhushan"} 1346
>>> Enterprise.send_message("bhushan@company.com", "Hi Bhushan, Can you please provide information 1347

about injury accidents, including the game id and the name of the injured player?", 1348
title="Information needed about injury accidents") 1349

>>> System.finish() 1350
1351

# Bhushan Magar says: I do not have that information. You can try contacting Sylvie Rocher for the 1352
same. 1353

>>> Reflection.thought("Bhushan does not have the requested information but suggested contacting 1354
Sylvie Rocher. I will reach out to Sylvie for the information") 1355

>>> Enterprise.resolve_person("Sylvie") 1356
{"email": "sylvie@company.com", "full_name": "Sylvie Rocher", "user_id": "sylvie"} 1357
>>> Enterprise.send_message("sylvie@company.com", "Hi Sylvie, Can you please provide information 1358

about injury accidents, including the game id and the name of the injured player?", 1359
title="Information needed about injury accidents") 1360

>>> System.finish() 1361

19



1362
# Sylvie Rocher says: I have information on game injuries including game id, player name, type of1363

injury, number of matches missed, and the source.1364
>>> Reflection.thought("Sylvie has the information about game injuries. I will ask Sylvie for the1365

game id and the name of the injured player for each injury accident")1366
>>> Enterprise.send_message("sylvie@company.com", "Hi Sylvie, Can you please provide the game id1367

and the name of the injured player for each injury accident?", title="Re: Information needed1368
about injury accidents")1369

>>> System.finish()1370
1371

# Sylvie Rocher says: Here are the game ids and names of injured players for each injury accident:1372
- Game id: 1, Player: Davide Santon1373
- Game id: 2, Player: Maicon1374
- Game id: 3, Player: Dejan Stankovic1375
- Game id: 4, Player: Wesley Sneijder1376
- Game id: 5, Player: Diego Milito1377
- Game id: 5, Player: Javier Zanetti1378
- Game id: 6, Player: Walter Samuel1379
- Game id: 6, Player: Thiago Motta1380
- Game id: 6, Player: Goran Pandev1381
- Game id: 8, Player: Ivan Cordoba1382
- Game id: 9, Player: Esteban Cambiasso1383
- Game id: 10, Player: Dejan Stankovic (2)1384
- Game id: 10, Player: Wesley Sneijder (2)1385
- Game id: 11, Player: Esteban Cambiasso (2)1386
- Game id: 12, Player: Thiago Motta (2)1387
>>> Reflection.thought("Sylvie has provided the game ids and names of injured players. I will now1388

reach out to Kerstin and Eden for the game dates and seasons")1389
>>> Enterprise.resolve_person("Kerstin")1390
{"email": "kerstin@company.com", "full_name": "Kerstin Mark", "user_id": "kerstin"}1391
>>> Enterprise.send_message("kerstin@company.com", "Hi Kerstin, Can you please provide the date of1392

the game and the season for the following game ids: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12?",1393
title="Information needed about games")1394

>>> System.finish()1395
1396

# Kerstin Mark says: Here are the details for the game ids you requested:1397
- Game id 1: Date - 18 May 2007, Season - 20071398
- Game id 2: Date - 22 September 2007, Season - 20071399
- Game id 3: Date - 9 December 2007, Season - 20071400
- Game id 4: Date - 10 July 2008, Season - 20081401
- Game id 5: Date - 16 August 2008, Season - 20081402
- Game id 6: Date - 31 October 2008, Season - 20081403
- Game id 8: Date - 14 October 2009, Season - 20091404
- Game id 9: Date - 8 August 2009, Season - 20091405
- Game id 10: Date - 14 March 2010, Season - 20101406
I do not have information for game ids 11 and 12.1407
>>> Reflection.thought("Kerstin has provided the game dates and seasons for most game ids but not1408

for 11 and 12. I will reach out to Eden for the missing information")1409
>>> Enterprise.resolve_person("Eden")1410
{"email": "eden@company.com", "full_name": "Eden Berhe", "user_id": "eden"}1411
>>> Enterprise.send_message("eden@company.com", "Hi Eden, Can you please provide the date of the1412

game and the season for the following game ids: 11, 12?", title="Information needed about1413
games")1414

>>> System.finish()1415
1416

# Eden Berhe says: The date for game id 11 is 31 October 2010 and the season is 2010. The date for1417
game id 12 is 7 July 2011 and the season is 2011.1418

>>> Reflection.thought("Eden has provided the game dates and seasons for game ids 11 and 12. I now1419
have all the information needed to answer the query. I will compile the information and send it1420
to Alice")1421

>>> Enterprise.send_message("alice@company.com", "Hi Alice, here are the dates of the games and the1422
names of the injured players for each injury accident, sorted in descending order of game1423
season:\n\n- Season 2011: Game date - 7 July 2011, Player - Thiago Motta (2)\n- Season 2010:1424
Game date - 31 October 2010, Player - Esteban Cambiasso (2)\n- Season 2010: Game date - 141425
March 2010, Players - Dejan Stankovic (2), Wesley Sneijder (2)\n- Season 2009: Game date - 141426
October 2009, Player - Ivan Cordoba\n- Season 2009: Game date - 8 August 2009, Player - Esteban1427
Cambiasso\n- Season 2008: Game date - 31 October 2008, Players - Walter Samuel, Thiago Motta,1428
Goran Pandev\n- Season 2008: Game date - 16 August 2008, Players - Diego Milito, Javier1429
Zanetti\n- Season 2008: Game date - 10 July 2008, Player - Wesley Sneijder\n- Season 2007: Game1430
date - 9 December 2007, Player - Dejan Stankovic\n- Season 2007: Game date - 22 September 2007,1431

20



Player - Maicon\n- Season 2007: Game date - 18 May 2007, Player - Davide Santon\n\nPlease let 1432
me know if you need any further information.", title="Injury accidents sorted by game season") 1433

>>> System.finish() 1434
1435

# Alice Anastasiou says: No, that would be all. Thank you! 1436
>>> Reflection.thought("Alice has confirmed that no more information is needed. I will close the 1437

session") 1438
>>> Enterprise.send_session_completed() 1439
>>> System.finish() 14401441

Listing 7: Qualitative Example 2: An example trace, with Reactive when using gpt-4-turbo as LLM. Agent, after
searching in Alice’s documents and reaching out to seeingly relevant people, correctly concludes that there is simply
not enough information to answer Alice’s request (although it could have potentially arrived at the conclusion with
fewer messages). Match score = 100.

1442
# Alice Anastasiou says: Show the average share count of transactions for different investors. 1443
>>> Reflection.thought("I will first resolve the primary user to get the right contact information") 1444
>>> Enterprise.resolve_primary_user() 1445
{"email": "alice@company.com", "full_name": "Alice Anastasiou", "user_id": "alice@company.com"} 1446
>>> Reflection.thought("I will search user documents to see if the user request can be answered 1447

directly") 1448
>>> EnterpriseSearch.search_documents(query="average share count of transactions for different 1449

investors") 1450
('Document(url=\'tracking_share_transactions/investors\', title=\'investors\', content=\'[{"investor 1451

id": 1, "investor details": "z"}, {"investor id": 2, "investor details": "z"}, {"investor id": 1452
3, "investor details": "d"}, {"investor id": 4, "investor details": "d"}, {"investor id": 5, 1453
"investor details": "b"}, {"investor id": 6, "investor details": "k"}, {"investor id": 7, 1454
"investor details": "l"}, {"investor id": 8, "investor details": "t"}, {"investor id": 9, 1455
"investor details": "y"}, {"investor id": 10, "investor details": "r"}, {"investor id": 11, 1456
"investor details": "q"}, {"investor id": 12, "investor details": "c"}, {"investor id": 13, 1457
"investor details": "o"}, {"investor id": 14, "investor details": "w"}, {"investor id": 15, 1458
"investor details": "i"}, {"investor id": 16, "investor details": "y"}, {"investor id": 17, 1459
"investor details": "k"}, {"investor id": 18, "investor details": "w"}, {"investor id": 19, 1460
"investor details": "l"}, {"investor id": 20, "investor details": "j"}]\')',) 1461

>>> Reflection.thought("The document found does not contain information about share count of 1462
transactions. I will search for relevant people who may have more information") 1463

>>> EnterpriseSearch.search_relevant_people(query="average share count of transactions for 1464
different investors") 1465

{"tulga": " The user might have information about lots, including the lot id, investor id, and lot 1466
details.", "bhushan": " The user might have information about sales transactions and their 1467
details.", "farshid": " The user might have information about purchases, including transaction 1468
ids and details.", "irena": " The user might have information about transactions and their 1469
associated lot ids.", "cassie": " The user might have information about reference transaction 1470
types, including the transaction type code and description."} 1471

>>> Reflection.thought("I can reach out to Tulga, Bhushan, Farshid, Irena, and Cassie who seem to 1472
have more information about transactions. I will confirm with Alice if that is okay") 1473

>>> Enterprise.send_message("alice@company.com", "Hi Alice, I couldn't find enough information in 1474
your documents to compile that directly. I can reach out to Tulga, Bhushan, Farshid, Irena, and 1475
Cassie who may have more information. Sounds good?") 1476

>>> System.finish() 1477
1478

# Alice Anastasiou says: Yes, please reach out to them. 1479
>>> Reflection.thought("Alice has confirmed that I can reach out to Tulga, Bhushan, Farshid, Irena, 1480

and Cassie. I will start by reaching out to Tulga for information about lots and investor ids") 1481
>>> Enterprise.resolve_person("Tulga") 1482
{"email": "tulga@company.com", "full_name": "Tulga Bat-Erdene", "user_id": "tulga"} 1483
>>> Enterprise.send_message("tulga@company.com", "Hi Tulga, Can you please provide information 1484

about lots, including the lot id, investor id, and lot details?", title="Information needed 1485
about lots") 1486

>>> System.finish() 1487
1488

# Tulga Bat-Erdene says: I have information on 15 lots with their investor ids and lot details. 1489
>>> Reflection.thought("Tulga has information on lots but did not provide specific details. I will 1490

ask Tulga for the specific lot details and investor ids") 1491
>>> Enterprise.send_message("tulga@company.com", "Thanks, Tulga. Can you please share the specific 1492

lot details and investor ids for those 15 lots?", title="Re: Information needed about lots") 1493
>>> System.finish() 1494

1495
# Tulga Bat-Erdene says: Here are the details for the 15 lots: 1496

21



- Lot 1: Investor ID 13, Details 'r'1497
- Lot 2: Investor ID 16, Details 'z'1498
- Lot 3: Investor ID 10, Details 's'1499
- Lot 4: Investor ID 19, Details 's'1500
- Lot 5: Investor ID 6, Details 'q'1501
- Lot 6: Investor ID 20, Details 'd'1502
- Lot 7: Investor ID 7, Details 'm'1503
- Lot 8: Investor ID 7, Details 'h'1504
- Lot 9: Investor ID 20, Details 'z'1505
- Lot 10: Investor ID 9, Details 'x'1506
- Lot 11: Investor ID 1, Details 'd'1507
- Lot 12: Investor ID 19, Details 'm'1508
- Lot 13: Investor ID 7, Details 'z'1509
- Lot 14: Investor ID 6, Details 'd'1510
- Lot 15: Investor ID 1, Details 'h'1511
>>> Reflection.thought("Tulga has provided lot details and investor ids. I will now reach out to1512

Bhushan for information about sales transactions")1513
>>> Enterprise.resolve_person("Bhushan")1514
{"email": "bhushan@company.com", "full_name": "Bhushan Magar", "user_id": "bhushan"}1515
>>> Enterprise.send_message("bhushan@company.com", "Hi Bhushan, Can you please provide information1516

about sales transactions and their details?", title="Information needed about sales1517
transactions")1518

>>> System.finish()1519
1520

# Bhushan Magar says: I have information on 15 sales transactions and their details.1521
>>> Reflection.thought("Bhushan has information on sales transactions but did not provide specific1522

details. I will ask Bhushan for the specific sales transaction details")1523
>>> Enterprise.send_message("bhushan@company.com", "Thanks, Bhushan. Can you please share the1524

specific details for those 15 sales transactions?", title="Re: Information needed about sales1525
transactions")1526

>>> System.finish()1527
1528

# Bhushan Magar says: Sure, here are the details for the 15 sales transactions:1529
- 'sales transaction id': 1, 'sales details': 'x'1530
- 'sales transaction id': 2, 'sales details': 'o'1531
- 'sales transaction id': 3, 'sales details': 'a'1532
- 'sales transaction id': 4, 'sales details': 'f'1533
- 'sales transaction id': 5, 'sales details': 'y'1534
- 'sales transaction id': 6, 'sales details': 'x'1535
- 'sales transaction id': 7, 'sales details': 'p'1536
- 'sales transaction id': 8, 'sales details': 'e'1537
- 'sales transaction id': 9, 'sales details': 'p'1538
- 'sales transaction id': 10, 'sales details': 's'1539
- 'sales transaction id': 11, 'sales details': 's'1540
- 'sales transaction id': 12, 'sales details': 't'1541
- 'sales transaction id': 13, 'sales details': 'p'1542
- 'sales transaction id': 14, 'sales details': 'n'1543
- 'sales transaction id': 15, 'sales details': 'e'1544
>>> Reflection.thought("Bhushan has provided sales transaction details. I will now reach out to1545

Farshid for information about purchases")1546
>>> Enterprise.resolve_person("Farshid")1547
{"email": "farshid@company.com", "full_name": "Farshid Kamangar", "user_id": "farshid"}1548
>>> Enterprise.send_message("farshid@company.com", "Hi Farshid, Can you please provide information1549

about purchases, including transaction ids and details?", title="Information needed about1550
purchases")1551

>>> System.finish()1552
1553

# Farshid Kamangar says: Sure, here are the purchase transaction ids and their details:1554
- `purchase transaction id`: 1 -> 'c'1555
- `purchase transaction id`: 2 -> 'y'1556
- `purchase transaction id`: 3 -> 'i'1557
- `purchase transaction id`: 4 -> 'x'1558
- `purchase transaction id`: 5 -> 'y'1559
- `purchase transaction id`: 6 -> 'a'1560
- `purchase transaction id`: 7 -> 'r'1561
- `purchase transaction id`: 8 -> 'a'1562
- `purchase transaction id`: 9 -> 'r'1563
- `purchase transaction id`: 10 -> 'l'1564
- `purchase transaction id`: 11 -> 'z'1565
- `purchase transaction id`: 12 -> 'h'1566

22



- `purchase transaction id`: 13 -> 't' 1567
- `purchase transaction id`: 14 -> 'o' 1568
- `purchase transaction id`: 15 -> 'x' 1569
>>> Reflection.thought("Farshid has provided purchase transaction details. I will now reach out to 1570

Irena for information about transactions and their associated lot ids") 1571
>>> Enterprise.resolve_person("Irena") 1572
{"email": "irena@company.com", "full_name": "Irena Jovanovic", "user_id": "irena"} 1573
>>> Enterprise.send_message("irena@company.com", "Hi Irena, Can you please provide information 1574

about transactions and their associated lot ids?", title="Information needed about 1575
transactions") 1576

>>> System.finish() 1577
1578

# Irena Jovanovic says: Sure, here are the details: 1579
- `transaction id`: 3 -> `lot id`: 11, 8, 14, 4 1580
- `transaction id`: 2 -> `lot id`: 11, 1 1581
- `transaction id`: 12 -> `lot id`: 10, 15 1582
- `transaction id`: 15 -> `lot id`: 10 1583
- `transaction id`: 10 -> `lot id`: 10 1584
- `transaction id`: 1 -> `lot id`: 1, 14 1585
- `transaction id`: 14 -> `lot id`: 9 1586
- `transaction id`: 7 -> `lot id`: 1 1587
- `transaction id`: 6 -> `lot id`: 3 1588
>>> Reflection.thought("Irena has provided transaction ids and their associated lot ids. I will now 1589

reach out to Cassie for information about reference transaction types") 1590
>>> Enterprise.resolve_person("Cassie") 1591
{"email": "cassie@company.com", "full_name": "Cassie Hicks", "user_id": "cassie"} 1592
>>> Enterprise.send_message("cassie@company.com", "Hi Cassie, Can you please provide information 1593

about reference transaction types, including the transaction type code and description?", 1594
title="Information needed about transaction types") 1595

>>> System.finish() 1596
1597

# Cassie Hicks says: I do not have that information, but you can try contacting Juan Quispe for it. 1598
>>> Reflection.thought("Cassie does not have the requested information but suggested contacting 1599

Juan Quispe. I will reach out to Juan for the information about reference transaction types") 1600
>>> Enterprise.resolve_person("Juan") 1601
{"email": "juan@company.com", "full_name": "Juan Quispe", "user_id": "juan"} 1602
>>> Enterprise.send_message("juan@company.com", "Hi Juan, Can you please provide information about 1603

reference transaction types, including the transaction type code and description?", 1604
title="Information needed about transaction types") 1605

>>> System.finish() 1606
1607

# Juan Quispe says: Sure, here are the reference transaction types: 1608
- `transaction type code`: SALE -> `transaction type description`: Sale 1609
- `transaction type code`: PUR -> `transaction type description`: Purchase 1610
>>> Reflection.thought("Juan has provided the reference transaction types. I have now gathered 1611

information from Tulga, Bhushan, Farshid, Irena, and Juan. However, I do not have the specific 1612
share count of transactions to calculate the average for different investors. I will inform 1613
Alice that I could not find the specific share count information.") 1614

>>> Enterprise.send_message("alice@company.com", "Hi Alice, I have gathered information from Tulga, 1615
Bhushan, Farshid, Irena, and Juan. However, I do not have the specific share count of 1616
transactions to calculate the average for different investors. I'm sorry, but I couldn't find 1617
the specific share count information you requested.", title="Information about average share 1618
count") 1619

>>> Enterprise.send_session_completed() 1620
>>> System.finish() 16211622

Listing 8: Qualitative Example 3: An example trace, with Reactive when using gpt-4-turbo as LLM. Agent
decided to not search for relevant people, and wasn’t able to reach to the correct outcome. Match score = 0.

1623
# Alice Anastasiou says: What are the different card-type codes, and how many different customers 1624

hold each type? 1625
>>> Reflection.thought("I will first resolve the primary user to get the right contact information") 1626
>>> Enterprise.resolve_primary_user() 1627
{"email": "alice@company.com", "full_name": "Alice Anastasiou", "user_id": "alice@company.com"} 1628
>>> Reflection.thought("I will search user documents to see if the user request can be answered 1629

directly") 1630
>>> EnterpriseSearch.search_documents("different card type codes and number of customers holding 1631

each type") 1632
('Document(url=\'customers_card_transactions/accounts\', title=\'accounts\', content=\'[{"account 1633

id": 1, "customer id": 6, "account name": "338", "other account details": "Regular"}, {"account 1634

23



id": 2, "customer id": 14, "account name": "562", "other account details": "VIP"}, {"account1635
id": 3, "customer id": 9, "account name": "162", "other account details": "VIP"}, {"account1636
id": 4, "customer id": 12, "account name": "038", "other account details": "Regular"},1637
{"account id": 5, "customer id": 13, "account name": "858", "other account details":1638
"Regular"}, {"account id": 6, "customer id": 12, "account name": "262", "other account1639
details": "Regular"}, {"account id": 7, "customer id": 9, "account name": "621", "other account1640
details": "Regular"}, {"account id": 8, "customer id": 8, "account name": "381", "other account1641
details": "Regular"}, {"account id": 9, "customer id": 9, "account name": "546", "other account1642
details": "Regular"}, {"account id": 10, "customer id": 4, "account name": "767", "other1643
account details": "VIP"}, {"account id": 11, "customer id": 4, "account name": "022", "other1644
account details": "VIP"}, {"account id": 12, "customer id": 2, "account name": "866", "other1645
account details": "VIP"}, {"account id": 13, "customer id": 10, "account name": "234", "other1646
account details": "VIP"}, {"account id": 14, "customer id": 9, "account name": "557", "other1647
account details": "VIP"}, {"account id": 15, "customer id": 4, "account name": "725", "other1648
account details": "VIP"}]\')',)1649

>>> Reflection.thought("The document contains account details but does not specify card type codes1650
or the number of customers holding each type. I will inform Alice that the information is not1651
available in the documents.")1652

>>> Enterprise.send_message("alice@company.com", "Hi Alice, I searched through your documents but1653
couldn't find specific information on different card type codes and the number of customers1654
holding each type. The accounts document only contains account ids, customer ids, account1655
names, and other account details, but no information on card types or customer counts for each1656
type.", title="Card Type Codes Information")1657

>>> System.finish()16581659

Listing 9: Qualitative Example 4: An example trace, with Reactive when using gpt-4-turbo as LLM. Agent found
the correct people to reach out, but didn’t frame/reframe the correct questions. Ideally, agent should have asked
Cassie about course enrollments for course-ids, and then ask Niks to get names for those course-ids; or attempt to
re-frame the questions once they responded back. Match score = 0. )

1660
# Alice Anastasiou says: Give the names of the courses with at least five enrollments.1661
>>> Reflection.thought("I will first resolve the primary user to get the right contact information")1662
>>> Enterprise.resolve_primary_user()1663
{"email": "alice@company.com", "full_name": "Alice Anastasiou", "user_id": "alice@company.com"}1664
>>> Reflection.thought("I will search user documents to see if the user request can be answered1665

directly")1666
>>> EnterpriseSearch.search_documents("courses with at least five enrollments")1667
('Document(url=\'college_3/student\', title=\'student\', content=\'[{"student id": 1001, "last1668

name": "Smith", "first name": "Linda", "age": 18, "sex": "F", "major": 600, "advisor": 1121,1669
"city code": "BAL"}, {"student id": 1002, "last name": "Kim", "first name": "Tracy", "age": 19,1670
"sex": "F", "major": 600, "advisor": 7712, "city code": "HKG"}, {"student id": 1003, "last1671
name": "Jones", "first name": "Shiela", "age": 21, "sex": "F", "major": 600, "advisor": 7792,1672
"city code": "WAS"}, {"student id": 1004, "last name": "Kumar", "first name": "Dinesh", "age":1673
20, "sex": "M", "major": 600, "advisor": 8423, "city code": "CHI"}, {"student id": 1005, "last1674
name": "Gompers", "first name": "Paul", "age": 26, "sex": "M", "major": 600, "advisor": 1121,1675
"city code": "YYZ"}, {"student id": 1006, "last name": "Schultz", "first name": "Andy", "age":1676
18, "sex": "M", "major": 600, "advisor": 1148, "city code": "BAL"}, {"student id": 1007, "last1677
name": "Apap", "first name": "Lisa", "age": 18, "sex": "F", "major": 600, "advisor": 8918,1678
"city code": "PIT"}, {"student id": 1008, "last name": "Nelson", "first name": "Jandy", "age":1679
20, "sex": "F", "major": 600, "advisor": 9172, "city code": "BAL"}, {"student id": 1009, "last1680
name": "Tai", "first name": "Eric", "age": 19, "sex": "M", "major": 600, "advisor": 2192, "city1681
code": "YYZ"}, {"student id": 1010, "last name": "Lee", "first name": "Derek", "age": 17,1682
"sex": "M", "major": 600, "advisor": 2192, "city code": "HOU"}]\')',)1683

>>> Reflection.thought("The document searched does not contain information about course1684
enrollments. I will search for relevant people who may have more information")1685

>>> EnterpriseSearch.search_relevant_people("courses with at least five enrollments")1686
{"eden": " The user might have information about faculty members, including their personal details,1687

rank, contact information, and office location.", "dewei": " The user might have information1688
about departments, including their names, divisions, rooms, buildings, and phone numbers.",1689
"niks": " The user might have information about courses, including the course name, credits,1690
instructor, schedule, and department number.", "parker": " The user might have information1691
about students and their department numbers.", "cassie": " The user might have information1692
about students and their course enrollments, including grades.", "tulga": " The user might have1693
information about grade conversion, including letter grades and grade points."}1694

>>> Reflection.thought("I can reach out to Cassie who seems to have information about course1695
enrollments. I will confirm with Alice if it's okay to reach out to Cassie.")1696

>>> Enterprise.send_message("alice@company.com", "Hi Alice, I couldn't find enough information in1697
your documents to compile that directly. I can reach out to Cassie who may have more1698
information about course enrollments. Sounds good?")1699

24



>>> System.finish() 1700
1701

# Alice Anastasiou says: Yes, please do that. 1702
>>> Reflection.thought("Alice has confirmed that I can reach out to Cassie for information about 1703

course enrollments.") 1704
>>> Enterprise.resolve_person("Cassie") 1705
{"email": "cassie@company.com", "full_name": "Cassie Hicks", "user_id": "cassie"} 1706
>>> Enterprise.send_message("cassie@company.com", "Hi Cassie, Can you please provide the names of 1707

the courses with at least five enrollments?", title="Information needed about courses") 1708
>>> System.finish() 1709

1710
# Cassie Hicks says: I'm sorry, I don't have the names of the courses, only the course ids and the 1711

grades of the students enrolled in them. 1712
>>> Reflection.thought("Cassie does not have the names of the courses, only the course ids and 1713

grades. I will reach out to Niks who might have information about courses, including the course 1714
name.") 1715

>>> Enterprise.resolve_person("Niks") 1716
{"email": "niks@company.com", "full_name": "Niks Dzenis", "user_id": "niks"} 1717
>>> Enterprise.send_message("niks@company.com", "Hi Niks, Can you please provide the names of the 1718

courses with at least five enrollments?", title="Information needed about courses") 1719
>>> System.finish() 1720

1721
# Niks Dzenis says: I'm sorry, I don't have information on course enrollments, but I can provide 1722

details on course names, credits, instructors, and schedules if that helps. 1723
>>> Reflection.thought("Niks does not have information on course enrollments. I will inform Alice 1724

that I could not find the names of the courses with at least five enrollments.") 1725
>>> Enterprise.send_message("alice@company.com", "Hi Alice, I reached out to Cassie and Niks, but 1726

unfortunately, I couldn't find the names of the courses with at least five enrollments. Cassie 1727
only has course ids and grades, and Niks does not have information on course enrollments. I'm 1728
sorry I couldn't fulfill your request. Is there anything else I can assist you with?") 1729

>>> System.finish() 1730
1731

# Alice Anastasiou says: No, that's all for now. Thank you for trying. 1732
>>> Reflection.thought("Alice has confirmed that no more information is needed. I will close the 1733

session") 1734
>>> Enterprise.send_session_completed() 1735
>>> System.finish() # Closing the session as requested by the user. 17361737

Listing 10: Qualitative Example 5: An example trace in the summarization domain, with Reactive when using
gpt-4-turbo as LLM.

1738
# Alice Anastasiou says: I'm interested in compiling a summary on the topic: governor, race, gop, 1739

obamacare, medicaid. Can you help me? 1740
>>> Reflection.thought("I will first resolve the primary user to get the right contact information") 1741
>>> Enterprise.resolve_primary_user() 1742
{"email": "alice@company.com", "full_name": "Alice Anastasiou", "user_id": "alice"} 1743
>>> Reflection.thought("I will search user's documents and find relevant people who may have more 1744

information") 1745
>>> EnterpriseSearch.search_documents(query="governor, race, gop, obamacare, medicaid") 1746
>>> EnterpriseSearch.search_relevant_people(query="governor, race, gop, obamacare, medicaid") 1747
{"parker": "Knows about the following topics:\ngovernor elections, GOP, health care, Obama, Romney", 1748

"bhushan": "Knows about the following topics:\ngovernor elections, GOP, health care, Obama, 1749
Romney\nSiskiyou County, California, secession, state of Jefferson, rural representation", 1750
"farshid": "Knows about the following topics:\nSiskiyou County, secession, Jefferson, 1751
California, rural fire prevention fee", "eden": "Knows about the following topics:\nFacebook, 1752
gay rights, John Snow kiss-in, Richard Metzger, Paul Shetler\nFacebook, same-sex kissing, photo 1753
removal, protest", "hannah": "Knows about the following topics:\n", "dewei": "Knows about the 1754
following topics:\n", "cassie": "Knows about the following topics:\n"} 1755

>>> Reflection.thought("Parker and Bhushan have information about the governor race and GOP, so I 1756
should reach out to them.") 1757

>>> Enterprise.send_message("alice", "Hi Alice, I can reach out to Parker and Bhushan to produce a 1758
summary. Is that OK?") 1759

>>> System.finish() 1760
1761

# Alice Anastasiou says: Yes, please do that. 1762
>>> Reflection.thought("I will reach out to Parker to ask for information about the governor race 1763

and GOP") 1764
>>> Enterprise.resolve_person("Parker") 1765
{"email": "parker@company.com", "full_name": "Parker McLean", "user_id": "parker"} 1766

25



>>> Enterprise.send_message("parker", "Hi Parker, do you have any information about the governor1767
race, GOP, Obamacare, or Medicaid?", title="Information about governor race and GOP")1768

>>> System.finish()1769
1770

# Parker McLean says: Yes, here's a relevant document I found: "gop eyes gains as voters in 111771
states pick governors enlarge this image toggle caption jim cole/ap jim cole/ap voters in 111772
states will pick their governors tonight , and republicans appear on track to increase [...] "1773

>>> Reflection.thought("I will reach out to Bhushan to ask for information about the governor race1774
and GOP")1775

>>> Enterprise.resolve_person("Bhushan")1776
{"email": "bhushan@company.com", "full_name": "Bhushan Magar", "user_id": "bhushan"}1777
>>> Enterprise.send_message("bhushan", "Hi Bhushan, do you have any information about the governor1778

race, GOP, Obamacare, or Medicaid?", title="Information about governor race and GOP")1779
>>> System.finish()1780

1781
# Bhushan Magar says: Yes, here's a relevant document I found: "the real clear politics average for1782

the race has mccrory maintaining a 14.3 percentage point lead . montana : popular democratic1783
gov . brian schweitzer - he won his last election with 65 percent of the vote - has [...]"1784

>>> Reflection.thought("I have enough information to compile the summary. I will send a message to1785
Alice, with the summary enclosed in [[[ brackets ]]].")1786

>>> Enterprise.send_message("alice", "Hi Alice, here's the summary I put together: [[[Voters in 111787
states are choosing their governors, with Republicans poised to increase their numbers,1788
potentially controlling over two-thirds of the nation's top state offices. The GOP is expected1789
to take North Carolina and retain seats in Utah, North Dakota, and Indiana. Democrats are1790
likely to hold West Virginia and Missouri, with competitive races in Montana, New Hampshire,1791
and Washington. The governor's role is crucial in healthcare, as they can opt out of Medicaid1792
expansion under the Affordable Care Act. A Romney win would empower Republican governors,1793
especially in states where Obama's policies, like high-speed rail funding, were previously1794
rejected.]]]", title="Governor race and GOP summary")1795

1796
# Alice Anastasiou says: Thank you, this is exactly what I needed.1797
>>> Reflection.thought("Alice has confirmed that no more information is needed. I will close the1798

session")1799
>>> Enterprise.send_session_completed()1800
>>> System.finish()18011802

26


	Introduction
	Challenges in Effectively Steering Multi-User Information Gathering
	Data
	PeopleJoin-QA
	PeopleJoin-DocCreation

	Baseline Agent Architectures
	Actions
	Observations and Reflection
	Prompt Structure

	Evaluation
	Outcome Metrics
	Efficiency Metrics
	Information Source Metrics

	Experiments
	Results on PeopleJoin-QA
	Results on PeopleJoin-DocCreation
	Case Study with Human Participants

	Related Work
	Conclusions
	Additional details on approach
	Action descriptions
	Exemplars
	Action parsing failures
	Overview of the prompt structure

	Additional details on Experiment Setup
	Match score
	User Simulators
	Qualitative Examples
	Human Evaluation Study

	Additional details on datasets

