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ABSTRACT

Ultrasound imaging is widely used due to its safety, affordability, and real-time
capabilities, but its 2D interpretation is highly operator-dependent, leading to vari-
ability and increased cognitive demand. We present UltraGauss: an ultrasound-
specific Gaussian Splatting framework that serves as an efficient approximation to
acoustic image formation. Unlike projection-based splatting, UltraGauss renders
by probe-plane intersection with in-plane aggregation, aligning with plane-based
echo sampling while remaining fast and memory-efficient. A stable parameterisa-
tion and compute-aware GPU rasterisation make this method practical at scale. On
clinical datasets, UltraGauss delivers state-of-the-art 2D-to-3D reconstructions in
minutes on a single GPU (reaching 0.99 SSIM within ~20 minutes), and a clinical
expert survey rates its reconstructions the most realistic among competing meth-
ods. To our knowledge, this is the first Gaussian Splatting approach tailored to
ultrasound 2D-to-3D reconstruction. Code will be released upon publication.

1 INTRODUCTION

Ultrasound (US) is a mainstay in medical imaging: it is real-time, low-cost, portable, and non-
ionizing. Yet routine use still asks clinicians to infer 3D anatomy from 2D slices: a cognitively de-
manding step that introduces operator-dependent variability (Benacerraf], [2002; Nelson & Pretorius)
1998), undermining reproducibility and hindering standardized assessment. While volumetric (3D)
probes exist, their workflows are largely offline and the hardware is costly, making them uncom-
mon outside well-resourced centres (Merz & Welter, 2005). Enabling 3D reasoning from routine
2D acquisitions offers a software-only path to scale volumetric assessment across sites and resource
levels. As 2D is the universal denominator in global healthcare, 2D-to-3D reconstruction will yield
standardised volume and surface metrics that are difficult to obtain consistently from single slices.

Recent learning-based approaches span implicit NeRF-style representations (Yeung et al., 2024;
Wysocki et al.| 2023} [Eid et al.| 2025} |Gaits et al.| [2024) and explicit voxel grids (Solberg et al.,
2007). However, implicit fields are computationally heavy; voxel grids incur memory and resolution
limits; and many methods adopt light-transport assumptions (ray accumulation with transmittance),
which fundamentally mismatch US physics, where waves propagate into tissue and return to the
probe (Powles et al., 2018} |Aldrich, |2007). Classical Gaussian Splatting (GS) for cameras achieves
fast, high-quality rendering in optical settings by projecting 3D Gaussians onto the image plane
and blending splats in depth order using alpha compositing (Kerbl et al., [2023). US images, on the
other hand, are not perspective renderings: they sample echo intensities within the probe plane (with
attenuation), so the camera-style projection and occlusion paradigm does not apply.

We introduce UltraGauss: an ultrasound-specific GS reconstruction framework that serves as an
efficient approximation to the US image formation model, replacing projection-based rendering with
probe-plane intersection rendering, consistent with wave-based acquisition. Instead of marching
rays or projecting Gaussians into 2D, UltraGauss evaluates anisotropic 3D Gaussians where they
intersect the probe plane and aggregates intensities in-plane. This removes the need for depth-
based occlusion, matches the acquisition geometry of linear and curvilinear probes, and enables
resolution-free slicing at arbitrary orientations. This approximation preserves plane-based sampling
and dominant attenuation behaviour while avoiding expensive wave simulation.

Our technical contributions are:

* Efficient forward-model approximation: UltraGauss renders by probe-plane intersection rather
than camera projection, capturing plane-based sampling and attenuation while side-stepping costly
wave simulation.
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Figure 1: Image formation mechanisms. (a, b) Projection-based (e.g. camera) rendering with depth-
ordered compositing and (c) ultrasound. (c.i) Slice sampling from a voxel grid or continuous field.
(c.ii) Physics-based ultrasound: path integration with attenuation/backscatter. (c.iii) UltraGauss:
plane-intersection of 3D Gaussians with in-plane aggregation.

 Stable parameterisation: A triangular inverse-covariance (precision) factorisation guarantees
positive-definiteness and well-conditioned gradients for reconstruction and densification.

» Compute-aware rasterisation: Closed-form x? ellipsoidal bounds in probe coordinates yield
tight per-plane 2D boxes, coupled with a two-phase, load-balanced CUDA pipeline that rejects non-
intersecting Gaussians and confines work to those boxes.

» Lightweight attenuation: A Beer—Lambert term models acoustic shadowing when probe geom-
etry is available, adding realism at negligible cost.

* Clinical validation: Experiments on clinical fetal datasets and freehand cine sweeps show high-
fidelity 3D reconstructions (strong SSIM) within minutes on a single GPU, with clinician-perceived
realism comparable to native 3D scans.

2 RELATED WORK

2D-to-3D reconstruction in medical imaging. Classical pipelines segment 2D slices, register them
(e.g. using B-splines), and interpolate a 3D volume (Sarmabh et al., 2023)). These approaches require
substantial manual intervention, struggle with irregular sampling, and scale poorly to high-resolution
data. Structure-from-Motion (SfM) methods (e.g. COLMAP (Schonberger & Frahm), 2016)) trian-
gulate depth from photometrically consistent views, but ultrasound violates these assumptions and
precise multi-view registration is often impractical.

Learned volumetric representations. In US imaging, three requirements shape learned volumetric
methods: coping with irregular plane sampling, avoiding external probe tracking, and adopting a
rendering model aligned with plane-based echo acquisition (Fig. [Tk) rather than camera projection
(Fig. [Th-b). [Yeung et al|(2024) (ImplicitVol) reconstructs volumes from routine sweeps without
IMU/vision tracking, and [Eid et al.| (2025) (RapidVol) introduces a tensor-factorised hybrid that
accelerates training. These advances improve data efficiency and robustness, yet the underlying
rendering remains tied to point/voxel sampling using neural networks.

Ultrasound-specific forward models. Physics-based renderers estimate position-dependent acous-
tic parameters (e.g. attenuation, scattering) and synthesise images along wave paths (Wysocki et al.}
2023}, |Guo et al.l [2024b) (Fig. Ek.ii). These models can be accurate with known probe poses and
source geometry, but they necessitate precise acquisition; curvilinear probes (common in obstetrics)
further require cone-to-Cartesian transforms, increasing complexity and sensitivity to error.

GS in medical imaging. GS replaces implicit fields with explicit 3D Gaussians and differen-
tiable rasterisation, enabling fast, high-quality rendering. Medical adaptations have largely targeted
projection-based modalities: endoscopy (RGB), MRI, and CT (Guo et al., 20244} |Liu et al.| [2024;
Xie et al.,[2024; Bonilla et al., 2024} |Peng et al.|, 2025} Zha et al.,2024; Cai et al.,|2025; Nikolakakis
et al., [2024). These, therefore, retain camera-style projection and depth compositing (Fig. [Ip). [Zha
et al| (2024) introduce a CUDA-based Gaussian voxel former, but only as a regulariser at small
spatial resolutions, and plane sampling from voxels reintroduces interpolation artefacts.

Ultrasound-adapted GS. As far as we know, no ultrasound-adapted GS method exists for 2D-
to-3D reconstruction. UltraGauss extends GS to volumetric US by replacing projection-based ren-
dering with probe-plane intersection rendering (Fig. [Tk.iii): an efficient approximation to the US
image formation model that aligns with plane-based echo sampling and attenuation. The continuous
(non-voxelised) Gaussian representation supports arbitrary resolution and orientation slicing without
external probe tracking, yielding fast, memory-efficient, and clinically relevant reconstructions.
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3 BACKGROUND

For cameras in the visible spectrum, one can render the color crgp for a given pixel by evaluating a
volumetric model along the corresponding ray, sampling the model’s opacities &(«) and colors é(z)
at m ordered sample points x; on the ray:

m 7j—1
crep = »_Tjd(x;)é(x;), Tp=]] 0 —a(a)), (1)
j=1 k=1

where T); denotes the accumulated transmittance of the material. The main purpose of the accumu-
lated transmittance is to model occlusions (see Fig. [Th — points at the back are blocked by those in
front, so are given a lower T);/importance). In the case of GS (Kerbl et al.} [2023), the volumetric
model is a weighted sum of n Gaussian functions with means p;, covariances >;, colors c;, and
coefficients (maximum opacities) a;. In contrast to NeRFs (Mildenhall et al.| [2020), the sampled
points x; can now be reduced to the projections of close Gaussians on to the image plane, which
can be made more efficient. The opacity of the i" Gaussian at a 2D (image-space) point z is then

calculated as
a:(0) = avexp (5 (o =) (59) o) ). @

2D squared Mahalanobis distance

with the mean 1P and covariance %2 projected to the 2D image. To achieve this, the 3D param-
eters (u;,%;) are translated and rotated to the camera’s reference frame by a view transformation
(extrinsic camera matrix) W, and projected to 2D with the affine approximation of a projective
transformation (using intrinsic camera matrix K) (Zwicker et al., 2001). We can express this for-

mally with operators to convert to and from homogenous coordinates, i(u) = [u1,...,up, 1]T and
h=Y(u) = [u1/up,...,up_1/up) respectively:
pi? = proj (ui) = i~ (KWh (1)) 3)
_ Oproj (i)

¥ = we,wrgl 4)

Opi
We can then combine the opacities and colors of all close Gaussians to obtain the rendered opacity
& (x) and color ¢ (x) for use in Eq.

n 1 n
a(x) = ; G (x), ¢(x)= ) @ <Z & () Ci> 5)
In this summary we leave out spherical harmonics, which support directionally-dependent colors
(Ramamoorthi, 2006; Yu et al., | 2021)).

3.1 OPTIMIZATION

While Eqs. [T}5] can render a Gaussian model, practical use requires optimizations to avoid costly
nested iterations. Namely, Gaussians are tiled and depth-sorted, then distributed across GPU threads
for rasterization onto pixels (Kerbl et al.,2023)). Depth sorting and cut-off distances for Gaussians in
the image plane make rendering only approximate (Huang et al., 2024). Heuristics are necessary to
remove/resample Gaussians in overly sparse/dense regions (Rota Bulo et al., [2025} |Yu et al., [2023)).

4 METHOD

4.1 IMAGE FORMATION MODEL — ULTRASOUND VS. VISUAL SPECTRUM

While fast splatting is well-developed for RGB cameras, for ultrasound it requires rethinking many
design choices due to differences in image formation. US probes use reflected ultrasound waves
to measure the response of materials at a dense range of depths from the probe (Fig. [Tk). Image
cameras, in contrast, measure light that typically reflects off solid objects, and thus are more affected
by occlusions and most often measure surfaces (Fig. -b). Accumulated transmittance T in Eq.
is therefore unsuitable, as it would treat opaque volumes as occlusions (see 7'(z) subplot in Fig.|1j).
Instead, the key mechanism for ultrasound is detecting intersections with the probe plane (Fig.|lp),
not projections, while accumulated transmittance plays only a secondary role (discussed in Sec.4.3)).
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We do this by first opting to include an additional uniform component (background) with color cgg
and coefficient apg, which improves numerical stability by avoiding a division by zero. By reusing
the definition of ¢ (x) from Egq. to combine the gaussian and background components at a 2D point
(pixel) z, our rendering equation simply becomes:

n

a(x)=> & (z)+one 6)

() = ﬁ (Z G (x) ¢ + aBGCBG> (7

A large conceptual difference from rendering the visual spectrum is that, instead of projecting the
Gaussian parameters to 2D, we need them to intersect, or touch, the probe plane in 3D. The opacity
&; (x) of the ™ Gaussian at a 2D point x (necessary for Eqgs. is then evaluated as a Mahalanobis
distance in 3D space, by lifting the 2D image point to 3D in the coordinate-frame of the probe:

1 -
G () = o exp (—2 (20— 1) " (S°) " (30 — ) ) , ®)

3D squared Mahalanobis distance

(o3

CUltrasound (37) =

T . .
where 7)) = [x1,22,0]" and the Gaussian’s parameters are moved to the probe’s coordinate-frame
using its inverse transform matrix W':

pP = T (Wh (). S0 = W ©)

Contrast Eq.[2|to Eq. [8} despite the similarities, the former (for RGB images) evaluates a 2D Gaus-
sian after projecting it to image-space, while the later evaluates a 3D Gaussian by doing the reverse
operation (for ultrasound images). Using this model, we can now design a fast splatting strategy
to avoid the computational expense of simply evaluating Egs. and Eq. [8|(which would result in
nested iterations over all pixels and all Gaussians).

4.2 TRIANGULAR COVARIANCE PARAMETERIZATION FOR EFFICIENT INVERSION AND
GAUSSIAN SAMPLING

One challenge in optimizing representations with covariance matrices 3 (omitting the subscript ¢ for
conciseness) is that they must remain positive-definite (PD, all eigenvalues strictly positive), while
gradient-based optimization methods typically only support unconstrained optimization. |[Kerbl et al.
(2023) achieved this by reparameterizing the covariances as a product of a scaling vector s and a
quaternion-derived rotation matrix R, as ¥ = Rdiag (32) RT. When a Gaussian is projected onto a
2D plane, its covariance becomes 2D, which is easily invertible for use in Eq.[2| However, we found
that for our setting the inversion of X3P (as opposed to ¥2P) when it is formed by a quaternion
(which to represent a 3D rotation must first be normalized), resulted in numerical instabilities. Being

a 3 x 3 matrix, inversion also takes longer. Hence, we propose to learn (E3D) ! directly. We ensure
it is PD by parameterizing it as a product of a matrix M with itself (which is positive-semidefinite),
and adding a small multiple of the identity I to ensure positive eigenvalues (with 5 > 0):

My Mo M13]

Yl = MMT 4+ BI, M:[M12 My Mos
Mz Msg Ms3

(10)

Note that M itself is symmetric, to achieve the minimal number of degrees of freedom of a 3D
covariance (6). No normalization is needed. A remaining challenge is that, in addition to requiring
the inverse covariance X! frequently to render pixels (Eq. , we also occasionally (e.g. every 100
iterations) must perform heuristic resampling of some Gaussians. This operation requires inverting
¥~1 explicitly to obtain the original covariance X, as well as factorizing it to draw a sample from
the multivariate gaussian (Sec.[3.1)). Both operations can be numerically unstable for ill-conditioned
L. Therefore, we propose instead a more efficient parameterization, as a product of a lower-
triangular matrix L:

L2, +8 0 0
Y r=LLY, L=| L L3+p 0 ) (11)
L3 Los L+
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tion bounds (Sec. [£-3). Boxes that do not intersect ~ Right: the same field warped to a beam-
the probe plane are rejected early (Sec. [F4); inter-  aligned grid. (1) Warp to beam space; (2)
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section window (Sec. [f.3). Pixels not iterated over ~ rection (path integral of absorption); (3) un-
are marked with x. The probe plane (XY) points ~ warp back to image space to obtain the at-
into the page. tenuation map.

Eq.|11|guarantees that ¥~ is PD, since a triangular matrix’s eigenvalues are its diagonal elements,
and it can be seen that these are strictly positive (with 3 > 0). Moreover, a lower-triangular matrix
is extremely efficient to invert via forward substitution, which is implemented in most numerical
packages. This allows easily computing > = (Lil)T L. Finally, another advantage is that this
factorization allows sampling from a Gaussian (for the resampling heuristic, Sec. [3.1I)), by simply
projecting a standard normal sample z with the (efficiently) inverted L:

y=p+LTz z~N(01). (12)

Eq.|11{supports efficient calculation of ¥ 7!, and thus opacity &; (z) (Eq. , 1.40x faster than had
weused ¥ = Rdiag (s*) R”. Similarly ¥ and the resampling heuristics are computed 1.25x faster.
Yet for most Pixel-Gaussian pairs, opacity is near 0 and so can be ignored. Sec. .3|discusses this.

4.3 RASTERIZATION BOUNDARIES

To avoid evaluating Eq.[§] when it is known to yield opacities close to 0, we compute it only inside a
bounding box for each Gaussian. The bounding box is defined around the ellipsoid that encompasses
p% of the Gaussian’s probability density. This ellipsoid can be expressed as a function of the 3D
squared Mahalanobis distance from Eq. 8] and the chi-squared distribution value for 3 degrees of
freedom (omitting the subscript ¢ for clarity):

(0 — 1) (Z%°) 7 (2o — #%) < x31 (13)

which evaluates to X%,l—p = 7.815 for p = 95% (note that it is a bound on a squared distance). To
calculate this ellipsoid’s bounding box, its bounds are the 3D vectors b™™ and b™?%:

2
min / max X sl —
pmin/max _ 8D 4\ /Sy )\:ﬁ, (14)
SR - (5)2
v=| X (w2 |,

=P - (2th) 2
using Z?E to index the (j, k)" element of a matrix. Eq. can be obtained by writing Eq.|13|as a
function of each element of § = zo — pP. Fig. illustrates these bounds.

4.4 LOAD BALANCING ACROSS RENDERING THREADS

Note that the bounding box (Eq.[I4) can be partitioned into 2 components:

min / max
/)

1. The 2D bounding box in the probe plane (first two elements of b™»/™ax j e p'")
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min / max

2. The 1D segment orthogonal to the probe plane (the third element, b, ).
This suggests a two-phase process for efficient rendering:

1. Reject any Gaussians whose cut-off boundaries do not intersect with the probe plane: b5 > 0
or bg'™* < 0.

2. For each accepted Gaussian, only iterate over 2D pixels z inside the bounding box of the plane:
b‘l’“in < z; <™ and bg‘i“ < g < UG

This process is shown in Fig. 2] and naturally balances the load across parallel GPU threads. Phase
1 requires iterating through all the Gaussians (but not the pixels), marking them as accepted or re-
jected based on the perpendicular distance, which can be equally partitioned between all the threads.
Standard buffer compaction (Corp.,[2020) can then reduce this list of Gaussians to only the accepted
ones. Phase 2 then requires iterating through the compacted list of only accepted Gaussians, and
rasterizing each one only onto the corresponding bounding box of the image buffer, by atomically
adding to pixel accumulators for color ¢ (z) and opacity & (z) (implementing Egs. [6}f7). The com-
pacted list in Phase 2 is again equally partitioned among the threads, to ensure optimal throughput.

4.5 SHADOW MODELLING

While other NeRF-based methods model more complex ultrasound physics (Guo et al., 2024bj
Wysocki et al.| 2023)), we found that a simple and fast approximation can account for the attenu-
ation of ultrasound waves as they traverse from the probe to a point z, producing shadows along
the way. Based on the Beer-Lambert Law, we calculate an intensity reduction factor 7" for a pixel
located at position z:

T (z) = expla=o @)% ~ exp~ %0 456 (15)

where d; is the opacity of pixel j as computed in Eq.@ and d; is the distance between successive
a;’s, which in our case is simply the pixel spacing (= 1/ImageHeight). This can be efficiently com-
puted for all pixels by using a cumulative sum (cumsum) along the row dimension, after warping
(bilinearly interpolating) the ultrasound cone into a square image (illustrated in Fig. [3). We then
multiply cuigrasound () from Eq.[7]by T (z) to give the updated image pixel color.

4.6 OPTIMIZATION

We train UltraGauss end-to-end by backpropagation with Adam, optimising per-Gaussian parame-
ters {u;, L;, ¢;, a; }. From our triangular parameterisation, precision and covariance are linked by

Ay = 57 = LiL] +el  (cf. Eq.[TI),

so we optimise L; (lower triangular) directly and recover X; = AZ-_1 as needed.

Initialisation. Unlike camera GS, we do not use COLMAP initialisation (which yields surface-only
points). Instead, we sample f; uniformly within the acquisition volume, and intialise ¢; = 0.5
and a; = 0.731 (constrained to [0,1) via a sigmoid). For the precision factor, we draw entries
L;;j ~U[4,5); under our normalisation this corresponds to small initial marginal variances for ¥;
(approximately (1.7-4.3) x 1073). A small jitter € ensures A; = 0.

Training details. Sparsification and densification heuristics follow (Kerbl et al., [2023; |Ye
et al [2024) with small adaptations for plane-intersection rasterisation. We evaluate N €
{100k, 200k, 2M} Gaussians; our CUDA kernels sustain N~2M with minute-level reconstructions
(fewer Gaussians trade a little accuracy for speed). Learning rates are 0.05 for all parameters ex-
cept p;, which uses an exponentially decaying schedule starting at 1.6x10~% (Yu et al., 2021} Kerbl
et al., 2023). All experiments run on a single NVIDIA RTX-A4000. Code (PyTorch and custom
CUDA kernels for forward process and gradients) will be released upon publication.

5 EXPERIMENTS

5.1 DATASETS

Two clinical datasets were curated to validate UltraGauss in different ultrasound acquisition settings.
Dataset A consists of volumetric scans, allowing assessment of reconstruction fidelity across multi-
ple orthogonal views. Dataset B comprises freehand US video sequences, evaluating reconstruction
quality in the absence of full 3D coverage, mimicking real-world fetal monitoring scenarios.
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Figure 4: Reconstruction results for 6 different models (ours in bold) on 3 different training datasets.
Shown at 3 time points over the duration of reconstruction. Higher SSIM is better. Errors bars show
41 standard deviation amongst fetuses.

Dataset A — 3D Ultrasound Volumes: This dataset includes twelve 3D fetal brain ultrasound vol-
umes (160 x 160 x 160 voxels, 0.6 x 0.6 x 0.6 mm? resolution), obtained from the INTERGROWTH-
21% study (Papageorghiou et al.,[2018)). Acquisitions were performed between 14 and 26 gestational
weeks: spanning a critical period of brain maturation (Namburete et al, 2015} 2023), and the stan-
dard time for fetal anomaly screening (Salomon et al., [2022)). The scans were collected using a
Philips HD9 curvilinear probe (2.5 MHz wave frequency) by multiple sonographers, which intro-
duces variability in probe positioning and image appearance.

Dataset B — 2D Freehand Video Sequences: Three freehand 2D ultrasound videos of fetal brain
acquisitions were collected at 19 and 20 weeks’ gestational age at Leiden University Medical Center
using a GE Voluson E10 ultrasound scanner. Each video consists of ~100 frames, with each frame
cropped and resized to 160 x 160 pixels, and resampled to a resolution of 0.6 x 0.6 mm?. Fig.
(Appendix) illustrates how UltraGauss uses Datasets A and B.

5.2 EVALUATION OF RECONSTRUCTION QUALITY AND SPEED

To assess maximum achievable reconstruction quality, we provide UltraGauss with oracle cover-
age: 160 evenly spaced axial slices (sampled from a 3D Scan in Dataset A). This exposes the full
160x160x160 volume. We evaluate reconstructions by rendering 160 slices in each of the axial,
coronal, and sagittal cross-sections, comparing against the native slices using SSIM (1)
[2004), PSNR (1) and LPIPS () (Zhang et all 2018)). As reconstruction time ¢ is a key consideration
for clinical adoption, we report metrics at £ = 5 and ¢ = 20 minutes, and at convergence (t = 00).
Limited and perturbed inputs. We repeat the evaluation with only 50% coverage (80 evenly
spaced axial slices), and add small, random rotations about the x and y axes (§ ~ U(—5°,+5°)) to
mimic the sonographer’s hand motion and fetal movement encountered in practice.

Baselines and protocol. We benchmark against three SOTA ultrasound reconstruction models:

UltraNerf (Wysocki et all, [2023)) (physics-informed ray tracing); RapidVol (Eid et al [20235) (hy-
brid implicit-explicit); and ImplicitVol (Yeung et al., [2024) (fully implicit, NeRF-like). To satisfy
UltraNerf’s parallel-ray assumption, curvilinear inputs are converted from polar to Cartesian.

5.3 CLINICIANS’ SURVEY OF RECONSTRUCTION QUALITY

We assess perceived clinical realism and fidelity of UltraGauss’ reconstructions in a two-part reader
study with expert sonographes. All survey material was de-identified.

Study A: Pairwise realism preference. Participants compared natively acquired 3D ultrasound
images with reconstructions from RapidVol, ImplicitVol, and UltraGauss variants. We evaluated
four routinely assessed fetal brain planes at the 20-week anomaly scan: mid-axial, transthalamic,
transventricular, and mid-coronal (Salomon et al.}[2022)). Assessments spanned five models (Implic-
itVol, RapidVol, UltraGauss-100K, UltraGauss-300K, UltraGauss-2M), four fetal scans, and three
training budgets ¢ € {5, 20, co} minutes. Each participant viewed 10 randomized image pairs (or-
der of questions and left/right placement shuffled) and selected the most realistic scan, or indicated
“no preference” if indistinguishable. Respondents reported speciality training, years in practice, and
confidence in fetal brain assessment.

Study B: Temporal fidelity (“Turing”) test. To examine convergence over time, a second
survey presented nine UltraGauss reconstructions of a mid-coronal plane generated at ¢ =
{0.5,1,2,3,4,5,10,15,20} minutes, alongside two identical ground-truth images. Inputs com-
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prised 80 axial slices, covering only 50% of the 3D volume and orthogonal to the target plane.
Participants labelled images as either a real ultrasound scan or an “Al reconstruction”. We randomly
included duplicated ground-truth images as a control, to quantify variability in expert judgements.

5.4 ULTRAGAUSS IN AN END-TO-END CLINICAL PIPELINE

We evaluate UltraGauss in a practical point-of-care workflow: a clinician acquires a freehand video
(cinesweep) with a standard sensorless 2D probe, and then reconstructs a full 3D volume for retro-
spective multiplanar review. This enables imputation of planes that were missed during scanning.

Pipeline. Each video frame first receives a 6-DoF pose via an ultrasound pose-estimation model
(e.g.,|Ramesh et al.[(2024);|D1 Vece et al.[(2024); |Yeung et al.|(2022)). Frames and predicted poses
are then fed into a suitable 3D reconstruction model (i.e., UltraGauss), or to a baseline (RapidVol).
Evaluation protocol. Ground-truth 3D for these fetal cinesweeps is unavailable, so we adopt a
frame hold-out cross-validation scheme: for each video, we randomly partition the video frames into
80% training and 20% testing. After reconstruction, we render the held-out slices at their predicted
poses and compare the syntheses against the corresponding acquired frames. The residual captures
aggregate error from both pose estimation and reconstruction inaccuracies. We run this end-to-end
pipeline on all three fetal cinesweeps in Dataset B.

5.5 SHADOW MODELLING

We compare UltraGauss with this feature enabled against UltraNerf (Wysocki et al., 2023)), using
their publicly available Synthetic Liver linear-probe dataset.

6 RESULTS

6.1 QUALITY AND SPEED EVALUATION

Summary. We evaluate on three test sets of increasing difficulty (Fig. 4] more in Fig.[BI). Across
all datasets and training budgets ¢ € {5, 20, oo}, UltraGauss outperforms Rapid Vol and ImplicitVol.
Accuracy vs. time. For near-real-time use ({=5 min), UltraGauss exceeds the best baseline by
> 0.20 SSIM. At convergence, UltraGauss—2M attains a mean SSIM of 0.995. Variability across
gestational ages is markedly lower: at least 10x smaller variance than RapidVol and ImplicitVol.
Capacity—time trade-offs. Model capacity interacts with the time budget: (i) at t=5 min, ~100K
Gaussians perform best; (ii) for long runs (O(hours)), 2M Gaussians yield the highest final accuracy;
(iii) ~300K Gaussians offer a strong balance across budgets.

6.2 CLINICIANS’ SURVEY

Participants. We invited 12 expert sonographers specializing in fetal, pediatric, and general ultra-
sound imaging, from hospitals in four countries (UK, Ghana, Denmark, and the Netherlands). Ten
experts responded (consultant fetal surgeons and senior sonographers), with a mean of 18 years’
experience (range: 7-30 years).

Comparison of reconstruction methods: Under matched short training budgets (¢ < 20 minutes),
all clinicians preferred UltraGauss over RapidVol and ImplicitVol. At convergence (t=00), no clin-
ician rated UltraGauss worse than the alternatives (Appendix [C.2). Within UltraGauss, preference
increased with capacity (2M > 300K > 100K), indicating that larger Gaussian sets yield more real-
istic reconstructions.

Temporal realism. In the progressive (“Turing”) test, where the rendered novel-view was orthogo-
nal to the input data, 70% of clinicians selected UltraGauss as more realistic than the ground-truth
after just 4 minutes of training, rising to 80% after 15 minutes (Fig. [5} examples in Fig.[B2). As a
control for judgement variability, two identical ground-truth images were included; 40% of partici-
pants labelled one of these as Al, underscoring the inherent variability in expert assessments.

6.3 END-TO-END PIPELINE RESULTS

We evaluate end-to-end by rendering held-out frames at their predicted poses and comparing against
the acquired images (Tab. [T} examples in Fig. [} temporal curves and full visualizations in Ap-
pendix . Across videos and training budgets (¢ € {5, 20, oo}), UltraGauss achieves the highest
SSIM/PSNR and lowest LPIPS, with especially large gains at short budgets which is relevant for
time-critical scans and brief consultations. Averaged over all held-out frames, UltraGauss reaches
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100 Al Generated or a Real US Scan?

Model Video1 Video2 Video3 Avg. Std.
s ImplicitVol ~ 0.674  0.797  0.772  0.747 0.065

88 ‘ RapidVol 0745 0799 0760 0.768 0.028
3 R Test SSIMT  GiiraNerf 0446 0626 0521 0.531 0.091
gE e | UltraGauss  0.928  0.905 0910 0914 0.012
S, x "%
I . I ImplicitVol ~ 0.914  0.899  0.893  0.902 0.010
H / Trainssiq  RapidVol 0871 0884 0880 0878 0.007
g5 |/ UltraNerf 0489 0.591  0.598 0.559 0.061
g UltraGauss 0959  0.957  0.939 0.952 0.011
0 Table 1: Quantitative results of reconstruction perfor-
0.0 25 5.0 75 10.0 125 15.0 175 20.0 . .
Time spent reconstructing (mins) mance on cinesweep videos. The SSIM scores shown are

the average across all the frames held-out for testing/used
in training at ¢ = co. Best scores are highlighted in bold.
71 indicates higher is better.

Figure 5: Clinicians’ survey results,
asking whether an image is real or “Al
Generated” (i.e. UltraGauss-generated).

Ground UltraGauss UltraGauss UltraGauss
Truth w/o Shadow w/o Shadow w/ Shadow UltraNerf

w/o Densification w/ Densification  w/ Densification

G.T. UltraGauss UltraNerf Diff. UGauss Diff. UNerf

Figure 6: UltraGauss and UltraNerf being

used to predict one of the withheld US video | ; 3

frames at its estimated pose. UltraGauss is Figure 7: Test-set images rendered with Ultra-

nearly identical to the Ground Truth (G.T.) Gauss .(togghng Gaussian dens'lﬁcatlon or shadow

Tmage, as can be seen by the near-black ab- modelling), and UltraNerf. Without densification,

solute difference image (“Diff. UGauss”). speckle is lacking (a). Without shadow modelling,
acoustic shadows can abruptly stop (b), or bulge out
and become curved instead of straight (c).

SSIM 0.91. Note that these scores reflect the combined error from both pose estimation and recon-
struction.

6.4 SHADOW MODELLING

Enabling shadow modelling on UltraGauss improves SSIM by 0.005, PSNR by 0.2 dB and LPIPS
by 0.004, with practically no time penalty. Whilst the metric gains are minimal, it can be seen in
Fig. [7) that it leads to straighter, and more realistic acoustic shadows. More are shown in Fig. [AT]
Despite these improvements, we still lack some of the speckle arising from multiple-scattering which
UltraNerf is able to capture, thanks to their inclusion of scattering density and intensity parameters.
However, when the ground truth poses are not known due to acquisition from sensorless 2D probes
(Sec.[5-4), or if the ultrasound rays are not perfectly straight (e.g. due to using a curvilinear probe
and then transforming the image from polar to Cartesian space, as in Fig. 3), then UltraGauss can
yield more robust results, since it is less dependent on a calibrated physics model. This is evident by
the results in Secs. [6.1]to[6.3] UltraGauss is also much quicker — 6.94 x faster than UltraNerf.

7 CONCLUSION

We introduced UltraGauss, an ultrasound-specific Gaussian Splatting framework that serves as an
efficient approximation to acoustic image formation via probe—plane intersection rendering. We
derived closed-form y? bounds for plane-intersection rasterisation and a two-phase, load-balanced
CUDA pipeline, and proposed a triangular inverse-covariance (precision) parameterisation that sta-
bilises optimisation at scale. On clinical datasets, UltraGauss delivers minute-level 2D — 3D recon-
structions with high fidelity, and expert sonographers consistently prefer its realism to prior methods.
In an end-to-end cinesweep workflow, it enables retrospective multiplanar review from routine 2D
acquisitions without additional hardware. By aligning the rendering model with ultrasound physics
while retaining the efficiency of Gaussian splatting, UltraGauss provides a practical route to stan-
dardised volumetry and more accessible 3D ultrasound, particularly valuable across diverse clinical
settings. Future work includes joint pose—reconstruction optimization, richer acoustic effects beyond
Beer—Lambert attenuation, and broader evaluation across anatomies and scanners.
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A ABLATIONS

A.1 ¢ AND o OR ONE COMBINED PARAMETER?

Since ultrasound is a grayscale modality, requiring only one color channel, it is possible to combine
each Gaussian’s single-channel color ¢; (which ranges from 0 to 1) and opacity «; (also ranges
from 0O to 1) into a single learnable parameter, say p;, as for example is done by |Zha et al.| (2024).
We could then multiply this by Gaussian ¢’s probability at point x. This would then be repeated
for all the other Gaussians and they can then either sum be summed together (but stopping if the
sum reaches 1), or have the average taken. Since we do not splat Gaussians onto an image plane
and sort them by depth from front to back, it is not obvious how to decide which 3D Gaussians to
exclude from the sum if it reaches 1, so we would have to take the average. Expressed foramally
this potential approach is:

(@) = peexp (4 (o) 51) " (o) )

3D squared Mahalanobis distance

>oi pilx)

&(z) = 2 L) (A1)

Instead, we propose a formulation as in Eq.[/| Ignoring apg and cpg for now, we are essentially
proposing:

. don G () ¢

C(z) = ZF5—7—7~—— A2

W= T "y

which mathematically is a weighted average. Compare this with the arithmetic average when one
parameter is used. The former is naturally more powerful, and Table confirms this. In our
application, intuitively, «; dictates the importance of each Gaussian, and how strongly its color
should feature in the final pixel color ¢.

Table Al: Using ¢; and «; vs. only one parameter. Scores are the avg. across all three standard test
views, for four 20 week fetuses.

Input Set = 80 Axial Slices Input Set = 160 Axial Slices
SSIM (1)  PSNR (1) LPIPS (}) SSIM (1)  PSNR (1)  LPIPS (})

One Param. 0.931+£0.012 3.42+0.100 0.097+0.026 0.947+0.011 3.66+0.120 0.085+0.026
c; and oy 0.967 £0.012 3.70£0.193 0.032£0.015 0.990+0.009 4.42+0.382 0.011 £ 0.009
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A.2 THE IMPACT OF SHADOW MODELLING AND DENSIFICATION

Fig.[AT] visibly shows the beneficial impact adaptive Gaussian densification and sparsification, once
modified and implemented appropriately, can have. Greater sharpness and speckle can be seen in
the top quarter of the images (a) when Densification is turned on (c.f. 2nd column with 3rd column).
When Shadow Modelling is turned on, view-dependent acoustic shadows become more realistic.
Comparing columns 3 and 4, one can see that shadows or dark patches no longer appear where they
shouldn’t (b), shadows no longer bulge out and curve, but rather become straight (¢ & e), and they
also no longer abruptly stop (d).

UltraGauss UltraGauss UltraGauss
w/o Shadow w/o Shadow w/ Shadow UltraNerf
w/o Densification w/ Densification  w/ Densification

Ground
Truth

~

Figure A1l: Test-set images rendered using UltraGauss-300K, with (w/) and without (w/0) shadow
modelling or adaptive Gaussian densification & sparsification. A fully ultrasound physics based

model, UltraNerf (Wysocki et al.}2023) serves as a baseline.
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B EXPERIMENT 5.2 (3D SCANS) - ADDITIONAL RESULTS
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Reconstruction Rendered Absolute
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Figure B2: Progression of UltraGauss as a 3D reconstruction is formed from 80 Axial Slices (sam-
pled from a 20 GW fetal scan). The image requested to be rendered image is an orthogonal, mid-
coronal cross-section. Clinicians were then asked to chose whether each one of these was a real or
”AlI Generated” scan. The results to this are in Fig. E]
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C EXPERIMENT 5.3 (CLINICIANS’ SURVEY)

C.1 THE SURVEY

Below is the questionnaire which Clinicians answered:

PRELIMINARY

1. What is your current position?

2. How many years of medical experience do you have?

3. On a scale of 1 to 5, how would you rate your confidence in assessing Fetal Brains in Ultra-
sound? (5 is very confident, 1 is not at all)

PART I
Participants answered a random selection of 10 pair-wise comparisons. An example of one is shown
below:

Please choose the most realistic ultrasound image out of the two.

o Option 1 o Option 2 o No Preference

PART II

Participants then answered 10 of the following questions. The order of these 10 questions and the
order of the two options within each question was randomly shuffled for each participant.

The ultrasound scans below show mid-sagittal views of the same fetal brain. Some are real scans
acquired using standard ultrasound equipment, while others are Al-generated reconstructions. For
each pair of images, please identify whether the scan is real or AI-generated.

Real ultrasound scan, or Al reconstruction?

o Real
o Al-generated
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C.2 CLINICIANS’ SURVEY ADDITIONAL RESULTS

Comparisons of the 5 Models at each Timepoint

100 : At Time:
- t=5
mt=20
Wt = Convergence

75

Percentage Score (1)

Figure C1: Survey results: Comparison of all 5 models at each time point. Actively choosing a
model gave it 1 point, not choosing it -1, and choosing “no preference” gave it O points. Each model’s
score was then divided by the total number of points it could have gained, to give a percentage. Thus
+100% means that all participants actively selected and preferred that model. -100% means that all
participants actively disliked this model (and selected the other one). 0% means that the model is
neither liked or disliked, as the participant chose the “no preference” option.

Comparisons of the 3 Models at each Timepoint
100.0 100.0

100 At Time:
t=5
t=20

t = Convergence

75

50

25

Percentage Score (1)

100 -1000  -100.0 1000 -100.0
S S 4 S S X S S o
& & & & &
N R O N RO N RO
& @ & &L & <L
N N N

Figure C2: Survey results: Comparison of ImplicitVol, RapidVol and the better of the three Ultra-
Gauss Models, at each time point. The same scoring system applies as Fig. |C_T|
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D EXPERIMENT 5.4 (US VIDEOS)

D.1 FURTHER EXPERIMENTAL SETUP DETAILS

In this experiment we use ultrasound cinesweep videos acuired using stadnard sensorless probes. As
such, the poses of their frames have to first be estimated using a suitable pose estimation that works
with sensorless probes (e.g. (Ramesh et al., 2024} [Di Vece et all, 2024} [Yeung et al.[2022)). 20% of
the frames are then randomly removed and witheld for testing. The remaining frames (blue frames
in Input Video on Fig. [DI) and their corresponding poses (blue probes/planes) are then inputted
into UltraGauss to form a 3D reconstruction of the individual fetal brain within 5 minutes. Images
are then sampled from the reconstructed volume at the poses of the withheld video frames (green
probes/planes), and are shown in green the Output Video tape.

A similar method also applies to forming 3D reconstructions from Dataset A. Rather than the blue
Input Views being video frames and their predicted poses, they are instead slices sampled from the
volumetric scans of Dataset A and their corresponding ground truth poses.

'
New, )
reconstructed

view

X - . EE. -7- - E EEEEEEEN
Input Video:
- EEm -7- - . EEEEEEEn
Output Video: pot =30

o 2 Z
2R =1k 1R
mE N EEEEEEEEEEEESEEEEEEN

¢ 4 7 X

Figure D1: Input images of the fetal brain are acquired (blue Input Video frames) and their poses
estimated (blue probes/planes). UltraGauss then uses these to form a total 3D reconstruction within 5
minutes. A few of the 3D Gaussians are shown as grey ellipses. Cross-sectional views at previously
unseen poses can then be sampled from the reconstructed 3D volume to form a complete cinesweep
or be viewed individually. These can be seen in the green Output Video cinefilm frames.
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D.2 ADDITIONAL RESULTS FROM VIDEOS

Ground Truth

ImplicitVol

RapidVol

UltraNerf

UltraGauss

ImplicitVol
Diff.

RapidVol
Diff.

UltraNerf
Diff.

UltraGauss
Diff.

Continued below...
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ImplicitVol
Diff.
Grayscale

RapidVol
Diff.
Grayscale

UltraNerf
Diff.
Grayscale

UltraGauss
Diff.
Grayscale

Figure D2: For each video (Vn), two ground truth images (I) from the test set are shown, alongside
the corresponding image generated by ImplicitVol, RapidVol, UltraNerf and UltraGauss - 300K
(ours). The absolute difference (diff.) between the predicted and ground truth image is also shown,
in both the inferno colored heatmap and grayscale. A pure black diff. image means perfect
similarity, and so the darker the diff. image the better.

Accuracy of US Video Frames Withheld for Testing

1.0

0.8 :

06 Video 1 - UltraGauss
= —— Video 2 - UltraGauss
= —— Video 3 - UltraGauss
g Video 1 - RapidVol

04 Video 2 - RapidVol

—— Video 3 - RapidVol
Video 1 - ImplicitVol
—— Video 2 - ImplicitVol
0.2 —— Video 3 - ImplicitVol
—— Video 1 - UltraNerf
—— Video 2 - UltraNerf
—— Video 3 - UltraNerf
0.0
0 500 1000 1500 2000 2500 3000 3500 4000

Epochs

Figure D3: Test accuracy over the course of reconstruction/training for UltraGauss - 300K (ours,
shown in blue), UltraNerf, RapidVol and ImplicitVol, reported on 3 ultrasound cinesweeps. Higher
SSIM is better.
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E PHYSICAL MEANING OF L;; TERMS IN EQ.

In order to gain an intuitive understanding of the physical meaning of the components of L in Eq.
the 3 x 3 covariance matrix X needs to be algebraically calculated, as only then can the standard
deviations and correlation coefficients in the x,y, z dimensions be extracted and provide us with
geometric insight. Ignoring the small value 3 from Eq. [TT]for simplicity:

3, 0 0

L= |Lyay L3 O (ED

Lz Loy L3,

L L3, L1s L3 L3
ST =LLT = | Lf L2 LY+ L3, Lo3L3y + LiaLys (E2)
L3 L1z LogL3y + LiaLiz Lz + L35 + L,
09251 PryOax Oyy Prz0zx Ozz
411
X= [E 1] = |[PzyOzz Oyy Uiy Pyz0yy Ozz (E3)
Prz0xx Ozz Pyz0yy Ozz ng

By inverting X! of Eq. and comparing to the standard format of ¥ as in Eq. we are then able
to relate how a gaussian’s size in the x, y, z dimensions (governed by the three standard deviations),
and shape/rotation (governed by the three correlation coefficients) are affected by the six L;; terms
of L.

Unfortunately, due to the nature of our efficient decomposition, and which is optimised to primarily
learn ¥ ! rather than ¥, as can be seen below the six L;; terms are all heavily coupled and it is hard
to get a physical intuition of what each term is responsible for. Nevertheless, the sensitivity graphs
centered around 4 (the initial values of L;;) do provide some insight (see Fig. [ET).

It is also evident from the equations below that all six of a gaussian’s defining parameters are
solely a function of L, and so L can be thought of as the 6 Degree of Freedom matrix directly
responsible for defining a 3D Gaussian’s 6 DoF shape and size. Whilst the individual terms of L
are not as interpretable as the original gaussian splatting’s parametrization, which used parameters
Gr>qi> 95,9k, Sz, Sy, S» to Totate and scale the gaussian, L as a whole is still responsible for the shape
and size of a gaussian, and nothing else. We believe this slight loss in interpretability is overwhelm-
ingly outweighed by the efficiency gains demonstrated (see Appendix [F] for more details).

For choosing initialisation values, it is also helpful to note that generally, increasing all six L;; values

causes L and subsequently 7! to be larger. The covariance ¥, equal to the inverse of 1, will
thus be smaller, and so the 3D gaussians will start off smaller.

_ \/L%2L%3 + L%2L§3 _ 2L12L%2L13L23 + ngL%:s + L%2L§3

o ——

b L3,13,13,

o L3,L3,

1
Ozz = 75—
L3,

Doy = Poz = — L12(L35 + Lys) — L3y L1z Los

" " VL33 + L35 /L3, L35 + L3, L33 — 2L15L3, L13Los + L3, L3 + L3, L3,

—L13L3, + L12Los

Prz = Pzax =

\/L%2L§3 + L%2L§L3 - 2L12L§2L13L23 + L%QL%S + L32L§3

L23

Pyz = Pzy = —rm—7—
VL33 + Ly
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Sensitivity Table of Inputs: Ly, Liz, Loz, Lug, Lag, Lag on 3D Gaussian Parameters: o,.,, 0y, 0.,

0.12 0.0665 0.07 0.0665 0.0657
| | |
0.1 : 0.066 : 0.068 : 0.066 0.0656
D: 0.08 I 0.0655 | 0.0655
| 0.066 | 0.0655
0.06 | 0.065 | T 0.0654
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; 1 012 ; 0.0655
| | |
05 | 05 | 01 | 05 0.065
= | | |
S o T 0 T 0.08 | o 0.0645
05 } 05 } 0.06 i 05 0064
1 - 1 - 0.04 - 1 0.0635
1 1 1 1 1
| | |
05 | 05 | 05 | 05 05
| | |
) T 0 T 0 T 0 0
-0.5 } -0.5 } -0.5 } -0.5 -0.5
a ! El - a1 - 1 1
1 - 1 - 1 - 1 1
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$ o | o0 0 [ B 4 0 e R
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R [
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Ln Lz Ly

Varied L;j value (center = 4)
Figure E1: Sensitivity table showing the effect each L;; term in Eq. has on a Gaussian’s 6 defining

parameters as it is perturbed and all other L;; values are held constant. Perturbations are shown here
centered about 4 as that is the initialisation value of all L;;s, however during the optimization process

each L;; term is free to take any real value.
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F DETAILED ANALYSIS OF OUR COVARIANCE PARAMETRIZATION

F.1 SPEED IMPROVEMENT

The number of FLOPs (Floating Point Operations) to compute (E3D ) ! , which is required every it-

eration, and X3P, which is only required every Nyensification 1t€rations, can be calculated theoretically
(Hunger, [2007)) as follows:

EXISTING PARAMETRIZATIONS APPLIED TO 3D

1. To form the Rotation matrix R from the 4 quaternions {¢,,¢;, ¢, qx} € RY (where N is the
Number of Gaussians), we apply the standard quaternion to rotation matrix conversion and see
that it requires 30N FLOPs. Forming the diagonal Scaling matrix S from the 3 scaling values
{8z, 8y, 8-} € RN requires 0 FLOPs.

2. Next, to form 232 from ¥3P = RTST SR, we are first required to form A = SR. Since S is
diagonal, this only requires 3 x 3 = 9 FLOPs. We now have ¥°” = AT A and can make use of the
symmetric nature of the product’s result, so only have to compute the leading diagonal terms and
one of the off-diagonal triangles. This means for a 3 x 3 matrix, 30 FLOPs are required to compute
this. Thus in total 9 + 30 = 39N FLOPs for this step.

. -1 . . . .
3. Finally, to compute (E3D ) , we can exploit the properties of the Covariance matrix, namely
that it is symmetric and positive definite, and use Cholesky decomposition to invert it in 39 FLOPs.

This means that overall, 23 requires 30N + ON + 9N + 30N = 69N FLOPs, and to form
(£32)7", 69N + 39N = 108N FLOPs.

OUR PARAMETRIZATION

1. To form
L} +8 0 0
L= Lo L3, + 8 0 (1)
L3 Lo3 L3+

from our 6 covariance parameters {L11, L12, L13, Lag, La3, L33} € RY (where N is the Number
of Gaussians), it requires 3NV multiplications and 3N additions, so 6N FLOPs in total.

2. Next, to form (E3D) -1 from (E3D) - LLT, as Lisa M x M Lower Triangular Matrix with
M = 3, we only require $ M3 + 3M? + LM = £3% + 32 + 13 = 14 FLOPs. So 14N FLOPs in

total. Therefore every iteration, we require 6N + 14N = 20N FLOPs to compute (E3D )71 from
our 6 parameters and use it in in Eq.[§].

3. Finally, to form ¥3” from X3P = (Lil)T L', we first need to invert L. However since
L is Lower Diagonal, this can be done very efficiently using forward substitution and only takes
+M3+2M = 3%+ 23 = 11 FLOPs. The product of two lower triangular matrices (this time L~
rather than L) is, as before, 14 FLOPs. As such, we need 11N + 14N = 25N additional FLOPs to
form ¥37.

Importantly, however, is that during densification we only need o, 0y, & 0., and not the full

covariance matrix. This means we can simply take the squared L2-norm of (L_l)T along the
column dimension, only requiring 9N FLOPs. When we then need to sample from the gaussian

distributions, we can also make use of Eq. which again does not require ¥3” but (L’I)T -
and that has already been calculated. Therefore, every Neensification 1t€rations we only require 20N
additional FLOPs.

The above can be nicely summarised in TabJET]

As can be seen, our formulation is much more efficient than had we used the 3D version of 3DGS’
formulation. Not only do we require 5.4 x less FLOPs to compute X! each iteration, even if we
did need the full covariance matrix 3, our formulation still computes this using 1.73x less FLOPs.
In practice, we measured speed-ups of 1.4x on the forward pass and 1.2x on the backward pass
when calculating ¥ ~!. As X! is required every iteration, this is a meaningful speed improvement.
When ¥ is required for densification every Npepsification it€rations, our formulation computes this
1.25x faster in the forward pass and 6.65 x faster in the backward pass than had we used the 3DGS
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formulation (although in practice we only need L~7, not the full covariance matrix, so speed-up is
even quicker).

FLOPs for X! FLOPs for ¥
Method (computed every (computed every
iter) Nensification iters)
Original 3DGS Formulation
(e.g.,/Kerbl et al.; [Zha et al.) 108N 69N
UltraGauss (ours) 20N 420N in practice*

(+25N if X is actually needed™)

Table E1: Comparison of theoretical FLOPs required to compute Y and ¥ ~! for different parame-
terizations. *For densification, only the variances are needed - not the full covariance matrix - so we
can take the squared L2 norm of L~7, saving 5 FLOPs.

F.2 NUMERICAL STABILITY

In terms of numerical stability, we also performed a numerical sensitivity analysis on the two
formulations. Each input parameter was subjected to a small perturbation, to simulate numer-
ical errors/rounding, and the relative Frobenius Norm difference between the error-containing
inverse/covariance matrix and the error-free matrix is shown.

Original 3DGS Formulation — Inverse Covariance UltraGauss Formulation — Inverse Covariance
r 04r
—aq, —by
0.35 035
- —q; — — L
E q £ L
S 03f ] S 03f L13
2 T % 3 |7
é 0.25 | ——s, g 0.25 F|——L,g
2 S 2 L.
L o2} 4 L o2} &
) —S ()
j=2) z j=2)
5 5
5015 5015
[ [
= =
8 01f 8 o1t
[} [}
14 14
0.05| / 0,05}
O —_— 0 T L L Il
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
Error € Error €
Original 3DGS Formulation — Covariance UltraGauss Formulation — Covariance
041 04r
—0q, —by
0.35 0.35
- —q; — —Lp
E q E L
S 03f ] S 03f L13
E] — Y% E] —by
g 0.25 f|——s, g 0.25 F|——L,g
<4 S =4 L.
L o2} 4 L o2} s
(3] —S ()
j=2) z j=2)
5 5
5015 5015
[ [
= =
8 01f 8§ o1t
[} [}
14 14
0.05 0.05
0 0 T T | |
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
Error € Error €

Figure E1: Numerical analysis of the effect a small perturbation or error in each parameter has on the
final Covaraince or Inverse Covariance Matrix, for the original parameterization and our porposed
one.
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From Fig. [ET]it is evident that our proposed formulation is more robust to numerical error, when
computing both the inverse covariance matrix and covariance matrix from the input parameters.
We also found empirically that sometimes, when trying to invert the 3 x 3 covariance matrix formed
by the four quaternions and three scaling parameters (which is never done in classical GS, as only
the projected 2 x 2 covariance matrix is inverted), if any of the eigenvalues became close to zero we
would get numerical instabilities. Our formulation (by adding a small (), ensures all eigenvalues
are always >  so we never run into this issue.
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G EFFECT OF A GAUSSIAN’S PROBABILITY DENSITY p VALUE

We expected that as the gaussian probability density threshold value was increased, the size of a
gaussian’s ellipsoid of influence would increase, and so more pixels would consider it to be “close”
and accumulate it. Applied to all N gaussians, this would mean more atomic additions and so
increase the time taken, but lead to potentially higher accuracy as each pixel’s final grayscale value
is now controlled by more gaussians. To confirm this we conducted an ablation on UltraGauss-300K
applied to one of the 3D scans from Dataset A, and varied the p% value (see Eq. . Metrics are
averaged across all 3 test views. Our ablation confirmed our expectations and as such we chose
p = 95% as a good compromise between the number of gaussians accumulated each iteration and
reconstruction accuracy (considering all three metrics).

Effect of Gaussian Probability Density Threshold
1,000,000 39.0 r0.971

[0.970
900,000

[ 0.969
38.6

800,000

[ 0.968

38.4

700,000 [0.967

PSNR (1)
LPIPS (Inverted, so 1)

I 0.966
600,000

Number of Gaussians Accumulated (1)

38.0
[ 0.965

500,000
37.8
[ 0.964

—e— Number of Gaussians Accumulated ()
SSIM (1)
—e— PSNR (1)

—e— LPIPS (Inverted, so 1)

400,000 T u T T T T 37.6 ~0.963
90 92 94 96 98 100
p% value

Figure G1: Ablation study on UltraGauss in which the p value of the gaussians’ bounding probability
density ellipsoids are increased. Metrics are averaged across all 3 test views.
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H THE EFFECT OF POSE ESTIMATION ERROR

To attempt to disentangle the error as a consequence of having inaccurate poses from the error due
to the 2D-to-3D reconstruction process, we conducted the following ablation. For 80 linearly spaced
axial slices sampled from the 3D volumes of Dataset A, rather than providing these images along
with their ground truth poses as we did in Sec.[5.2] we now intentionally add some uniform random
noise to the poses, to simulate UltraGauss being given inaccurate poses as would be the case when
using the cinesweeps in our end-to-end pipeline (Sec. [5.4).

Effect of Pose Estimation Error on SSIM (1)
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0.0 0.5 1.0 1.5 2.0 25 3.0 35
Error in Pose (+%)
Effect of Pose Estimation Error on PSNR (1)
35.0 7 UltraGauss - 100K
3254 —e— UltraGauss - 300K
= —e— UltraGauss - 2M
x i
g 30.0
7]
L 2754
1%}
i)
g'., 25.0 A
<
22.5 A
20.0 -
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Figure H1: Ablation study on how the different variants of UltraGauss cope as error in the pose
of the reconstruction input images increases. LPIPS is shown inverted here, so that like SSIM and
PSNR, a higher value signifies better accuracy.

From Fig. [[T] it can be seen as is typical with reconstruction methods which are overfitted to a
particular scene and are not pre-trained, they do require fairly accurate registration of images to
a fixed co-ordinate system. For UltraGauss the error limit is about 1.5% before reconstruction
accuracy degrades.
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I THE EFFECT OF SCAN COVERAGE

Here we investigate how well UltraGauss copes with incomplete scan coverage. We train on less
and less axial slices, and report the average SSIM, PSNR and Inverted LPIPS averaged across the
novel axial, sagittal and coronal views generated. Generally, quality is good until around 25%
coverage of the subject, beyond which it drops significantly. Since UltraGauss is not pre-trained,
and like most 3D reconstruction methods over-optimises to the specific scene, this behaviour is
somewhat expected. Crucially, it also ensures that UltraGauss does not hallucinate or create non-
existent anatomy, something that is crucial for use in medical settings and we actively considered
when tuning our heuristics.
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Effect of Scan Coverage on SSIM (1)

—e— UltraGauss - 300K
—e— UltraGauss - 2M
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Percentage of Brain Scanned and Used for Reconstruction

Effect of Scan Coverage on PSNR (1)

UltraGauss - 100K
—e— UltraGauss - 300K
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Percentage of Brain Scanned and Used for Reconstruction

Effect of Scan Coverage on Inverted LPIPS (1)
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80 60 40 20 0
Percentage of Brain Scanned and Used for Reconstruction

Figure I1: Ablation study on the quality of UltraGauss reconstructions as scan coverage decreases.
LPIPS is shown inverted here, so that like SSIM and PSNR, a higher value signifies better accuracy.
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J ANATOMICAL ACCURACY OF ULTRAGAUSS’ 3D RECONSTRUCTIONS

In Figs. |T_T| and @ we overlay segmentation masks (Namburete et al., 2023} Hesse et al., [2022) over
the UltraGauss reconstructions in the hardest of our 3 scenarios - using 80 Axial slices with +5°
Jitter (to mimic the sonographer’s natural hand motion). We also segment the original 3D volume as
a benchmark. We show mid-axial, mid-coronal and mid-sagittal views, at both 20 and 26 Gestational
Weeks (no segmentation masks were available for 14 GW). All the UltraGauss reconstructions show
good anatomical accuracy.

Segmentation of a 3D Reconstructed Volume from 80 Axial Images with £5°Jitter, at 20 GW

Mid-Axial Mid-Coronal Mid-Sagittal

UltraGauss-300K Volume UltraGauss-100K Volume Ground Truth Volume

UltraGauss-2M Volume

Figure J1: Segmentation mask applied to the Original and UltraGauss-reconstructed volumes of a
20 GW fetus. The input to the reconstructions was 80 Axial slices with +5° of rotational jitter in
the plane.
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Segmentation of a 3D Reconstructed Volume from 80 Axial Images with +5°Jitter, at 26 GW

Mid-Axial Mid-Coronal Mid-Sagittal

UltraGauss-300K Volume UltraGauss-100K Volume Ground Truth Volume

UltraGauss-2M Volume

Figure J2: Segmentation mask applied to the Original and UltraGauss-reconstructed volumes of a
26 GW fetus. The input to the reconstructions was 80 Axial slices with +5° of rotational jitter in
the plane.

32



Under review as a conference paper at ICLR 2026

K THE EFFECT OF SCAN SIZE ON RECONSTRUCTION TIME

To confirm our expectation that reconstruction time scales linearly with the number of pixels (i.e. the
area of the 2D scans), we conducted an ablation using UltraGauss-300K. Fig.[KT|evidently confirms
this.

Effect of Scan Size on Reconstruction Time
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Figure K1: Ablation study on how scans size (and thus the number of pixels), affects reconstruction
time of UltraGauss (shown here for UltraGauss with 300,000 initial gaussians).
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L PRELIMINARY RESULTS ON ULTRASOUND CINESWEEPS OF FOREARMS

To further demonstrate that UltraGauss is not organ specific and can be applied to general 2D
utlrasound cinesweeps, we also validate on the TUS-REC Dataset (Li et al., 2025). This dataset of
human forearm ultrasound cinesweeps was acquired using an Ultrasonix machine equipped with a
curvlinear probe (4DC7-3/40). A NDI Polaris Vicra optical tracking system was used to provide
ground truth poses, and standard ultrasound post-processing speckle reduction was not applied. S
shape trajectory scans and poses were used as input into UltraGauss, and then novel views were
sampled from the 3D reconstruction at the poses of the straight line trajectory scans. Preliminary
results can be found in Fig. It is evident that UltraGauss still forms good 3D reconstructions,
and that the main structural content and anatomy is modelled accurately. Most of the pixel-wise
difference seen in Fig. [LT]is in areas with a lot of fine speckle and which would require many,
extremely small gaussians. In practice there would not be this much speckle in the ultrasound
cinesweeps, as post-processing speckle reduction would be applied, and so the reconstructions
would be even better. It is only in this dataset the authors intentionally chose not to do this, in order
to help the participants in their pose-prediction challenge.

UltraGauss-2M |UltraGauss-300K | UltraGauss-100K

il —

Ground Truth 1

Predicted

Difference

Ground Truth 2

Predicted

Difference

Figure L1: UltraGauss - {2M, 300K, 100K} was applied to form a 3D reconstruction from an input
cinesweep of a human participant’s forearm. Two novel views were then sampled and are shown
here alongside their ground truth. The pixel-wise absolute difference between the predicted and
ground truth images are shown in the perceptually uniform inferno colored heatmap. A pure
black difference image means perfect similarity, and so the darker the difference image the better.
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