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Abstract
To reduce human labor on manual annotations,001
interactive annotation leverages a model to pro-002
vide annotation suggestions for the human to003
approve or correct. When the model is under-004
trained due to limited data, it tends to make005
wrong suggestions, requiring extra human la-006
bor to correct. To this end, we resort to analog-007
ical reasoning and propose a general sample-008
efficient plug-in module. This module builds009
analogies to historical annotated data and re-010
fines the suggestions through a dynamic weight-011
ing mechanism, thus reducing human labor.012
Empirical studies show the flexibility of our013
method in being compatible with various anno-014
tation tasks. With our method, the model, on015
average, saves a relative 145.08% of annotated016
data to reach the required accuracy. It trans-017
lates to an estimated 20% less human labor018
compared to the original interactive annotation.019

1 Introduction020

Generating a high-quality and fully annotated data021

set by experts is criticized to be expensive. Such022

the data set is impossible to realise if we are oper-023

ating on a fixed budget. Although the crowd-work024

platforms1 provide us a cheap alternative to obtain025

annotations from the non-expert, the quality is ham-026

pered (Wang et al., 2022). As a compromise, only027

a small subset of data could be afford to be anno-028

tated by the expert (Ringger et al., 2007; Chaudhary029

et al., 2021). It motivates the annotation demand030

on limited data. In this paper, we refer it as limited031

data annotation, such as the under-documented032

languages (Mager et al., 2018) annotation.033

To ensure the quality in the limited data annota-034

tion setting, the expert is still required to carefully035

encode linguistic knowledge into the data, which036

leads to large annotation labors (Yeung et al., 2019;037

Qian et al., 2022; Forbes et al., 2022). Such the038

large labors is believed to lower the annotation qual-039

ity (Wallen et al., 2005; Lee et al., 2022). To reduce040

1For example, the Amazon Mechanical Turk.

the labors, the human-machine interactive annota- 041

tion methods are getting more attention (Vondrick 042

and Ramanan, 2011; Klie et al., 2018, 2020; Le 043

et al., 2021; Deng et al., 2021). As illustrated in 044

Figure 1(Left), a model is introduced to provide 045

predicted annotation suggestions to the expert on 046

the fly. Consequently, the labors are reduced if 047

the expert accepts the correct suggestion (i.e., by 048

clicking an ’OK’ button). Otherwise, extra human 049

labors are required to correct the wrong one. At the 050

end of each iteration, the model is updated based 051

on the historical accepted or corrected data (we call 052

them annotated data), expecting to improve predic- 053

tion accuracy and lower human labors. To this end, 054

current studies integrate the active learning (Laws 055

et al., 2011; Klie et al., 2018; Li et al., 2021b), 056

preferentially selecting and annotating data with 057

potential values to improve model accuracy. 058

However, in the setting of limited data annota- 059

tion, current methods lose the strength due to the 060

model of low sample-efficiency2 fails to learn effi- 061

ciently from limited annotated data (See examples 062

in Figure 1). In this case, the model annotator 063

would be largely under-trained, even with carefully 064

selected data by active learning methods (Müller 065

et al., 2022), as the potential values of the selected 066

subset data may not be fully leveraged (Tang and 067

Huang, 2019; Mindermann et al., 2022). Conse- 068

quently, the model of low sample-efficiency con- 069

stantly makes mistakes and the human correction 070

labors increase. Such the problem is important and 071

noticed by recent work (Rietz and Maedche, 2021), 072

but it remains unaddressed. 073

In this paper, we call attention to the topic of 074

sample efficiency in the interactive annotation sce- 075

nario. To improve the sample efficiency, we trace 076

back cognitive studies (Lake et al., 2017; Castro 077

et al., 2008; Lake et al., 2015; Mitchell, 2021), 078

2The sample efficiency of a model refers to the number
of training data required to reach a certain performance level
(Dorner, 2021).
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Figure 1: Framework and examples of interactive annotation. Low sample-efficiency model can not learn efficiency,
leading to more model errors and human correction labors. Equipping with the analogical reasoning, model
predictions are refined and corrections are saved.

finding that the human brain can learn from a few079

examples because our brain is continuously build-080

ing analogies during the learning process of con-081

cepts to facilitate comprehension. Inspired by this,082

we propose a novel Analogical Reasoning for In-083

teractive Annotation paradigm (called ARIA). In084

ARIA, an analogical reasoning module and a dy-085

namic weighting mechanism are proposed. The086

former, mimicking the human cognition process,087

builds analogies from input data to historical anno-088

tated data and derives analogical solutions, while089

the latter automatically integrates the solutions to090

refine model suggestions (See Section 4.2). As091

such, the refined annotations are more accurate and092

human labors are reduced in the limited data anno-093

tation setting. In this paper, we highlight that the094

analogical reasoning module is a general plug-in095

module. This brings more flexibility, allowing for096

collaboration with any preferred model annotator.097

Considering the cost and reproducibility of098

human-machine interaction, we conduct simulation099

experiments to evaluate the proposed paradigm,100

where human labors are estimated by the number101

of human corrections (Hwa, 2000; Kristjansson102

et al., 2004). We experiment on both the token-103

level and sentence-level annotation tasks and four104

commonly-used data sets. For all experiments, we105

simulate the scenario of limited data annotation106

by limiting the amount of data to annotate. The107

results show the flexibility of our analogical mod-108

ule on different model annotators and annotation109

tasks. To reach the required performance level,110

ARIR saves relative 220.36% annotated data for111

the sentence-level task and 69.79% for the token-112

level task (145.08% annotated data are saved on113

average). By estimation, it also saves 9.14% and 114

32.32% human corrections for the sentence-level 115

and token-level tasks, respectively (20.73% are 116

saved on average). In summary, our contributions 117

are as follows: 118

• We highlight the sample efficiency problem, 119

which is crucial but neglected in the context 120

of interactive annotation, and we take the first 121

step to tackle it. 122

• We introduce the analogical reasoning mod- 123

ule as a model-agnostic plug-in module to 124

improve sample efficiency. This is achieved 125

by the dynamic weighting mechanism. 126

• We conduct experiments on both token-level 127

and sentence-level tasks. The results show the 128

flexibility of our plug-in module in combining 129

with different model annotators and the effec- 130

tiveness in improving the sample efficiency. 131

2 Related Work 132

We aim to improve sample efficiency in interactive 133

annotation through analogical reasoning. We offer 134

a literature review on interactive annotation and 135

analogical reasoning. In addition, the idea of sam- 136

ple efficiency shares similar ideas with the general 137

concept of few-shot learning. Thus, we also give a 138

brief review on it and discuss the differences. 139

2.1 Interactive annotation 140

Interactive annotation incorporates a machine learn- 141

ing model with the human in the loop. Essentially, 142

it leverages a model annotator to iteratively offer 143

the expert annotation suggestions (Tratz and Phan, 144
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2018; Klie et al., 2018; Lohr et al., 2019; Jo et al.,145

2020; Klie et al., 2020; Cucurnia et al., 2021; Ashk-146

torab et al., 2021; Le et al., 2021). Towards offering147

accurate suggestions to reduce human labor, cur-148

rent studies have been carried out on the active149

learning (Klie et al., 2018; Laws et al., 2011; Beck150

et al., 2013; Li et al., 2021b) and active reinforce-151

ment learning (Casanova et al., 2020; Fang et al.,152

2017). Although active learning could enhance the153

machine performance to a certain extent, the values154

reflecting complex hypotheses or semantics usually155

require more training data for machines to learn156

(Kearns et al., 1994; Dasgupta, 2005; Rietz and157

Maedche, 2021), which is infeasible for the lim-158

ited data annotation setting. In this paper, we shift159

the focus to sample efficiency, we are interested in160

the machine that learns and generalizes efficiently161

from very limited data, regardless of the annotation162

orders and how they help the learning process.163

2.2 Sample efficiency164

Previous evidences indicate the sample efficiency165

could be improved by training model with human-166

designed curriculum (Chevalier-Boisvert et al.,167

2019), safely integrating larger gradient during pa-168

rameters optimization (Schulman et al., 2015), uti-169

lizing sparse attention mechanism (Spilsbury and170

Ilin, 2022), and injecting more supervisions, such171

as reward shaping (Carta et al., 2022; Mirchan-172

dani et al., 2021), data augmentations (Röder et al.,173

2022; Żołna et al., 2021), rich interactive advices174

(Watkins et al., 2021) and language descriptions175

(Nguyen et al., 2021). In this paper, we use ana-176

logical reasoning to make full use of historical in-177

stances and improve the sample efficiency of the178

model annotator, which is largely neglected in the179

data annotation setting (Rietz and Maedche, 2021).180

2.3 Few-shot Learning181

Few-shot learning, a fundamental topic in ma-182

chine learning, aims at learning from limited train-183

ing examples (Wang et al., 2020). Various meth-184

ods can fall into its scope. For example, the185

fine-tuning mechanism takes advantage of the pre-186

trained knowledge (Chen et al., 2019; Nakamura187

and Harada, 2019), kernel alignment learns cross-188

domain representation for insufficient data (Li et al.,189

2021a), meta-learning realizes an optimal initializa-190

tion for model parameters (Ren et al., 2018; Jamal191

and Qi, 2019), and metric learning explicitly builds192

similarities to seen training data (Wang et al., 2019;193

Snell et al., 2017). Technically, our analogical rea-194

soning shares a similar idea with the metric-based 195

methods. However, instead of utilizing a few-shot 196

learner as the model annotator, we involve analogi- 197

cal reasoning as a model-agnostic plug-in module 198

and combine it with model prediction through the 199

dynamic weighting mechanism. As such, ARIA 200

brings more flexibility to the interactive annotation. 201

3 Analogical reasoning. 202

Analogical reasoning targets to retrieve relevant 203

experience to enhance the learning of the current 204

task (Gentner and Holyoak, 1997; Carbonell, 1983). 205

It has enhanced many tasks, such as unseen data 206

recognition (Peyre et al., 2019) and analogical vi- 207

sual reasoning (Hu et al., 2021). The core proce- 208

dure falls into two parts, including analogies re- 209

trieval and analogical inference. 210

Analogies retrieval. Building upon the assump- 211

tion that the more similarities shared between two 212

items or tasks, the stronger the analogy (Bartha, 213

2013), this procedure is developed to retrieve 214

knowledge from experience that bears a strong sim- 215

ilarity to the current task. In our settings, given a 216

sample xt to annotate, an analogy set At of analo- 217

gies at from historical annotated data, a distance 218

metric d(·, ·) between xt and at, the retrieval mod- 219

ule first yield a ranking of the historical analogies 220

according to the distance to the xt. A sorting op- 221

erator πxt is further defined to sort the database 222

analogies and it increases in distance to xt. It out- 223

puts the orders for the analogies. Namely, πxt(i) 224

means the order of i-th analogies. Following those 225

notations, we denote the retrieved analogies of xt 226

as ρt = {ai|πxt(i) ≤ k}, which is given by the 227

set of the first k items w.r.t. the sorting operator. 228

The i-th retrieved analogy ai = {axi , a
y
i , ft(a

x
i )} 229

contains the instance feature axi , human annotation 230

ayi and machine annotation ft(a
x
i ). 231

Analogical inference. This procedure focuses 232

on generating exemplary solutions. According to 233

(Bartha, 2013), no formulated acceptable rule for 234

valid analogical inference is proposed yet, but the 235

analogical argument can be summarized. An ana- 236

logical argument is an explicit representation of a 237

form of analogical reasoning that cites accepted 238

similarities between two systems to support the 239

conclusion that some further similarity exists. 240

4 Method 241

We elaborate the proposed paradigm. Section 4.1 242

shows the formalization of sample efficiency and 243
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section 4.2 offers the details of ARIA.244

4.1 Sample efficiency245

Sample efficiency of a model refers to the num-246

ber of training data needed to reach a certain per-247

formance level (Chevalier-Boisvert et al., 2019;248

Dorner, 2021). Following this notation, we define a249

metric to measure the sample efficiency for human-250

machine annotation tasks. Considering each model251

suggestion is checked by the expert, we utilize the252

annotation accuracy of the model as the perfor-253

mance level in the definition of the sample effi-254

ciency. Basically, given an unlabeled data set X of255

size T to annotate, we define the performance level256

PL(f, ti) of machine f at interaction round ti to257

be its cumulative accuracy.258

PL(f, ti, X) =
1

ti

ti∑
t=t0

1[ft(xt) = yt] (1)259

, where to is the first interaction round, xt ∈ X260

is the instance at round t sampled from X with-261

out replacement, 1[·] is an indicator, and yt is its262

ground truth annotation. Note that for the sake of263

robustness, we use the cumulative accuracy to be264

the performance metric, rather than the batch accu-265

racy. Given a specified performance level pl on the266

interactive annotation task, the sample efficiency267

S(f, pl,X) of machine f is defined as follows.268

S(f, pl,X) = T/tk

tk = inf{ti|PL(f, ti, X) = pl, ti ≤ T}
(2)269

When the model can not reach the given per-270

formance (e.g, the set of ti’s is empty), we set271

S(f, pl,X) to be ∞. Essentially, S(f, pl,X) cap-272

tures the minimal human labors that the machine273

annotator requires to train to the given performance274

level. Specifically, a high sample efficiency is275

achieved if the machine annotator requires fewer276

human corrections and learns efficiently. We fur-277

ther define relative sample efficiency, conditioned278

on f2, as follows.279

RS(f1, pl,X|f2) =
S(f1, pl,X)

S(f2, pl,X)
(3)280

Basically, RS(f1, pl,X|f2) measures the quantity281

of data saved by machine f1 compared to machine282

f2 when they reach the same performance level.283

4.2 ARIA: the proposed method284

To improve sample efficiency, two modules are285

proposed in ARIA, including analogical reason-286

ing module and dynamic weighting mechanism.287

Given input data xt at round t, the annotation sug- 288

gestion, denoted as Ft, is obtained by Ft(xt) = 289

λ(xt)ft(xt) + (1 − λ(xt))gt(xt). Here ft(xt), 290

gt(xt) and λ(xt) ∈ [0, 1] are the output of 291

model annotator, analogical reasoning and dynamic 292

weighting mechanism, respectively. 293

4.2.1 Analogical reasoning module 294

To perform analogical inference (See section 3), we 295

formalize the analogical argument into a trainable 296

aggregator function gt. Ideally, an aggregator func- 297

tion should maintain a high capacity for making 298

use of both the positive (i.e., common properties be- 299

tween two items or tasks) and negative effects (i.e., 300

different properties) of different analogies (Bartha, 301

2013; Leclercq-Vandelannoitte and Bertin, 2018), 302

strengthening inferred solution if the input contains 303

more positive analogies and less negative analo- 304

gies. An straightforward example of aggregator 305

function is weighted mean aggregator as follows 306

gt(xt) = argmaxy∈Y
∑

a∈ρt waa
y, which leads 307

to a weighted KNN classifier that resorts to the 308

finite linear combination of analogical arguments 309

in an ensemble style, where wa = d(xt, a) is the 310

weight of a that down-weights those analogies with 311

relatively more negative effects. 312

To strengthen the capacity of the aggregator func- 313

tion, we resort to Mahalanobis distance to learn wa. 314

Note that the Mahalanobis distance is also used 315

to retrieve analogies. Moreover, since we regard 316

historical annotations as analogies buffer At, the 317

size of the buffer grows linearly with the times of 318

human-machine interactions. we budget the buffer 319

size by a class-aware strategy, where we require 320

the human to pre-define the maximum buffer size. 321

In this strategy, once the model receives feedback 322

from the expert, the analogies buffer is updated by 323

adding the newly arrived data. If the size of the 324

analogies buffer overflows its budget, the analogy 325

from the majority class that is most similar to its 326

label prototype would be simply discarded first. Al- 327

though it may change the hypothesis and decrease 328

model accuracy, it turns out to be an efficient way 329

in our experiment. To avoid overconfidence in the 330

analogies aggregator, we also apply label smooth- 331

ing (Szegedy et al., 2016) on the labels of retrieved 332

analogies before deriving the analogical solution. 333

We set α = 1− 1
K and K is the number of classes. 334

335

ayLS = ay(1− α) +
α

K
(4) 336
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4.2.2 Dynamic weighting mechanism337

An intuitive method to integrate the model pre-338

diction and plug-in solution is the fixed weighted339

linear combination. However, finding out the opti-340

mal weight requires trial and error, meaning involv-341

ing more human annotation hours in the parameter342

tuning, during the human-machine interactions. In-343

stead, we propose a dynamic weighting mechanism344

λ to learn the weight for each instance automati-345

cally and encourage the model f and the analogical346

solution g to cooperate. At round t, the idea is to347

combine ft and gt so that Ft more resorts to ft if its348

prediction is known to be safe, otherwise it safely349

resorts to analogies. To this end, we propose to use350

the analogies set At to examine the learning state351

of ft. Formally, a instance-wise weight, denoted352

as λt = λt(xt), is defined to capture the reliability353

of ft(xt), modeled by a neural network. Such a354

network takes two kinds of information as input, in-355

cluding the local error estimation and local density.356

The former is denoted as Et = [e1t, e2t, ..., ekt],357

where eit = 1[ayi = ft(a
x
i )], ai ∈ ρt. The358

latter is Dt = [d(ax1 , xt), d(a
x
2 , xt), ..., d(a

x
k, xt)],359

where ai ∈ ρt. More formally, the input of the360

dynamic weighting mechanism is calculated as361

Dt ⊙Et −Dt ⊙ (1−Et), where ⊙ is an element-362

wise multiplication operator. By this means, such363

input simultaneously captures how similar xt and364

retrieved analogies are and how likely the current365

model suggestion ft(xt) tends to be wrong.366

Technically, the most relevant method to us is367

the memory-based model (Khandelwal et al., 2019,368

2020; Kassner and Schütze, 2020). These meth-369

ods derive an additional model to enhance the raw370

model and combine their outputs with a fixed hyper-371

parameter. Those methods are infeasible for the372

interactive annotation setting as they require hu-373

man labor to tune the hyper-parameter. We refer to374

Section 5.4 for more experiment analysis.375

4.2.3 Loss function & Optimization376

The negative log-likelihood loss ℓ(yt, Ft(xt)) is377

used to optimize the model and the plug-in module.378

Also, we introduce a MSE loss ℓd(1[yt ̸= ft], λt)379

to train the dynamic weight mechanism λt, enforc-380

ing that λt recognizes the misclassifications of ft.381

Building upon the above, we conclude the loss382

function for each data batch to annotate as follows.383

L(f, g, λ) =
Bt∑
i=1

ℓ(yi, Ft(xi)) + ℓd(1[yi ̸= ft(xi)], λt)

(5)384

, where Bt is the cumulative data size until round 385

t. Notice that λ and f are trained based on the 386

same training data. In this case, λ may overfit 387

the performance of f on the training data, hinder- 388

ing λ from converging to the optimal value. One 389

solution is to involve a valid set, but it requires 390

additional human labor to annotate the validation 391

set, which is impractical in our setting. Since this 392

limitation wouldn’t bother the main contributions 393

of this paper, we’ll leave it to our future work. To 394

optimize the objective, there are two points to con- 395

sider. First, operator ρ (i.e., retrieve analogies) is 396

not differentiable, we exploit the Gumbel-softmax- 397

based re-parameterization trick (Jang et al., 2016) 398

to ease the optimization in our experiments. Sec- 399

ond, the loss L is an bi-level optimization problems 400

(Bard, 2013), where optimizing λt is nested within 401

the optimization problems of ft and gt. Thus, we 402

update ft, gt and λt separately and iteratively in a 403

coordinate-descent style. Formally, let θkf , θkg and 404

θkλ be the network parameters for fk, gk and λk at 405

the optimization iteration k, the update procedures 406

are as follows. 407

θk+1
f = θkf −▽fL(f, gk, λk)

θk+1
g = θkg −▽gL(fk, g, λk)

θk+1
λ = θkλ −▽λL(fk+1, gk+1, λ)

(6) 408

5 Experiments 409

To improve sample efficiency, ARIA automatically 410

refines the annotation suggestions from any pre- 411

ferred model annotator. As such, higher sample 412

efficiency can improves model accuracy on the lim- 413

ited data and lowers human labors. In this section, 414

extensive experiments are conducted to evaluate 415

the effectiveness of ARIA in terms of the human 416

correction labor and sample efficiency. Specifically, 417

we are interested in the following questions. 418

• Q1: How much human correction labors can 419

ARIA reduce compared to the conventional 420

interactive annotation? 421

• Q2: How many gains does ARIA bring with 422

regard to the sample efficiency? 423

• Q3: Without human labors on tuning parame- 424

ters, does the dynamic weighting mechanism 425

achieve promising results? 426

5.1 Experiment setup 427

Considering the cost and reproducibility of human- 428

computer interaction, we report the results of sim- 429

ulation experiments and human evaluations. We 430
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Figure 2: Illustration of annotation performance on various data sets. The X-axis and Y-axis represent the number
of data to annotate and the Machine Cumulative Accuracy, respectively.

focus on the annotation task in the token-level and431

sentence-level settings, including knowledge graph432

completion and sentiment analysis.433

Dataset. For simplicity, we use the non-434

contextual pre-trained GloVe (Pennington et al.,435

2014) for word embedding and sentence embed-436

ding without fine-tuning. The contextual one (e.g.,437

BERT embedding) is not used, because the token-438

level task in our setting has no context information.439

Following previous work (Dou et al., 2019), we440

simulate the interactive annotation process for the441

limited data annotation setting. We place restric-442

tions on the size of the data set, ranging from 1K443

to 5K with the step size being 1K (i.e., 1000).444

• Knowledge graph completion (KGC). We fo-445

cus on annotating the semantic class of the446

input word pair. Here, two benchmark knowl-447

edge graph data sets are used in our experi-448

ments, including WN18RR3 and Freebase4.449

• Sentiment analysis (SA). Two benchmark450

data sets are used in our experiments, includ-451

ing SST5, and IMDB6. In this case, the human-452

machine team is required to annotate the sen-453

timent label for the input data.454

Comparative Methods. Considering the re-455

quirements of the annotation system for the time ef-456

ficiency of annotation, we use a lightweight model457

for experiments. The classic distributional model458

(Roller et al., 2014; Kober et al., 2021) and Fast-459

Text (Joulin et al., 2017) are utilized in token-level460

and sentence-level annotation tasks, respectively.461

Considering previous works on interactive annota-462

tion focus on active learning, to comprehensively463

3https://paperswithcode.com/dataset/wn18rr
4https://www.microsoft.com/en-

us/download/details.aspx?id=52312
5https://nlp.stanford.edu/sentiment/code.html
6https://www.kaggle.com/datasets/lakshmi25npathi/imdb-

dataset-of-50k-movie-reviews

evaluate the sample efficiency enhancement, all 464

methods are equipped with uncertainty-based ac- 465

tive learning (Ren et al., 2020), denoted as Dist. 466

w/ AL and FastText w/ AL, and passive learning 467

(i.e., random strategy), denoted as Dist. w/ PL 468

and FastText w/ PL. Methods without analogical 469

reasoning enhancement play the role of baselines. 470

Furthermore, we analyze the effectiveness of the 471

dynamic weighting mechanism and compare it with 472

the fixed weighting strategy, used in the memory- 473

based model (Khandelwal et al., 2019; Kassner and 474

Schütze, 2020; Khandelwal et al., 2020). 475

Evaluation Metric. Interactive annotation as- 476

sumes human annotation is the ground truth. We 477

only evaluate the annotation performance of the 478

machine, denoted as the Machine Cumulative Ac- 479

curacy (MCA), and the relative sample efficiency 480

conditioned on the baselines (See Section 4). Note 481

the values of relative sample efficiency of baselines 482

are 100%. Also, considering that machine errors 483

involve extra human labors to correct, the overall 484

human labors could be measured by the aforemen- 485

tioned Machine Cumulative Accuracy. Here, we 486

use the Exact Match between model and human an- 487

notations to calculate the accuracy, as data should 488

be annotated in deterministic labels, not the proba- 489

bilistic distributions. 490

Implementation details. All experiments are 491

carried out on a machine with Intel(R) Core(TM) 492

i5-12400F, 16GB memory, and GeForce RTX 3060. 493

For simplicity, the model annotator and the dy- 494

namic weighting mechanism are both implemented 495

by a three-layer FC with ReLu activation and 496

dropout. As for the analogical reasoning module, 497

we set k = 20 for ρt, and the size of analogies 498

buffer At is set as 1000 for all data sets. Also, we 499

apply the label smoothing trick according to Eq.(4), 500

so that ARIA could avoid over-confidence in ana- 501

logical solutions. To simulate the interactions with 502

the human expert, we mask out the ground truth 503
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Table 1: Machine Cumulative Accuracy gains of ARIA
over conventional interactive annotation paradigm.

Token-level Annotation (%) WN18RR FreeBase

ARIA + Dist. w/ PL 5.93 48.90
ARIA + Dist. w/ AL 5.24 69.21
Sentence-level Annotation (%) IMDB SST

ARIA + FastText w/ PL 14.19 2.93
ARIA + FastText w/ AL 13.83 5.6

Table 2: Relative sample efficiency gains of ARIA over
conventional interactive annotation paradigm.

Token-level Annotation (%) WN18RR FreeBase

ARIA + Dist. w/ PL 45.94 79.85
ARIA + Dist. w/ AL 31.73 121.64
Sentence-level Annotation (%) IMDB SST

ARIA + FastText w/ PL 217.26 29.50
ARIA + FastText w/ AL 591.47 43.22

labels until the model made predictions.504

5.2 Evaluation on labor reduction (Q1)505

Machine annotation suggestions should be accu-506

rate so that the human labor to correct annotations507

is saved. Therefore, the labor of human correct-508

ing annotations goes linearly with the number of509

machine misclassifications during the interactions.510

To evaluate the labor reduction in the limited data511

annotation setting, Figure 2 illustrates the curves of512

the Machine Cumulative Accuracy (MCA) of dif-513

ferent annotation methods. Table 1 further provides514

the relative MCA gains of ARIA, averaged over515

the different amounts of data to annotate. There are516

two main conclusions.517

First, ARIA, equipped with analogical reasoning,518

outperforms all baselines on both token-level and519

sentence-level tasks and improves the qualities of520

machine annotations. By estimation, ARIA, on av-521

erage, saves 9.14% and 32.32% human correction522

Table 3: Representative comparison for Model Cumula-
tive Accuracy (denoted as MCA) and Relative Sample
Efficiency (denoted as RSE) under 1K data.

Methods/Tasks MCA ↑ (%) RSE ↑ (%)

Token-level Annotation WN18RR FreeBase WN18RR FreeBase
Dist. w/ PL 44.63 14.06 100 100
Dist. w/ AL 39.06 10.84 100 100

ARIA + Dist. w/ PL 49.80 34.77 162.5 287.5
ARIA + Dist. w/ AL 43.46 33.01 137.5 375.0

Sentence-level Annotation IMDB SST IMDB SST
FastText w/ PL 56.25 31.05 100 100
FastText w/ AL 56.45 29.20 100 100

ARIA + FastText w/ PL 74.61 32.42 362.5 137.5
ARIA + FastText w/ AL 73.83 33.11 912.5 175.0

labors for sentiment analysis and knowledge graph 523

completion tasks, respectively. We further estimate 524

that the proposed method saves 20.73% human 525

labor to correct model suggestions over all data 526

sets. Moreover, such advantages hold along with 527

the increasing data size (See solid and dotted lines 528

marked in red in Figure 2), which indicates that our 529

analogical plug-in module generally works well on 530

different annotation tasks and data with different 531

sizes. For a better understanding, the representa- 532

tive results on 1K data are provided in Table 3. In 533

this simulation, users are extremely budgeted and 534

only afford to annotate very limited data. In this 535

case, ARIA saves 20.31% (31.71% on IMDB and 536

8.90% on SST) and 93.67% (11.42% on WN18RR 537

and 175.91% on FreeBase) human correction labor 538

on SA and KGC tasks, respectively. Compared to 539

Table 1, we argue ARIA brings larger performance 540

gains if the data are very limited. 541

Second, we notice that active learning may play 542

a negative role during the interactive annotation, 543

leading to the worse performance on WN18RR, 544

FreeBase, and SST data sets compared to the pas- 545

sive learning. One possible reason lies in the fact 546

that representative or informative data, selected by 547

active learning, may be hard for machine (Tang 548

and Huang, 2019) and require more training data 549

to learn (Kearns et al., 1994; Dasgupta, 2005; Ri- 550

etz and Maedche, 2021). In the case of limited 551

data annotation setting, those valuable data from 552

active learning strategy thus lose advantages com- 553

pared to ones from passive learning (Pezeshkpour 554

et al., 2020). This further supports the necessity 555

of building analogies during the human-machine 556

interaction in the limited data annotation setting. 557

5.3 Evaluation on sample efficiency (Q2) 558

Table 2 and Table 3 demonstrate the results in terms 559

of relative sample efficiency conditioned on the 560

baseline to ease comparison, where the target per- 561

formance levels pl are set to be the MCAs of ARIA 562

under different data size. In essence, ARIA en- 563

joys much high sample efficiency, where the infor- 564

mation of each data is used to not only train the 565

machine but also regarded as analogies, which re- 566

fines the machine annotation suggestions. More 567

statistically speaking, the average values of rela- 568

tive sample efficiency gains over baseline under 569

different data sizes are reported in Table 1. By 570

estimation, it also saves 9.14% and 32.32% hu- 571

man labors for sentiment analysis and knowledge 572
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Figure 3: Machine Cumulative Accuracy of ARIA with
different weighting strategies. To save space, we denote
ARIA and baseline as F and f , respectively. f1 means
ARIA with the fixed weight being 0.1, and so on.

graph completion tasks respectively, to finish anno-573

tation. On average, we estimate that the proposed574

method enjoys 145.08% gains over all data sets,575

indicating that analogical reasoning help save rela-576

tive 145.08% human annotations for the machine to577

reach the required performance level. As shown in578

the MCA curve in Figure2, the learning efficiency579

of the model annotator on FreeBase and IMDB580

is relatively lower, especially in the early stage of581

the learning process. This means that the model582

requires more data to train to reach the same perfor-583

mance level as ARIA. It explains the reason why584

ARIA largely outperforms baselines on FreeBase585

and IMDB on FreeBase and IMDB in terms of rela-586

tive sample efficiency. In our opinion, the improved587

sample efficiency contributes to the MCA gain of588

ARIA, allowing to learn and generalize efficiently 589

from only a few data. 590

5.4 Analysis on dynamic weighting (Q3) 591

Our dynamic weighting mechanism adjusts λ auto- 592

matically without human tuning. In this section, we 593

consider the ARIA with a fixed weighting method 594

(See section 4.2.2) for comparison. Here, the the 595

λ (i.e., the weight) is tuned from 0.1 to 0.9 with 596

step size being 0.1. As illustrated in Figure3, our 597

results are in line with previous studies, stating that 598

different tasks with different training data have a 599

different optimal value of λ. According to our tun- 600

ing experiments, the optimal λ is in {0.1, 0.3, 0.5} 601

for different data sets, which are largely different 602

from the previous studies. Primarily, λ = 0.7 is 603

suggested for QA (Kassner and Schütze, 2020) and 604

λ ∈ {0.2, 0.3, 0.8} for machine translation (Khan- 605

delwal et al., 2020), it also takes different values 606

(λ ∈ {0.2, 0.75, 0.9}) on different training data 607

when building language model (Khandelwal et al., 608

2019). Therefore, the fixed weighting methods are 609

infeasible for the interactive annotation, as they 610

take some trial and error to tune λ accordingly, 611

hence involving more human labor. On the con- 612

trary, by treating λ as a trainable parameter, our 613

dynamic weighting mechanism reaches the sub- 614

optimal performance (see section 4.2.3 for expla- 615

nation). We argue it is the trade-off between anno- 616

tation performance and human labor. When human 617

labor are budgeted, our dynamic weighting mecha- 618

nism is a better choice. 619

6 Conclusion 620

We call attention to the sample efficiency in the 621

limited data annotation setting. To this end, we 622

propose ARIA and highlight the model-agnostic 623

plug-in module and the dynamic weighting mech- 624

anism. They explore a new solution to improve 625

sample efficiency and bring more flexibility in al- 626

lowing the expert to design any preferred model 627

annotator according to different annotation tasks. 628

We are devoted to optimizing human-machine 629

utilities by emphasizing the learning of task- 630

specified concepts efficiently from a few human 631

demonstrations. To achieve this long-term goal, 632

we start from the basic idea of sample efficiency. 633

However, there is a loose ending to our discussion. 634

In the future, we would extend our research scope 635

by involving more proactive instructions from the 636

expert, such as machine teaching methods. 637
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Konrad Żołna, Chitwan Saharia, Leonard Boussioux,969
David Yu-Tung Hui, Maxime Chevalier-Boisvert,970
Dzmitry Bahdanau, and Yoshua Bengio. 2021. Com-971
bating false negatives in adversarial imitation learn-972
ing. In 2021 International Joint Conference on Neu-973
ral Networks (IJCNN), pages 1–9. IEEE.974

12


	Introduction
	Related Work
	Interactive annotation
	Sample efficiency
	Few-shot Learning

	Analogical reasoning.
	Method
	Sample efficiency
	ARIA: the proposed method
	Analogical reasoning module
	Dynamic weighting mechanism
	Loss function & Optimization


	Experiments
	Experiment setup
	Evaluation on labor reduction (Q1)
	Evaluation on sample efficiency (Q2)
	Analysis on dynamic weighting (Q3)

	Conclusion

