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ABSTRACT

As the demand for intelligent robots and cognitive agents rises, the ability to re-
tain and utilize past experiences through episodic memory has become crucial,
especially for social companion robots that rely on previous interactions for task
execution. To address this, we introduce Episodic Memory for Cognitive Agents
(EMCA), a novel framework that advances knowledge representation by integrat-
ing real-world interactions. EMCA enables agents to adapt to complex environ-
ments by learning from tasks, interacting with humans, and processing multimodal
data—such as speech, vision, and non-verbal cues—without pretraining on spe-
cific scenarios. EMCA models episodic memory through a graph-based structure ,
allowing for incremental storage and retrieval of experiences. Each interaction or
event enriches the memory graph, supporting continuous learning and adaptation
without extensive retraining. This human-like memory formation optimizes the
agent’s ability to retrieve relevant information for tasks like localization, planning,
and reasoning based on prior experiences. Unlike conventional models relying on
temporal markers or recurrent patterns, EMCA encodes data like human mem-
ory, allowing reasoning across diverse scenarios regardless of temporal patterns.
The framework dynamically builds a memory graph with semantic and temporal
connections based on the agent’s experiences, promoting flexible temporal reason-
ing. It also introduces mechanisms for clustering new memories and a dynamic
retrieval policy that adjusts based on context or query type, ensuring robustness
even in unpredictable scenarios. Empirical tests show EMCA adapts effectively
to real-world data, offering reliability and flexibility in dynamic environments.

1 INTRODUCTION

Episodic memory, introduced by Tulving (1972) Tulving (2002), refers to the recollection
of personal experiences anchored to specific times and locations. Unlike semantic mem-
ory, which contains general knowledge, episodic memory retains detailed information about
events, including temporal, spatial, emotional, and contextual aspects. Tulving’s framework
organizes episodic memory into components: time, place, characters, and events. Each
episode, as shown in Figure 1, is a synthesis of these components tied to a specific time.

Figure 1: Representation of a single episode
(node) in episodic memory, integrating time, char-
acter, place, and events.

Building on this framework, we propose a
model where episodic memories are organized
as a graph, with Each episode i is represented
as a node: Episodei = {Ci,Ti,Li, ei}.
Here, Ci denotes the characters, Ti the tempo-
ral aspects, Li the spatial location, and ei the
events. The graph is connected by two types of
edges: semantic edges S(vi, vj), linking nodes
with shared components, and temporal edges
T(vi, vj), establishing the sequence of episodes. A dynamic clustering approach is applied to group
similar episodes based on temporal and contextual similarities, optimizing retrieval efficiency.

Our retrieval system supports three query types: ”what” (contextual), ”when” (temporal), and
”where” (spatial), as outlined by Stephen et al., and Holland and Smulders (2011), enabling human-
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like memory recall. This is particularly valuable for applications in social companion robotics,
aiding elderly or memory-impaired individuals.

For such a cognitive agent it is important that it posesses the ability to recall episodic memories
is essential for human cognition, linking personal experiences to specific temporal and spatial
contexts. Existing memory models often struggle with continuous, time-series data, which limits
their ability to simulate episodic recall effectively. Many of these systems fail to store dialogues as
multimodal data, which prevents them from capturing the rich, context-dependent nature of human
memory. Additionally, most existing approaches store a single experience as one isolated episode
and lack a mechanism for retrieving information across multiple experiences, hindering their ability
to integrate knowledge over time. Furthermore, current episodic memory systems are typically
restricted to performing a specific, predefined task, limiting their flexibility and adaptability. In
contrast, our system is designed to be more versatile, capable of handling a variety of tasks and
dynamically adapting to new scenarios, making it far more suited for real-world applications that
require memory integration across different contexts and time periods. By integrating multimodal
data and temporal information into the episodic memory framework, our model enables experience
localization, recommendation, and episodic question answering. It provides a robust foundation
for adaptable, scalable systems capable of operating without frequent retraining, applicable to
real-world scenarios such as social companion robots and autonomous task planning systems.

Contributions:
1. Temporal connections are managed without complex pattern learning, enabling adaptive

reasoning and retrieval of subgraphs from past experiences.
2. The system incrementally stores and retrieves episodic memories, dynamically clustering

them based on temporal and contextual affinities.
3. A multi-edge graph framework optimizes path traversals for dynamic memory retrieval and

personalized recommendations across subjective timescales.
4. A new dataset is introduced to improve episodic memory question answering, enhancing

the agent’s ability to respond to queries based on past events.

Our model’s versatility is demonstrated through comparisons with existing systems that require re-
training. It handles various dataset types, including visual, multimodal, and text-based data, and ex-
cels in temporal reasoning even without explicit timestamps, addressing complex memory retrieval
tasks across diverse applications.

2 RELATED WORKS

Episodic memory in multimodal systems has seen significant progress. Xiong et al. Xiong et al.
(2016) proposed a memory framework centered on question-answer pairs, later enhanced by Han et
al. Han et al. (2019) with transformer-based networks and reinforcement learning, yet constrained
by predefined queries, limiting real-world use.

Temporal Graph Networks (TGNs) by Rossi et al. Rossi et al. (2020) facilitate learning on dynamic
graphs, finding applications in recommendations and social media. Associative memory models,
such as Hopfield networks Ramsauer et al. (2021), allow content-based retrieval but struggle with
irregular data. Sarıgun Sarıgün (2023) addresses dynamic temporal graphs, while TempoQR Mavro-
matis et al. (2021) excels in structured datasets with explicit event timing, unlike the contextual
inference required by real-world agents.

Episodic memory is also key in temporal localization for language queries, extending beyond
VideoQA Xu et al. (2021) to more complex scenarios. Techniques like 2D-TAN Zhang et al. (2020),
VSLNet-L Zhang et al. (2020), and RELER Liu et al. (2022) achieve video content localization but
operate independently for each video. Our model advances these by integrating audio-visual and
contextual inputs for comprehensive, context-aware outputs.

EMQA Datta et al. (2022) enriches VideoQA through episodic memory for improved responses.
Memory-Augmented Neural Networks (MANNs) Santoro et al. (2016), including STM Le et al.
(2020), DNC Xiong et al. (2016), and Rehearsal Memory Zhang et al. (2021), are models that make
use of memory system which store memory to answer questions from videos ,also Bärmann et al.
develop memory graphs for long-term retentionBärmann et al. (2024) in order to verbalize data
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for answering questions from prior memory . These models are trained using predefined question-
answer pairs and do not store audio or sound data, which makes them less suitable for supporting
episodic memory.Anokhin et al. (2024) merges semantic and episodic memory and is similar to
human memory but suffers from traversal inefficiencies due to complexity. Edge et al. Edge et al.
(2024) enhance retrieval-augmented generation (RAG) with graph indexing in academic domains,
and Mavromatis et al. Mavromatis & Karypis (2024) integrate LLMs and GNNs for multi-hop QA,
limited by static clusters. Our dynamic multi-edge graph approach adapts to multimodal, time-
series data by creating new clusters as the agent gains new experiences, enabling efficient retrieval
and enhanced flexibility in unstructured environments.

3 METHODOLOGY

EMCA’s methodology for collecting and structuring episodic experiences is inspired by cognitive
psychology, specifically the ’what’, ’where’, and ’when’ (WWW) components of episodic mem-
ory. This approach highlights the agent’s ability to independently capture multimodal data—visual
and auditory—to build a comprehensive understanding of its environment. As depicted in Figure
2, the system comprises two primary stages: Experience Memory Collection, where the agent au-
tonomously compiles and stores experiences in a knowledge base without pretraining, and Memory
Retrieval, where it recalls relevant experiences for question answering and reasoning. This method
enhances adaptability by utilizing prior experiences to inform decision-making. The episodic mem-
ory framework is applicable in diverse contexts, such as memory localization and experience-based
recommendation. Detailed methodology is given in Appendix B

3.1 PROCESSING OF AUDIO DATA IN EPISODIC MEMORY

Audio data, including dialogues and acoustics, is crucial for constructing episodic memory. Dia-
logue’s provide linguistic and contextual information, while acoustics capture environmental and
emotional cues. These elements are integrated as A(t) = D(t)+C(t), where A(t) is the total audio
data at time t, with D(t) representing the dialog and C(t) representing acoustics.

3.1.1 EXTRACTION OF ACOUSTIC DATA USING MEL SPECTROGRAMS

Acoustic data is transformed into Mel spectrograms, which emphasize perceptually relevant fre-
quencies. The Mel spectrogram M(t, f) is computed as M(t, f) = log

(∑
k |X(t, k)|2 ·H(f, k)

)
.

where X(t, k) is the magnitude of the STFT at time t and frequency k, and H(f, k) is the Mel filter
bank mapping linear frequencies to the Mel scale.

3.1.2 EXTRACTION OF VERBAL CUES FROM AUDIO DATA

Verbal cues are extracted by applying the Short-Time Fourier Transform (STFT) and converting the
spectrum to the Mel scale as M(f) = 2595 log10

(
1 + f

700

)
. The Mel spectrogram is then derived

as MelSpec(m, t) = log
(∑fhigh

flow
|S(f, t)|2M(f) + ϵ

)
, where ϵ is a small constant to prevent issues

with the logarithm.

3.1.3 INTEGRATION OF ACOUSTIC AND VERBAL FEATURES

The final audio representation integrates acoustic features with transcribed dialogue: Taudio(t) =
Tacoustics(t) + Tdialogue(t).capturing both tonal properties and linguistic meaning. By applying tag-
ging techniques to the processed audio data, we extract and associate place, character, and time
information. These features are then saved as an embedding, forming a unified representation for
episodic memory.

3.2 PROCESSING OF VISUAL DATA IN EPISODIC MEMORY

Visual data processing starts by transforming each frame Fi into a tensor and extracting global and
local features. The scene representation is then obtained as Vscene =

1
N

∑N
i=1 Vembed(Fi).

3
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Figure 2: Methodology:The agent collects multimodal experiences through vision and audio, which
are then synchronized by aligning them within specific time windows. The fused episode is stored
in episodic memory which is represented in the form of a graph that, capturing details such as
characters, time, place, and events and has both spatial and temporal edges. Upon receiving a query,
the model retrieves the relevant episode or set of episodes from memory and generates an appropriate
response.

where N represents the number of frames in the scene. To extract Vtime and Vplace, a convolution
network processes the feature map Ffeature(x, y), generating probability maps for the text center

lines (TCL) and text regions (TR):
(
PTCL(x, y)
PTR(x, y)

)
= σ

((
WTCL
WTR

)
· Ffeature(x, y)

)
. Thresholding is

applied to filter relevant text regions using the condition
Pfiltered = {(x, y) | PTCL(x, y) ≥ TTCL and PTR(x, y) ≥ TTR}.

Recognized text is processed with a softmax layer for classification: ŷt = Softmax(W · ht + b).
from which Vtime and Vplace are derived. Character information (Vcharacter) is extracted by associating
text and visual features through techniques such as Named Entity Recognition (NER) or vision-
language embeddings. Together, Vscene, Vtime, Vplace, and Vcharacter form a comprehensive multimodal
representation that captures contextual details for reasoning or retrieval tasks.

3.2.1 MERGING AND SYNCHRONIZING DATA

In the final stage, processed audio and visual data are synchronized to a common timestamp, form-
ing a unified representation: TM = (Taudio,Tvisual). This ensures temporal alignment between the
modalities. The audio and visual embeddings are then concatenated into a joint multimodal embed-
ding: Ecombined = Eaudio ⊕Evisual, which is stored in episodic memory, with each node representing
key experience aspects such as time, location, characters, and events.

This integrated embedding enhances memory recall and event-based analysis. Following concatena-
tion, the embedding is encoded to capture entities like place, time, and characters for each episode.
The methodology for capturing these entities is supported by prior studies, as shown in the appendix.

3.3 EPISODIC MEMORY REPRESENTATION

Each node in the episodic memory represents a day, with subnodes capturing the activities of
that day. The main node summarizes the day’s events, while subnodes encode specific event de-
tails. Joint embeddings, integrating place, character, and event information, are stored at both
the event and day levels. This hierarchical structure enables efficient encoding and retrieval
of both events and their details. There are two types of edges: contextual edges, which con-
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nect nodes based on similarities in place, character, and events, and temporal edges, which link
nodes temporally to reflect the sequence of events. Figure 3 shows an episodic memory graph.

Figure 3: The diagram il-
lustrates an episodic mem-
ory graph that organizes ac-
tions and key events hier-
archically. Nodes repre-
sent memories enriched with
textual, visual, and acoustic
data, including Mel spectro-
grams. Connections reflect
shared locations, characters,
and events, aiding efficient re-
call and analysis. Clusters are
formed using attention mech-
anisms on embeddings related
to shared characters, places,
and events, enabling effective
grouping of related episodes.

3.3.1 CLUSTER DEFINITIONS

When an agent receives an episodic experience, it assigns the ex-
perience to multiple clusters based on location, events, and charac-
ters: Location Cluster Cl, Character Cluster Cc, and Event Cluster
Ce. Each entity within a cluster is uniquely identified, facilitating
efficient memory organization and retrieval in alignment with the
hierarchical structure of episodic memory, where nodes represent
days and subnodes capture activities and events.

3.3.2 DYNAMIC CLUSTERING

When an agent gets an experience Text and visual embed-
dings are utilized to restore feature details and improve decision-
making. Spatial and character embeddings are derived from sim-
ilarities between locations and characters across episodes. For
each new episode En, these embeddings are evaluated and in-
tegrated into existing clusters using an attention mechanism:
attentionX(En, Ei) =

VXn ·VXi

∥VXn∥∥VXi
∥ , where X ∈ {location, char}.

This dynamic clustering process organizes memory based on spa-
tial, character, and event similarities. New episodes that do not
fit into existing clusters create new identifiers, ensuring continuous
cluster expansion.

Event clusters are formed by modeling coherence among con-
secutive utterances within dialogues, with each dialogue D =
(u1, u2, . . . , u|D|) consisting of |D| utterances. Instead of rely-
ing on expert annotations, we infer event structures by assum-
ing that utterances within the same event exhibit higher coherence than those spanning multiple
events. A contrastive learning objective is used to maximize coherence within event-related snippets
while minimizing coherence across different events. The contrastive coherence loss is defined as:
Lcontrastive =

∑
i [log p(positivei)− log p(negativei)], where positive and negative examples are se-

lected based on coherence metrics such as ROUGE score, facilitating unsupervised event clustering.
This approach allows for the segmentation of dialogues into relevant event clusters, improving the
system’s ability to retrieve and reason about past experiences, enhancing context-aware decision-
making. Once the new episode En is assigned to one or more clusters, the cluster definitions are
updated as follows: Cj

X = Cj
X ∪ {En} (10), where X refers to location, character, or event. If En

does not fit into any existing cluster, new identifiers are created in the cluster: Cnew
X = {En} (11),

where X ∈ {location, char, event}.

3.3.3 EDGE CONNECTION

Contextual edges between episodes are formed by analyzing shared clusters based on common
characters, locations, or events. The similarity between two episodes E1 and E2 is deter-
mined by the number of overlapping clusters, with an edge created if two or more clusters are
shared. The edge weight is computed by combining the location, character, and event similari-
ties: Weight(E(N1, N2)) = L(N1, N2)∥C(N1, N2)∥E(N1, N2), where L(N1, N2), C(N1, N2),
and E(N1, N2) represent location, character, and event similarities, respectively. The primary
connection between episodes is established by the maximum similarity across these features:
Link(E(N1, N2)) = argmax ({L(N1, N2),C(N1, N2),E(N1, N2)}).
Temporal Edges are defined by the time relationship between consecutive episodes. The temporal
connection between episodes Et−1 and Et is represented as Tedge(Et−1, Et) = 1. Temporal edges
help handle missing timestamps, as no traditional statistical methods are used to estimate them.
Instead, each episode is treated as representing a distinct day, and the temporal indexer is updated
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based on visual or dialogue-based date capture. This ensures that the timestamp of any episode
is adjusted accordingly, with subsequent episodes indexed relative to this structure. For instance,
the ”before” node is one day prior, and the ”after” node is one day later. Even without external
timestamps, the model understands the temporal order of episodes via temporal edges, maintaining
consistency in the passage of time as the agent processes the information.

3.3.4 DYNAMIC EPISODE RETRIEVAL

Figure 4: Dynamic edge
traversal. Episodic graph
representation of event rela-
tionships with different edge
weights. The start node (E1)
is highlighted in cyan, and
the node with the highest
similarity (E5) is in yellow.
Edge colors and styles denote
distinct relationship types:
temporal edges (solid black),
location weights (dashed
blue), character weights (dot-
ted red), and event weights
(solid green). The legend
clarifies the significance of
the nodes and edges in the
graph.

Figure 4 illustrates dynamic edge traversal for retrieving relevant
memories using character, location, event, and temporal weights.
The agent classifies the query q using language models to deter-
mine whether it is a ”what”, ”when”, or ”where” query. ”What”
queries focus on events, ”when” queries on temporal details, and
”where” queries on locations. This classification allows the agent
to assign the appropriate context and efficiently retrieve relevant
memories. Temporal entities (e.g., weeks, months, years) are pro-
cessed by subtracting fixed intervals from the current date: 7n days
for weeks, 30m days for months, and 365y days for years, where n,
m, and y are positive integers.

The similarity score between the query q and a set Du of memory
entries is given by Ss =

∑
e∈Du

q·e
∥q∥∥e∥ . For each neighbor v of

node u, the weight Wuv is computed as Wuv =
∑

w(u, v). If
Wuv > θ, the query set is updated as Q← Q ∪ (v,Wuv).

Temporal edges Tedge(Et−1, Et) maintain the sequence of events
without re-evaluating the entire graph, with date and time rep-
resented as separate nodes for indexing. Explicit timestamps in
queries map directly to temporal nodes, while contextual queries
traverse the graph based on query type: event weights for ”what,”
temporal weights for ”when,” and location weights for ”where”
queries. This framework (Figure 4) efficiently retrieves memory
clusters, providing task-specific outputs: free-form text for episodic
QA and recommendations, memory nodes for experience localiza-
tion, and goal directives for RL agents (AppendixE.4).Additional
details of dynamic node retrieval are given in Appendix B.5

3.4 IMPACT OF NODE REMOVAL ON CONNECTIONS

When an episode, such as E2, is removed from the dynamic graph as part of the forgetting mech-
anism, its associated semantic links are eliminated, disrupting connections. However, the temporal
edges are readjusted, allowing E3 to connect to the next relevant node, preserving the chronological
structure. Consequently, E3 updates its temporal link to E1, maintaining event sequence continuity.
This selective removal of semantic associations, while preserving temporal coherence, eliminates
the need for a full graph reevaluation. The remaining nodes retain contextual relevance, enabling
the agent to reason based on prior experiences. Thus, implementing a forgetting mechanism does
not compromise the integrity of the episodic memory graph. We have tested node removal mech-
anism by using frequency based weight decay to prune nodes as described in Appendix C. Results
after node pruning are given in E.2.2

4 RECOMMENDATION USING EMCA

When assisting individuals with memory impairments, a cognitive agent utilizes past interactions
to provide personalized support by extracting a personalized cluster Cp, representing the relevant
memory subgraph for the individual. This subgraph consists of episodes, actions, and events related
to the person:

Cp = {Gp | episodes associated with person p}
where Gp = (Vp, Ep) includes episodes Vp and edges Ep, preserving temporal and contextual
information.

6
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The agent then identifies event clusters Ce, representing actions performed by the individual over
time:

Ce = {Ee | events associated with episodes in Gp}

To provide recommendations, the agent identifies the most recent event sequence St =
(S1, S2, . . . , St) and searches the memory subgraph for a matching sequence, determining the next
action St+1 = argmaxS∈Gp

I(St ⊂ S).

If multiple matches occur, the most frequent next event is selected: St+1 = mode({St+1 ∈ S | St ⊂
S,S ∈ Gp}) This method allows the agent to generate recommendations even without recurring
patterns, leveraging past episodic data to support individuals with memory impairments. Temporal
graph networks and Hopfield memory networks rely on pattern recognition to predict future actions.
In contrast, our approach allows the agent to make predictions and provide recommendations without
depending on explicit pattern-based mechanisms, offering more flexible and adaptive support for
individuals with memory impairments.

5 DATASET

We propose a comprehensive dataset framework designed to evaluate and enhance episodic memory
systems in artificial agents. This framework integrates multiple datasets, including a custom set of
episodic questions based on the TV series The Big Bang Theory, spanning all nine seasons (181
episodes). The aim is to assess memory recall and narrative understanding in complex scenarios.

We introduce the Agent Dataset, a 10-episode time-series dataset created in Unity3D, where a virtual
agent performs tasks and interacts with characters in realistic environments, simulating the role
of companion robots. This dataset emphasizes the importance of multi-sensory inputs and task
execution, challenging the agent to process and integrate information from dialogues and visual
cues to maintain task order and achieve context-driven objectives.

Additionally, we adapted the Ego4D dataset, restructuring its activity sequences into simulated
chronological episodes to address the original absence of time-series data—portraying an agent
performing a series of activities over 30 days. We also combined group activity videos designed
for active speaker recognition. This transformation enables episodic queries such as ”Where did I
place the agricultural tool on the last day of farming?”, enhancing the ability to localize and retrieve
temporal experiences effectively.

Together with the PerLTQA Du et al. (2024) and LLQA Dolan & Brockett (2005) datasets,
which test essential episodic memory dimensions—”what” (context), ”when” (time), and ”where”
(place)—this framework forms a robust benchmark for evaluating advanced episodic memory capa-
bilities in AI systems.

Data Annotation: The data was carefully annotated to tag scene information and identify charac-
ters in dialogues, ensuring that the model could recognize character presence and understand related
events. This included explicitly tagging scene details for location identification and differentiating
characters present in the scene versus those mentioned. Events within dialogues were also meticu-
lously annotated to capture key details, facilitating effective memory representation beyond simple
summaries. Capturing these essential details is crucial for episodic memory tasks, as it allows the
agent to recall past experiences accurately. Each episode was annotated with 10 what, when, and
where questions.

Data Statistics: The dataset includes a distribution of question types: temporal questions make up
24%, spatial questions 38%, contextual questions 18%, multimodal questions (integrating visual
and auditory information) 10%, and dialogue-based questions 10%. These detailed annotations
enable the model to handle temporal, spatial, and contextual elements, as well as multimodal inputs,
ensuring comprehensive event recognition and effective interaction.

6 EXPERIMENTS AND EVALUATION

We evaluate our episodic memory cognitive agent (EMCA) on downstream tasks such as episodic
memory question answering, benchmarking it against state-of-the-art graph-based and memory
models. The agent’s performance is tested on memory localization and multimodal memory-based

7
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visual QA. An ablation study compares clustered and non-clustered approaches while assessing the
impact of modality removal on episodic memory. These experiments leverage the episodic memory
dataset, with EMCA implemented using Whisper, CLIP, and BERT backbones. Additional details
are provided in the AppendixD.

6.1 EVALUATION METRICS

The performance was assessed using recall accuracy for episodic memory question answering (QA),
defined as Episodic Recall = Number of Correctly Answered Questions

Total Questions . Additionally, the mean Intersection
over Union (mIOU) score was employed to evaluate episodic memory localization.

6.2 COMPARISON WITH SOTA GRAPH MODELS AND EPISODIC MEMORY QA MODELS

We conducted experiments comparing our approach with state-of-the-art models, including
EMR, GraphRag, GNN Rag, TempoQA, and Arigraph, for retrieving relevant information
from datasets based on episodic questions. The table below presents a comparative analysis
across various datasets, assessing contextual, temporal, spatial, and overall performance metrics.

Figure 5: Comparison of Retrieval Times for Var-
ious Methods: The chart displays the time taken
(in seconds) to retrieve correct memories for four
datasets: blue for Big Bang Theory, green for
PerLTQA, red for Agent, and cyan for LLQA. The
stacked bars represent the cumulative retrieval
time for each method

EMR and Dynamic MemQA are pioneering ap-
proaches for episodic memory in multimodal
QA, while Arigraph integrates semantic and
episodic memory for human-like recall, and
TempoQA manages temporal data for time-
sensitive event comprehension. GraphRag and
GNN Rag utilize graph-based memory and
retrieval-augmented generation to handle com-
plex data structures. These models were se-
lected to benchmark EMCA against diverse
memory models, graph-based RAG methods,
and graph structures, including knowledge
graphs and temporal graphs. Figure presents
the time taken (in seconds) by different meth-
ods for various datasets, including Big Bang
Theory, PerLTQA, Agent, and LLQA. Our
model demonstrates significantly faster retrieval times compared to other approaches, particularly
when contrasted with methods like Arigraph and TempoQA, which are slower due to their reliance
on more computationally intensive processes.

Table 1 demonstrates EMCA’s superior performance across four datasets, highlighting its advanced
multimodal capabilities and efficient storage and retrieval mechanisms. By integrating textual, vi-
sual, and acoustic data, EMCA handles diverse queries effectively, achieving high recall accuracy in
contextual, temporal, and spatial questions.

EMCA’s hierarchical clustering organizes episodic memory by characters, locations, and events, en-
abling precise retrieval and reducing noise. This dynamic approach outperforms static graph models
like GraphRag and GNN Rag, which lack adaptability. EMCA’s ability to integrate multimodal
data and retrieve targeted memories makes it uniquely suited for episodic memory-based question
answering. Additional results with memory models are shown in Appendix E.1.

6.3 EPISODIC MEMORY LOCALIZATION

We evaluated our model’s performance in episodic memory localization using time-series-based
questions. Table 2 compares our results with state-of-the-art (SOTA) models recognized for their
effectiveness in multimodal data handling within the Ego4D dataset. Metrics include IOU@0.3 with
Recall@1 (R@1), IOU@0.5 with Recall@5 (R@5), and mean IOU (mIOU).

While SOTA models excel in multimodal data tasks, they struggle with video localization using
time-series data, which is critical for maintaining accurate, context-aware recall in episodic mem-
ory systems. By saving data as a time series, our approach ensures precise temporal alignment,
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Dataset Method Contextual Temporal Spatial Total

Big
Bang
The-
ory

Ours 75 80 76 78
Dynamic Memory QA 5 8 7.5 10
EMR 14 10 13 15
GraphRag 32 30 30 30
GNN Rag 25 24 23 27
TempoQA 21 20 19 25
Arigraph 25 24 25 26

Perltqa

Ours 90 95 89 90
Dynamic Memory QA 30 15 21 40
EMR 31 20 23 45
GraphRag 35 40 42 38
GNN Rag 60 51 57 55
TempoQA 45 50 51 52
Arigraph 55 75 71 79

Agent
Dataset

Ours 77 90 90 86
Dynamic Memory QA 33 30 31 37
EMR 36 32 33 40
GraphRag 31 20 29 27
GNN Rag 50 51 55 53
TempoQA 40 45 31 37
Arigraph 52 53 53 51

LLQA

Ours 86 85 86 86
Dynamic Memory QA 10 20 15 20
EMR 15 23 20 23
GraphRag 24 23 22 21
GNN Rag 49 45 40 46
TempoQA 42 41 45 45
Arigraph 50 51 42 52

Table 1: Comparison of Recall Accuracy for Different Question Types Across Datasets
Method IOU = 0.3 R@1 IOU = 0.5 R@5 mIOU
2D-TAN 4.32 2.60 5.62
VSLNet 8.09 7.03 7.65
CONE 10.55 7.54 9.04
RELER 12.89 8.14 10.51
SPOTEM 18.13 13.43 15.78
Ours 26.46 25.5 25.98

Table 2: Performance comparison on episodic memory localization.

minimizes outdated recall, and enhances context comprehension. Furthermore, integrating visual
and dialogue modalities provides a comprehensive understanding of interactions and events, signif-
icantly improving episodic memory localization. Visualization of Episodic memory localization is
as given in Appendix E.3

6.4 ABLATION STUDIES

We validated our EMCA approach by systematically removing different modalities from the archi-
tecture: first the visual module, then the speech module, and finally the music module. Performance
was evaluated on videos from The Big Bang Theory and the Agent Dataset by posing episodic ques-
tions. The episodic recall capacity, as detailed in 6.2, was assessed based on these crafted episodic
questions. Additionally, we measured retrieval time as the number of episodes increased.

Modalities Big Bang
Theory

Agent
Dataset

Full 78 86
No Vision 16 15

No Acoustics 65 40
No Dialogues 36 20

Table 3: Comparison of
Modalities.

Method Retrieval
Time (Average)

Dynamic Traversal 5.6
BFS 8.9
DFS 11

DFS + BFS 7.75

Table 4: Graph Traversal Re-
trieval Times.

Number of
Episodes

Retrieval
Time (ms)

10 9.11

50 11.0

100 11.5

181 12.0

Table 5: Retrieval Times vs.
Episodes.

As shown in Table 3, retaining all modalities is essential for agents operating in multimodal envi-
ronments to make informed decisions and reason effectively based on past events.

9
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Figure 6: Comparison of the Number of Edges Traversed and Retrieval Time (ms) by Query Type
for Clustered and Non-Clustered Approaches

Assessment of Retrieval Time Across Traversal Methods

We evaluated the time complexity of our dynamic graph traversal method against traditional tech-
niques, summarized in Table 4. The dynamic traversal method demonstrated the lowest average
retrieval time, outperforming BFS, DFS, and their combined approach. When explicit timestamps
are provided, queries are treated as temporal, leading to faster retrieval compared to event-based
queries.
Comparing clustered and non-clustered graphs in terms of number of path traversals required
and time taken to retrieval query As shown in Figure 6, the dynamic clustered graph significantly
reduces query retrieval time and the number of edges traversed compared to the non-clustered graph,
demonstrating the efficiency of clustering in optimizing graph traversal. Dynamic edges and clusters
enhance adaptability, improving performance across various query types. Table 5 shows a modest
increase in retrieval time as the number of episodes grows, highlighting the clustering mechanism’s
role in keeping retrieval times low. These results emphasize the scalability and efficiency of our
method. Replacing an episodic memory graph with a knowledge graph introduces significant com-
plexity, especially when incorporating temporal features. For instance, an episodic graph represents
three days of experiences with just three nodes, one per day, while a temporal knowledge graph may
require 15–20 nodes and edges, drastically increasing structural complexity. This added intricacy
hampers memory retrieval and action prediction, making them less efficient than the streamlined
architecture of episodic graphs. In visual domains, where patterns and regularities are prevalent,
knowledge graphs excel by leveraging these consistencies. However, in dynamic scenarios like
conversations, interactions are often unique, necessitating frequent creation of new relations. This
dynamic evolution further complicates the knowledge graph and reduces practical efficiency. Addi-
tional results, including ablation studies and node pruning effects, are detailed in Appendices E.2.1
and E.2..

7 CONCLUSION, LIMITATIONS, AND SOCIAL IMPACT

The EMCA system is designed to understand and process temporal timescales in a manner similar
to human cognition. It dynamically organizes events along subjective timescales, allowing it to track
and retrieve memories based on the relative importance of events rather than fixed timestamps. This
enables the system to adapt to varying time-frames, understanding how past experiences may influ-
ence present contexts. By mimicking human-like temporal reasoning, EMCA can handle queries
about ”when” events occurred in both short-term and long-term memory, adjusting its responses
based on the perceived significance of past events, much like human memory recalls important mo-
ments more vividly than routine occurrences.
Social Impact: The Episodic Memory Cognitive Agent has the potential to serve as a valuable so-
cial agent, particularly for individuals with memory-related disorders. However, without robust data
protection mechanisms, there is a risk of data breaches, which could have serious privacy implica-
tions.

Limitations: Currently, EMCA lacks a forgetting mechanism and the ability to identify key events,
as humans do, based on factors such as surprise, novelty, or emotional significance. These aspects
will be addressed in future work.
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A APPENDIX

The appendix provides a comprehensive overview of the research, including a detailed method-
ology, the forgetting mechanism, implementation specifics, and additional results. It explains the
approach used in the study, covering data preprocessing, model architecture, and the integration of
episodic and knowledge graph representations. The section on the forgetting mechanism discusses
the strategies employed to manage memory capacity, ensuring the system efficiently retains rele-
vant information. Implementation details include the experimental setup, hardware and software
configurations, dataset preparation, training procedures, and evaluation metrics used. Furthermore,
the appendix presents additional results, including extended analysis of model performance under
different conditions, comparisons across multiple datasets, and visualizations of graph structures,
offering a deeper understanding of the approach and validating its generalization.

B DETAILED METHODOLOGY

EMCA’s methodology for collecting episodic experiences in robotic cognition draws inspiration
from the human brain’s mechanisms for encoding sensory information, particularly the distinct roles
of the occipital and temporal lobes. In human cognition, the occipital lobe processes visual stimuli,
while the temporal lobe is responsible for auditory information. Despite these processes occurring
in specialized regions, the brain synchronizes these sensory inputs within a unified temporal frame-
work, enabling the formation of cohesive and contextually rich memories. EMCA replicates this
principle by employing separate pipelines for processing visual data (e.g., spatial and object recog-
nition) and auditory data (e.g., speech and environmental sounds), which are then temporally aligned
to construct a coherent representation of the agent’s environment.

The system comprises two core stages: Experience Memory Collection and Memory Retrieval.
During Experience Memory Collection, the agent autonomously gathers and stores multimodal ex-
periences in a structured knowledge base without requiring prior training. In the Memory Retrieval
phase, the agent leverages these stored experiences to answer queries, contextualize new events, and
reason effectively based on past interactions. By integrating visual and auditory modalities within
the same temporal window, EMCA achieves a sophisticated level of synchronization and contextual
understanding, akin to human episodic memory.

This approach enhances the adaptability and decision-making capabilities of the agent by enabling
it to draw upon prior experiences. Furthermore, the episodic memory system facilitates advanced
applications such as memory localization associating specific memories with spatial and temporal
contexts—and personalized recommendations based on historical data. The integration of biolog-
ically inspired memory encoding principles with robotic cognition underscores EMCA’s potential
for advancing human-like reasoning in artificial systems.

B.1 PROCESSING OF AUDIO DATA

B.2 PROCESSING OF AUDIO DATA IN EPISODIC MEMORY

Audio data is a critical component in constructing episodic memory, comprising dialogues and
acoustics. Dialogues provide semantic information, capturing the exchange of language, inten-
tions, and contextual meaning, while acoustics contribute environmental and emotional cues, such
as tone, pitch, and ambient sounds. Together, these elements enable a comprehensive understanding
of an episode, as the semantic content of dialogues combines with the situational context offered by
acoustics. The integration of these elements can be represented as:

A(t) = D(t) + C(t),

where A(t) is the audio data at time t, D(t) represents dialogues, and C(t) denotes acoustics. This
unified representation reflects the complementary roles of both components in capturing the richness
of episodic experiences. By processing and encoding dialogues and acoustics simultaneously within
the same temporal window, the system ensures that both the linguistic and environmental aspects of
an event are preserved, facilitating accurate retrieval and reasoning. This approach mirrors human
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cognitive processes, where the brain’s temporal lobe processes auditory signals and integrates them
with contextual understanding, thus enhancing the episodic memory system’s fidelity and utility.

B.2.1 EXTRACTION OF ACOUSTIC DATA USING MEL SPECTROGRAMS

Acoustic data plays a crucial role in episodic memory, capturing non-verbal and environmental au-
ditory cues that enhance contextual understanding. To process acoustic data, Mel spectrograms are
employed, which provide a time-frequency representation of audio signals while emphasizing per-
ceptually relevant frequencies. The process begins by segmenting the audio signal into overlapping
frames, followed by applying the Short-Time Fourier Transform (STFT) to obtain the frequency
spectrum. The resulting spectrum is then mapped to the Mel scale, a scale that approximates the
human auditory perception of frequency. This transformation allows for the focus on the frequency
range that the human ear is most sensitive to, providing a more relevant representation of the acoustic
environment.

The Mel spectrogram M(t, f) is computed using the following formula:

M(t, f) = log

(∑
k

|X(t, k)|2 ·H(f, k)

)
, (1)

where X(t, k) represents the magnitude of the STFT at time t and frequency k, and H(f, k) is the
Mel filter bank that maps the linear frequency k to the Mel scale frequency f . The resulting M(t, f)
represents the log-scaled Mel spectrogram at time t and Mel frequency f .

This approach of transforming the audio signal into a Mel spectrogram allows the system to capture
both the temporal and frequency domain features of the audio. By encoding these features, including
tone and environmental sounds, the system enhances its ability to understand the acoustic aspects
of an episode. This is analogous to how the human brain integrates auditory information with situ-
ational contexts to form a cohesive episodic memory. We use the Mel spectrogram for its low-level
features, which are essential for developing effective policies in future reinforcement learning (RL)
agents, enabling them to better interpret and interact with their auditory environments.

B.2.2 EXTRACTION OF VERBAL CUES FROM AUDIO DATA

Verbal cues, integral to understanding dialogues and interactions within episodic memory, are ex-
tracted from the audio signal by processing the speech content. The extraction begins with the com-
putation of the Short-Time Fourier Transform (STFT) to capture the frequency and time-domain
characteristics of the audio. These raw spectral features are then mapped to the Mel scale, aligning
with the auditory processing capabilities of the human ear, which focuses more acutely on certain
frequency ranges. The formula for this spectral processing is as follows:

S(f, t) =

N−1∑
n=0

si(n)w(n− t)e−j2πfn/N (2)

where S(f, t) represents the frequency-domain representation of the signal, with si(n) being the
signal at time step n, w(n− t) the windowing function, and e−j2πfn/N the frequency component.

Subsequently, the power spectrogram S(f, t) is converted to the Mel scale, a logarithmic transfor-
mation designed to better reflect the frequency response of the human auditory system:

M(f) = 2595 log10

(
1 +

f

700

)
(3)

This conversion ensures that the low frequencies, which are more perceptible to the human ear, are
more heavily weighted, reflecting natural auditory attention mechanisms.

The final Mel spectrogram is derived by aggregating the energy within the frequency bands that
correspond to the Mel scale:
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MelSpec(m, t) = log

fhigh∑
flow

|S(f, t)|2M(f) + ϵ

 (4)

where flow and fhigh are the frequency bounds, and ϵ is a small constant to avoid computational
issues with log of zero.

For further processing, the audio signal A(t) is resampled to a standard rate of 16 kHz and divided
into overlapping windows of 25 ms. An 80-channel log-magnitude Mel spectrogram SMel(t, f) is
then computed as follows:

SMel(t, f) = log

fhigh∑
flow

|S(t, f)|2 ·M(f)

 (5)

To normalize the extracted Mel spectrogram, we apply a z-score normalization to ensure that the
features have zero mean and unit variance:

Snorm(t, f) =
SMel(t, f)− µ

σ
(6)

where µ and σ represent the global mean and standard deviation of the Mel spectrogram features
across the entire dataset.

Once normalized, the Mel spectrogram is passed through a series of convolutional layers with GELU
activations, which enable the network to extract high-level patterns from the spectrogram. The
GELU activation function is defined as:

GELU(x) = x · Φ(x) (7)

where Φ(x) is the cumulative distribution function of the standard normal distribution, providing a
smooth, differentiable non-linearity that accelerates learning.

Finally, a Bidirectional Pre-trained Transformer (BPT) model transcribes the processed acoustic
features into text, effectively integrating verbal cues from transcribed dialogues. This process allows
for a more accurate and contextual understanding of verbal interactions within the episodic memory
framework, enabling the system to recall and reason based on both acoustic and linguistic data.

B.2.3 FINAL REPRESENTATION OF AUDIO DATA

For the final representation of audio input, it is essential to merge both acoustic and dialogue data
into a unified form. Acoustic data, typically derived from the Mel spectrogram, captures the spectral
features of speech, such as tone, pitch, and rhythm, while the dialogue data consists of the transcribed
speech content. Both data types offer valuable, complementary information, and their combination
enables a more complete understanding of the audio signal.

The process involves aligning the acoustic features and the transcribed dialogue to the same temporal
framework, ensuring that both data sources correspond to the same timestamps. This temporal
synchronization results in the final, combined audio representation, which can be expressed as:

Taudio(t) = Tacoustics(t) + Tdialogue(t) (8)

Here, Taudio(t) represents the complete audio representation at timestamp t, formed by the sum of the
acoustic features, Tacoustics(t), and the transcribed dialogue, Tdialogue(t). The acoustic data provides
information on the tonal and rhythmic properties of the speech, while the dialogue data encapsulates
its linguistic meaning.

By merging these components at each timestamp, the system forms a rich, unified audio represen-
tation that integrates both the tonal nuances and the semantic content of the speech. This combined
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representation serves as the final, holistic audio input for further processing, enhancing the system’s
capacity to understand and interpret spoken language in a more nuanced and context-aware manner.

B.3 PROCESSING OF VISUAL DATA IN EPISODIC MEMORY

The processing of visual data begins with the extraction of features from individual video frames, a
critical step in converting raw image data into meaningful representations suitable for downstream
tasks. Each frame Fi is subjected to a series of transformations, beginning with resizing and normal-
ization to standardize the dimensions and scale of the image. This transformation converts the input
frame into a tensor Ti ∈ RC×H×W , where H and W are the height and width of the transformed
image, and C denotes the number of color channels (e.g., RGB). The transformation is formally
expressed as Ti = T (Fi), where T : RH0×W0×C → RC×H×W , with (H0,W0) being the original
dimensions of the frame.

Once the transformation is complete, each frame is further analyzed to extract both global and local
features. Global features G ∈ RD capture high-level semantic content of the frame, summarizing its
overall scene representation. Local features L ∈ RD×Hf×Wf , on the other hand, represent spatially
localized details, enabling the model to attend to specific regions of the frame, such as objects or key
areas of interest. These local features may then undergo downsampling, where a pooling function
P is applied to reduce their spatial dimensions, yielding Lp ∈ R(Hp×Wp)×D, where Hp and Wp are
the pooled spatial dimensions.

The final output consists of the global features G and the processed local features Lfinal, where
Lfinal = P (L) if downsampling is applied, or Lfinal = L if no downsampling is required. These
representations encapsulate both high-level semantic content and localized spatial information, al-
lowing for a comprehensive understanding of the visual input. To represent the entire video scene,
the visual embeddings of all frames Fi are aggregated using a mean operation, which serves to
summarize the temporal sequence of frames into a single, fixed-size representation:

Vscene =
1

N

N∑
i=1

Vembed(Fi) (9)

Here, N represents the total number of frames in the video. The aggregated embedding Vscene ∈
RD encapsulates the collective visual information of the scene, serving as a representative feature
for tasks such as video understanding, classification, and retrieval. Additionally, individual frame
embeddings Vembed(Fi) may be retained for detailed analysis, enabling finer-grained evaluation of
the video’s contents. This process effectively captures both local, fine-grained details and global,
high-level scene information, facilitating the model’s ability to understand and interpret complex
visual scenes.

B.3.1 EXTRACTING TIME AND PLACE DETAILS FROM IMAGES

Upon receiving visual data, the agent applies a multi-step algorithm to detect and extract textual
information. Initially, a convolution feature extraction network processes the image, producing a
feature map Ffeature(x, y) that highlights potential text regions. The network subsequently generates
probability maps for the text center line (TCL) and text regions (TR), denoted as PTCL and PTR,
through the following equations:(

PTCL(x, y)
PTR(x, y)

)
= σ

((
WTCL
WTR

)
· Ffeature(x, y)

)
(10)

where σ represents the sigmoid function, and WTCL and WTR are learned weight matrices. A thresh-
olding operation is applied to these maps, filtering out low-confidence regions:

Pfiltered = {(x, y) | PTCL(x, y) ≥ TTCL and PTR(x, y) ≥ TTR} (11)

A striding algorithm is then employed to extract ordered points along the TCL, based on displace-
ment defined by the radius r and orientation θ:
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Stride = ∆r · (cos(θ), sin(θ)) (12)

These points are used to reconstruct the text region, represented as an ordered sequence
{(x1, y1), (x2, y2), . . . , (xn, yn)}. The reconstructed text instances are then stored for further anal-
ysis, enabling the agent to extract relevant temporal and spatial information. Once the visual input is
processed through the convolutional and recurrent layers, text recognition is performed by a softmax
layer that predicts the probability distribution over the character set at each timestep. Mathemati-
cally, this can be expressed as:

ŷt = Softmax(W · ht + b) (13)

where ŷt is the predicted output at timestep t, representing the probability distribution over charac-
ters. ht is the hidden state of the LSTM at timestep t, and W and b are the learned weight matrix
and bias vector, respectively. The softmax function converts the raw logits into a probability distri-
bution, assigning likelihoods to the possible characters at each timestep. Once the text is recognized
through the softmax layer, the next step involves temporal and place tagging to extract relevant con-
textual information. Temporal tagging refers to identifying time-related cues within the text, such as
references to specific moments, durations, or sequences. Place tagging, on the other hand, involves
detecting spatial information, such as locations or references to physical spaces. These tags help fil-
ter out unnecessary details and ensure that only the most pertinent information is retained for further
processing. This approach enhances the ability to focus on time- and location-specific aspects of the
data, which is critical for tasks such as event prediction or contextual understanding. By applying
these filters, the system narrows the scope of relevant data, facilitating a more efficient and accurate
interpretation of the visual input.

To obtain person embeddings, the first step is to perform person recognition in the visual data. This
involves detecting and locating the person in the scene using a pre-trained model. After the person is
identified, we crop the corresponding region of interest (ROI) from the original image to isolate the
person. This cropped image is then processed through a feature extractor, which generates a unique
representation of the person, commonly referred to as a person embedding. This embedding captures
the distinctive visual characteristics of the person, and is stored in the memory for future reference
or decision-making processes. This procedure ensures that only the relevant features related to the
person are retained for further tasks, such as recognition or interaction.

B.3.2 MERGING AND SYNCHRONIZING DATA

In the final stage, the processed audio and visual data are synchronized to a common timestamp,
creating a unified representation:

TM = (Taudio,Tvisual)

This ensures temporal alignment between the two modalities, enabling coherent multimodal inter-
action. The audio and visual embeddings are then concatenated into a joint multimodal embedding:

Ecombined = Eaudio ⊕Evisual

where ⊕ denotes the concatenation operation.

This joint multimodal representation is stored in episodic memory, where each node represents a
specific experience, incorporating aspects such as time, location, characters, and events. By com-
bining the visual and audio information, this integrated embedding enhances memory recall and
supports detailed event-based analysis.

B.4 EPISODIC MEMORY REPRESENTATION

Each node in the episodic memory represents a day, with subnodes capturing the activities of that
specific day. The memory structure is hierarchical, where each day’s main node consolidates the
overall event, while subnodes encode the individual activities or events of that day. After generating
the joint embedding that integrates place, character, and event information, these embeddings are
further refined and organized within event nodes, which summarize the details of each event. The
main node, which corresponds to the day, retains a higher-level summary of the events, while the
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event nodes hold the specific details. This structure allows for efficient encoding and retrieval,
enabling the agent to access a detailed account of both the broader context and specific interactions,
improving the agent’s decision-making and understanding of past experiences. The joint embedding,
representing the integration of place, character, and event, is stored at both the event and day levels
for efficient memory recall.

B.4.1 DYNAMIC CLUSTERING

When an agent receives an episodic experience, it dynamically assigns the experience to clusters
based on location, events, and characters. Each experience may belong to multiple clusters: the
Location Cluster Cl, Character Cluster Cc, and Event Cluster Ce. Each entity within these clus-
ters is assigned a unique identifier, enabling efficient organization and retrieval of past experiences.
This clustering mechanism works in conjunction with the hierarchical structure of episodic memory,
where nodes represent days and subnodes capture specific activities and events, allowing for refined
memory encoding and improved decision-making.

B.4.2 CLUSTER INTEGRATION

Both text and visual embeddings are used to restore feature details and enhance decision-making.
Spatial and character embeddings are derived based on the similarity between locations and char-
acters across episodes. For each new episode En, these embeddings are evaluated and integrated
into the existing clusters. The attention mechanism evaluates the relevance of the new episode to
previously stored episodes using the formula:

attentionX(En, Ei) =
VXn

·VXi

∥VXn
∥∥VXi

∥
where X ∈ {location, char}, allowing for a dynamic clustering process that organizes memory by
spatial, character, and event-related similarities. When a new episode does not fit into an existing
cluster, a new identifier is created, ensuring that clusters continuously expand to accommodate new
data.

Event clusters are formed based on the content of dialogues, which exhibit high variability and
can span multiple events. The system evaluates conversations at the event level. Each dialogue
D = (u1, u2, . . . , u|D|) consists of |D| utterances, each of which can be assigned to one or more
events. Since event labels are often difficult to obtain without expert annotation or complex segmen-
tation algorithms, we instead infer the event structure by modeling the coherence among consecutive
utterances. The assumption is that utterances within the same event exhibit higher coherence than
those spanning multiple events.

To capture this, we introduce a contrastive learning objective. A dialogue is broken into snippets,
each consisting of a window of k consecutive utterances. Positive examples of snippets are those
within the same event, while negative examples are those spanning different events. The coherence
between snippets is evaluated using a contrastive loss function. Specifically, for a dialogue D,
the objective is to maximize the coherence between positive snippets and minimize the coherence
between negative ones. The contrastive coherence detection is formalized as:

Lcontrastive =
∑
i

[log p(positivei)− log p(negativei)]

where positive and negative examples are selected based on coherence metrics, such as ROUGE
score. This allows for unsupervised event detection and clustering.

The contrastive coherence detection, coupled with the learning of event relationships, allows for the
effective segmentation of dialogues into relevant event clusters. Contextual edges between episodes
are formed by analyzing shared clusters, which focus on common characters, locations, or events.
The similarity between two episodes E1 and E2 is determined by the number of overlapping clusters,
with an edge created if two or more clusters are shared.

The weight of the edge is calculated by combining the similarity scores of location, character, and
event embeddings:

Weight(E(N1, N2)) = L(N1, N2)∥C(N1, N2)∥E(N1, N2)
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where L(N1, N2) represents the location similarity between two episodes, C(N1, N2) corresponds
to the character similarity, and E(N1, N2) reflects the event similarity.

The primary connection, or ”link,” between two episodes is established by the maximum similarity
among the location, character, or event features:

Link(E(N1, N2)) = argmax ({L(N1, N2),C(N1, N2),E(N1, N2)})

Temporal Edges are defined by the time relationship between consecutive episodes. The tempo-
ral connection between episodes Et−1 and Et is represented as Tedge(Et−1, Et) = 1, with The
temporal weight is given by Tweight(Et−1, Et) = t− (t− 1) = 1.

B.5 DYNAMIC EDGE TRAVERSAL

Dynamic edge traversal for retrieving relevant memories using character, location, event, and tem-
poral weights. Based on the query q, the agent assigns tags: P ← E[People], L ← E[Location],
V ← E[Event], and R ← E[Temporal]. These tags enable the agent to focus on relevant aspects
of the query, addressing the ”What,” ”Where,” and ”When” elements that form the foundation of
episodic memory.

Episodic memory tasks, which often center on answering ”What-Where-When” (WWW) questions,
are designed to capture the essence of episodic memory. Such tasks have been extensively used to
study episodic(-like) memory in non-human animals, and similar methods can be applied to humans.
In this context, participants are tasked with recalling specific events (what), associated locations
(where), and their temporal sequence (when). These WWW tasks offer valuable insights into the
mechanisms of episodic memory and the strategies, such as mental time travel, employed to solve
them. For instance, studies have shown that participants actively memorizing WWW information
often rely on episodic memory systems, whereas those passively encoding such information may
engage alternative systems for where and when components.

Temporal entities, such as weeks, months, or years, are processed by subtracting fixed intervals from
the current date. The number of weeks is calculated by subtracting 7n days, the number of months
by subtracting 30m days, and the number of years by subtracting 365y days, where n, m, and y are
positive integers. This mechanism allows the agent to account for temporal relationships without
explicit date references, enabling the handling of time-related queries in a flexible manner.

The similarity score between the query q and a set Du of memory entries is computed as Ss =∑
e∈Du

q·e
∥q∥∥e∥ . This score uses cosine similarity to assess the relevance of each memory entry in

the context of the query.

For each neighbor v of node u, the weight Wuv is calculated by Wuv =
∑

w(u, v), where w(u, v)
aggregates the weights of shared features, such as characters, locations, and events. If Wuv > θ, the
query set is updated as Q ← Q ∪ (v,Wuv). Temporal edges Tedge(Et−1, Et) persist, allowing the
agent to maintain continuity in the memory graph and reason contextually without re-evaluating the
entire graph. This approach ensures the efficient retrieval of temporally connected events, supporting
the dynamic traversal of episodic memories.

Location-tagged queries explore place clusters, character-tagged queries utilize character-based con-
nections, and event-tagged queries trace event-related edges. This traversal strategy ensures that
episodic memory is effectively leveraged to answer WWW queries, enabling the agent to recall not
only the specific details of events but also their spatial and temporal context. These capabilities are
crucial for supporting decision-making processes in scenarios that rely on detailed memory recall.

C NODE PRUNING AND TEMPORAL EDGE UPDATING IN GRAPHS

In graph theory, pruning involves the selective removal of nodes while ensuring the structural in-
tegrity of the graph is maintained. A critical aspect of this process is the treatment of temporal
edges, which represent time-dependent relationships between nodes. The temporal edge updating
mechanism can be described as follows:
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For a node n to be pruned, temporal edges Etemporal(n) are first identified. These edges connect n to
its temporal neighbors and are classified by the attribute edge type = temporal. Once the temporal
edges are identified, the temporal neighbors T (n) are evaluated, resulting in two possible scenarios.

If the node n has two temporal neighbors, denoted as nbefore and nafter, the edges (nbefore, n) and
(n, nafter) are removed. To preserve the temporal relationship, a new edge (nbefore, nafter) is intro-
duced with the attribute edge type = temporal:

E ← E \ {(nbefore, n), (n, nafter)} ∪ {(nbefore, nafter)}.
This operation ensures that the temporal continuity between nbefore and nafter is preserved after n is
removed.

If n has only one temporal neighbor nconnected, the sole temporal edge (nconnected, n) or (n, nconnected)
is simply removed:

E ← E \ {(nconnected, n)} or E ← E \ {(n, nconnected)}.
In this case, no new edge is added, as the temporal connection terminates with the removal of n.

After updating the temporal edges, the node n is removed from the graph, ensuring it no longer
contributes to the structure:

V ← V \ {n}.

Non-temporal edges connected to n are retained without modification, preserving static relation-
ships.

This process ensures that temporal relationships in the graph are maintained or updated appropri-
ately, allowing for meaningful temporal reasoning and analysis even after node pruning. The ap-
proach safeguards the continuity of temporal information while ensuring that the graph remains
coherent and analyzable.

D IMPLEMENTATION DETAILS

For event extraction in dialogues, we utilized a Transformer-based BART model initialized with
pre-trained weights to effectively extract and summarize events within contextual boundaries. The
architecture options included BARTBASE, with a 6-layer encoder-decoder and approximately 140
million parameters, and BARTLARGE, featuring a 12-layer encoder-decoder and 400 million pa-
rameters. Both configurations maintain a hidden size of 1024 and a feed-forward filter size of 4096,
with dropout rates fixed at 0.1 across layers. The Fairseq toolkit was employed for training, with
the Adam optimizer using warmup strategies. Learning rates were set at 4 × 10−5 and 2 × 10−5

for BARTBASE and BARTLARGE, respectively, with batch token limits set at 1100 tokens. Con-
trastive objectives were supported by a margin coefficient of 1, while hyperparameters for coherence
and sub-summary objectives were tuned using a validation set. Our approach showed significant per-
formance improvements compared to publicly available models trained on datasets such as SAM-
SUM and DialogueSUM.

For visual processing, a Vision Transformer (ViT) served as the vision encoder, specifically
adapted for video frame analysis from the MSR-VTT dataset. The encoder processed 224 × 224
video frames, segmented into patches of size 16, and embedded these into a 512-dimensional la-
tent space. This 12-layer encoder had a width of 768 and utilized LayerScale (initialized at 0.1)
for training stability. Advanced regularization methods, including stochastic depth with a variable
drop path rate, were applied. The encoder was based on the “eva-clip-b-16” model and proved
effective for extracting detailed spatial and temporal features essential for multimodal tasks.

For LLaMA-based models integrating vision and dialogue for character and place tagging, a mul-
timodal configuration was employed. ViT was used for image processing while LLaMA handled
dialogue inputs. The training included cross-entropy loss for character tagging, contrastive loss for
image-text alignment, and incorporated episodic memory for QA tasks. Training leveraged the
AdamW optimizer, a dropout rate of 0.2, and a cosine annealing scheduler for efficient learning.

Temporal tagging was configured with key hyperparameters for optimal performance: maximum
sequence length of 128, batch size of 32, and a learning rate of 5 × 10−5. Dropout was set at 0.1
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to mitigate overfitting, and weight decay at 0.01 to improve generalization. Training spanned 10
epochs to ensure learning adequacy while avoiding overfitting.

For text detection, the TextSnake model was trained on the SCUT-CTW1500 dataset using SGD
with Momentum as the optimizer. The architecture combined ResNet and FPN UNet, with training
configurations involving a batch size of 64 and 8 workers for data loading. The validation batch size
was set to 1 with 4 workers, and persistent workers were enabled. The training was set for 200
epochs with validation checks every 10 epochs.

The QA system was built using a BERT model fine-tuned on concatenated datasets, including
SQuAD, Wikipedia, and Reddit, to enhance contextual understanding. The hyperparameters in-
cluded a learning rate of 1 × 10−5, a maximum sequence length of 512, and a document stride
of 512. The training batch size was 8, with gradient accumulation steps of 2, spanning 2 epochs.
Mixed-precision training was utilized with ‘fp16‘ at O2 optimization level for efficiency. The final
output was stored in the ‘bart-squadv2‘ directory without saving models at each epoch.

Table 6: Hyperparameter Configuration for Model Implementations

Model Component Hyperparameter Value
Event Extraction (BART) Encoder-Decoder Layers 6 (BASE), 12 (LARGE)

Hidden Size 1024
FFN Size 4096
Dropout 0.1
Learning Rate 4× 10−5 (BASE), 2× 10−5 (LARGE)
Max Tokens per Batch 1100
Margin Coefficient 1

Vision Encoder (ViT) Patch Size 16
Resolution 224× 224
Latent Space Dim. 512
Transformer Layers 12
Width 768
LayerScale Init. 0.1
Dropout Path Rate Configurable

QA System (BERT) Learning Rate 1× 10−5

Max Sequence Length 512
Document Stride 512
Train Batch Size 8
Gradient Accum. Steps 2
Epochs 2
Mixed-Precision Opt. fp16 (O2)

Temporal Tagging Max Sequence Length 128
Batch Size 32
Learning Rate 5× 10−5

Dropout 0.1
Weight Decay 0.01
Epochs 10

E ADDITIONAL RESULTS

E.1 RESULTS WITH MORE MEMORY MODELS USING EGO4D DATASET

The table compares the recall accuracy of various models, including state-of-the-art (SOTA) meth-
ods, evaluated on the Ego4D dataset. Notably, Episodic Memory Verbalization leverages a graph-
based memory model to store and retrieve information, making it uniquely suited for tasks requiring
structured memory organization. The results highlight the importance of incorporating dialogues
and time-series data into memory representations. Our method, achieving a recall accuracy of 81%,
significantly outperforms other models, demonstrating the efficacy of our approach in storing and
utilizing temporal and conversational context effectively.
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Method Recall Accuracy
Episodic Memory Verbalization 50%
Rehearsal Memory 36%
STM 30%
DNC 35%
LT-CT 50%
Ours 81%

Table 7: Comparison of Recall Accuracy Across Different Methods

(a) Log Degree Distribution of the Episodic
Graph

(b) Log Degree Distribution of the Knowledge
Graph

Figure 7: Degree distribution indicates reduced connectivity in the episodic graph, promoting rele-
vant memory transfer

E.2 ABLATION STUDIES

We conducted an additional ablation study to assess the performance of the knowledge graph and
episodic memory graph. This involved replacing the episodic memory structure with a knowledge
graph and evaluating the impact of removing nodes from the graph.

E.2.1 COMPARISON WITH KNOWLEDGE GRAPHS

This section evaluates the replacement of episodic graphs with knowledge graphs in an episodic
memory agent. Table 8 summarizes the comparison.

Episodes Episodic Graph (Nodes) Knowledge Graph (Nodes) Episodic Graph (Edges) Knowledge Graph (Edges)
3 3 12 3 20

10 10 50 10 90
20 20 110 20 220
50 50 280 50 600

100 100 600 100 1400

Table 8: Relationship Between Episodes and Graph Metrics for Episodic and Knowledge Graphs
Figure 7 illustrates that the episodic graph’s lower connectivity facilitates efficient memory retrieval.

Table 9 compares the power-law characteristics of both graphs. The episodic graph shows a steep
decay (α = 5.45), indicating simplicity, while the knowledge graph’s slower decay (α = 1.57)
reflects its complexity. Figure 8 reinforces that the episodic graph fits a power-law distribution
strongly, while the knowledge graph does not.

In conclusion, the complexity of knowledge graphs hampers efficient memory retrieval. Conversely,
episodic graphs enable quick extraction of relevant memories, facilitating faster interactions and
improved reasoning.

E.2.2 RESULTS AFTER PRUNING

We examine the effectiveness of our pruning method by selectively removing nodes from a graph
representation of the Big Bang Theory dataset, a network that captures interactions and relationships
between characters. Specifically, we tested the pruning function by removing nodes with total con-
nection weights below thresholds of 3 and 5. This approach helps us analyze how different pruning
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Metric Episodic Graph Knowledge Graph
Power-Law Exponent (α) 5.45 (Steep decay) 1.57 (Slower decay)
Minimal Value (xmin) 1.0 (Valid from degree 1) N/A
Standard Error of α 0.341 (Moderate precision) 0.142 (Higher precision)
Log-Likelihood Ratio (R) 299.15 (Strong positive value) -0.88 (Exponential fits better)
p-value 6.03× 10−172 (Very small) 0.379 (No significant difference)

Table 9: Power-Law Characteristics of Graphs

(a) Power Law Fit for the Episodic Graph (b) Power Law Fit for the Knowledge Graph

Figure 8: Power-law analysis reveals a strong fit for the episodic graph, while the knowledge graph
shows no significant power-law structure

intensities impact the overall structure and connectivity within the network, providing insight into
the robustness and adaptability of the model when less significant nodes are removed.

What When Where All
Full Model 75 80 76 78

After pruning(Weight 1-3) 73 78 75 75
After pruning(Weight 1-5) 55 50 55 51

Table 10: Performance metrics of the model before and after pruning at different weight thresholds.

The pruning analysis shows that the graph constructed from the Big Bang Theory dataset is highly
adaptable, maintaining its core structure and key temporal connections even after pruning. While
it effectively captures both speech and visual details, the graph’s performance is impacted by the
use of LLM, resulting in slower processing and reduced reliability. This emphasizes the need for a
balanced pruning approach to optimize performance while retaining essential features

E.3 EPISODIC MEMORY LOCALIZATION

. Figure 9 is a visual representation of episodic memory localization. The tests focus on the agent’s
ability to process episodic memory queries, localize relevant data efficiently within time-series in-
puts, and respond accurately. Performance metrics such as localization accuracy, response time,
and the ability to reason over sequential events are analyzed to validate the model’s robustness and
adaptability to dynamic tasks.

E.4 SIMULATION TESTING

Models are inadequate for episodic memory localization when dealing with time-series and multi-
modal data, including vision and dialogues.

We tested our model in Unity 3D with the agent interacting in a simulated environment. The agent
gathered experiences and built episodic memory by navigating and interacting with characters. For
example, after learning about a football registration task from a character, the agent uses ”what,”
”when,” and ”where” questions to retrieve and act on the relevant memories. For instance: Where
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Figure 9: Visualization of Model Performance with SpotEM on Time Series Data: The blue
window represents the localization window. The performance comparison reveals that SPOTEM, not
designed for reasoning over multiple videos simultaneously, struggles with time series localization
for episodic questions. In contrast, our model effectively identifies and retrieves the correct data
chunk from memory to answer time series queries.

(a) DHP (Different Hella Positions) (b) WC (Wall Color)

(c) DSP (Different Spawn Positions) (d) NoAud (No Audio)

Figure 10: Agent trajectories for GTrXL model across various scenarios: (a) Different Hella Posi-
tions (DHP), (b) Wall Color (WC), (c) Different Spawn Positions (DSP), and (d) No Audio (NoAud).

should the agent go to complete the registration?, Where did the agent learn about the registration
process?, When is the registration supposed to occur?, What are the steps for registration?.

The retrieved memory indicated that Hella had the registration details. The agent, unfamiliar with the
football club, must seek Hella for more information. Figure ?? shows the memory chunk obtained.
We made use of the the GTrXLParisotto et al. (2019) and TrXLDai et al. (2019) models across
four and evaluated scenarios: different Hella positions (DHP), wall color changes (WC), different
spawn positions (DSP), and no audio (NoAud). The success rate, defined as the percentage of
successful episodes, was measured alongside efficiency and reward metrics. Higher rewards signify
better performance in reaching goals and optimizing paths. We examine how audio and video data
stored in the episodic memory graph help the agent identify accurate goal locations and develop an
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Figure 11: Memory chunk of an agent after extracting questions from master commands (e.g., ’Go
and do the registration’). It includes the master command, extracted questions, contextual informa-
tion, an action plan, and temporal dependencies between tasks.

effective algorithm to detect the correct path. Below is a representation of how stored modalities
and retrieved goals aid the agent in finding the optimal path to its goal location.

• Changing Hella’s Position: The agent adapts efficiently to different Hella positions,
achieving high rewards, as shown in Figure 10(a).

• Changing Wall Color: The agent maintains stable trajectories and high efficiency despite
wall color changes, as depicted in Figure 10(b).

• Different Spawn Locations: The agent navigates effectively from various starting points,
although rewards decrease with greater distances from default positions (Figure 10(c)).

• No Audio: In the absence of audio, the agent relies solely on visual inputs, resulting in
longer paths and lower rewards (Figure 10(d)), highlighting the importance of audio for
improved navigation and goal localization.

Now, consider the agent interacting with four characters before reaching the football club. If asked
How did I reach the football club?, the internal question generation module might generate questions
like: Where was I before the football club?, Where did I go before the football club?, When did I
reach the club?. The episodic retrieval module (as described in ??) will answer these, retrieving
relevant data to assist with goal planning based on past experiences. Overall, integrating audio data
and graph memory significantly enhances pathfinding and goal planning. This underscores why
audio data plays a crucial role in goal planning, making our model more effective in guiding agents
towards their objectives in complex, multimodal environments.
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