
Easy to learn hard to master - how to solve an
arbitrary equation with PINN

Alexander Hvatov
ITMO University

St. Petersburg, Russia, 197101
alex_hvatov@itmo.ru

Damir Aminev
ITMO University

St. Petersburg, Russia, 197101
aminevdom@itmo.ru

Nikita Demyanchuk
ITMO University

St. Petersburg, Russia, 197101
nikiniki@itmo.ru

Abstract

Physics-informed neural networks (PINNs) offer predictive capabilities for pro-
cesses defined by known equations and limited data. While custom architectures
and loss computations are often designed for each equation, the untapped potential
of classical architectures remains to be seen. To make a comprehensive study, it
is necessary to compare the performance of a given neural network architecture
and loss formulation for different types of equations. This paper introduces an
open-source framework for the unified handling of ordinary differential equations
(ODEs), partial differential equations (PDEs), and their systems. We explore PINN
applicability and convergence comprehensively, demonstrating its performance
across ODEs, PDEs, ODE systems, and PDE systems.

1 Introduction

Based on a seminal paper describing the PINN architecture [1], researchers worldwide are trying to
use it for different types of problem. It may also be considered an art to make PINN work for every
given problem [2]. Therefore, many modifications appear for the classical problem statement with a
dense network and for different architectures. Under scope are a loss function computation [3], data
preprocessing and data handling overall [4], architecture changes [5] and other topics such as the use
of more advanced combinations of training procedure and architecture[6].

It is always assumed that the function approximated with the neural network should also be close
to a solution of a differential equation that partially or completely governs the process. However,
apart from the classical approach, it is desirable to train differential equation coefficients also to be
able to better reproduce the process. Therefore, different approaches exist for equation coefficients
fine-tuning. Namely, we may tune equation coefficients in the form of constants or as variable
coefficients using nested architectures such as DeepONet [7].

From the fundamental artificial intelligence point of view, we are interested in a common approx-
imation ability in a given space. In the PINN-like application, we talk about Sobolev spaces and
Sobolev-like training [8] procedures. Unlike the pure Sobolev training procedure, we basically use
not only derivatives, but their combination as a whole equation, i.e. use a projective module instead
of free one as algebraic foundation. In practice, we cannot move from an art of PINN creation to a
stable working technique, since we could not assess which boundary-value problem solution can be
approximated using PINNs with existing theory and tools. Therefore, it is convenient to have a tool

NeurIPS 2023 AI for Science Workshop.

that is able to solve different equations using the same toolset. Basic features of differential equation
solving cover the DeepXDE framework [9].

However, it is not enough to explore all appearing features and their influence on the approximation
ability. In the paper, we expand and describe the features that allow one to investigate the approxima-
tion ability of neural networks started for dense networks with more classical (without differentials)
losses [10]. As PINN architectures, we chose two architectures: a dense network with activation
and a single-layer linear network without activation. Further parameters are supported, including
weak-form loss computation for an arbitrary set of basis functions. Furthermore, we support more (for
ODE, PDE and their systems) adaptive loss weights than for only single PDEs in [11] based on Sobol
indices instead of the neural tangent kernel and Fourier feature layers [12]. The main advantage is
that all features are considered as equation-independent work as much as possible for ODE (ordinary
differential equation), PDE (partial differential), and their systems.

The target application is to solve the equations that appear in the equation discovery process [13].
However, such a tool has wider applications and may be used as a separate research tool. We
could already reach more than the O(10−2) to O(10−3) order of relative error that the usual PINNs
reach [14] and with such a tool, we can study the sources of such error and make the neural
network solver more applicable for practical applications. The global goal is to answer the question:
"Which differential equations could be solved with a dense network, and what minimal error may
be achieved?" Unlike many other approaches described, we make our research available as an
open-source framework. 1

2 Problem statement

As the Introduction follows, we aim to consider the classical PINN architecture without data term as
a separate conventional equation solver. Namely, the classical PINN architecture uses the loss L in
the form of Eq. 1.

L = λ1Ldata + λ2Lop + λ3Lbc + λ4Lic (1)

In Eq. 1 weights λi ∈ R chosen expertly or using different principles that allow assessing the variance
of each term like [11] or Sobol indices used in a described approach. The term Ldata is usually a
classical l1- or l2-loss used in dense network training. The terms Lop,Lbc,Lic represent the equation
(op) boundary (bc) and initial (ic) conditions. Different papers use different forms of losses, and the
one used in the current paper is described below.

In this paper, we consider a problem without available solution data, that is, λ1 ≡ 0. In this case, if
the equation coefficients are considered fixed, the problem of loss minimization is equivalent to the
approximation of the initial-boundary value problem solution with a given machine learning model.

2.1 Theoretical formulation

Generally, within an initial-boundary value problem part of the loss, we consider a differential
equation system (ODE or PDE) that involves p independent variables x = (x1, . . . , xp) and q
dependent variables −→u = (u1, . . . , uq). The classical state of the boundary DEs system problem
defined on the subdomain x ∈ Ω ⊂ Rp is:

S(−→u) =
−→
f

b(−→u) = −→g (2)

,where S is a system operator, b is an initial boundary operator (the initial and boundary conditions
are not separated for brevity) on ∂Ω,

−→
f is a source term and −→g is a boundary conditions value. Also,

it is assumed that S, b,
−→
f ,−→g are defined in form when the boundary DEs problem is correct.

Generally speaking, we want to find a converging series of solution candidates where the n − th
series term −→un is the numerical solution to the DE system boundary-value problem that satisfies Eq. 3.

1https://github.com/ITMO-NSS-team/torch_DE_solver

2

https://github.com/ITMO-NSS-team/torch_DE_solver

λ2||S(−→un)−
−→
f ||+ λ3||b(−→un)−−→g || →n→∞ 0 (3)

where ||.|| is an arbitrarily chosen norm (usually, there is no need to use exotic norms, the l2 space is
usually used for all solution forms). In the following, we show how the machine learning problem is
formulated for the discrete grid.

2.2 Problem discretization. Formulation of machine learning problem.

We assume that the arbitrary machine learning model −→u∗(x; θ) has a set of the parameters θ. In the
following, we mainly consider the dense neural network as a parametrized map −→u∗(x; θ) : R

p → Rq .
It should be mentioned that the proposed (PINN-like) numerical method is considered as mesh-free,
usually uniform mesh is considered. The numerical minimization problem can be defined as Eq. 4 in
classical form.

argmin
θ

∫
Ω

∥S(−→u∗(x; θ))− f∥idΩ+ λ∥b(−→u∗(x; θ))− g∥j (4)

Norms ∥ · ∥i and ∥ · ∥j can be arbitrarily chosen and i and j are placeholders (usually i = l2 and
j = l1), but we mention that the proper connection with the induced space from the D Sobolev space
may give a better result for the solution of the DE system. We note that λ is an arbitrarily chosen
function (including a constant one), which will influence the convergence speed. In this case, there is
no doubt that the solution of the optimization problem converges point-wise to the solution of the
initial-boundary value problem Eq. 2.

If the form is weak numerical minimization problem will be able to be defined as Eq. 5.

argmin
θ

q∑
α=1

∫
Ω

[S(−→u∗(x; θ)
α)− fα] · ϕα dΩ + λ∥b(−→u∗(x; θ))− g∥j (5)

where
−→
ϕ = (ϕ1, . . . , ϕq) and ϕα ∈ D(C∞(Ω) with compact support) and the functions ϕα, α =

(1, . . . , q) may be equal, including the case ϕ1 = ... = ϕq = ϕ.

We note that from first glance there is no difference from a classical PINN problem statement.
However, the details are important to be able to solve ODE and PDE equations and systems within
one tool. The main features are as follows:

• Model form as a map;

• Division to ’Dirichlet’-like (prescribed values at selected points within the domain Ω) and
’operator’ boundary conditions (prescribed values of the arbitrary operator applied to a
function) instead of classical division that is separate for every type of equations;

• Weak form incorporation.

Moving from formulae to code requires solving a series of engineering tasks. In the next section, we
sketch the architecture of the solution.

2.3 Framework architecture.

The architecture of the solver is presented in Fig. 1 and in Appendix A in form of the pseudo-code,
which includes three different methods (i.e. mode) for solving differential equations: mat based on a
matrix (linear model without activation layers) and the others on neural network optimizations. One
of the neural network optimization methods is NN which uses a finite difference scheme for derivative
calculation, the other is autograd based on pytorch automatic differentiation algorithm, which is
user-selectable.

• The module initial_data represents a user-defined module with crucial parameters such
as equation, boundary_conditions, mode, grid, and model. In addition, the following
optional parameters are possible: cache, lambda_update, weak_form;

3

• The preprocessing module prepares equation, boundary_conditions to a unified form
depending on the selected mode;

• The solver module combines sub-modules such as cache, eval, derivative, and losses.
Cache allow you to use pre-trained models. Derivative provide differentiation depending
on the selected mode, and eval applies the operator and boundary conditions to the model.
Furthermore, losses compute the loss considering the selected type of loss function and
adaptive λ weights.

Eventually, the architecture of the solver is implemented so that it can be easily extended with new
methods due to a unified structure (in terms of input/output of functions). For example, to define
a new differential equation solution method, it is necessary to define a new solution method in
the preprocessing module and the mechanism for determining the derivative in the derivative
module. Another example, that module models realizes some simple neural network architectures
(fully-connected and network with Fourier features), but it is possible to use other user-defined
architectures. Moreover, in solver we do not stick to the neural networks; the proposed approach may
be extended to an arbitrary parameterized model.

Figure 1: Solver architecture.

3 Experimental study

The following experiments show that the proposed approach could be applied to a wide range of
initial and initial boundary value problems for single equation and their systems. As an example of
approach applicability, the ODE, the system of ODE, the PDE, and the system of PDE were solved.
The solution data was not used (λ1 ≡ 0) to solve all the equations presented below. Graphs comparing
the obtained solutions of equations with the reference solutions are given in the Appendix B. The
experiments show that:

• adding points to the grid leads to a better solution, which evidences a convergency of the
method;

• the obtained solutions may be more accurate than existing universal PINN solutions;

4

• using introduced re-training cache feature allows converging faster;

The formulations of the boundary problems used for the experiments and graphs of the Lop (from
Eq. 1) convergence for each grid are found in the Appendix C.

3.1 Van der Pol oscillator

The Van Der Pol oscillator is a non-conservative ODE oscilatting model with non-linear damping. It
describes the relaxation-oscillation cycle in both the physical and biological sciences.

The numerical solution of the equation was obtained using the neural network architecture described
in [15]. Generally, it is the same as a standard multilayer perceptron network (MLP), with the
addition of two encoders and a minor modification in the forward pass. Specifically, the inputs are
embedded into a feature space via two encoders and merged in each hidden layer of a standard
MLP using a point-wise multiplication. As input, a Fourier feature embedded of the form v(t) =
(t, sin(ωt), cos(ωt), ..., sin(mωt), cos(mωt)) was fed into the neural network, where ω = 2π

L and
m = 2, L = 10.

The network included three hidden linear layers of 512 neurons, each with a hyperbolic tangent as
an activation function. Fourier embeddings can be built for one-dimensional and multidimensional
equations. Architecturally, this block is unified and can be used as a layer in neural networks of
different architectures. The equation was solved using the autograd method and Adam optimizer.
Experiments were carried out with different resolutions of the grid to quantify the precision of the
solution obtained and the time spent. The results of the experiments are presented in Fig. 2, where
grid_res indicates the number of discretization points for each independent variable (10 experiments
were conducted for each grid_res). The left part of Fig. 2 demonstrates that adding grid points
improves accuracy (i.e. minimize root mean square error RMSE).

40 60 80 100 120
grid_res

0.000

0.001

0.002

0.003

0.004

RM
SE

type
VDP_eqn

40 60 80 100 120
grid_res

25

50

75

100

125

150

175

200

tim
e

type
VDP_eqn

Figure 2: Results of the numerical solution to problem 6 for a different number of discretization
points. RMSE (left) concerning the scipy.odeint solution and computation time in seconds (right).
All experiments were performed with cache=False.

3.2 Lotka-Volterra equations

In science and engineering, problems are associated with more than one differential equation, so we
have provided possibilities for solving ODE systems.The Lotka-Volterra system, also known as the
predator-prey model, is a first-order nonlinear ordinary differential equation. These equations are
often used to obtain the relationship of two interacting species.

The LV system was chosen because many authors resort to various tricks to solve it [16]. For
example, the authors of DeepXDE use Fourier transformations of the neural network input to solve
the system. They also transform the neural network output in a "hard constraint" manner to satisfy
the initial conditions. All that is necessary is to specify a finite-difference template by which

5

numerical derivatives are determined and optimizer. For this case, the central numerical scheme
u′
c =

1
2 (u

′
f+u′

b) was chosen, where u′
f , u

′
b are forward and backward schemes with n = 3 solution

points (specified by the user as a hyperparameter) in each. To quantitatively assess the convergence
of the algorithm, a series of experiments were carried out, which are shown in Fig. 3. The figure
on the left shows that as the resolution of the grid increases (the increment decreases), the error in
the solution decreases. It was also noted that using different initial guesses of the solution affected
RMSE only in the third decimal place.

200 250 300 350 400
grid_res

0.2

0.4

0.6

0.8

1.0

1.2

rm
se

200 250 300 350 400
grid_res

20

30

40

50

60

70

80

90

100

tim
e

Figure 3: Results of the numerical solution to problem 7 for a different number of discretization
points. RMSE (left) concerning the scipy.odeint solution and computation time is in seconds (right).
All experiments were performed with cache=False.

3.3 Allen-Cahn equation

Having demonstrated the solver’s ability to solve ordinary differential equations, it is necessary to
analyze the numerical solutions obtained for the partial differential equation and compare them with
the DeepXDE [9] approach. The Allen-Kahn equation was chosen, as an example as conventional
PINN models are known to struggle [17].

The experiments were carried out to compare the accuracy and time of solving the Allen-Kahn
equation with the proposed approach and DeepXDE. In both productions, the Adam optimizer
was used. The DeepXDE implementation involves the use of a fully connected neural network
with 3 hidden layers of 128 neurons and the transformation of neural network outputs ensuring
compliance with the initial and boundary conditions. Specifically, the x2cos(πx)+ t(1−x2)u output
transformation was used. In our implementation, three hidden layers of 128 neurons and a Fourier
feature embedding (m = 10, L = 2) were used as input to the neural network.

Fig. 4 shows the results of the two approaches compared. In this experimental formulation, with an
increase of the grid points number, the rate of error decrease (left figure) is more significant for
the described approach. The time spent for the convergence of solutions in this experiment (right
figure) shows that in the case of DeepXDE, the grid resolution has a greater impact on efficiency.
The results obtained from the use of the two tools cannot be directly compared because different
neural network architectures and different input/output transformations were realized.

However, under these conditions, the implementation proposed by our tool is more accurate and less
time-consuming. Ensuring the fulfillment of boundary conditions in a "hard constraint" manner is
not a general approach to solving equations, since one has to select a new transformation function
in each case. Moreover, due to the variability of methods for solving equations implemented in the
described approach, it is possible to compare and analyze solutions obtained by different methods.
For example, the mat method solves this problem without additional data manipulation, achieving
the O(10−3) order of relative RMSE.

6

30 40 50 60 70
grid_res

0.03

0.04

0.05

0.06

0.07

0.08

0.09

rm
se

solver
deepxde
tedeous

30 40 50 60 70
grid_res

100

200

300

400

500

600

tim
e

solver
deepxde
tedeous

Figure 4: Results of the numerical solution to problem 8 for the proposed TEDEouS approach and
DeepXDE. Solution time (right) and solution error (left). The reference solution is computed using
Wolfram software. For each grid_res, the experiment is carried out ten times.

3.4 Nonlinear Schrodinger equation

The second example of solving PDE systems is the Schrodinger differential equation, which was
solved as a system of two PDE for both real and imaginary parts just like at [1]. The nonlinear
Schrodinger equation is a classical field equation that plays an important role in nonlinear wave
theory, particularly in nonlinear optics.

The reference high-resolution data (exact) for comparison solutions were obtained using the spectral
method with the [256× 201] points grid.

30 40 50 60
grid_res

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

rm
se

cache
False
True

30 40 50 60
grid_res

0

100

200

300

400

500

600

700

800

tim
e cache

False
True

Figure 5: Schrodinger numerical solution error and computation time in seconds. Results with
cache=True and cache=False are compared.

The time to solve all the previous examples was about 1-3 minutes, but when switching from single
PDE equation to system, the time to solve the problem increases by a multiple. As described above,
the proposed approach implements caching of trained neural networks. Using the cache allows to
solve the optimization problem in less time, and a better initial approximation allows the optimization
algorithm to converge more accurately with less variance.

Fig. 5 compares the error in solving the Schrodinger equation and the time spent for implementation
with and without a cache. As you can see, the convergence time of the algorithm and the error
variance are getting smaller than in realization without using a cache. The experiments were carried

7

out with a fully connected neural network with 5 hidden layers of 512 neurons, hyperbolic tangent
activation function and LBFGS optimizer. The cache is implemented so that models trained by
different methods are stored in a unified manner and can later be reused as initial guesses.

4 Conclusion

We propose a framework that allows us to solve ODE, PDE and their systems within a single
framework. The main features are as follows:

• Differentiation algorithm choice - autograd and numerical one
• Single-layer model that allows to enhance the solution precision for most of the equations
• Weak form solution option
• Adaptive weights option

All options are available for different boundary-value problem formulations, even non-canonical ones.
The purpose of the framework is to study the PINN convergence way and thus to make PINNs not an
art but a technique. However, even in its current state, it may be used to solve different problems
more precisely than existing neural network-based methods.

Data and code availability

For review purposes, the experiments are available in the repository https://github.com/
ITMO-NSS-team/Solver-paper-for-AI4S.

Acknowledgments and Disclosure of Funding

This work was supported by the Analytical Center for the Government of the Russian Federation
(IGK 000000D730321P5Q0002), agreement No. 70-2021-00141.

References

[1] Raissi, M., P. Perdikaris, G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational physics, 378:686–707, 2019.

[2] Cuomo, S., V. S. Di Cola, F. Giampaolo, et al. Scientific machine learning through physics–
informed neural networks: Where we are and what’s next. Journal of Scientific Computing,
92(3):88, 2022.

[3] Kharazmi, E., Z. Zhang, G. E. Karniadakis. hp-vpinns: Variational physics-informed neural net-
works with domain decomposition. Computer Methods in Applied Mechanics and Engineering,
374:113547, 2021.

[4] Wu, C., M. Zhu, Q. Tan, et al. A comprehensive study of non-adaptive and residual-based
adaptive sampling for physics-informed neural networks. Computer Methods in Applied
Mechanics and Engineering, 403:115671, 2023.

[5] Zhao, L. Z., X. Ding, B. A. Prakash. Pinnsformer: A transformer-based framework for physics-
informed neural networks. arXiv preprint arXiv:2307.11833, 2023.

[6] Zhao, Y., X. Yu, Z. Chen, et al. Tensor-compressed back-propagation-free training for (physics-
informed) neural networks. arXiv preprint arXiv:2308.09858, 2023.

[7] Lu, L., P. Jin, G. Pang, et al. Learning nonlinear operators via deeponet based on the universal
approximation theorem of operators. Nature machine intelligence, 3(3):218–229, 2021.

[8] Czarnecki, W. M., S. Osindero, M. Jaderberg, et al. Sobolev training for neural networks.
Advances in Neural Information Processing Systems, 30, 2017.

[9] Lu, L., X. Meng, Z. Mao, et al. Deepxde: A deep learning library for solving differential
equations. SIAM Review, 63(1):208–228, 2021.

8

https://github.com/ITMO-NSS-team/Solver-paper-for-AI4S
https://github.com/ITMO-NSS-team/Solver-paper-for-AI4S

[10] Yoneda, T. Pointwise convergence theorem of generalized mini-batch gradient descent in deep
neural network. arXiv preprint arXiv:2304.08172, 2023.

[11] Wang, S., X. Yu, P. Perdikaris. When and why pinns fail to train: A neural tangent kernel
perspective. Journal of Computational Physics, 449:110768, 2022.

[12] Wang, S., H. Wang, P. Perdikaris. On the eigenvector bias of fourier feature networks: From
regression to solving multi-scale pdes with physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 384:113938, 2021.

[13] Maslyaev, M., A. Hvatov, A. V. Kalyuzhnaya. Partial differential equations discovery with
epde framework: Application for real and synthetic data. Journal of Computational Science,
53:101345, 2021.

[14] Jiang, Z., J. Jiang, Q. Yao, et al. A neural network-based pde solving algorithm with high
precision. Scientific Reports, 13(1):4479, 2023.

[15] Wang, S., Y. Teng, P. Perdikaris. Understanding and mitigating gradient pathologies in physics-
informed neural networks, 2020.

[16] Oluwasakin, E. O., A. Q. Khaliq. Optimizing physics-informed neural network in dynamic
system simulation and learning of parameters. Algorithms, 16(12):547, 2023.

[17] Wight, C. L., J. Zhao. Solving allen-cahn and cahn-hilliard equations using the adaptive physics
informed neural networks. arXiv preprint arXiv:2007.04542, 2020.

[18] Wang, S., S. Sankaran, P. Perdikaris. Respecting causality is all you need for training physics-
informed neural networks, 2022.

9

A Framework pseudocode

One of the neural network optimization methods is NN which uses a finite difference scheme for
derivative calculation, the other is autograd based on pytorch automatic differentiation algorithm,
which is user-selectable, as described in Algorithm 1 in lines 1-3. To reduce model training time, the
solver provides a cache module (lines 5-6, algorithm 1) that allows you to use pre-trained models
as an initial approximation. Lines 9-10 use modules eval (including the parameter weak_form)
and derivative that are presented in Fig. 1. The losses module in line 11 contains several types of
losses: default and weak (as described in Eqs. 4-5 and causal [18]. Lines 11-12 are updates to the λ
parameter in Eqs. 4-5.

Algorithm 1: Equation solver
Input :grid, equation, boundary_conditions, model, mode
Optional :cache, optimizer, loss_type, lambda_update, weak_form
Output :Trained model

1 if mode == {NN, autograd, mat} then
2 equation← operator_prepare(equation,mode)
3 boundary_conditions← bnd_prepare(boundary_conditions,mode)
4 end if
5 if cache then
6 model← cache_lookup()
7 end if
8 while stop criterion do
9 equation← operator_compute(equation,model, weak_form)

10 boundary_conditions← bnd_compute(boundary_conditions,model)
11 loss← Losses.compute(equation, boundary_conditions, lambda)
12 if lambda update then
13 lambda← Lambda.update(equation, boundary_conditions, loss)
14 end if
15 end while
16 return model

10

B Comparison of the obtained and reference solutions

0 2 4 6 8 10 12 14 16
t

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

u

u_odeint
u_tedeous

Figure 6: Van der Pol equation numerical solution (grid_res=120) compared with scipy.odeint
solution.

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

u

t=0

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
t=0.5

−1.0 −0.5 0.0 0.5 1.0
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

t=1

exact numerical

Figure 7: Allen-Cahn equation numerical solution with respect to the reference (wolfram) solution
(with grid_res=[60,60]) at different moment of time.

11

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time, t

0

1

2

3

4

Po
pu

la
tio

n

x_odeint
y_odeint
x_tedeous
y_tedeous

Figure 8: Lotka Volterra equations numerical solution (grid_res=400) compared with scipy.odeint
solution.

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0

h

t=0.25

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0
h

t=0.5

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

h

t=0.75

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

h

t=1

exact numerical

Figure 9: Schrodinger equation numerical solution (with grid_res=[50,50]) comparison with high-
resolution data set.

12

C Boundary-value problem formulations

C.1 Van der Pol oscillator

Eq. 6 is the second-order differential equation. When ϵ = 0, this is a form of the simple harmonic
oscillator. In this experiment, ϵ = 0.2.

u′′ + ϵ(u2 − 1)u′ + u = 0
u′(t = 0) = 0.5
u(t = 0) =

√
3/2

t ∈ [0, 16]

(6)

40 60 80 100 120
grid_res

0.6

0.7

0.8

0.9

1.0

L_
op

1e−7

type
VDP_eqn

Figure 10: Pointwise convergence according to the l2 loss for the Van der Pol equation (Lop term of
Eq. 1). Results for a different number of discretization points.

C.2 Lotka-Volterra equations

Each population changes through time according to Eq. 7:

∂x
∂t = xα− yxβ

∂y
∂t = −yδ + yxγ

x(0) = x0 = 4

y(0) = y0 = 2

t ∈ [0, 2]

(7)

C.3 Allen-Cahn equation

We consider the one-dimensional partial differential equation.

∂u
∂t = α∂2u

∂x2 − 5u3 + 5u
t ∈ [0, 1], x ∈ [−1, 1]
u(x, 0) = x2 cos(πx)
u(t,−1) = u(t, 1)

∂u
∂x (t,−1) =

∂u
∂x (t, 1)

(8)

13

200 250 300 350 400
grid_res

0.000

0.002

0.004

0.006

0.008

0.010

L_
op

Figure 11: Pointwise convergence according to the l2 loss for the Lotka-Volterra equations (Lop term
of Eq. 1). Results for a different number of discretization points.

30 40 50 60 70
grid_res

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L_
op

solver
tedeous

Figure 12: Pointwise convergence according to the l2 loss for the Allen-Cahn equation (Lop term of
Eq. 1). Results for a different number of discretization points.

C.4 Schrodinger equation

The nonlinear Schrodinger equation with initial and boundary conditions are written as Eq. 9:

i∂h∂t + 1
2
∂2h
∂x2 + |h2|h = 0

h(x, 0) = 2sech(x)
h(−5, t) = h(5, t)

∂h
∂x (−5, t) =

∂h
∂x (5, t)

(x, t) ∈ [−5, 5]× [0, π/2] = Ω

(9)

Since h is a complex-valued Eq. 9 could be represented as a PDE system. Let h = u+ iv, then:

14

∂u
∂t + 1

2
∂2v
∂x2 + (u2 + v2)v

∂v
∂t +

1
2
∂2u
∂x2 + (u2 + v2)u

u(x, 0) = 2sech(x), v(x, 0) = 0
u(−5, t) = u(5, t), v(−5, t) = v(5, t)

∂u
∂x (−5, t) =

∂u
∂x (5, t),

∂v
∂x (−5, t) =

∂v
∂x (5, t)

(10)

30 40 50 60
grid_res

1

2

3

4

5

6

7
L_
op

1e−5
cache

False
True

Figure 13: Pointwise convergence according to the l2 loss for the Schrodinger equation (Lop term of
Eq. 1). Results with cache=True and cache=False for different grid_res are compared.

15

	Introduction
	Problem statement
	Theoretical formulation
	Problem discretization. Formulation of machine learning problem.
	Framework architecture.

	Experimental study
	Van der Pol oscillator
	Lotka-Volterra equations
	Allen-Cahn equation
	Nonlinear Schrodinger equation

	Conclusion
	Framework pseudocode
	Comparison of the obtained and reference solutions
	Boundary-value problem formulations
	Van der Pol oscillator
	Lotka-Volterra equations
	Allen-Cahn equation
	Schrodinger equation

