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Abstract

To reduce human labor on manual annotations,
interactive annotation leverages a model to pro-
vide annotation suggestions for the human to
approve or correct. When the model is under-
trained due to limited data, it tends to make
wrong suggestions, requiring extra human la-
bor to correct. To this end, we resort to analog-
ical reasoning and propose a general sample-
efficient plug-in module. This module builds
analogies to historical annotated data and re-
fines the suggestions through a dynamic weight-
ing mechanism, thus reducing human labor.
Empirical studies show the flexibility of our
method in being compatible with various anno-
tation tasks. With our method, the model, on
average, saves a relative 145.08% of annotated
data to reach the required accuracy. It trans-
lates to an estimated 20% less human labor
compared to the original interactive annotation.

1 Introduction

Generating a high-quality and fully annotated data
set by experts is criticized to be expensive. Such
the data set is impossible to realise if we are oper-
ating on a fixed budget. Although the crowd-work
platforms' provide us a cheap alternative to obtain
annotations from the non-expert, the quality is ham-
pered (Wang et al., 2022). As a compromise, only
a small subset of data could be afford to be anno-
tated by the expert (Ringger et al., 2007; Chaudhary
et al., 2021). It motivates the annotation demand
on limited data. In this paper, we refer it as limited
data annotation, such as the under-documented
languages (Mager et al., 2018) annotation.

To ensure the quality in the limited data annota-
tion setting, the expert is still required to carefully
encode linguistic knowledge into the data, which
leads to large annotation labors (Yeung et al., 2019;
Qian et al., 2022; Forbes et al., 2022). Such the
large labors is believed to lower the annotation qual-
ity (Wallen et al., 2005; Lee et al., 2022). To reduce

'For example, the Amazon Mechanical Turk.

the labors, the human-machine interactive annota-
tion methods are getting more attention (Vondrick
and Ramanan, 2011; Klie et al., 2018, 2020; Le
et al., 2021; Deng et al., 2021). As illustrated in
Figure 1(Left), a model is introduced to provide
predicted annotation suggestions to the expert on
the fly. Consequently, the labors are reduced if
the expert accepts the correct suggestion (i.e., by
clicking an OK’ button). Otherwise, extra human
labors are required to correct the wrong one. At the
end of each iteration, the model is updated based
on the historical accepted or corrected data (we call
them annotated data), expecting to improve predic-
tion accuracy and lower human labors. To this end,
current studies integrate the active learning (Laws
et al., 2011; Klie et al., 2018; Li et al., 2021b),
preferentially selecting and annotating data with
potential values to improve model accuracy.

However, in the setting of limited data annota-
tion, current methods lose the strength due to the
model of low sample-efficiency” fails to learn effi-
ciently from limited annotated data (See examples
in Figure I1). In this case, the model annotator
would be largely under-trained, even with carefully
selected data by active learning methods (Miiller
et al., 2022), as the potential values of the selected
subset data may not be fully leveraged (Tang and
Huang, 2019; Mindermann et al., 2022). Conse-
quently, the model of low sample-efficiency con-
stantly makes mistakes and the human correction
labors increase. Such the problem is important and
noticed by recent work (Rietz and Maedche, 2021),
but it remains unaddressed.

In this paper, we call attention to the topic of
sample efficiency in the interactive annotation sce-
nario. To improve the sample efficiency, we trace
back cognitive studies (Lake et al., 2017; Castro
et al., 2008; Lake et al., 2015; Mitchell, 2021),

>The sample efficiency of a model refers to the number
of training data required to reach a certain performance level
(Dorner, 2021).
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Figure 1: Framework and examples of interactive annotation. Low sample-efficiency model can not learn efficiency,
leading to more model errors and human correction labors. Equipping with the analogical reasoning, model

predictions are refined and corrections are saved.

finding that the human brain can learn from a few
examples because our brain is continuously build-
ing analogies during the learning process of con-
cepts to facilitate comprehension. Inspired by this,
we propose a novel Analogical Reasoning for In-
teractive Annotation paradigm (called ARIA). In
ARIA, an analogical reasoning module and a dy-
namic weighting mechanism are proposed. The
former, mimicking the human cognition process,
builds analogies from input data to historical anno-
tated data and derives analogical solutions, while
the latter automatically integrates the solutions to
refine model suggestions (See Section 4.2). As
such, the refined annotations are more accurate and
human labors are reduced in the limited data anno-
tation setting. In this paper, we highlight that the
analogical reasoning module is a general plug-in
module. This brings more flexibility, allowing for
collaboration with any preferred model annotator.

Considering the cost and reproducibility of
human-machine interaction, we conduct simulation
experiments to evaluate the proposed paradigm,
where human labors are estimated by the number
of human corrections (Hwa, 2000; Kristjansson
et al., 2004). We experiment on both the token-
level and sentence-level annotation tasks and four
commonly-used data sets. For all experiments, we
simulate the scenario of limited data annotation
by limiting the amount of data to annotate. The
results show the flexibility of our analogical mod-
ule on different model annotators and annotation
tasks. To reach the required performance level,
ARIR saves relative 220.36% annotated data for
the sentence-level task and 69.79% for the token-
level task (145.08% annotated data are saved on

average). By estimation, it also saves 9.14% and
32.32% human corrections for the sentence-level
and token-level tasks, respectively (20.73% are
saved on average). In summary, our contributions
are as follows:

* We highlight the sample efficiency problem,
which is crucial but neglected in the context
of interactive annotation, and we take the first
step to tackle it.

* We introduce the analogical reasoning mod-
ule as a model-agnostic plug-in module to
improve sample efficiency. This is achieved
by the dynamic weighting mechanism.

* We conduct experiments on both token-level
and sentence-level tasks. The results show the
flexibility of our plug-in module in combining
with different model annotators and the effec-
tiveness in improving the sample efficiency.

2 Related Work

We aim to improve sample efficiency in interactive
annotation through analogical reasoning. We offer
a literature review on interactive annotation and
analogical reasoning. In addition, the idea of sam-
ple efficiency shares similar ideas with the general
concept of few-shot learning. Thus, we also give a
brief review on it and discuss the differences.

2.1 Interactive annotation

Interactive annotation incorporates a machine learn-
ing model with the human in the loop. Essentially,
it leverages a model annotator to iteratively offer
the expert annotation suggestions (Tratz and Phan,



2018; Klie et al., 2018; Lohr et al., 2019; Jo et al.,
2020; Klie et al., 2020; Cucurnia et al., 2021; Ashk-
torab et al., 2021; Le et al., 2021). Towards offering
accurate suggestions to reduce human labor, cur-
rent studies have been carried out on the active
learning (Klie et al., 2018; Laws et al., 2011; Beck
et al., 2013; Li et al., 2021b) and active reinforce-
ment learning (Casanova et al., 2020; Fang et al.,
2017). Although active learning could enhance the
machine performance to a certain extent, the values
reflecting complex hypotheses or semantics usually
require more training data for machines to learn
(Kearns et al., 1994; Dasgupta, 2005; Rietz and
Maedche, 2021), which is infeasible for the lim-
ited data annotation setting. In this paper, we shift
the focus to sample efficiency, we are interested in
the machine that learns and generalizes efficiently
from very limited data, regardless of the annotation
orders and how they help the learning process.

2.2 Sample efficiency

Previous evidences indicate the sample efficiency
could be improved by training model with human-
designed curriculum (Chevalier-Boisvert et al.,
2019), safely integrating larger gradient during pa-
rameters optimization (Schulman et al., 2015), uti-
lizing sparse attention mechanism (Spilsbury and
Ilin, 2022), and injecting more supervisions, such
as reward shaping (Carta et al., 2022; Mirchan-
dani et al., 2021), data augmentations (Roder et al.,
2022; Zotna et al., 2021), rich interactive advices
(Watkins et al., 2021) and language descriptions
(Nguyen et al., 2021). In this paper, we use ana-
logical reasoning to make full use of historical in-
stances and improve the sample efficiency of the
model annotator, which is largely neglected in the
data annotation setting (Rietz and Maedche, 2021).

2.3 Few-shot Learning

Few-shot learning, a fundamental topic in ma-
chine learning, aims at learning from limited train-
ing examples (Wang et al., 2020). Various meth-
ods can fall into its scope. For example, the
fine-tuning mechanism takes advantage of the pre-
trained knowledge (Chen et al., 2019; Nakamura
and Harada, 2019), kernel alignment learns cross-
domain representation for insufficient data (Li et al.,
2021a), meta-learning realizes an optimal initializa-
tion for model parameters (Ren et al., 2018; Jamal
and Qi, 2019), and metric learning explicitly builds
similarities to seen training data (Wang et al., 2019;
Snell et al., 2017). Technically, our analogical rea-

soning shares a similar idea with the metric-based
methods. However, instead of utilizing a few-shot
learner as the model annotator, we involve analogi-
cal reasoning as a model-agnostic plug-in module
and combine it with model prediction through the
dynamic weighting mechanism. As such, ARIA
brings more flexibility to the interactive annotation.

3 Analogical reasoning.

Analogical reasoning targets to retrieve relevant
experience to enhance the learning of the current
task (Gentner and Holyoak, 1997; Carbonell, 1983).
It has enhanced many tasks, such as unseen data
recognition (Peyre et al., 2019) and analogical vi-
sual reasoning (Hu et al., 2021). The core proce-
dure falls into two parts, including analogies re-
trieval and analogical inference.

Analogies retrieval. Building upon the assump-
tion that the more similarities shared between two
items or tasks, the stronger the analogy (Bartha,
2013), this procedure is developed to retrieve
knowledge from experience that bears a strong sim-
ilarity to the current task. In our settings, given a
sample x; to annotate, an analogy set A; of analo-
gies a; from historical annotated data, a distance
metric d(-, -) between x; and a;, the retrieval mod-
ule first yield a ranking of the historical analogies
according to the distance to the z;. A sorting op-
erator m,, is further defined to sort the database
analogies and it increases in distance to x;. It out-
puts the orders for the analogies. Namely, 7, (i)
means the order of i-th analogies. Following those
notations, we denote the retrieved analogies of z;
as py = {a;|my, (i) < k}, which is given by the
set of the first k items w.r.t. the sorting operator.
The i-th retrieved analogy a; = {a?,a}, fi(a?)}
contains the instance feature aj, human annotation
a? and machine annotation f;(a?).

Analogical inference. This procedure focuses
on generating exemplary solutions. According to
(Bartha, 2013), no formulated acceptable rule for
valid analogical inference is proposed yet, but the
analogical argument can be summarized. An ana-
logical argument is an explicit representation of a
form of analogical reasoning that cites accepted
similarities between two systems to support the
conclusion that some further similarity exists.

4 Method

We elaborate the proposed paradigm. Section 4.1
shows the formalization of sample efficiency and



section 4.2 offers the details of ARIA.

4.1 Sample efficiency

Sample efficiency of a model refers to the num-
ber of training data needed to reach a certain per-
formance level (Chevalier-Boisvert et al., 2019;
Dorner, 2021). Following this notation, we define a
metric to measure the sample efficiency for human-
machine annotation tasks. Considering each model
suggestion is checked by the expert, we utilize the
annotation accuracy of the model as the perfor-
mance level in the definition of the sample effi-
ciency. Basically, given an unlabeled data set X of
size T to annotate, we define the performance level
PL(f,t;) of machine f at interaction round ¢; to
be its cumulative accuracy.
1o
PL(f,t:, X) = + D ilfilz) =wl D
Y i=to

, Where t, is the first interaction round, x; € X
is the instance at round ¢ sampled from X with-
out replacement, 1[-] is an indicator, and y; is its
ground truth annotation. Note that for the sake of
robustness, we use the cumulative accuracy to be
the performance metric, rather than the batch accu-
racy. Given a specified performance level pl on the
interactive annotation task, the sample efficiency
S(f,pl, X) of machine f is defined as follows.

S(fvpl7X) :T/tk

2
tp = inf{t;|PL(f,t;, X) =pl,t; < T} @

When the model can not reach the given per-
formance (e.g, the set of ¢;’s is empty), we set
S(f,pl, X) to be co. Essentially, S(f, pl, X) cap-
tures the minimal human labors that the machine
annotator requires to train to the given performance
level. Specifically, a high sample efficiency is
achieved if the machine annotator requires fewer
human corrections and learns efficiently. We fur-
ther define relative sample efficiency, conditioned
on fo, as follows.

S(f1.pl, X)
S(f2,pl, X)
Basically, RS(f1,pl, X|f2) measures the quantity
of data saved by machine f; compared to machine
f2 when they reach the same performance level.

RS(f1,pl, X|f2) = (3)

4.2 ARIA: the proposed method

To improve sample efficiency, two modules are
proposed in ARIA, including analogical reason-
ing module and dynamic weighting mechanism.

Given input data z; at round ¢, the annotation sug-
gestion, denoted as F}, is obtained by Fi(z;) =
M) fe(me) + (1 — AM@e))ge(ze). Here fi(wy),
gt(x¢) and A(z¢) € [0,1] are the output of
model annotator, analogical reasoning and dynamic
weighting mechanism, respectively.

4.2.1 Analogical reasoning module

To perform analogical inference (See section 3), we
formalize the analogical argument into a trainable
aggregator function g;. Ideally, an aggregator func-
tion should maintain a high capacity for making
use of both the positive (i.e., common properties be-
tween two items or tasks) and negative effects (i.e.,
different properties) of different analogies (Bartha,
2013; Leclercq-Vandelannoitte and Bertin, 2018),
strengthening inferred solution if the input contains
more positive analogies and less negative analo-
gies. An straightforward example of aggregator
function is weighted mean aggregator as follows
g(x) = argmaxyey ) _,c,, Wea’, which leads
to a weighted KNN classifier that resorts to the
finite linear combination of analogical arguments
in an ensemble style, where w, = d(x¢,a) is the
weight of a that down-weights those analogies with
relatively more negative effects.

To strengthen the capacity of the aggregator func-
tion, we resort to Mahalanobis distance to learn w,,.
Note that the Mahalanobis distance is also used
to retrieve analogies. Moreover, since we regard
historical annotations as analogies buffer A;, the
size of the buffer grows linearly with the times of
human-machine interactions. we budget the buffer
size by a class-aware strategy, where we require
the human to pre-define the maximum buffer size.
In this strategy, once the model receives feedback
from the expert, the analogies buffer is updated by
adding the newly arrived data. If the size of the
analogies buffer overflows its budget, the analogy
from the majority class that is most similar to its
label prototype would be simply discarded first. Al-
though it may change the hypothesis and decrease
model accuracy, it turns out to be an efficient way
in our experiment. To avoid overconfidence in the
analogies aggregator, we also apply label smooth-
ing (Szegedy et al., 2016) on the labels of retrieved
analogies before deriving the analogical solution.
Weseta=1— % and K is the number of classes.

afg=a'(1-a)+ o @)



4.2.2 Dynamic weighting mechanism

An intuitive method to integrate the model pre-
diction and plug-in solution is the fixed weighted
linear combination. However, finding out the opti-
mal weight requires trial and error, meaning involv-
ing more human annotation hours in the parameter
tuning, during the human-machine interactions. In-
stead, we propose a dynamic weighting mechanism
A to learn the weight for each instance automati-
cally and encourage the model f and the analogical
solution g to cooperate. At round ¢, the idea is to
combine f; and g; so that F} more resorts to f; if its
prediction is known to be safe, otherwise it safely
resorts to analogies. To this end, we propose to use
the analogies set A; to examine the learning state
of f;. Formally, a instance-wise weight, denoted
as Ay = A\¢(z¢), is defined to capture the reliability
of fi(x:), modeled by a neural network. Such a
network takes two kinds of information as input, in-
cluding the local error estimation and local density.
The former is denoted as E; = [e1t, €ay, ..., €kt
where e;; = 1la! = fi(a¥)],a; € pi. The
latter is Dy = [d(af, x¢),d(ad, x), ..., d(af, x¢)],
where a; € p;. More formally, the input of the
dynamic weighting mechanism is calculated as
D;® Ey — Dy ® (1 — E}), where © is an element-
wise multiplication operator. By this means, such
input simultaneously captures how similar x; and
retrieved analogies are and how likely the current
model suggestion f;(z;) tends to be wrong.

Technically, the most relevant method to us is
the memory-based model (Khandelwal et al., 2019,
2020; Kassner and Schiitze, 2020). These meth-
ods derive an additional model to enhance the raw
model and combine their outputs with a fixed hyper-
parameter. Those methods are infeasible for the
interactive annotation setting as they require hu-
man labor to tune the hyper-parameter. We refer to
Section 5.4 for more experiment analysis.

4.2.3 Loss function & Optimization

The negative log-likelihood loss ¢(y:, Fi(x¢)) is
used to optimize the model and the plug-in module.
Also, we introduce a MSE loss ¢4(1[y: # fi], At)
to train the dynamic weight mechanism A, enforc-
ing that \; recognizes the misclassifications of f;.
Building upon the above, we conclude the loss
function for each data batch to annotate as follows.

By

L(f,g,)\) = Zﬁ(yi,Ft(m)) +La(Ly: # fe(wi)], Ae)
- 5)

, Wwhere B; is the cumulative data size until round
t. Notice that A and f are trained based on the
same training data. In this case, A may overfit
the performance of f on the training data, hinder-
ing A from converging to the optimal value. One
solution is to involve a valid set, but it requires
additional human labor to annotate the validation
set, which is impractical in our setting. Since this
limitation wouldn’t bother the main contributions
of this paper, we’ll leave it to our future work. To
optimize the objective, there are two points to con-
sider. First, operator p (i.e., retrieve analogies) is
not differentiable, we exploit the Gumbel-softmax-
based re-parameterization trick (Jang et al., 2016)
to ease the optimization in our experiments. Sec-
ond, the loss £ is an bi-level optimization problems
(Bard, 2013), where optimizing ) is nested within
the optimization problems of f; and g;. Thus, we
update f;, g and \; separately and iteratively in a
coordinate-descent style. Formally, let 9’;, 9]; and
9§ be the network parameters for ¥, g* and \* at
the optimization iteration k, the update procedures
are as follows.

05t = 0F — 7 L(f, 6", \F)
05Tl = 0% — 7 L(f", g, \F) (6)
91>\€+1 _ 01){\ _ v)\ﬁ(fk+17gk+17 )\)

S Experiments

To improve sample efficiency, ARIA automatically
refines the annotation suggestions from any pre-
ferred model annotator. As such, higher sample
efficiency can improves model accuracy on the lim-
ited data and lowers human labors. In this section,
extensive experiments are conducted to evaluate
the effectiveness of ARIA in terms of the human
correction labor and sample efficiency. Specifically,
we are interested in the following questions.

* Q1: How much human correction labors can
ARIA reduce compared to the conventional
interactive annotation?

* Q2: How many gains does ARIA bring with
regard to the sample efficiency?

* Q3: Without human labors on tuning parame-
ters, does the dynamic weighting mechanism
achieve promising results?

5.1 Experiment setup

Considering the cost and reproducibility of human-
computer interaction, we report the results of sim-
ulation experiments and human evaluations. We
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Figure 2: Illustration of annotation performance on various data sets. The X-axis and Y-axis represent the number
of data to annotate and the Machine Cumulative Accuracy, respectively.

focus on the annotation task in the token-level and
sentence-level settings, including knowledge graph
completion and sentiment analysis.

Dataset. For simplicity, we use the non-
contextual pre-trained GloVe (Pennington et al.,
2014) for word embedding and sentence embed-
ding without fine-tuning. The contextual one (e.g.,
BERT embedding) is not used, because the token-
level task in our setting has no context information.
Following previous work (Dou et al., 2019), we
simulate the interactive annotation process for the
limited data annotation setting. We place restric-
tions on the size of the data set, ranging from 1K
to 5K with the step size being 1K (i.e., 1000).

* Knowledge graph completion (KGC). We fo-
cus on annotating the semantic class of the
input word pair. Here, two benchmark knowl-
edge graph data sets are used in our experi-
ments, including WN18RR? and Freebase*.

* Sentiment analysis (SA). Two benchmark
data sets are used in our experiments, includ-
ing SST?, and IMDBS. In this case, the human-
machine team is required to annotate the sen-
timent label for the input data.

Comparative Methods. Considering the re-
quirements of the annotation system for the time ef-
ficiency of annotation, we use a lightweight model
for experiments. The classic distributional model
(Roller et al., 2014; Kober et al., 2021) and Fast-
Text (Joulin et al., 2017) are utilized in token-level
and sentence-level annotation tasks, respectively.
Considering previous works on interactive annota-
tion focus on active learning, to comprehensively

*https://paperswithcode.com/dataset/wn18rr

*https://www.microsoft.com/en-
us/download/details.aspx?id=52312

Shttps://nlp.stanford.edu/sentiment/code.html

Shttps://www.kaggle.com/datasets/lakshmi25npathi/imdb-
dataset-of-50k-movie-reviews

evaluate the sample efficiency enhancement, all
methods are equipped with uncertainty-based ac-
tive learning (Ren et al., 2020), denoted as Dist.
w/ AL and FastText w/ AL, and passive learning

(i.e., random strategy), denoted as Dist. w/ PL
and FastText w/ PL. Methods without analogical
reasoning enhancement play the role of baselines.
Furthermore, we analyze the effectiveness of the
dynamic weighting mechanism and compare it with
the fixed weighting strategy, used in the memory-
based model (Khandelwal et al., 2019; Kassner and
Schiitze, 2020; Khandelwal et al., 2020).

Evaluation Metric. Interactive annotation as-
sumes human annotation is the ground truth. We
only evaluate the annotation performance of the
machine, denoted as the Machine Cumulative Ac-
curacy (MCA), and the relative sample efficiency
conditioned on the baselines (See Section 4). Note
the values of relative sample efficiency of baselines
are 100%. Also, considering that machine errors
involve extra human labors to correct, the overall
human labors could be measured by the aforemen-
tioned Machine Cumulative Accuracy. Here, we
use the Exact Match between model and human an-
notations to calculate the accuracy, as data should
be annotated in deterministic labels, not the proba-
bilistic distributions.

Implementation details. All experiments are
carried out on a machine with Intel(R) Core(TM)
15-12400F, 16GB memory, and GeForce RTX 3060.
For simplicity, the model annotator and the dy-
namic weighting mechanism are both implemented
by a three-layer FC with Relu activation and
dropout. As for the analogical reasoning module,
we set £k = 20 for p;, and the size of analogies
buffer A; is set as 1000 for all data sets. Also, we
apply the label smoothing trick according to Eq.(4),
so that ARIA could avoid over-confidence in ana-
logical solutions. To simulate the interactions with
the human expert, we mask out the ground truth



Table 1: Machine Cumulative Accuracy gains of ARIA
over conventional interactive annotation paradigm.

Token-level Annotation (%) | WNI18RR | FreeBase
ARIA + Dist. w/ PL ‘ 5.93 ‘ 48.90

ARIA + Dist. w/ AL 5.24 69.21
Sentence-level Annotation (%) | IMDB | SST
ARIA + FastText w/ PL 14.19 293
ARIA + FastText w/ AL 13.83 5.6

Table 2: Relative sample efficiency gains of ARIA over
conventional interactive annotation paradigm.

Token-level Annotation (%) ‘ WNI18RR ‘ FreeBase

ARIA + Dist. w/ PL ‘ 45.94 ‘ 79.85

ARIA + Dist. w/ AL 31.73 121.64
Sentence-level Annotation (%) | IMDB | SST
ARIA + FastText w/ PL 217.26 29.50
ARIA + FastText w/ AL 591.47 43.22

labels until the model made predictions.

5.2 Evaluation on labor reduction (Q1)

Machine annotation suggestions should be accu-
rate so that the human labor to correct annotations
is saved. Therefore, the labor of human correct-
ing annotations goes linearly with the number of
machine misclassifications during the interactions.
To evaluate the labor reduction in the limited data
annotation setting, Figure 2 illustrates the curves of
the Machine Cumulative Accuracy (MCA) of dif-
ferent annotation methods. Table 1 further provides
the relative MCA gains of ARIA, averaged over
the different amounts of data to annotate. There are
two main conclusions.

First, ARIA, equipped with analogical reasoning,
outperforms all baselines on both token-level and
sentence-level tasks and improves the qualities of
machine annotations. By estimation, ARIA, on av-
erage, saves 9.14% and 32.32% human correction

Table 3: Representative comparison for Model Cumula-
tive Accuracy (denoted as MCA) and Relative Sample
Efficiency (denoted as RSE) under 1K data.

Methods/Tasks |  MCAT(%) | RSE 1 (%)
Token-level Annotation WNI18RR | FreeBase | WNI8RR | FreeBase
Dist. w/ PL | 44.63 14.06 100 100
Dist. w/ AL | 39.06 10.84 100 100
ARIA + Dist. w/ PL | 49.80 34.77 162.5 287.5
ARIA + Dist. w/ AL | 43.46 33.01 137.5 375.0
Sentence-level Annotation | IMDB SST IMDB SST
FastText w/ PL | 56.25 31.05 100 100
FastText w/ AL | 56.45 29.20 100 100
ARIA + FastText w/ PL | 74.61 3242 362.5 137.5
ARIA + FastText w/ AL | 73.83 33.11 912.5 175.0

labors for sentiment analysis and knowledge graph
completion tasks, respectively. We further estimate
that the proposed method saves 20.73% human
labor to correct model suggestions over all data
sets. Moreover, such advantages hold along with
the increasing data size (See solid and dotted lines
marked in red in Figure 2), which indicates that our
analogical plug-in module generally works well on
different annotation tasks and data with different
sizes. For a better understanding, the representa-
tive results on 1K data are provided in Table 3. In
this simulation, users are extremely budgeted and
only afford to annotate very limited data. In this
case, ARIA saves 20.31% (31.71% on IMDB and
8.90% on SST) and 93.67% (11.42% on WNI18RR
and 175.91% on FreeBase) human correction labor
on SA and KGC tasks, respectively. Compared to
Table 1, we argue ARIA brings larger performance
gains if the data are very limited.

Second, we notice that active learning may play
a negative role during the interactive annotation,
leading to the worse performance on WNI18RR,
FreeBase, and SST data sets compared to the pas-
sive learning. One possible reason lies in the fact
that representative or informative data, selected by
active learning, may be hard for machine (Tang
and Huang, 2019) and require more training data
to learn (Kearns et al., 1994; Dasgupta, 2005; Ri-
etz and Maedche, 2021). In the case of limited
data annotation setting, those valuable data from
active learning strategy thus lose advantages com-
pared to ones from passive learning (Pezeshkpour
et al., 2020). This further supports the necessity
of building analogies during the human-machine
interaction in the limited data annotation setting.

5.3 Evaluation on sample efficiency (Q2)

Table 2 and Table 3 demonstrate the results in terms
of relative sample efficiency conditioned on the
baseline to ease comparison, where the target per-
formance levels pl are set to be the MCAs of ARIA
under different data size. In essence, ARIA en-
joys much high sample efficiency, where the infor-
mation of each data is used to not only train the
machine but also regarded as analogies, which re-
fines the machine annotation suggestions. More
statistically speaking, the average values of rela-
tive sample efficiency gains over baseline under
different data sizes are reported in Table 1. By
estimation, it also saves 9.14% and 32.32% hu-
man labors for sentiment analysis and knowledge
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Figure 3: Machine Cumulative Accuracy of ARIA with
different weighting strategies. To save space, we denote
ARIA and baseline as F' and f, respectively. f1 means
ARITA with the fixed weight being 0.1, and so on.

graph completion tasks respectively, to finish anno-
tation. On average, we estimate that the proposed
method enjoys 145.08% gains over all data sets,
indicating that analogical reasoning help save rela-
tive 145.08% human annotations for the machine to
reach the required performance level. As shown in
the MCA curve in Figure2, the learning efficiency
of the model annotator on FreeBase and IMDB
is relatively lower, especially in the early stage of
the learning process. This means that the model
requires more data to train to reach the same perfor-
mance level as ARIA. It explains the reason why
ARIA largely outperforms baselines on FreeBase
and IMDB on FreeBase and IMDB in terms of rela-
tive sample efficiency. In our opinion, the improved
sample efficiency contributes to the MCA gain of

ARIA, allowing to learn and generalize efficiently
from only a few data.

5.4 Analysis on dynamic weighting (Q3)

Our dynamic weighting mechanism adjusts \ auto-
matically without human tuning. In this section, we
consider the ARIA with a fixed weighting method
(See section 4.2.2) for comparison. Here, the the
A (i.e., the weight) is tuned from 0.1 to 0.9 with
step size being 0.1. As illustrated in Figure3, our
results are in line with previous studies, stating that
different tasks with different training data have a
different optimal value of A. According to our tun-
ing experiments, the optimal A is in {0.1,0.3,0.5}
for different data sets, which are largely different
from the previous studies. Primarily, A = 0.7 is
suggested for QA (Kassner and Schiitze, 2020) and
A € {0.2,0.3,0.8} for machine translation (Khan-
delwal et al., 2020), it also takes different values
(A € {0.2,0.75,0.9}) on different training data
when building language model (Khandelwal et al.,
2019). Therefore, the fixed weighting methods are
infeasible for the interactive annotation, as they
take some trial and error to tune A accordingly,
hence involving more human labor. On the con-
trary, by treating A as a trainable parameter, our
dynamic weighting mechanism reaches the sub-
optimal performance (see section 4.2.3 for expla-
nation). We argue it is the trade-off between anno-
tation performance and human labor. When human
labor are budgeted, our dynamic weighting mecha-
nism is a better choice.

6 Conclusion

We call attention to the sample efficiency in the
limited data annotation setting. To this end, we
propose ARIA and highlight the model-agnostic
plug-in module and the dynamic weighting mech-
anism. They explore a new solution to improve
sample efficiency and bring more flexibility in al-
lowing the expert to design any preferred model
annotator according to different annotation tasks.

We are devoted to optimizing human-machine
utilities by emphasizing the learning of task-
specified concepts efficiently from a few human
demonstrations. To achieve this long-term goal,
we start from the basic idea of sample efficiency.
However, there is a loose ending to our discussion.
In the future, we would extend our research scope
by involving more proactive instructions from the
expert, such as machine teaching methods.
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