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Abstract
Inductive biases are crucial in disentangled rep-
resentation learning for narrowing down an un-
derspecified solution set. In this work, we con-
sider endowing a neural network autoencoder
with three select inductive biases from the liter-
ature: data compression into a grid-like latent
space via quantization, collective independence
amongst latents, and minimal functional influence
of any latent on how other latents determine data
generation. In principle, these inductive biases
are deeply complementary: they most directly
specify properties of the latent space, encoder,
and decoder, respectively. In practice, however,
naively combining existing techniques instantiat-
ing these inductive biases fails to yield significant
benefits. To address this, we propose adaptations
to the three techniques that simplify the learn-
ing problem, equip key regularization terms with
stabilizing invariances, and quash degenerate in-
centives. The resulting model, Tripod, achieves
state-of-the-art results on a suite of four image
disentanglement benchmarks. We also verify that
Tripod significantly improves upon its naive incar-
nation and that all three of its “legs” are necessary
for best performance.

1. Introduction
How can we enable machine learning models to process
raw perceptual signals into organized concepts similar to
how humans do? This intuitively desirable goal has a well-
studied formalization known as unsupervised disentangled
representation learning: a model is tasked with teasing apart
an unlabeled dataset’s underlying sources (a.k.a. factors) of
variation and representing them separately from one another,
e.g., in independent components of a learned latent space.
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Figure 1: Each of the three inductive biases for disentanglement
we consider in this work specifies a different set of preferred
models (circles). In principle, using them in conjunction should
more precisely specify the desired solution set and better recover
models akin to the true data-generating process. Our method,
Tripod, makes crucial modifications to these three “legs” to realize
this synergy in practice. Code is available at https://github.com/
kylehkhsu/tripod.

Beyond aesthetic motivations, achieving disentanglement
is a potential stepping stone toward the holy grails of com-
positional generalization (Bengio, 2013; Wang et al., 2023)
and interpretability (Rudin et al., 2022; Zheng & Lapata,
2022). Despite this problem’s importance, there persists a
gulf between how well machine learning models and hu-
mans disentangle even on carefully curated datasets (Gondal
et al., 2019; Nie, 2019).

Inductive biases play a paramount role in enabling disentan-
glement: they help identify desired solutions amongst the
space of all models that explain the data. In this work, we
consider three select inductive biases proposed and validated
in prior work to have some disentangling effect:

• data compression into a grid-like latent space via quan-
tization (Hsu et al., 2023)

• collective independence amongst latents (Chen et al.,
2018; Kim & Mnih, 2018)

• minimal functional influence of any latent on how other
latents determine data generation (Peebles et al., 2020)
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While each of these desiderata has been shown to improve
disentanglement, they achieve unsatisfactory performance
in isolation. Since establishing realistic sufficient conditions
for identifiability has been a long-standing problem in disen-
tanglement (Locatello et al., 2019; Khemakhem et al., 2020;
Horan et al., 2021), it seems prudent to investigate the use of
multiple inductive biases in conjunction to more precisely
specify the desired solution set.

The key insight this work offers is that the three aforemen-
tioned inductive biases, when integrated in a neural network
autoencoding framework, are deeply complementary: they
most directly specify properties of the latent space, encoder,
and decoder, respectively. To elaborate, quantization of the
latent space architecturally limits its channel capacity, neces-
sitating efficient communication between the encoder and
decoder. Meanwhile, the encoder shapes the joint density
of the latents through how it “places” each datapoint, which
must be done carefully to achieve collective independence.
Finally, the decoder is responsible for minimizing the extent
to which latents interact during data generation. Thus, while
all three inductive biases ultimately influence the whole
model, the mechanism by which each does so is distinct.

Unfortunately, naively combining existing instantiations
of these inductive biases results in a model that performs
poorly. We conjecture that one key cause of this is an
increased difficulty in optimization, a well-known failure
mode when juggling multiple objectives in deep learning.
Our main technical contribution is a set of adaptations that
ameliorate optimization difficulties by simplifying the learn-
ing problem, equipping key regularization terms with stabi-
lizing invariances, and quashing degenerate incentives. We
now briefly summarize these changes.

Finite scalar latent quantization. We leverage latent quan-
tization to enforce data compression and encourage orga-
nization (Hsu et al., 2023), but implement this via finite
scalar quantization (Mentzer et al., 2024) instead of dictio-
nary learning (Oord et al., 2017). This fixes the codebook
values and obviates two codebook learning terms in the ob-
jective, greatly stabilizing training early on and facilitating
the optimization of the other inductive biases’ regularization
terms.

Kernel-based latent multiinformation. We adapt latent
multiinformation regularization, originally proposed for
variational autoencoders (Chen et al., 2018; Kim & Mnih,
2018), to be compatible with deterministic encoders with-
out needing an auxiliary discriminator. We achieve this by
a novel framing based on kernel density estimation. This
allows us to leverage well-known multivariate kernel design
heuristics, such as incorporating each dimension’s empiri-
cal standard deviation (Silverman, 1998), in order to obtain
density estimates that are more useful for multiinformation
regularization.

Normalized Hessian penalty. We derive a normalized ver-
sion of the Hessian (off-diagonal) penalty (Peebles et al.,
2020). Unlike the original Hessian penalty, our regulariza-
tion is invariant to dimensionwise rescaling of the decoder
input (latent) and output (activation) spaces. This removes
a key barrier to the fruitful application of data-generating
mixed derivative regularization to autoencoder architectures,
which we demonstrate for the first time; the original Hessian
penalty was proposed for generative adversarial networks
(GANs), in which the latent space is fixed.

The resulting method, Tripod, establishes a new state-of-
the-art on a representative suite of four image disentangle-
ment benchmarks (Burgess & Kim, 2018; Gondal et al.,
2019; Nie, 2019) with an InfoMEC = (InfoModularity,
InfoCompactness, InfoExplicitness) (Hsu et al., 2023) of
(0.78, 0.59, 0.90) and a DCI = (Disentanglement, Com-
pleteness, Informativeness) (Eastwood & Williams, 2018)
of (0.64, 0.57, 0.93) in aggregate. Tripod handidly outper-
forms methods from previous works that use just one of
its component “legs” as well as ablated versions of itself
that use two out of three “legs”, validating the premise of
using multiple inductive biases in conjunction. We also
verify that Tripod disentangles much better than a naive
incarnation combining previous instantiations of the three
component inductive biases, thereby justifying our technical
contributions.

2. Preliminaries
We begin by giving an overview of the specific disentan-
gled representation learning problem we consider in this
work. Then, to contextualize our technical contributions
and design decisions, we provide detailed descriptions of
the previous methods we build upon.

2.1. Disentangled Representation Learning

We consider the following disentangled representation learn-
ing problem statement inspired by nonlinear independent
components analysis (Hyvärinen & Pajunen, 1999; Zheng
et al., 2022; Hsu et al., 2023). Given a dataset of paired sam-
ples of sources and data {(s, x)} from a true data-generating
process

p(s) =

ns∏
i=1

p(si), x = g(s), (1)

where ns is the number of sources, our aim is to learn an
encoder ĝ−1 : X → Z and decoder ĝ : Z → X solely
using the unlabelled data D = {x} such that the latents
z recover the sources, thereby disentangling the data. To
quantify disentanglement, we will use the InfoMEC (Hsu
et al., 2023) and DCI (Eastwood & Williams, 2018) metrics
as estimated from samples {(s, z = ĝ−1 ◦ g(s))} from the
joint source-latent distribution p(s, z). Both sets of metrics
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measure the modularity, compactness, and explicitness of
the latents with respect to the sources. InfoM and D measure
the extent to which each latent only contains information
about one source (i.e., the extent to which the source-latent
mapping is one-to-many); InfoC and C the extent to which
each source is captured by only one latent (i.e., the extent to
which the source-latent mapping is many-to-one); and InfoE
and I the extent to which each source can be predicted from
the latents with linear or random forest models, respectively.
We will also qualitatively inspect models by visualizing the
effect of intervening on latents prior to decoding.

2.2. Inductive Biases from Prior Work

Latent quantization. The true sources of variation are
a neatly organized, highly compressed representation of
the data. Hsu et al. (2023) propose to quantize continuous
representations ĝ−1(x) onto a regular grid to mimic this
structure and enforce compression. They accomplish this
via a scalar form of vector quantization (VQ; Oord et al.
(2017)):

zj = argmin
ejl∈Ej

|ĝ−1(x)j − ejl|, j = 1, . . . , nz, (2)

where {Ej}nz
j=1 are the codebook values. These adapt via

a “quantization loss” that amounts to dictionary learning,
and the continuous values are simultaneously encouraged to
collapse to their quantizations via a “commitment loss”:

Lquantize({Ej}) = ∥StopGrad(ĝ−1(x))− z∥22, (3)

Lcommit(ĝ
−1) = ∥ĝ−1(x)− StopGrad(z)∥22. (4)

Latent multiinformation regularization. Since the true
sources are collectively independent (1), biasing the latents
towards exhibiting this property should help with recovering
something similar to the true generative process. One gran-
ular measure of independence is the multiinformation (Stu-
denỳ & Vejnarová, 1998) (a.k.a. total correlation) of the
latents,

DKL(q(z) ∥
∏nz

j=1 q(zj)), (5)

which vanishes with perfect collective independence. In a
variational autoencoder (VAE; Kingma & Welling (2014)),
one can define q(z) = 1

|D|
∑

x∈D q(z|x) to be an “aggre-
gate posterior”. Since naive Monte Carlo estimation of the
multiinformation would require the entire dataset, Chen
et al. (2018) design a minibatch-weighted estimator for the
expected log density:

Ez∼q(z)[log q(z)] ≈
1

nb

nb∑
i1=1

log
1

nb|D|

nb∑
i2=1

q
(
z(i2)|x(i1)

)
,

(6)
where nb is the batch size and |D| is the dataset size. They
handle the marginals q(zj) analogously, and add the esti-
mated multiinformation as a regularization term to the VAE
evidence lower bound objective.

Data-generating mixed derivative regularization. Pee-
bles et al. (2020) propose that, in a data-generating process
that transforms latents into data, each latent should mini-
mally affect how any other latent functionally influences
the data. To accomplish this, they regularize the mixed
derivatives of the generator in a generative adversarial net-
work (Goodfellow et al., 2014) (GAN):

min
ĝ[k]

∑
j1 ̸=j2

(
H

[k]
j1j2

)2
(7)

where ĝ[k] denotes some generator activation or output di-
mension and H [k] is the corresponding Hessian with re-
spect to the latents. Naively implementing this via auto-
matic differentiation is too computationally expensive, as it
would involve taking third-order derivatives for first-order
optimization schemes. Instead, Peebles et al. (2020) ap-
ply a Hutchinson-style unbiased estimator for the sum of
the squared off-diagonal elements of a matrix (Hutchinson,
1989):

Var
v∼Rademacher(1)

[v⊤H [k]v] = 2
∑
j1 ̸=j2

(
H

[k]
j1j2

)2
, (8)

as well as a central finite difference approximation for the
second-order directional derivative:

v⊤H [k]v ≈ ĝ[k](z + ϵv)− 2ĝ[k](z) + ĝ[k](z − ϵv)

ϵ2
. (9)

3. The Three Legs of Tripod
In this section, we describe the design decisions we make in
order to successfully meld latent quantization, latent multiin-
formation regularization, and data-generating mixed deriva-
tive regularization together in a single model. Our overarch-
ing design principle is as follows: we want each inductive
bias to do its job with the lightest touch possible in order to
avoid “interference” and ease optimization.

3.1. Finite Scalar Latent Quantization (FSLQ)

The scalar form of VQ that Hsu et al. (2023) use to instanti-
ate latent quantization (LQ) requires a quantization loss (3)
for learning the discrete codebook values and a commitment
loss (4) to regularize the continuous values. We are looking
to include other regularizers on the latents that more directly
enable disentanglement, and these would play a bigger role
in the objective if the VQ losses could be removed. The
recently proposed finite scalar quantization (FSQ; Mentzer
et al. (2024)) scheme identifies a recipe for doing this using
fixed codebook values and judiciously chosen mappings pre-
and post-quantization. We graphically depict VQ, LQ, and
FSQ in Figure 2.

We implement a variant of FSQ that has the continuous and
quantized latent spaces share the same ambient “bounding
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FSQ (Mentzer et al., 2024)

Vector Quantization (Oord et al., 2017)

Latent Quantization (Hsu et al., 2023)

VAE (Kingma et al., 2013)

Figure 2: The evolution of discrete latent space structure in autoen-
coders. We use finite scalar quantization (bottom right) instead of
latent quantization (bottom left) so that the codebook values need
not be learned.

box”. The continuous latent space is specified as [−1, 1]nz

by applying the hyperbolic tangent function to the output
of the encoder network. Latent vectors are then linearly
rescaled to [0, nq−1]nz , rounded elementwise to the nearest
integer, and unscaled. Concretely, the quantization opera-
tion is

z =
2

nq − 1
round

(
nq − 1

2

(
tanh

(
ĝ−1 (x)

)
+ 1
))
− 1,

(10)
where nq is the number of discrete values in each dimension.
The straight-through gradient trick (Bengio et al., 2013) is
used to copy gradients across the nondifferentiable rounding
operation.

FSQ directly obviates the quantization loss (3) as the latent
codebook is fixed to {−1,−1 + 2

nq−1 , . . . , 1}
nz . Mentzer

et al. (2024) empirically show that the commitment loss (4)
also becomes unnecessary. These simplifications greatly
stabilize the early periods of training and “make room” for
the other two inductive biases, which we discuss next.

3.2. Kernel-Based Latent Multiinformation (KLM)

At face value, the idea of regularizing latent multiinforma-
tion (5) à la Chen et al. (2018) appears to be incompatible
with deterministic latents: since each “posterior” is a Dirac
delta function, we have q(z) = 1

|D|
∑

x∈D δ(z − ĝ−1(x)),
which has a support of measure zero. We instead adopt a
perspective of doing kernel density estimation (KDE) using
a finite data sample: we specify a kernel-based smoothing
of the Dirac deltas for the express purpose of obtaining
smoothly parameterized density estimates that are amenable

to gradient-based optimization. See Figure 3 for an illus-
tration of our method. We make the standard choice of
Gaussian kernel functions; concretely, we estimate the joint
density as

q(z) =
1

nb

nb∑
i=1

1

(2π)
nz
2 |S| 12

exp

(
−1

2
f(z − z(i);S)

)
,

(11)
where f(z′;S) = z′⊤S−1z′ and S is a smoothing matrix.
In KDE, it is a common heuristic to incorporate the empiri-
cal standard deviation of each dimension σj into the kernel
smoothing parameters (Silverman, 1998). This specifies an
invariance to the dimensionwise scaling, facilitating, e.g.,
latent shrinkage without adversely affecting multiinforma-
tion estimation. Specifically, to estimate the joint density
q(z), we use Silverman’s rule of thumb for each nonzero
element of the diagonal smoothing matrix:

Sjj =

(
4

(nz + 2)nb

) 2
nz+4

σ2
j . (12)

For estimating the marginal densities, we again use σj as
the smoothing parameter:

q(zj) =
1

nb

nb∑
i=1

1√
2πσj

exp

−1

2

(
zj − z

(i)
j

σj

)2
 .

(13)
We now have satisfactory approximations for the densities
involved in computing latent multiinformation (5). Our
batch log joint density estimator,

Ez∼q(z)[log q(z)] ≈
1

nb

nb∑
i1=1

log
1

nb

nb∑
i2=1

KS

(
z(i2) − z(i1)

)
(14)

ultimately takes a highly similar form to the minibatch-
weighted estimator (6) of Chen et al. (2018), except the pair-
wise interaction between samples arises from kernel-based
smoothing rather than uncertainty in posterior inference. We
also avoid the inclusion of the dataset size due to not using
an importance sampling derivation. Cosmetic differences
aside, the two methods are deeply related: one can view the
design of the variational posterior q as analogous to the de-
sign of the kernel KS . We remark that KLM is designed for
deterministic latents taking on values in Rnz . This includes
our quantized latents as a specific case thanks to the design
of the quantized latent space in Section 3.1.

As an alternative to kernel-based smoothing, we can con-
sider treating the quantized latents as categorical variables,
but we find that the required machinery, e.g., Gumbel-
Softmax reparameterization (Jang et al., 2017; Maddison
et al., 2017), is significantly more unwieldy to use in prac-
tice compared to kernel density estimation.
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̂g−1

DKL(q(z) | |Πnz
j=1q(zj)) > 0 DKL(q(z) | |Πnz

j=1q(zj)) = 0
Figure 3: Kernel density estimation facilitates regularizing deterministic quantized latents from having nonzero multiinformation (left)
towards collective independence (right). The multiinformation estimation smoothly depends on the latents through distances between
samples (11, 13). The smoothing matrix S (12) is visualized with a level set (ellipse) of each latent sample’s kernel density, and
incorporates each dimension’s scale (ellipse major and minor axes). The visualized joint densities illustrate the result of accumulating
latent sample kernel densities at each grid point.

∂ ̂g
∂z2∂ ̂g

∂z1

̂g

Figure 4: The Hessian penalty is supposed to specify a preference
for decoders, such as the one depicted, in which change along
one latent (object shape) minimally affects how another latent
(horizontal end-effector position) influences data generation. We
modify the Hessian penalty to quash degenerate solutions that
compromise this intended outcome in autoencoders.

3.3. Normalized Hessian Penalty (NHP)

The original Hessian penalty (8) amounts to reducing
the magnitudes of mixed derivatives in a learned data-
generating function (Figure 4). Unfortunately, this can be
trivially achieved by scaling down activations or scaling
up latents, circumventing the intended effect of making the
Hessians more diagonal. Indeed, the former degeneracy is
likely why Peebles et al. (2020) find it important to use nor-
malization layers immediately preceding activations used
for regularization: in experiments with the original Hessian

penalty, we find that it causes the norms of regularized acti-
vations to decrease. More importantly, the latter degeneracy
may be why the Hessian penalty has not seen fruitful appli-
cation in autoencoders: the decoder input space is variable
and hence susceptible, whereas the input space of a GAN’s
generator is fixed.

We would like to rule out trivial scaling-based solutions to
data-generating mixed derivative regularization by making
the regularization term invariant to the scale of any indi-
vidual input (latent) or output (activation). We endow the
Hessian penalty with these properties by incorporating the
standard deviations of the latents in each second derivative
and normalizing by an aggregation of all second derivatives.
This is formalized in Proposition 3.1.
Proposition 3.1. The Hessian penalty∑

j1 ̸=j2

(
H

[k]
j1j2

)2
(15)

can be reduced by scaling down ĝk or scaling up any zj , j ∈
[nz], and vice versa. In contrast, the normalized Hessian
penalty ∑

j1 ̸=j2

(
H

[k]
j1j2

σj1σj2

)2
∑

j1,j2

(
H

[k]
j1j2

σj1σj2

)2 (16)

is invariant to the scaling of ĝ[k] and zj ∀j ∈ [nz].

Proof. See Appendix A.1.

However, incorporating the latent standard deviations into
each term is nontrivial since the Hutchinson-style estima-
tion (8) never explicitly forms any of the terms in the sum.
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Algorithm 1 Pseudocode for the Tripod objective. We use nb = 64, np = 2, ϵ = 0.1 throughout and tune (λKLM, λNHP).

1: given: batch size nb, data {x(i)}nb
i=1, encoder ĝ−1, decoder ĝ, number of perturbations np, perturbation parameter ϵ

given: regularization weights (λKLM, λNHP)
2: for i ∈ [nb] do
3: c(i) ← ĝ−1(x(i)) {encode data into continuous latent vectors}
4: z(i) ← Quantize

(
c(i)
)

{apply finite scalar quantization (10)}
5: end for
6: Lreconstruction ← 1

nb

∑nb

i=1 BinaryCrossEntropy
(
ĝ(z(i)), x(i)

)
7: σj ← std

(
c
(1)
j , . . . , c

(nb)
j

)
∀j ∈ [nz] {calculate the empirical standard deviation of each latent dimension}

8: S ← Silverman’s (σ1, . . . , σnz
, nb, nz) {form joint density smoothing matrix (12)}

9: for i ∈ [nb] do
10: q(i) ← KDE

(
z(i); z(1), . . . , z(nb), S

)
{joint KDE (11)}

11: q
(i)
j ← KDE

(
z
(i)
j ; z

(1)
j , . . . , z

(nb)
j , σj

)
∀j ∈ [nz] {marginal KDEs (13)}

12: end for
13: Llatent multiinformation ← 1

nb

∑nb

i=1

(
log q(i) −

∑nz

j=1 log q
(i)
j

)
14: for i ∈ [nb], k ∈ {regularized decoder activation dimensions} do
15: for l ∈ np do
16: v

(i)
jkl ← σj SampleRademacher(1) ∀j ∈ [nz] {scale-adjusted sampling (Proposition 3.2)}

17: w
(i)
jkl ← σj SampleNormal(0, 1) ∀j ∈ [nz]

18: numerf (i)
kl ← FiniteDifferences

(
ĝ[k], z(i), ϵ, v

(i)
kl

)
{estimate curvature (9)}

19: denomf
(i)
kl ← FiniteDifferences

(
ĝ[k], z(i), ϵ, w

(i)
kl

)
20: end for
21: numerf (i)

k ← var
(

numerf (i)
k1 , . . . , numerf (i)

knp

)
{calculate empirical variance across perturbations (17)}

22: denomf
(i)
k ← var

(
denomf

(i)
k1 , . . . , denomf

(i)
knp

)
23: end for
24: Lnormalized Hessian penalty ← 1

nb

∑nb

i=1

∑
k numerf(i)

k∑
k denomf

(i)
k

25: return: L ← Lreconstruction + λKLMLlatent multiinformation + λNHPLnormalized Hessian penalty

We also need a way of estimating the denominator of (16),
which includes the Hessian’s squared diagonal entries. For-
tunately, each can be achieved with a judicious change to
the sampling distribution, as we show in Proposition 3.2.
Proposition 3.2. Let v and w be random vectors where
vj ∼ Rademacher(σj) and wj ∼ N (0, σ2

j ). Then the
normalized Hessian penalty can be computed as∑

j1 ̸=j2

(
H

[k]
j1j2

σj1σj2

)2
∑

j1,j2

(
H

[k]
j1j2

σj1σj2

)2 =
Var

[
vTH [k]v

]
Var

[
wTH [k]w

] . (17)

Proof. See Appendix A.2.

Using a central finite difference approximation (9) for the
second-order directional derivatives (17), we are now able
to estimate the normalized Hessian penalty (16) just with
forward passes through the decoder ĝ(z). Compared to the
original Hessian penalty, this incurs twice as many forward
passes per optimization step.

3.4. Implementation Details

In Algorithm 1, we provide pseudocode for computing the
Tripod objective. There are a few implementation details
worth noting. We compute the latents’ empirical standard
deviation based on the continuous values to avoid obtaining
a value of zero for a batch. Substituting the statistics of one
for the other is facilitated by tying together the continuous
and quantized latent spaces as outlined in Section 3.1. How-
ever, for the kernel density estimates and finite differences,
we use the quantized latents. Also, due to the low number of
perturbations (2) used for the curvature approximations, we
find it more stable to separately aggregate the numerators
and denominators of the normalized Hessian penalties for
each decoder activation dimension before division. For the
degree of quantization nq , we use a fixed value of 12, except
when we ablate this hyperparameter specifically. Finally,
while we explicitly write out nested loops in Algorithm 1 to
maximize clarity, in code these are vectorized for the sake
of efficiency.
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Table 1: Tripod achieves state-of-the-art disentanglement as quantified by InfoMEC and DCI (the former is re-ordered to align with the
latter). See Section 4.2 for detailed commentary.

model aggregated Shapes3D MPI3D Falcor3D Isaac3D

InfoMEC := (InfoM InfoC InfoE)

β-TCVAE (0.62 0.57 0.77) (0.68 0.55 0.98) (0.45 0.42 0.61) (0.71 0.71 0.72) (0.65 0.61 0.78)
QLAE (0.68 0.43 0.88) (0.86 0.45 1.00) (0.52 0.46 0.75) (0.62 0.39 0.82) (0.72 0.42 0.94)
Tripod (naive) (0.68 0.44 0.90) (0.83 0.45 1.00) (0.61 0.47 0.84) (0.64 0.38 0.81) (0.65 0.46 0.93)
Tripod (ours) (0.78 0.59 0.90) (0.94 0.59 1.00) (0.64 0.53 0.84) (0.72 0.56 0.82) (0.84 0.68 0.95)
Tripod w/o NHP (0.70 0.48 0.89) (0.85 0.46 1.00) (0.60 0.50 0.81) (0.59 0.40 0.81) (0.75 0.57 0.93)
Tripod w/o KLM (0.73 0.50 0.90) (0.89 0.57 1.00) (0.57 0.50 0.80) (0.74 0.54 0.82) (0.72 0.38 0.96)
Tripod w/ finer quantization (0.56 0.46 0.92) (0.69 0.48 1.00) (0.43 0.40 0.97) (0.54 0.41 0.84) (0.57 0.54 0.87)

DCI := (D C I)

β-TCVAE (0.44 0.38 0.89) (0.64 0.51 1.00) (0.29 0.26 0.80) (0.42 0.37 0.86) (0.39 0.36 0.89)
QLAE (0.55 0.43 0.92) (0.79 0.58 1.00) (0.42 0.37 0.82) (0.40 0.31 0.88) (0.60 0.46 0.98)
Tripod (naive) (0.57 0.45 0.93) (0.74 0.55 1.00) (0.46 0.40 0.85) (0.45 0.34 0.87) (0.62 0.50 0.99)
Tripod (ours) (0.64 0.57 0.93) (0.80 0.65 1.00) (0.54 0.48 0.86) (0.49 0.47 0.88) (0.72 0.67 0.99)
Tripod w/o NHP (0.56 0.46 0.92) (0.76 0.56 1.00) (0.48 0.42 0.86) (0.39 0.30 0.85) (0.63 0.58 0.98)
Tripod w/o KLM (0.60 0.51 0.92) (0.76 0.62 1.00) (0.49 0.42 0.83) (0.52 0.50 0.88) (0.62 0.48 0.99)
Tripod w/ finer quantization (0.51 0.53 0.88) (0.73 0.64 1.00) (0.42 0.40 0.82) (0.40 0.45 0.83) (0.47 0.63 0.88)

4. Experiments
We design our experiments1 to answer the following ques-
tions:

• How well does Tripod disentangle compared to strong
methods from prior work?

• Does Tripod significantly improve upon its naive incar-
nation?

• Which of the three “legs” of Tripod are important?

4.1. Experimental Protocol

We benchmark on four established image datasets with
ground-truth source labels that facilitate quantitative evalua-
tion: Shapes3D (Burgess & Kim, 2018), MPI3D (Gondal
et al., 2019), Falcor3D (Nie, 2019), and Isaac3D (Nie, 2019).
Each dataset is constructed to satisfy the assumptions of
the disentangled representation learning problem assump-
tions (1): sources are collectively independent, and data
generation is near-noiseless. MPI3D is collected with a
real-world robotics apparatus, whereas the other three are
synthetically rendered. Further dataset details are presented
in Appendix B.1. We follow prior work in considering a
statistical learning problem: we use the entire dataset for
unsupervised training and evaluate on a subset of 10, 000
samples (Locatello et al., 2019). We filter checkpoints for
adequate reconstruction: we threshold based on the peak
signal-to-noise ratio (PSNR) for each dataset at which re-
construction errors are imperceptible (Appendix B.1). We
then compute the InfoMEC and DCI metrics introduced in
Section 2.1 and report for each run the results given by the
checkpoint with the best InfoM.

1Code is available at https://github.com/kylehkhsu/tripod.

For prior methods, we consider two works that introduced
two of the inductive biases we use: β-total correlation vari-
ational autoencoding (β-TCVAE; Chen et al. (2018)) and
quantized latent autoencoding (QLAE; Hsu et al. (2023)).
Since we use expressive convolutional neural network archi-
tectures for the encoder and decoder (Dhariwal & Nichol,
2021), we implement these methods based on their refer-
ence open-source repositories in our own codebase for an
apples-to-apples comparison. For the naive version of Tri-
pod, we use VQ-style latent quantization as in QLAE, fixed
smoothing parameters for kernel-based latent multiinforma-
tion regularization, and the vanilla Hessian penalty (with
activation normalization). For all of the above methods, we
tune key hyperparameters (Appendix B.2) per dataset over
2 seeds before switching to a different evaluation set and
running 3 more seeds.

4.2. Quantitative Results

Main quantitative results are summarized in Table 1.

Comparison of Tripod with β-TCVAE, QLAE, and naive
Tripod. Tripod outperforms β-TCVAE in both modular-
ity metrics (InfoM and D), the DCI compactness metric
C, and both explicitness metrics (InfoE and I). The total
correlation regularization in β-TCVAE is analogous to the
kernel-based latent multiinformation (KLM) regularization
in Tripod; since this directly optimizes for compactness, it
is no surprise that the two methods are competitive in InfoC.
However, the substantial difference in InfoE indicates that
the sources are more linearly predictable from Tripod latents
than β-TCVAE latents.

In contrast, Tripod handidly outperforms QLAE in all mod-
ularity and compactness metrics while achieving parity in
both explicitness metrics. This suggests that latent quanti-
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z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17

object_shape
robot_x
robot_y

camera_height
object_scale

lighting_intensity
lighting_y_dir
object_color

wall_color

0.00 0.00 0.55 0.00 0.01 0.00 0.00 0.04 0.03 0.01 0.00 0.18 0.00 0.00 0.00 0.00 0.06 0.01

0.00 0.00 0.34 0.01 0.02 0.00 0.00 0.01 0.67 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.02 0.01

0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.01 0.00 0.01 0.00 0.50 0.00 0.00 0.01 0.41 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.40

0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.01 0.00

0.41 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.41 0.41 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.67 0.00 0.00 0.00 0.00 0.47 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.01 0.00 0.00 0.75 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00

Tripod Naive Tripod

Figure 5: Qualitative study of Tripod and naive Tripod on Isaac3D. Decoded latent interventions (top): in each column, we encode an
image and visualize the effect of intervening on a single latent on decoding by varying its value in a linear interpolation in that latent’s
range. Normalized mutual information heatmaps (bottom): this acts as an “answer key” to what the observed qualitative changes in a
column should be when considering the entire dataset. Red latents are inactive and corresponding columns are removed from the latent
intervention visualizations. For more qualitative results, see Appendix C.

zation, a property common to both methods, is important
to achieve high explicitness. The difference in modularity
and compactness is explained by the lack of the other two
inductive biases, KLM and NHP, in QLAE.

Tripod dominates naive Tripod on every disentanglement
metric for each dataset. This validates the utility of our
technical contributions. Indeed, naive Tripod is virtually
indistinguishable from QLAE in aggregate, demonstrating
that our specific modifications to the three inductive biases
are necessary to achieve a synergistic disentangling effect.
We highlight that the marked difference in compactness
(InfoC and C in Table 1, row sparsity in normalized mutual
information heatmaps of Figure 5) reflects naive Tripod’s
reluctance to deactivate latents due to its vanilla Hessian
penalty leg: shrinking latents increases the curvature of the
decoder. In contrast, the invariance to latent scaling built
into Tripod’s NHP leg enables latent deactivation.

Ablation studies on Tripod. We ablate each leg of Tri-
pod in turn. We take the exact configuration we use for
each dataset and either set the corresponding regularization
weight to 0 for ablating NHP or KLM, or change the num-
ber of quantized values from 12 to 122 for ablating FSQ.
Tripod w/o NHP takes a significant hit in all modularity and
compactness metrics, concretely demonstrating a beneficial
application of the Hessian penalty to autoencoders for the
first time. Tripod w/o KLM suffers a slightly cushioned
blow in the same metrics. Interestingly, Tripod w/ finer
quantization incurs the most significant penalty, suggest-
ing that the enforced compression and latent organization
afforded by finite scalar quantization underpins Tripod.

4.3. Qualitative Results

For each dataset, we qualitatively compare Tripod and naive
Tripod in terms of how they decode under latent interven-
tions. For reference, we also visualize the pairwise mutual
information heatmap between sources and latents (from
which the InfoM and InfoC metrics are calculated). Fig-
ure 5 presents this for Isaac3D. Due to space constraints,
the rest of this material can be found in Appendix C. We
find that the quantitative improvement of Tripod over naive
Tripod is mirrored in how consistently intervening on a
particular latent dimension affects generation.

5. Related Work
Disentanglement and identifiability. The classic problem
of independent components analysis (ICA; Comon (1994);
Hyvärinen & Oja (2000)) can be viewed as the progenitor
of disentangled representation learning. Notoriously, dis-
entanglement is theoretically underspecified (Hyvärinen &
Oja, 2000; Locatello et al., 2019) when the data-generating
process is nonlinear (Hyvärinen & Pajunen, 1999), so disen-
tangling in practice relies heavily on inductive biases.

Architectural inductive biases for disentanglement. We
build on the architectural inductive bias of latent quantiza-
tion (Hsu et al., 2023). Leeb et al. (2023) demonstrate that
restricting different latents to enter the decoding computa-
tion graph at different points can enable disentanglement.
We view this as specifying a rather specific structure for the
latent space (essentially assuming one source variable per
hierarchy level) and opt not to use it.

8



Tripod: Three Complementary Inductive Biases for Disentangled Representation Learning

Disentanglement via regularizing autoencoders. Our
work follows in the tradition of applying regularizations
on autoencoder architectures to encourage disentangle-
ment. Specifically, the KLM regularization falls into an
information-theoretic family of regularization techniques.
The simplest example of this is the β-VAE (Higgins et al.,
2017), which places a heavier weight on the KL-divergence
term in the VAE evidence lower bound. To curb the trade-off
between disentanglement and reconstruction, Burgess et al.
(2017) modify β-VAE to increase the information capacity
of latent representations during training. Chen et al. (2018)
identify a decomposition of the KL-divergence into 3 terms
and argue that only the total correlation term has a disentan-
gling effect; their proposed model, β-TCVAE, upweights
only this term. Similarly, Kim & Mnih (2018) also regular-
ize latent multiinformation, but use an auxiliary discrimina-
tor and the density-ratio trick to estimate multiinformation.
We opt not to use this method due to the unwieldy auxiliary
discriminator. Kumar et al. (2018) investigate a more thor-
ough optimization of the KL-divergence through moment
matching. Whittington et al. (2023) show that biologically-
inspired constraints that minimize latent activity and weight
energy while promoting latent non-negativity help models
learn disentangled representations.

Functional inductive biases on the learned data-
generating mapping. Tripod also incorporates a functional
inductive bias on the latent-to-data mapping. Peebles et al.
(2020) and Wei et al. (2021) propose regularizing the deriva-
tives of a GAN’s generator to minimize inter-latent depen-
dencies. While the former focuses on the mixed derivatives
(off-diagonal elements of the Hessian), the latter regularizes
the columns of the Jacobian to be orthogonal. Similarly,
Gresele et al. (2021) mathematically show how a Jacobian
column orthogonality criterion can rule out classic indeter-
minancies in nonlinear independent components analysis.
We find the vanishing mixed derivative criterion more con-
ceptually appealing, especially since near-orthgonality be-
comes trivial in high-dimensional activation and data spaces.
In a separate vein, Sorrenson et al. (2020) and Yang et al.
(2022) investigate the assumption of volume preservation
in data generation. Finally, sparsity has seen considerable
attention in works pursuing identifiability (Jing et al., 2020;
Zheng et al., 2022; Moran et al., 2022).

6. Discussion
In this work, we meld three previously proposed ideas for
disentanglement into Tripod, a method that makes neces-
sary modifications to existing instantiations of these ideas
so that a synergy between the components is realized in
practice. These conceptual and technical contributions are
validated in our experiments: both the specific set of three
inductive biases as well as our modifications are essential

to Tripod’s performance. However, one trade-off is an in-
creased computational footprint due to the use of multiple
inductive biases in Tripod. A profiling study (Appendix D)
indicates that FSQ and KLM incur negligible overhead, but
NHP increases training iteration runtime by a factor of about
2.5 due to the extra decoder forward passes required for its
regularization term.

Given the sensitivity of Tripod to the degree of quantiza-
tion (i.e., of compression) identified in our ablation study, it
may be fruitful to study mechanisms to automatically tune
or learn this key (hyper)parameter. Naturally, this would
need to be unsupervised or highly label-efficient in order
to be practically useful. One potential unsupervised tuning
procedure would be to begin with a channel capacity that is
too low, and to increase it until reconstruction performance
starts saturating. The key assumption here is that the true
sources are an optimal or near-optimal compression of the
data. For the label-efficient setting, it may well be good
enough to simply use disentanglement metrics such as In-
foMEC. The fixed latent space bounds and lack of learnable
codes in our FSQ implementation also enable on-the-fly
adaptation of the degree of quantization.

Our empirical evaluation is limited to image datasets be-
cause this is the only modality (beyond toy low-dimensional
setups) we are aware of for which there exist datasets that (i)
obey the nonlinear ICA data generation assumptions and (ii)
enable quantitative evaluation via ground-truth source labels
that completely explain the data. A priori, we expect Tripod,
instantiated with appropriate architectures, to also be effec-
tive for other modalities, e.g. time series or graphs, as no
assumptions specific to images are made in the formulation
of any of the three Tripod legs.

Finally, our work demonstrates that a feasible alternative
to racking our brains in search of new inductive biases for
disentanglement is to revisit previously proposed ideas and
refurbish them for use in tandem. Indeed, it may be that
the right set of component techniques for disentanglement
already exist and are simply waiting to be put together.
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Impact Statement
We view the problem of disentanglement as a manifestation
of the desire to have machine learning models experience
the world as we humans do. We are thus optimistic that
this work and others like it will have a role to play in em-
powering human decision-making in a world increasingly
permeated with such models. Nevertheless, like many other
AI technologies, disentanglement has potential negative im-
pacts. Examples include enhanced disinformation dissem-
ination, more invasive personal profiling from behavioral
data, and increased automation of sensitive decision-making.
Avenues for mitigating such negative outcomes include tech-
nical approaches, e.g. using human-in-the-loop rather than
fully automated systems, as well as policy considerations,
e.g. regulation guidelines for the appropriate deployment
of models. Proactive pursuit of such strategies may well be
crucial for ensuring the positive broader impact of disentan-
glement.
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A. Proofs
A.1. Proof of Proposition 3.1

Proposition 3.1. The Hessian penalty ∑
j1 ̸=j2

(
H

[k]
j1j2

)2
(18)

can be reduced by scaling down ĝ[k] or scaling up any zj , j ∈ [nz], and vice versa. In contrast, the normalized Hessian
penalty ∑

j1 ̸=j2

(
H

[k]
j1j2

σj1σj2

)2
∑

j1,j2

(
H

[k]
j1j2

σj1σj2

)2 (19)

is invariant to the scaling of ĝ[k] and zj ∀j ∈ [nz].

Proof. First, we prove the statement about the original Hessian penalty. Let s ∈ (0, 1). Then, if ĝ′[k] = sĝ[k],

∑
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s2 <
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.

Similarly, if z′i = sizi with si ≥ 1 and sl > 1 for at least one l ∈ [nz], then

∑
j1 ̸=j2
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∂ĝ[k]

∂zj2

1

sj1sj2

)2

<
∑
j1 ̸=j2

(
H

[k]
j1j2

)2
.

To show that the normalized Hessian penalty is invariant to scaling of ĝ[k], suppose we scale ĝ[k] to be ĝ′[k] = αĝ[k]. Then,
the numerator becomes∑
j1 ̸=j2

(
H

′[k]
j1j2

σj1σj2

)2
=
∑
j1 ̸=j2

(
∂

∂zj1

∂ĝ′[k]

∂zj2
σj1σj2

)2

=
∑
j1 ̸=j2

(
∂

∂zj1

∂ĝ′[k]

∂ĝ[k]
∂ĝ[k]

∂zj2
σj1σj2

)2

= α2
∑
j1 ̸=j2

(
H

[k]
j1j2

σj1σj2

)2
.

Similarly, the denominator becomes
∑

j1,j2

(
H

′[k]
j1j2

σj1σj2

)2
= α2

∑
j1,j2

(
H

[k]
j1j2

σj1σj2

)2
, allowing us to write

∑
j1 ̸=j2

(
H

′[k]
j1j2

σj1σj2

)2
∑

j1,j2

(
H

′[k]
j1j2

σj1σj2

)2 =

∑
j1 ̸=j2

(
H

[k]
j1j2

σj1σj2

)2
∑

j1,j2

(
H

[k]
j1j2

σj1σj2

)2
Now, we verify that the normalized Hessian penalty is invariant to any scaling of the inputs. If zj1 is scaled by s1 so that
z′j1 = s1zj1 and zj2 is scaled by s2 so that z′j2 = s2zj2 , then each term (in both the numerator and the denominator) becomes

(
H

′[k]
j1j2

σ′
j1σ

′
j2

)2
=

(
∂

∂z′j1

∂ĝ[k]

∂z′j2
σ′
j1σ

′
j2

)2

=

(
∂

∂zj1

∂zj1
∂z′j1

(
∂ĝ[k]

∂zj2

∂zj2
∂z′j2

)
σ′
j1σ

′
j2

)2

=

(
1

s1

∂

∂zj1

(
1

s2

∂ĝ[k]

∂zj2

)
s1σj1s2σj2

)2

=

(
∂

∂zj1

∂ĝ[k]

∂zj2
σj1σj2

)2

=
(
H

[k]
j1j2

σj1σj2

)2
,

and the normalized Hessian penalty remains invariant.
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A.2. Proof of Proposition 3.2

Proposition 3.2. Let v and w be random vectors where vj ∼ Rademacher(σj) and wj ∼ N (0, σ2
j ). Then the normalized

Hessian penalty can be computed as

∑
j1 ̸=j2

(
H

[k]
j1j2

σj1σj2

)2
∑

j1,j2

(
H

[k]
j1j2

σj1σj2

)2 =
Var

[
vTH [k]v

]
Var

[
wTH [k]w

] . (20)

Proof. For the numerator, we first write Var
[
v⊤H [k]v

]
= Var

[
v⊤H [k]v − E

[
v⊤H [k]v

]]
. Now,

v⊤H [k]v − E
[
v⊤H [k]v

]
=
∑
j1,j2

vj1H
[k]
j1j2

vj2 − E
[
v⊤H [k]v

]
=
∑
j1,j2

vj1H
[k]
j1j2

vj2 − E
[
Tr
(
v⊤H [k]v

)]
=
∑
j1,j2

vj1H
[k]
j1j2

vj2 − E
[
Tr
(
H [k]vvT

)]
=
∑
j1,j2

vj1H
[k]
j1j2

vj2 − Tr
(
H [k]E

[
vvT

])
=
∑
j1,j2

vj1H
[k]
j1j2

vj2 −
∑
j

H
[k]
jj σ

2
j

=
∑
j1,j2

vj1H
[k]
j1j2

vj2 −
∑
j

H
[k]
jj v

2
j +

∑
j

H
[k]
jj v

2
j −

∑
j

H
[k]
jj σ

2
j

=
∑
j1 ̸=j2

vj1H
[k]
j1j2

vj2 +
∑
j

H
[k]
jj (v

2
j − σ2

j )

=
∑
j1 ̸=j2

vj1H
[k]
j1j2

vj2 +
∑
j

H
[k]
jj (σ

2
j − σ2

j ) ∵ vj ∼ Rademacher(σj)

=
∑
j1 ̸=j2

vj1H
[k]
j1j2

vj2

Taking the variance, we have:

Var

∑
j1 ̸=j2

vj1H
[k]
j1j2

vj2

 = Var

2 ∑
j1>j2

vj1H
[k]
j1j2

vj2

 ∵ H [k] is symmetric

= 4
∑
j1>j2

(
H

[k]
j1j2

)2
Var [vj1vj2 ]

= 4
∑
j1>j2

(
H

[k]
j1j2

)2
σ2
j1σ

2
j2

= 2
∑
j1 ̸=j2

(
H

[k]
j1j2

σj1σj2

)2
∵ H [k] is symmetric
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For the denominator, we have

Var
[
w⊤H [k]w

]
= Var

∑
j1 ̸=j2

wj1H
[k]
j1j2

wj2 +
∑
j

w2
jH

[k]
jj


= Var

∑
j1

2
∑
j1>j2

wj1H
[k]
j1j2

wj2 + w2
j1H

[k]
j1j1


=
∑
j1

Var

2
∑
j1>j2

wj1H
[k]
j1j2

wj2 + w2
j1H

[k]
j1j1


+
∑
j1 ̸=j′1

Cov

2
∑
j1>j2

wj1H
[k]
j1j2

wj2 + w2
j1H

[k]
j1j1

 ,

2
∑
j′1>j′2

wj′1
H

[k]
j′1j

′
2
wj′2

+ w2
j′1
H

[k]
j′1j

′
1


The covariance terms vanish. To see this, note that

Cov
(
wj1H

[k]
j1j2

wj2 , wj′1
H

[k]
j′1j

′
2
wj′2

)
= E

[
wj1H

[k]
j1j2

wj2wj′1
H

[k]
j′1j

′
2
wj′2

]
− E

[
wj1H

[k]
j1j2

wj2

]
E
[
wj′1

H
[k]
j′1j

′
2
wj′2

]
= E [wj1 ]E

[
H

[k]
j1j2

wj2wj′1
H

[k]
j′1j

′
2
wj′2

]
− E [wj1 ]E

[
H

[k]
j1j2

wj2

]
E
[
wj′1

]
E
[
H

[k]
j′1j

′
2
wj′2

]
= 0,

where we leverage that either j1 ̸= j′2 or j2 ̸= j′1 must hold else the two terms are identical, and write the case of the former
without loss of generality. Similarly,

Cov
(
wj1H

[k]
j1j2

wj2 , w
2
j′1
H

[k]
j′1j

′
1

)
= Cov

(
wj1H

[k]
j1j2

wj2 , w
2
j1H

[k]
j1j1

)
= 0

since in each of these expressions there is at least one normal variable independent of all other variables that has not been
raised to a power greater than 1. Lastly,

Cov
(
w2

j1H
[k]
j1j1

, w2
j′1
H

[k]
j′1j

′
1

)
= E

[
w2

j1H
[k]
j1j1

w2
j′1
H

[k]
j′1j

′
1

]
− E

[
w2

j′1
H

[k]
j′1j

′
1

]
E
[
w2

j1H
[k]
j1j1

]
= H

[k]
j1j1

H
[k]
j′1j

′
1
σ2
j1σ

2
j′1
−H

[k]
j1j1

H
[k]
j′1j

′
1
σ2
j1σ

2
j′1

= 0.

Since the covariance terms vanish, we have

Var
[
w⊤H [k]w

]
= Var

∑
j1

2
∑
j1>j2

wj1H
[k]
j1j2

wj2 + w2
j1H

[k]
j1j1


=
∑
j1

Var

2 ∑
j1>j2

wj1H
[k]
j1j2

wj2 + w2
j1H

[k]
j1j1

 .

Now, we expand:

∑
j1

Var

2 ∑
j1>j2

wj1H
[k]
j1j2

wj2 + w2
j1H

[k]
j1j1


=
∑
j1

Var

2 ∑
j1>j2

wj1H
[k]
j1j2

wj2

+Var
[
w2

j1H
[k]
j1j1

]
+ 2Cov

2
∑
j1>j2

wj1H
[k]
jj wj2 , w

2
j1H

[k]
j1j1

 .

14



Tripod: Three Complementary Inductive Biases for Disentangled Representation Learning

However, for all j1,

2Cov

2
∑
j1>j2

wj1H
[k]
jj wj2 , w

2
j1H

[k]
j1j1

 = E

2w3
j1H

[k]
j1j1

∑
j1>j2

H
[k]
j1j2

wj2

− E

2wj1

∑
j1>j2

H
[k]
j1j2

wj2

E
[
w2

j1H
[k]
j1j1

]
= 2H

[k]
j1j1

∑
j1>j2

H
[k]
j1j2

E
[
w3

j1wj2

]
− 2H

[k]
j1j1

∑
j1>j2

H
[k]
j1j2

E [wj1wj2 ]E
[
w2

j1

]
= 2H

[k]
j1j1

∑
j1>j2

H
[k]
j1j2

E
[
w3

j1

]
E [wj2 ]− 2H

[k]
j1j1

∑
j1>j2

H
[k]
j1j2

E [wj1 ]E [wj2 ]E
[
w2

j1

]
= 0.

Therefore,

Var
[
w⊤H [k]w

]
=
∑
j1

Var

2 ∑
j1>j2

wj1H
[k]
j1j2

wj2

+Var
[
w2

j1H
[k]
j1j1

]
=
∑
j1

4
∑
j1>j2

(
H

[k]
j1j2

)2
Var [wj1wj2 ] +

(
H

[k]
j1j1

)2
Var

[
w2

j1

]
=
∑
j1

4
∑
j1>j2

(
H

[k]
j1j2

)2
σ2
j1σ

2
j1 + 2

(
H

[k]
jj

)2
σ2
j1


= 2

∑
j1,j2

(
H

[k]
j1j2

)2
σ2
j1σ

2
j

where we used the fact that the variance of product of two independent normal variables centered at 0 is the product of their
variances and the variance of the square of a normal variable is twice its variance squared.

Taking the simplified forms of the numerator and denominator, we obtain

Var
[
v⊤H [k]v

]
Var

[
w⊤H [k]w

] = 2
∑

j1 ̸=j2

(
H

[k]
j1j2

σj1σj2

)2
2
∑

j1,j2

(
H

[k]
j1j2

σj1σj2

)2 =

∑
j1 ̸=j2

(
H

[k]
j1j2

σj1σj2

)2
∑

j1,j2

(
H

[k]
j1j2

σj1σj2

)2
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B. Experimental Details
This section contains details on the experiments conducted in this work.

B.1. Datasets

(a) Shapes3D (b) MPI3D

(c) Falcor3D (d) Isaac3D

Figure 6: Random data samples from each dataset.

Table 2: Summary of datasets used for empirical evaluation.

dataset ns |D| PSNR threshold (dB) for 64× 64

Shapes3D (Burgess & Kim, 2018) 6 480,000 38
MPI3D (Gondal et al., 2019) 7 460,800 42
Falcor3D (Nie, 2019) 7 233,280 34
Isaac3D (Nie, 2019) 9 737,280 40

Table 3: Dataset sources.

Shapes3D MPI3D Falcor3D Isaac3D
index description values description values description values description values

0 floor color 10 object color 4 lighting intensity 5 object shape 3
1 object color 10 object shape 4 lighting x 6 robot x 8
2 camera orientation 10 object size 2 lighting y 6 robot y 5
3 object scale 8 camera height 3 lighting z 6 camera height 4
4 object shape 4 background color 3 camera x 6 object scale 4
5 wall color 15 robot x 40 camera y 6 lighting intensity 4
6 robot y 40 camera z 6 lighting direction 6
7 object color 4
8 wall color 4
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B.2. Hyperparameters

This section specifies fixed and tuned hyperparameters for all methods considered.

Table 4: Fixed hyperparameters for all autoencoder variants.

hyperparameter value

number of latents nz 2ns

AdamW learning rate 1× 10−3

AdamW β1 0.9
AdamW β2 0.99
AdamW updates ≤ 2× 105

batch size 64

Table 5: Key regularization hyperparameter tuning done for each autoencoder

method hyperparameter values

β-TCVAE β = λtotal correlation [1, 2, 3, 5, 10]
QLAE weight decay [1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2, 1]
Tripod (naive) λvanilla Hessian penalty [0, 1× 10−10, 1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2]
Tripod (naive) λlatent multiinformation [0, 1× 10−10, 1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2]
Tripod λNHP [0, 1× 10−10, 1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2]
Tripod λKLM [0, 1× 10−10, 1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2]
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C. Qualitative Results
We qualitatively compare Tripod and naive Tripod on each dataset. In each column, we encode an image and visualize
the effect of intervening on a single latent on decoding by varying its value in a linear interpolation in that latent’s range.
Below, we also provide a normalized mutual information heatmap that acts as an “answer key” to what the qualitative
change in a column should be. Red latents are inactive and corresponding columns are removed from the latent intervention
visualizations.

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

floor_hue

wall_hue

object_hue

scale

shape

orientation

0.01 0.00 0.00 0.00 0.01 0.67 0.02 0.00 0.69 0.00 0.00 0.00

0.00 0.52 0.00 0.00 0.71 0.01 0.01 0.00 0.01 0.01 0.00 0.01

0.64 0.00 0.65 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.08 0.01 0.01 0.93 0.01 0.01 0.04 0.00 0.01 0.00 0.00 0.02

0.02 0.00 0.00 0.09 0.00 0.00 1.00 0.00 0.01 0.02 0.00 0.04

0.00 0.01 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.72 0.00 0.61

(a) Tripod

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

floor_hue

wall_hue

object_hue

scale

shape

orientation

0.82 0.88 0.00 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.01 0.00

0.01 0.02 0.01 0.00 0.72 0.01 0.78 0.04 0.00 0.01 0.00 0.01

0.01 0.00 0.67 0.01 0.01 0.03 0.01 0.01 0.00 0.64 0.01 0.72

0.01 0.01 0.01 0.91 0.01 0.04 0.02 0.01 0.00 0.00 0.84 0.00

0.01 0.00 0.21 0.12 0.01 1.00 0.02 0.03 0.00 0.27 0.14 0.19

0.01 0.01 0.01 0.00 0.02 0.04 0.02 0.47 0.83 0.01 0.01 0.00

(b) Naive Tripod

Figure 7: Tripod and naive Tripod decoded latent interventions and normalized mutual information heatmaps on Shapes3D.
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z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13

object_color

object_shape

object_size

camera_height

background_color

horizontal_axis

vertical_axis

0.01 0.00 1.00 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00

0.02 0.42 0.04 0.57 0.00 0.08 0.00 0.00 0.11 0.17 0.03 0.00 0.04 0.02

0.01 0.06 0.02 0.96 0.00 0.01 0.00 0.00 0.03 0.04 0.00 0.00 0.02 0.00

0.60 0.55 0.00 0.01 0.01 0.00 0.00 0.00 0.07 0.51 0.01 0.00 0.76 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.01 0.01 0.01 0.01 0.02 0.01 0.05 0.08 0.01 0.01 0.01 0.10 0.01 0.03

0.01 0.02 0.01 0.01 0.10 0.11 0.02 0.06 0.01 0.02 0.06 0.06 0.01 0.14

(a) Tripod

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13

object_color

object_shape

object_size

camera_height

background_color

horizontal_axis

vertical_axis

0.00 0.00 1.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.05 0.00

0.00 0.01 0.05 0.00 0.02 0.01 0.00 0.00 0.00 0.55 0.00 0.04 0.54 0.01

0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.40 0.00 0.03 0.42 0.00

0.00 0.42 0.01 0.00 0.03 0.02 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.43

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01 0.00

0.10 0.06 0.01 0.11 0.01 0.05 0.02 0.01 0.01 0.01 0.05 0.01 0.01 0.10

0.07 0.04 0.01 0.05 0.01 0.08 0.12 0.11 0.06 0.03 0.03 0.01 0.02 0.02

(b) Naive Tripod

Figure 8: Tripod and naive Tripod decoded latent interventions and normalized mutual information heatmaps on MPI3D.
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z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13

lighting_intensity

lighting_x

lighting_y

lighting_z

camera_x

camera_y

camera_z

0.00 0.12 0.00 0.01 0.02 0.01 0.00 0.02 0.80 0.00 0.00 0.01 0.01 0.00

0.00 0.02 0.00 0.03 0.01 0.00 0.21 0.03 0.01 0.00 0.00 0.00 0.39 0.00

0.00 0.04 0.00 0.25 0.00 0.01 0.10 0.06 0.02 0.00 0.00 0.00 0.02 0.00

0.00 0.36 0.00 0.13 0.01 0.01 0.08 0.39 0.08 0.00 0.02 0.04 0.07 0.00

0.00 0.00 0.00 0.00 1.00 0.04 0.00 0.00 0.01 0.00 0.02 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.00 0.65 0.58 0.00 0.00

0.00 0.00 0.00 0.00 0.02 0.99 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00

(a) Tripod

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13

lighting_intensity

lighting_x

lighting_y

lighting_z

camera_x

camera_y

camera_z

0.03 0.01 0.02 0.13 0.47 0.01 0.01 0.10 0.02 0.06 0.02 0.01 0.02 0.01

0.03 0.03 0.01 0.02 0.01 0.01 0.01 0.03 0.54 0.17 0.01 0.00 0.01 0.01

0.03 0.01 0.18 0.05 0.03 0.01 0.01 0.01 0.04 0.13 0.01 0.00 0.01 0.01

0.58 0.03 0.20 0.18 0.09 0.02 0.02 0.40 0.03 0.02 0.02 0.03 0.06 0.03

0.00 0.80 0.00 0.00 0.00 0.01 0.68 0.00 0.00 0.00 0.01 0.00 0.01 0.02

0.01 0.00 0.00 0.00 0.00 0.66 0.01 0.00 0.00 0.00 0.78 0.04 0.04 0.09

0.00 0.04 0.00 0.00 0.00 0.12 0.07 0.00 0.00 0.00 0.10 0.44 0.47 0.80

(b) Naive Tripod

Figure 9: Tripod and naive Tripod decoded latent interventions and normalized mutual information heatmaps on Falcor3D.
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z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17

object_shape
robot_x
robot_y

camera_height
object_scale

lighting_intensity
lighting_y_dir
object_color

wall_color

0.00 0.00 0.55 0.00 0.01 0.00 0.00 0.04 0.03 0.01 0.00 0.18 0.00 0.00 0.00 0.00 0.06 0.01

0.00 0.00 0.34 0.01 0.02 0.00 0.00 0.01 0.67 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.02 0.01

0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.01 0.00 0.01 0.00 0.50 0.00 0.00 0.01 0.41 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.40

0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.01 0.00

0.41 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.41 0.41 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.67 0.00 0.00 0.00 0.00 0.47 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.01 0.00 0.00 0.75 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00

(a) Tripod (b) Naive Tripod

Figure 10: Tripod and naive Tripod decoded latent interventions and normalized mutual information heatmaps on Isaac3D.
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D. Profiling Study
We measure the average time (in seconds) each training iteration takes for various models. We observe that latent quantization
and kernel-based latent multiinformation incur minimal overhead. However, adding normalized Hessian penalty increases
the runtime by a factor of about 2.5 due to the extra forward passes required to compute its regularization term.

model training iteration runtime (s)

β-TCVAE 0.040
QLAE 0.040
QLAE + KLM 0.040
Tripod 0.106

Table 6: Profiling study results.
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