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Abstract

The eXtreme Multi-label text Classification001
(XMC) problem concerns finding most relevant002
labels for an input text instance from a large003
label set. However, the XMC setup faces two004
challenges: (1) it is not generalizable to pre-005
dict unseen labels in dynamic environments,006
and (2) it requires a large amount of super-007
vised (instance, label) pairs, which can be dif-008
ficult to obtain for emerging domains. In this009
paper, we consider a more practical scenario010
called Extreme Zero-Shot XMC (EZ-XMC),011
in which no supervision is needed and merely012
raw text of instances and labels are accessi-013
ble. Few-Shot XMC (FS-XMC), an extension014
to EZ-XMC with limited supervision is also015
investigated. To learn the semantic embed-016
dings of instances and labels with raw text,017
we propose to pre-train Transformer-based en-018
coders with self-supervised contrastive losses.019
Specifically, we develop a pre-training method020
MACLR, which thoroughly leverages the raw021
text with techniques including Multi-scale022
Adaptive Clustering, Label Regularization, and023
self-training with pseudo positive pairs. Ex-024
perimental results on four public EZ-XMC025
datasets demonstrate that MACLR achieves su-026
perior performance compared to all other lead-027
ing baseline methods, in particular with approx-028
imately 5-10% improvement in precision and029
recall on average. Moreover, we show that our030
pre-trained encoder can be further improved on031
FS-XMC when there are a limited number of032
ground-truth positive pairs in training.033

1 Introduction034

The eXtreme Multi-label text Classification (XMC)035

problem aims at tagging a text input with most rele-036

vant subset of labels from an extremely large output037

space. Many web-related applications can be for-038

mulated as an XMC task with encouraging results,039

such as finding the best matching products from a040

large catalog in e-commerce systems (Medini et al.,041

2019; Chang et al., 2021), auto-completing queries042

given its prefix on search engines (Yadav et al., 043

2021), predicting search keywords for dynamic ad- 044

vertising (Prabhu et al., 2018; Chang et al., 2020b), 045

tagging categories of Wikipedia articles from a 046

large label taxonomy (Dekel and Shamir, 2010; 047

Chalkidis et al., 2019), to name just a few. 048

The current XMC setup is built on full label 049

coverage and full supervision, where full label cov- 050

erage means labels to be predicted have appeared in 051

the training set and full supervision indicates it re- 052

quires a significant number of annotated (instance, 053

label) pairs. In detail, it is assumed that an XMC 054

algorithm has access to raw text of instances and 055

labels, together with their corresponding relations 056

during training, as shown in Figure 1. 057

However, there are several limitations of this 058

XMC setting. First of all, due to the assumption 059

of full label coverage, it is typical in XMC ap- 060

proaches to simply treat labels as IDs for classifi- 061

cation and thus they are restricted to making pre- 062

dictions within observed labels. This assumption is 063

unrealistic since the label set usually keeps growing 064

over time, e.g., newly added websites or products 065

which are absent during training yet crucial for ap- 066

plications such as recommendation and advertising. 067

Besides, collecting labeled pairs is time-consuming, 068

expensive and sometimes infeasible, for example, 069

launching an e-commerce system in the emerging 070

locale, where no user behavioral signals are ava- 071

iable. In spite of these constraints, most existing 072

methods (Dahiya et al., 2021b; You et al., 2019; 073

Mittal et al., 2021; Dahiya et al., 2021a) followed 074

this XMC setup. It can be seen in Figure 2 that 075

Astec (Dahiya et al., 2021b), one of the state-of-the- 076

art extreme classifiers, is incapable of handling the 077

scenario without supervision, which leads to zero 078

performance in both Precision@5 and Recall@100. 079

Moreover, the increasing trend in Astec’s perfor- 080

mance along with the label ratio suggests that it 081

depends highly on the supervision level and is hard 082

to generalize to unseen labels. This motivates us to 083
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Figure 1: Four different settings in XMC. Four essential components are considered: instances (raw text), labels (raw
text), supervision (positive pairs), and label coverage. In detail, we divide label coverage into 3 groups: full, partial,
and none. * in FS-XMC emphasizes that only a limited amount of supervision is available. We can see that EZ-XMC
is the most general and practical setting, where no supervision and label coverage is required.

investigate how to design an effective XMC model084

with zero supervision.085
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Figure 2: Performance of three representative XMC
methods on LF-Amazon-131K at different ratios of label
coverage. A subset covering [0, 1, 5, 10, 25, 50, 100](%)
of the whole label set is sampled for fine-tuning.

In this paper, we consider an essential yet under-086

explored XMC setting, called Extreme Zero-shot087

XMC (EZ-XMC). As depicted in Figure 1, we can088

access raw text of both instances and labels but089

do not know their corresponding relations in EZ-090

XMC. Moreover, we do not make any assumption091

on the label coverage, so the labels in the testing092

set may or may not appear in the training stage.093

An extension to EZ-XMC with a limited number094

of training pairs, Few-shot XMC (FS-XMC), is095

also taken into account in our paper. Either EZ-096

XMC or FS-XMC occurs frequently in the real097

world since informative and abundant (instance,098

label) pairs are never easy to obtain. Also, it is099

more practical and worthwhile to reduce labor for100

manual annotation by solving problems under EZ-101

XMC. Note that generalized zero-shot XMC (GZ-102

XMC) proposed in a recent work (Gupta et al.,103

2021) can be regarded as a special case of EZ-104

XMC. GZ-XMC allows that the set of test labels105

is not completely overlapped with training labels106

but still requires supervision from positive pairs, as107

shown in Figure 1. From Figure 2, we can observe 108

that ZestXML (Gupta et al., 2021) designed for 109

GZ-XMC also suffers the issue of no supervision. 110

A natural question then arises: how should we 111

deal with EZ-XMC problems? Despite the name, 112

EZ-XMC is barely easy to tackle. Fortunately, al- 113

though dedicated supervision signals are lacking, 114

raw text of instances and labels, e.g., product de- 115

scriptions and categories, are still accessible in EZ- 116

XMC. Thus it is of vital importance to effectively 117

leverage self-information of these data to train a 118

model for classification. To overcome challenges 119

encountered in EZ-XMC, we turn to solving the 120

problem from a different perspective without learn- 121

ing classifiers explicitly. In particular, XMC can be 122

cast into a problem which learns a sentence encoder 123

E to map instances and labels into dense embed- 124

dings, and predictions are made through approxi- 125

mate nearest neighbor search algorithms in the la- 126

tent space (Shrivastava and Li, 2014). Motivated by 127

recent progresses in self-supervised learning (Gao 128

et al., 2021; Chen et al., 2020; He et al., 2020; 129

Devlin et al., 2019), we propose MACLR (Multi- 130

scale Adaptive Clustering & Label Regularization), 131

a two-stage pre-training procedure with those un- 132

paired raw data to obtain a sentence encoder E 133

under EZ-XMC. As to FS-XMC, fine-tuning the 134

encoder on a few paired data is sufficient for the 135

performance boost. Figure 2 demonstrates that 136

MACLR achieves superior performance when no 137

supervision is available and achieves much higher 138

recall than Astec and ZestXML by a large margin, 139

even under the higher label coverage ratio. 140

Our main contributions are summarized below: 141

• We propose an essential Extreme Zero-Shot 142
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XMC (EZ-XMC) setting without any as-143

sumptions on supervision and label coverage,144

which has not been explored in previous work145

and is more practical in real applications.146

• We leverage unlabeled data to pretrain the147

sentence encoder E with improved Inverse148

Cloze Task in Stage I of MACLR. In particu-149

lar, multi-scale adaptive clustering and label150

regularization are proposed to utilize raw text151

thoroughly. In Stage II, we further self-train152

the encoder with pseudo positive pairs con-153

structed from E in Stage I as well as TF-IDF154

model with complementary information.155

• Comprehensive experiments are conducted on156

four public benchmark EZ-XMC datasets. Re-157

sults demonstrate that our pre-trained encoder158

can outperform existing unsupervised baseline159

methods notably. As an example, MACLR160

achieves Recall@100 of 54.99%, nearly the161

same level as Astec (one of the SOTA XMC162

methods) (Dahiya et al., 2021b) trained with a163

supervised subset covering around 70% labels164

on LF-Amazon-131K.165

• MACLR can also achieve comparable or even166

better performance under the few-shot setting167

than those models heavily dependent on super-168

vised information. For example, MACLR is169

better than the SOTA ZestXML (Gupta et al.,170

2021) in Recall@100 over 20% (57.55% v.s.171

32.69%) when fine-tuned on the subset cover-172

ing 1% labels of LF-Amazon-131K.173

2 Related Work174

Extreme multi-label classification Various ex-175

treme classifiers have been proposed to address176

the large output space challenge of XMC prob-177

lems. We can broadly categorize them into178

two groups: partitioned-based models with lin-179

ear classifiers (Prabhu et al., 2018; Prabhu and180

Varma, 2014; Yu et al., 2020) that partition la-181

bels with hierarchical trees, leading to sub-linear182

inference time complexity, and embedding-based183

methods (Bhatia et al., 2015; Jain et al., 2019;184

Guo et al., 2019) that learn a classifier for each185

label and leverage approximated nearest neigh-186

bor (Malkov and Yashunin, 2018; Guo et al.,187

2016) to index labels in the large output space.188

There are also deep learning models such as Atten-189

tionXML (You et al., 2019), Astec (Dahiya et al.,190

2021b), SiameseXML (Dahiya et al., 2021a), and191

XR-Transformer (Zhang et al., 2021) that further192

improve the accuracy of those linear counterparts 193

with various advanced encoder architectures. Nev- 194

ertheless, none of those XMC methods can handle 195

the EZ-XMC setup: they not only suffer from the 196

lack of supervised signals, but also fail to general- 197

ize to unseen cold-start labels in the test set. The 198

only exception is ZestXML (Gupta et al., 2021), a 199

recently proposed XMC method that was designed 200

to address the generalized zero-shot XMC (GZ- 201

XMC) problem where a number of labels for pre- 202

diction are absent during training. While ZestXML 203

partially resolves the generalization challenge of 204

cold-start labels, just like those conventional XMC 205

models, it still depends heavily on a large number 206

of training data with positive (instance, label) pairs. 207

Self-supervised learning techniques The past 208

few years have witnessed great promise in self- 209

supervised learning (Lan et al., 2020; Chen et al., 210

2020; He et al., 2020; Devlin et al., 2019; Khosla 211

et al., 2020; Gao et al., 2021), where a pre-training 212

task is defined using only data’s self-information. 213

Learned representations from the pre-training task 214

can be then leveraged in a wide range of down- 215

stream tasks in various domains, such as image 216

classification (Chen et al., 2020; He et al., 2020) 217

and object detection (Li et al., 2020) in com- 218

puter vision, and open-domain question answer- 219

ing (Lee et al., 2019; Guu et al., 2020) in natural 220

language processing. Specifically, we focus on con- 221

trastive approaches for Sentence-BERT (Reimers 222

and Gurevych, 2019) models in this paper, where 223

the intuition is to pull semantically close neighbors 224

together and push apart non-neighbors via noise 225

contrastive estimation or N-pair losses. Various 226

effective pre-training tasks such as Inverse Cloze 227

Task (ICT) (Lee et al., 2019) and SimCSE (Gao 228

et al., 2021) have been shown to improve the per- 229

formance of Sentence-BERT models. 230

3 Problem Formulation 231

In this section, we present the problem formulation 232

of EZ-XMC. With X and Y denoting the set of 233

instances and labels respectively, the general XMC 234

problem can be viewed as learning a scoring func- 235

tion f : X × Y → R. f(·, ·) maps an (instance, 236

label) pair (x, y) to a similarity score, which is 237

used to make a prediction through approximate 238

nearest neighbor search algorithms. In previous set- 239

tings such as XMC and GZ-XMC, a considerable 240

amount of relevant (instance, label) pairs {(xi, yi)} 241

are available. On the contrary, in EZ-XMC, we 242

3



have no knowledge about corresponding relations243

between instances and labels, but only their raw244

text, as shown in Figure 1. In this case, existing245

approaches that depend on the relevant pairs fail to246

learn an effective scoring function, even with a few247

paired data under FS-XMC.248

Recent progresses in self-supervised learning249

have shown that a generalized sentence encoder250

can be learned through elaborately designed pre-251

training tasks even without any supervision (Lee252

et al., 2019; Chang et al., 2020a), and then adapted253

to different downstream tasks directly or via slight254

finetuning. On the other hand, the scoring func-255

tion f can be modeled as f(x, y) = ⟨E(x), E(y)⟩,256

where E is a sentence encoder producing seman-257

tical dense embeddings, and ⟨·, ·⟩ is the similarity258

measurement such as inner product and cosine sim-259

ilarity. Without loss of generality, inner product260

is adopted in the paper as the similarity metric be-261

tween embeddings of instances and labels. Thus,262

we formulate the problem as training an encoder263

E with raw text of X and Y through a pre-training264

task for EZ-XMC. As to the few-shot scenario FS-265

XMC, we can fine-tune E for improvement.266

4 Method267

In this section, we introduce a two-stage pre-268

training procedure, MACLR, to thoroughly lever-269

age unpaired data with raw text for EZ-XMC.270

Specifically, we present the general framework in271

Section 4.1, and then dive into details of two stages,272

pre-training with the improved Inverse Cloze Task273

and self-training with pseudo positive pairs, in Sec-274

tions 4.2 and 4.3 respectively. A complete algo-275

rithm is presented in Algorithm 1 in Appendix A.276

4.1 Framework277

The framework of our pre-training procedure is278

shown in Figure 3. MACLR consists of two stages:279

• Stage I: title-context pairs are constructed for280

the Inverse Cloze Task, and the encoder E281

is then trained on these pairs together with282

two proposed techniques, multi-scale adaptive283

clustering and label regularization.284

• Stage II: More pseudo positive pairs are285

crafted using different score functions mod-286

eled by the encoder from Stage I and TF-IDF287

respectively. E is further trained on additional288

pairs to improve the encoding performance.289

Details of each component in our pre-training290

framework are discussed in the following sections.291

Instances LabelsRaw text 
with no supervision

Mult-scale
Adaptive Clustering Label Regularization

TF-IDF

Pre-training
Stage I

Pre-training
Stage II Instances

in
st

an
ce

in
st

an
ce

label

top-k

top-k

0
BBB@

0 1 1 0 · · · 0
1 0 0 1 · · · 0
...

...
...

...
. . .

...
1 1 0 0 · · · 1

1
CCCA

0
BBB@

1 0 1 0 · · · 0
0 0 1 1 · · · 1
...

...
...

...
. . .

...
0 1 0 1 · · · 0

1
CCCA

E

Figure 3: Framework of our pre-training procedure. 292
4.2 Stage I: Pre-training with improved ICT 293

Inverse Cloze Task (Lee et al., 2019) is a frequently 294

used pre-training task for the sentence encoder. 295

Specifically, for an instance x = {s1, . . . , sn} 296

consisting of n sentences, ICT randomly samples 297

a sentence to serve as the pseudo positive label 298

ŷ = si where i ∼ [1, n]. Then the rest of x is the 299

pseudo instance x̂ = {s1, . . . , si−1, si+1, . . . , sn}. 300

In XMC, due to the property that the label usu- 301

ally summarizes the instance with one short sen- 302

tence, which works similarly as the title s1, we 303

directly utilize (context, title) pairs in the form of 304

(x̂ = {s2, . . . , sn}, ŷ = s1). This construction 305

works as the analog of the ground truth (instance, 306

label) pairs and capture the semantics of a sentence. 307

With these pseudo pairs, the contrastive training 308

objective for a mini-batch of N pairs is as follows: 309

310

Lcontrastive = −
N∑
i=1

log
exp(E(x̂i) · E(ŷi))∑N
j=1 exp(E(x̂i) · E(ŷj))

(1) 311

Based on ICT, we also develop two techniques, 312

multi-scale adaptive clustering and label reguariza- 313

tion, to fully leverage the information of unpaired 314

instances and labels. 315

4.2.1 Multi-scale Adaptive Clustering 316

In the original ICT scheme, we can construct only 317

one positive pair for a particular instance. It is rela- 318

tively hard in contrastive learning without enough 319

positive examples, especially for extreme multi- 320

label classification where one instance might be 321

associated with more than one label, and a label 322

is also likely to point to several different instances 323

at the same time. Thus a question arises naturally: 324

is it possible to construct more positive pairs from 325

purely unpaired raw data to intergrate richer infor- 326

mation into the pre-training process? We solve it by 327
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the unsupervised K-means clustering. In detail, we328

divide pseudo (context, title) pairs from ICT into329

K clusters through K-means based on the embed-330

dings of all instances. Then if C(x̂i) = C(x̂j), i.e.,331

x̂i and x̂j belong to the same cluster, (x̂i, ŷj) and332

(x̂j , ŷi) are regarded as positive pairs besides origi-333

nal ICT pairs. Furthermore, supervised contrastive334

loss is adopted for training the encoder with a mini-335

batch of N pairs based on the cluster assignment:336

337
Lcluster =

N∑
i=1

−1

|PY(i)|
∑

p∈PY (i)

log
exp(E(x̂i) · E(ŷp))∑N
j=1 exp(E(x̂i) · E(ŷj))

(2)338

Here, PY(i) = {p ∈ {1, . . . , N} : C(x̂i) =339

C(x̂p)} is the set of indices of all positives for340

x̂i in the batch, and |PY(i)| is its cardinality. Mini-341

mizing Equation (2) pulls close the representations342

of instances and their positive labels within the343

same cluster and pushes away the representations344

of those from different clusters.345

Besides, since the ultimate goal is the minimiza-346

tion of Equation (1), we propose a multi-scale ap-347

proach with adaptive training, which guides the348

encoder to learn the easier tasks with sufficient pos-349

itive examples, and then master harder tasks grad-350

ually. This approach allows the encoder to learn351

from the coarse scale to the fine scale of clustering352

assignment, and is similar to the idea of curriculum353

learning (Bengio et al., 2009) to first focus on learn-354

ing from a subset of simple examples, and expand-355

ing to include the remaining harder samples. Our356

adaptive training process can be conducted by mod-357

ifying the cluster size to adjust the task difficulty358

accordingly. To be specific, we initialize the cluster359

assignment with the number of clusters K0, and360

double the cluster size every T steps. The cluster361

assignment is also updated every Tupdate steps along362

with the training of E . Such a process lasts for half363

of the total training steps Ttotal to take advantage of364

positive examples from constructed clusters. The365

obtained intermediate encoder from this adaptive366

procedure is expected to satisfactorily capture the367

semantics of a sentence and is ready to deal with368

the optimization of Equation (1). Then for the rest369

half of training steps, we turn to the hardest setting370

treating each instance as one independent cluster,371

which exactly falls into the contrastive training ob-372

jective in Equation (1). Our multi-scale adaptive373

clustering is illustrated in Figure 4.374

4.2.2 Label Regularization375

In addition to leveraging information from the in-376

stance side, we also have access to the raw texts of377
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x̂3

<latexit sha1_base64="rBPvIfeACQ8PFL8Sc4kulzKAv+Y=">AAAB8HicbZDLSgMxFIbP1FutWutlJ0KwCK7KjAUvu4IblxXsRdqhZNK0DU0yQ5IRy9CncONCEbe+iVt37vU5NL0stPWHwMf/n0POOUHEmTau++GkFhaXllfSq5m19Y3sZm5ru6rDWBFaISEPVT3AmnImacUww2k9UhSLgNNa0L8Y5bVbqjQL5bUZRNQXuCtZhxFsrHXT7GGT3A1bxVYu7xbcsdA8eFPIl7LfX2/7u5/lVu692Q5JLKg0hGOtG54bGT/ByjDC6TDTjDWNMOnjLm1YlFhQ7SfjgYfo0Dpt1AmVfdKgsfu7I8FC64EIbKXApqdns5H5X9aITefMT5iMYkMlmXzUiTkyIRptj9pMUWL4wAImitlZEelhhYmxN8rYI3izK89D9bjgnRSKV16+dA4TpWEPDuAIPDiFElxCGSpAQMA9PMKTo5wH59l5mZSmnGnPDvyR8/oDU9OUew==</latexit>

x̂3
<latexit sha1_base64="8bH8Zf4PmNWszQ/D7q06FE5qVlE=">AAAB8HicbZDLSgMxFIbP1FutWutlJ0KwCK7KjIqXXcGNywr2Iu1QMmnahiaZIcmIZehTuHGhiFvfxK079/ocml4W2vpD4OP/zyHnnCDiTBvX/XBSc/MLi0vp5czK6lp2PbexWdFhrAgtk5CHqhZgTTmTtGyY4bQWKYpFwGk16F0M8+otVZqF8tr0I+oL3JGszQg21rppdLFJ7gbN42Yu7xbckdAseBPIF7PfX2+725+lZu690QpJLKg0hGOt654bGT/ByjDC6SDTiDWNMOnhDq1blFhQ7SejgQdo3zot1A6VfdKgkfu7I8FC674IbKXApquns6H5X1aPTfvMT5iMYkMlGX/UjjkyIRpuj1pMUWJ43wImitlZEelihYmxN8rYI3jTK89C5bDgnRSOrrx88RzGSsMO7MEBeHAKRbiEEpSBgIB7eIQnRzkPzrPzMi5NOZOeLfgj5/UHVVeUfA==</latexit>

x̂4
<latexit sha1_base64="8bH8Zf4PmNWszQ/D7q06FE5qVlE=">AAAB8HicbZDLSgMxFIbP1FutWutlJ0KwCK7KjIqXXcGNywr2Iu1QMmnahiaZIcmIZehTuHGhiFvfxK079/ocml4W2vpD4OP/zyHnnCDiTBvX/XBSc/MLi0vp5czK6lp2PbexWdFhrAgtk5CHqhZgTTmTtGyY4bQWKYpFwGk16F0M8+otVZqF8tr0I+oL3JGszQg21rppdLFJ7gbN42Yu7xbckdAseBPIF7PfX2+725+lZu690QpJLKg0hGOt654bGT/ByjDC6SDTiDWNMOnhDq1blFhQ7SejgQdo3zot1A6VfdKgkfu7I8FC674IbKXApquns6H5X1aPTfvMT5iMYkMlGX/UjjkyIRpuj1pMUWJ43wImitlZEelihYmxN8rYI3jTK89C5bDgnRSOrrx88RzGSsMO7MEBeHAKRbiEEpSBgIB7eIQnRzkPzrPzMi5NOZOeLfgj5/UHVVeUfA==</latexit>

x̂4

<latexit sha1_base64="tzH7B/DywA0p6UBpU/qZtweSnkE=">AAAB8HicbZDLSgMxFIbPeK31Vu3STbAIrspMBS+7ghuXFexF2qFk0kwbmmSGJCMMQ5/CjQtF3InP4cqlOx/DNzC9LLT1h8DH/59DzjlBzJk2rvvlLC2vrK6t5zbym1vbO7uFvf2GjhJFaJ1EPFKtAGvKmaR1wwynrVhRLAJOm8Hwcpw376jSLJI3Jo2pL3BfspARbKx12xlgk6WjrtctlNyyOxFaBG8GpWrx+73y0XytdQufnV5EEkGlIRxr3fbc2PgZVoYRTkf5TqJpjMkQ92nbosSCaj+bDDxCR9bpoTBS9kmDJu7vjgwLrVMR2EqBzUDPZ2Pzv6ydmPDcz5iME0MlmX4UJhyZCI23Rz2mKDE8tYCJYnZWRAZYYWLsjfL2CN78yovQqJS90/LJtVeqXsBUOTiAQzgGD86gCldQgzoQEHAPj/DkKOfBeXZepqVLzqynCH/kvP0AQC2UbQ==</latexit>

ŷ1
<latexit sha1_base64="tzH7B/DywA0p6UBpU/qZtweSnkE=">AAAB8HicbZDLSgMxFIbPeK31Vu3STbAIrspMBS+7ghuXFexF2qFk0kwbmmSGJCMMQ5/CjQtF3InP4cqlOx/DNzC9LLT1h8DH/59DzjlBzJk2rvvlLC2vrK6t5zbym1vbO7uFvf2GjhJFaJ1EPFKtAGvKmaR1wwynrVhRLAJOm8Hwcpw376jSLJI3Jo2pL3BfspARbKx12xlgk6WjrtctlNyyOxFaBG8GpWrx+73y0XytdQufnV5EEkGlIRxr3fbc2PgZVoYRTkf5TqJpjMkQ92nbosSCaj+bDDxCR9bpoTBS9kmDJu7vjgwLrVMR2EqBzUDPZ2Pzv6ydmPDcz5iME0MlmX4UJhyZCI23Rz2mKDE8tYCJYnZWRAZYYWLsjfL2CN78yovQqJS90/LJtVeqXsBUOTiAQzgGD86gCldQgzoQEHAPj/DkKOfBeXZepqVLzqynCH/kvP0AQC2UbQ==</latexit>

ŷ1
<latexit sha1_base64="nNfss/MlCOe1yEKTRmGTxQL24fI=">AAAB8HicbZDLSgMxFIYzXmu9Vbt0EyyCqzJTwcuu4MZlBXuRdiiZNNOGJpkhOSMMQ5/CjQtF3InP4cqlOx/DNzC9LLT1h8DH/59DzjlBLLgB1/1ylpZXVtfWcxv5za3tnd3C3n7DRImmrE4jEelWQAwTXLE6cBCsFWtGZCBYMxhejvPmHdOGR+oG0pj5kvQVDzklYK3bzoBAlo66lW6h5JbdifAieDMoVYvf75WP5mutW/js9CKaSKaACmJM23Nj8DOigVPBRvlOYlhM6JD0WduiIpIZP5sMPMJH1unhMNL2KcAT93dHRqQxqQxspSQwMPPZ2PwvaycQnvsZV3ECTNHpR2EiMER4vD3ucc0oiNQCoZrbWTEdEE0o2Bvl7RG8+ZUXoVEpe6flk2uvVL1AU+XQATpEx8hDZ6iKrlAN1RFFEt2jR/TkaOfBeXZepqVLzqyniP7IefsBQbGUbg==</latexit>

ŷ2
<latexit sha1_base64="nNfss/MlCOe1yEKTRmGTxQL24fI=">AAAB8HicbZDLSgMxFIYzXmu9Vbt0EyyCqzJTwcuu4MZlBXuRdiiZNNOGJpkhOSMMQ5/CjQtF3InP4cqlOx/DNzC9LLT1h8DH/59DzjlBLLgB1/1ylpZXVtfWcxv5za3tnd3C3n7DRImmrE4jEelWQAwTXLE6cBCsFWtGZCBYMxhejvPmHdOGR+oG0pj5kvQVDzklYK3bzoBAlo66lW6h5JbdifAieDMoVYvf75WP5mutW/js9CKaSKaACmJM23Nj8DOigVPBRvlOYlhM6JD0WduiIpIZP5sMPMJH1unhMNL2KcAT93dHRqQxqQxspSQwMPPZ2PwvaycQnvsZV3ECTNHpR2EiMER4vD3ucc0oiNQCoZrbWTEdEE0o2Bvl7RG8+ZUXoVEpe6flk2uvVL1AU+XQATpEx8hDZ6iKrlAN1RFFEt2jR/TkaOfBeXZepqVLzqyniP7IefsBQbGUbg==</latexit>

ŷ2
<latexit sha1_base64="FS6LfEPDBVLNIj6iEDcyMbAAcw4=">AAAB8HicbZDLSgMxFIYz9Vbrrdqlm2ARXJWZFrzsCm5cVrAXaYeSSdM2NMkMyRlhGPoUblwo4k58Dlcu3fkYvoHpZaGtPwQ+/v8ccs4JIsENuO6Xk1lZXVvfyG7mtrZ3dvfy+wcNE8aasjoNRahbATFMcMXqwEGwVqQZkYFgzWB0Ocmbd0wbHqobSCLmSzJQvM8pAWvddoYE0mTcrXTzRbfkToWXwZtDsVr4fi9/NF9r3fxnpxfSWDIFVBBj2p4bgZ8SDZwKNs51YsMiQkdkwNoWFZHM+Ol04DE+tk4P90NtnwI8dX93pEQak8jAVkoCQ7OYTcz/snYM/XM/5SqKgSk6+6gfCwwhnmyPe1wzCiKxQKjmdlZMh0QTCvZGOXsEb3HlZWiUS95pqXLtFasXaKYsOkRH6AR56AxV0RWqoTqiSKJ79IieHO08OM/Oy6w048x7CuiPnLcfQzWUbw==</latexit>

ŷ3
<latexit sha1_base64="FS6LfEPDBVLNIj6iEDcyMbAAcw4=">AAAB8HicbZDLSgMxFIYz9Vbrrdqlm2ARXJWZFrzsCm5cVrAXaYeSSdM2NMkMyRlhGPoUblwo4k58Dlcu3fkYvoHpZaGtPwQ+/v8ccs4JIsENuO6Xk1lZXVvfyG7mtrZ3dvfy+wcNE8aasjoNRahbATFMcMXqwEGwVqQZkYFgzWB0Ocmbd0wbHqobSCLmSzJQvM8pAWvddoYE0mTcrXTzRbfkToWXwZtDsVr4fi9/NF9r3fxnpxfSWDIFVBBj2p4bgZ8SDZwKNs51YsMiQkdkwNoWFZHM+Ol04DE+tk4P90NtnwI8dX93pEQak8jAVkoCQ7OYTcz/snYM/XM/5SqKgSk6+6gfCwwhnmyPe1wzCiKxQKjmdlZMh0QTCvZGOXsEb3HlZWiUS95pqXLtFasXaKYsOkRH6AR56AxV0RWqoTqiSKJ79IieHO08OM/Oy6w048x7CuiPnLcfQzWUbw==</latexit>

ŷ3
<latexit sha1_base64="1hpSomqG4oo3nRV2litKBoRdPwk=">AAAB8HicbZDLSgMxFIbP1Futt2qXboJFcFVmqnjZFdy4rGAv0g4lk6ZtaJIZkowwDH0KNy4UcSc+hyuX7nwM38D0stDWHwIf/38OOecEEWfauO6Xk1laXlldy67nNja3tnfyu3t1HcaK0BoJeaiaAdaUM0lrhhlOm5GiWAScNoLh5Thv3FGlWShvTBJRX+C+ZD1GsLHWbXuATZqMOiedfNEtuROhRfBmUKwUvt/LH43Xaif/2e6GJBZUGsKx1i3PjYyfYmUY4XSUa8eaRpgMcZ+2LEosqPbTycAjdGidLuqFyj5p0MT93ZFioXUiAlspsBno+Wxs/pe1YtM791Mmo9hQSaYf9WKOTIjG26MuU5QYnljARDE7KyIDrDAx9kY5ewRvfuVFqJdL3mnp+NorVi5gqizswwEcgQdnUIErqEINCAi4h0d4cpTz4Dw7L9PSjDPrKcAfOW8/RLmUcA==</latexit>

ŷ4
<latexit sha1_base64="1hpSomqG4oo3nRV2litKBoRdPwk=">AAAB8HicbZDLSgMxFIbP1Futt2qXboJFcFVmqnjZFdy4rGAv0g4lk6ZtaJIZkowwDH0KNy4UcSc+hyuX7nwM38D0stDWHwIf/38OOecEEWfauO6Xk1laXlldy67nNja3tnfyu3t1HcaK0BoJeaiaAdaUM0lrhhlOm5GiWAScNoLh5Thv3FGlWShvTBJRX+C+ZD1GsLHWbXuATZqMOiedfNEtuROhRfBmUKwUvt/LH43Xaif/2e6GJBZUGsKx1i3PjYyfYmUY4XSUa8eaRpgMcZ+2LEosqPbTycAjdGidLuqFyj5p0MT93ZFioXUiAlspsBno+Wxs/pe1YtM791Mmo9hQSaYf9WKOTIjG26MuU5QYnljARDE7KyIDrDAx9kY5ewRvfuVFqJdL3mnp+NorVi5gqizswwEcgQdnUIErqEINCAi4h0d4cpTz4Dw7L9PSjDPrKcAfOW8/RLmUcA==</latexit>

ŷ4

(a) K=1 (b) K=2 (c) K=4

Positive

Negative

Figure 4: An example of multi-scale adaptive clustering.
Here different colors represent different clusters. (a) In
the beginning, there is only one cluster and {ŷj}4j=1 are
all positive labels for x̂1. (b) K is doubled to 2 and now
ŷ1 and ŷ3 are positive to x̂1. (c) Finally, K is equal to
4 where each instance itself is a cluster, and hence x̂1

only has one positive label ŷ1. The process is similar
for the rest of the instances.

the whole label set and can utilize them to boost 378

the encoder’s performance from the label side. In- 379

tuitively, for a randomly sampled label, with a 380

high probability it is an negative example to the 381

instance of interest. We can take advantage of 382

this intuition to make the embedding of the in- 383

stance far from its irrelevant labels. Instead of 384

increasing the distance directly, it is more stable 385

and effective to adopt contrastive losses. To avoid 386

overfitting, we choose a new positive example for 387

each instance instead of its corresponding pseudo 388

label from ICT which has been used in Lcluster. 389

More concretely, x̂+i is selected exactly the same 390

as x̂i, since the dropout layer is placed in the stan- 391

dard training of Transformer-based models and can 392

be viewed as a minimal form of data augmenta- 393

tion (Gao et al., 2021). By feeding the same sen- 394

tence to the encoder E , two embeddings with differ- 395

ent dropout masks are obtained, i.e., ĥi = E(x̂i, zi) 396

and ĥ+i = E(x̂+i , z+i ) where z represents a random 397

mask for dropout. ĥi ̸= ĥ+i due to the dropout 398

noise, but they hold similar semantics from the 399

same sentence and thus can be used as a positive 400

pair for contrastive learning. The procedure of la- 401

bel regularization is depicted in Figure 5. At each 402

step, we sample M real labels from the label set Y , 403

and the reguarization term is computed as follows: 404

Llabel =
N∑
i=1

− log
exp(ĥi · ĥ+

i )∑M
j=1 exp(ĥi · E(y−

j )) + exp(ĥi · ĥ+
i )
(3) 405

Through minimizing Llabel, the encoder learns to 406

pull the instance away from its irrelevant labels 407

and incorporate the dropout augmentation at the 408

same time. Together with Lcluster, we have the final 409

objective function for pre-training in the Stage I as 410

L = Lcluster + Llabel. (4) 411
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<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i
<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i
<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i
<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i

<latexit sha1_base64="6NNFGW9h2xS+IMOwNf7I+jVlYew=">AAAB7HicbZDLSsNAFIZPvNZ6q7rsZrAIIlgSBS+7ghuXFUxbbGOZTCft0MkkzkyEEPsMblwo4tYn8BF8Ane+jdPLQlt/GPj4/3OYc44fc6a0bX9bc/MLi0vLuZX86tr6xmZha7umokQS6pKIR7LhY0U5E9TVTHPaiCXFoc9p3e9fDPP6PZWKReJapzH1QtwVLGAEa2O5adu5PWwXSnbZHgnNgjOBUqV48HDzefdRbRe+Wp2IJCEVmnCsVNOxY+1lWGpGOB3kW4miMSZ93KVNgwKHVHnZaNgB2jNOBwWRNE9oNHJ/d2Q4VCoNfVMZYt1T09nQ/C9rJjo48zIm4kRTQcYfBQlHOkLDzVGHSUo0Tw1gIpmZFZEelphoc5+8OYIzvfIs1I7Kzkn5+MopVc5hrBwUYRf2wYFTqMAlVMEFAgwe4RleLGE9Wa/W27h0zpr07MAfWe8/jSWRgA==</latexit>

y�
1

<latexit sha1_base64="6NNFGW9h2xS+IMOwNf7I+jVlYew=">AAAB7HicbZDLSsNAFIZPvNZ6q7rsZrAIIlgSBS+7ghuXFUxbbGOZTCft0MkkzkyEEPsMblwo4tYn8BF8Ane+jdPLQlt/GPj4/3OYc44fc6a0bX9bc/MLi0vLuZX86tr6xmZha7umokQS6pKIR7LhY0U5E9TVTHPaiCXFoc9p3e9fDPP6PZWKReJapzH1QtwVLGAEa2O5adu5PWwXSnbZHgnNgjOBUqV48HDzefdRbRe+Wp2IJCEVmnCsVNOxY+1lWGpGOB3kW4miMSZ93KVNgwKHVHnZaNgB2jNOBwWRNE9oNHJ/d2Q4VCoNfVMZYt1T09nQ/C9rJjo48zIm4kRTQcYfBQlHOkLDzVGHSUo0Tw1gIpmZFZEelphoc5+8OYIzvfIs1I7Kzkn5+MopVc5hrBwUYRf2wYFTqMAlVMEFAgwe4RleLGE9Wa/W27h0zpr07MAfWe8/jSWRgA==</latexit>

y�
1

<latexit sha1_base64="6NNFGW9h2xS+IMOwNf7I+jVlYew=">AAAB7HicbZDLSsNAFIZPvNZ6q7rsZrAIIlgSBS+7ghuXFUxbbGOZTCft0MkkzkyEEPsMblwo4tYn8BF8Ane+jdPLQlt/GPj4/3OYc44fc6a0bX9bc/MLi0vLuZX86tr6xmZha7umokQS6pKIR7LhY0U5E9TVTHPaiCXFoc9p3e9fDPP6PZWKReJapzH1QtwVLGAEa2O5adu5PWwXSnbZHgnNgjOBUqV48HDzefdRbRe+Wp2IJCEVmnCsVNOxY+1lWGpGOB3kW4miMSZ93KVNgwKHVHnZaNgB2jNOBwWRNE9oNHJ/d2Q4VCoNfVMZYt1T09nQ/C9rJjo48zIm4kRTQcYfBQlHOkLDzVGHSUo0Tw1gIpmZFZEelphoc5+8OYIzvfIs1I7Kzkn5+MopVc5hrBwUYRf2wYFTqMAlVMEFAgwe4RleLGE9Wa/W27h0zpr07MAfWe8/jSWRgA==</latexit>

y�
1
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Figure 5: An illustration of label reguarization. (a)
shows that x̂i is expected to be far from sampled irrele-
vant labels {y−j }4j=1, while (b) indicates the identical x̂i

is added as a positive example for label regularization.

412 4.3 Stage II: Self-training with multi-viewed413

pseudo pairs414

After the pre-training procedure in Section 4.2, we415

can obtain an intermediate encoder EI . But are416

there any ways to further improve the encoder?417

Inspired by self-training in semi-supervised learn-418

ing (Yalniz et al., 2019; Xie et al., 2020; He et al.,419

2019; Zoph et al., 2020), EI can be leveraged to420

make predictions on those unpaired training in-421

stances themselves, to generate pseudo positive422

pairs. These pseudo pairs are much better than ran-423

dom guessing and can serve as a distinct view from424

ICT pairs. On the other hand, similar pseudo pairs425

can be constructed by other unsupervised meth-426

ods such as TF-IDF, which provide different and427

complementary information about the instance.428

With multi-viewed pseudo positive pairs, we can429

conduct further training on the encoder in State II430

from a new perspective and self-improve EI . The431

detailed process works as follows:432

1) Compute the similarity score using EI for each433

training instance xi, and select labels with top-434

k maximum scores as its pseudo labels;435

2) Generate labels similarly with TF-IDF, except436

that E(x) and E(y) are replaced with their TF-437

IDF vectors;438

3) Mix pseudo positive pairs from 1) and 2) to-439

gether, and train EI on them with Equation (2).440

5 Experimental Results441

5.1 Experimental Settings442

Datasets We evaluate our proposed MACLR on443

4 public XMC benchmark datasets (Bhatia et al.,444

2016; Gupta et al., 2021) where raw text of in-445

stances and labels are available. These datasets446

are derived from real-world applications, ranging447

from item-to-item recommendation (LF-Amazon-448

131K, LF-Amazon-1M), to Wikipedia articles cat-449

egory/title tagging (LF-WikiSeeAlso-320K, LF-450

Wikipedia-500K). Detailed dataset statistics are 451

presented in Table 5 in Appendix B. 452

Evaluation Protocol We consider two evalua- 453

tion setups: Extreme Zero-shot Learning of XMC 454

(EZ-XMC) and Few-shot Learning of XMC (FS- 455

XMC). EZ-XMC is a fully unsupervised learning 456

setup where no positive (instance, label) pairs are 457

available. The only available information is the 458

raw text of training instances and the whole label 459

set. FS-XMC is a semi-supervised learning setup 460

where only very few positive (instance, label) pairs 461

in the training set are available. Regardless of the 462

learning procedure, all models are evaluated on the 463

same test set for fair comparison. 464

We evaluate the models’ performance with pre- 465

cision@k (P@k, k ∈ {1, 3, 5}) and recall@k 466

(R@k, k ∈ {1, 3, 5, 10, 100}), which are two 467

commonly-used evaluation metrics in the XMC 468

literature (Reddi et al., 2019; Chang et al., 2021). 469

Baseline Methods For EZ-XMC, we compare 470

our method with the following unsupervised learn- 471

ing algorithms: TF-IDF, XR-Linear, GloVe, Sent- 472

BERT, MPNet, SimCSE and ICT. Note that Sent- 473

BERT and MPNet are pre-trained on external multi- 474

task learning datasets with extra supervision. In 475

contrast, SimCSE and ICT are fully unsupervised 476

pre-rained Siamese-Transformers on the specific 477

XMC dataset only. Detailed description of each 478

method can be found in Appendix B. 479

For FS-XMC, as few-shot (instance, la- 480

bel) pairs are available, we additionally com- 481

pare fine-tuned MACLR with competitive XMC 482

approaches, including Astec (Dahiya et al., 483

2021b), SiameseXML (Dahiya et al., 2021a), and 484

ZestXML (Gupta et al., 2021). ZestXML is the 485

leading XMC method that improves performance 486

on few-shot labels. We also take into account Sent- 487

BERT (Reimers and Gurevych, 2019) with further 488

fine-tuning to demonstrate the effectiveness of our 489

pre-training procedure. 490

5.2 Zero-Shot Learning 491

In this section, we focus on extreme zero-shot learn- 492

ing (EZ-XMC), where no real positive (instance, 493

label) pairs are accessible. Table 1 presents detailed 494

performance of precision and recall on all four 495

datasets. Our proposed MACLR consistently out- 496

performs all comparing baselines by a large margin 497

on all four datasets. Compared to the leading sparse 498

method TF-IDF, MACLR has an average of 5.3% 499

and 9.1% absolute improvement in Precision@1 500
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Table 1: Extreme Zero-shot Learning (EZ-XMC) com-
parison of different unsupervised methods.

Method
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

LF-Amazon-131K

TF-IDF 12.38 11.50 9.14 6.91 18.14 23.21 29.32 45.04
XR-Linear 7.56 7.84 7.30 4.05 12.11 18.32 29.17 40.39
GloVe 3.67 2.78 2.15 2.05 4.33 5.44 7.23 14.17
SentBERT 1.86 1.44 1.14 1.01 2.22 2.88 4.01 10.18
MPNet 13.94 11.41 8.82 7.82 18.08 22.58 27.91 43.39
SimCSE 10.13 8.61 6.69 5.61 13.39 16.84 21.27 35.81
ICT 13.82 11.41 8.90 7.76 18.09 22.80 28.94 47.40
MACLR (ours) 18.13 15.42 11.93 10.35 24.45 30.43 37.28 54.99

LF-WikiSeeAlso-320K

TF-IDF 10.71 8.90 7.15 5.92 13.03 16.48 21.60 42.55
XR-Linear 4.73 4.27 3.90 2.23 5.83 8.64 14.18 36.93
GloVe 3.86 2.76 2.21 2.12 4.11 5.22 6.95 15.33
SentBERT 1.71 1.27 1.06 1.08 2.16 2.90 4.17 10.76
MPNet 13.75 11.93 9.58 8.14 17.77 22.21 28.11 45.91
SimCSE 9.03 6.64 5.22 4.99 9.89 12.34 15.93 30.11
ICT 10.76 10.05 8.12 6.12 14.32 18.05 23.01 39.77
MACLR (ours) 16.31 13.53 10.78 9.71 20.39 25.37 32.05 53.83

LF-Wikipedia-500K

TF-IDF 20.30 12.98 9.96 7.25 12.91 15.98 20.31 38.16
XR-Linear 10.67 8.77 7.61 3.69 8.58 12.11 19.80 31.02
GloVe 2.19 1.52 1.23 0.85 1.66 2.18 3.10 8.52
SentBERT 0.17 0.15 0.13 0.05 0.13 0.18 0.30 1.29
MPNet 22.46 12.87 9.49 8.74 14.07 16.76 20.64 34.72
SimCSE 14.32 6.84 4.55 4.24 8.03 11.26 14.35 27.68
ICT 17.74 9.67 7.06 7.35 11.60 13.84 17.19 31.08
MACLR (ours) 28.44 17.75 13.53 10.40 18.16 22.38 28.52 50.09

LF-Amazon-1M

TF-IDF 7.68 9.20 7.23 5.61 19.30 24.92 31.76 51.79
XR-Linear 5.19 5.48 5.26 3.63 11.30 17.94 31.18 43.79
GloVe 4.05 4.07 3.07 2.91 8.42 10.44 12.90 21.18
SentBERT 2.82 2.87 2.13 2.03 5.91 7.21 8.80 14.22
MPNet 8.29 8.87 6.80 6.04 18.64 23.51 29.35 46.15
SimCSE 3.33 3.69 2.74 2.38 7.66 9.38 11.43 18.54
ICT 8.66 9.26 7.13 6.30 19.45 24.60 30.73 48.42
MACLR (ours) 9.58 10.41 8.03 7.38 22.01 27.72 34.48 55.23

and Recall@100, respectively. Compared to the501

leading neural model MPNet, MACLR has an av-502

erage of 3.5% and 10.9% absolute improvement in503

Precision@1 and Recall@100, respectively.504

Speaking of sparse lexical matching approaches,505

TF-IDF remains a tough-to-beat unsupervised base-506

line. Specifically, TF-IDF performs better than507

many BERT variants (e.g., SentBERT, SimCSE,508

ICT), which is aligned with the finding in recent509

zero-shot dense retrieval literature (Thakur et al.,510

2021; Anonymous, 2022). It suggests the impor-511

tance of designing proper self-supervised learning512

tasks for Transformer models in unsupervised EZ-513

XMC setup. Note that XR-Linear is based on TF-514

IDF vectors whereas the noise from pseudo pairs515

makes it even inferior to the original TF-IDF.516

As for pre-trained SentBERT models, on the517

other hand, only MPNet shows comparable perfor-518

mance with TF-IDF. MPNet remains competitive519

because it was trained on a large supervised cor-520

pus (out-of-domain) to learn semantics between521

paraphrasing sentences. Thus, MPNet should be522

viewed as a multi-task learning baseline with ex-523

tra supervision. However, MACLR is significantly524

better than MPNet with an average improvement 525

of 3.5% in P@1 and over 10% in R@100. Fur- 526

thermore, MACLR also outperforms its counter- 527

parts which are trained with effective pre-training 528

tasks such as SimCSE and ICT on the target 529

dataset, showing the effectiveness of pre-training 530

strategies like multi-scale adaptive clustering in 531

MACLR. Overall, results in Table 1 demonstrates 532

that MACLR is capable to learn informative embed- 533

dings and to make useful predictions even with no 534

supervision. We will investigate each component 535

in MACLR in Section 5.4 thoroughly. 536

5.3 Few-Shot Learning 537

We further conduct few-shot learning (FS-XMC) 538

experiments in which different learning algorithms 539

can access a limited number of positive (instance, 540

label) pairs. To simulate the scenario of few-shot 541

learning, we first manually sample a small ratio 542

of labels, then collect all their positive instances 543

from the training set as the final subset of positive 544

(instance, label) pairs for model training. Results 545

of FS-XMC methods fine-tuned with 1% and 5% 546

labels are shown in Tables 2 and 3 respectively. 547

Our proposed MACLR outperforms all other 548

baselines significantly, including variants of 549

Siamese-Transformer models (e.g., SentBERT, MP- 550

Net) and major competitive XMC methods (e.g., 551

XR-Linear, Astec and SiameseXML), on all four 552

datasets. Note that SiameseXML is the state- 553

of-the-art XMC method under the full supervision 554

setup of XMC. Here, we again witness that existing 555

XMC methods heavily rely on the supervision level 556

as well as the full-coverage of label space for test 557

set. MACLR, in contrast, still performs robustly 558

under FS-XMC, which enjoy larger applicability 559

to emerging domains with many cold-start labels. 560

Crucially, even ZestXML tailored to address 561

the challenging scenario of unseen labels cannot 562

match the performance of MACLR. In particular, 563

when focusing on the few-shot scenario with only 564

1% sampled labels, MACLR achieves 18.74% in 565

P@1, improving the performance of Astec with 566

0.94% and ZestXML with 10.10% significantly. 567

Besides, MACLR outperforms all Sentence-BERT 568

counterparts, validating the effectiveness of our 569

pre-training procedure. As to fine-tuning on the 570

subset with 5% labels, performance of all methods 571

are improved as expected with more supervision. 572

The relative rank among these methods remains 573

the same, with MACLR still performing the best in 574

terms of precision and recall on all four datasets. 575
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Table 2: Results of FS-XMC where the training subset
covers 1% labels from the whole set.

Method
Precision Recall

@1 @5 @10 @1 @3 @5 @10 @100

LF-Amazon-131K

XR-Linear 1.53 0.57 0.36 0.67 0.75 0.78 0.81 0.92
Astec 0.94 0.44 0.29 0.55 0.78 0.84 0.91 1.13
SiameseXML 1.45 0.56 0.35 0.84 0.96 1.00 1.03 1.16
ZestXML 10.10 9.19 7.34 5.63 14.46 18.61 23.73 32.69
SentBERT 12.64 9.82 7.80 6.97 15.34 19.74 25.33 43.53
MPNet 14.78 11.55 8.97 8.28 18.24 22.84 28.54 45.89
MACLR (ours) 18.74 16.07 12.52 10.73 25.44 31.89 39.17 57.55

LF-WikiSeeAlso-320K

XR-Linear 1.24 0.57 0.37 0.42 0.58 0.63 0.68 0.76
Astec 1.25 0.60 0.41 0.69 0.98 1.11 1.27 1.56
SiameseXML 1.81 0.75 0.48 1.03 1.26 1.33 1.41 1.67
ZestXML 8.74 6.78 5.41 4.68 9.70 12.21 15.73 24.98
SentBERT 16.30 12.62 10.08 9.30 18.92 23.78 30.40 52.92
MPNet 17.14 12.64 9.96 9.97 18.98 23.45 29.67 50.75
MACLR (ours) 19.09 14.57 11.53 11.39 22.34 27.63 34.81 57.92

LF-Wikipedia-500K

XR-Linear 2.95 1.19 0.75 0.62 0.74 0.76 0.79 0.84
Astec 2.85 1.16 0.73 1.46 1.75 1.84 1.92 2.08
SiameseXML 2.72 1.15 0.73 1.39 1.73 1.84 1.93 2.09
ZestXML 23.86 14.97 11.31 7.19 13.00 16.03 20.13 29.95
SentBERT 32.09 20.50 15.78 10.94 19.46 24.12 30.94 55.94
MPNet 34.58 22.02 16.86 11.96 21.32 26.30 33.53 57.78
MACLR (ours) 44.27 28.46 21.83 15.14 27.04 33.33 42.03 67.95

LF-Amazon-1M

XR-Linear 0.51 0.20 0.12 0.36 0.42 0.43 0.45 0.49
Astec 0.49 0.59 0.12 0.34 0.40 0.42 0.44 0.49
SiameseXML 0.60 0.73 0.15 0.41 0.46 0.48 0.49 0.53
ZestXML 5.07 5.89 4.38 3.68 12.31 15.04 17.80 22.51
SentBERT 6.56 6.93 5.68 4.35 18.29 24.72 28.69 48.52
MPNet 8.87 10.34 7.56 6.78 20.11 26.14 31.98 50.48
MACLR (ours) 10.37 11.23 8.58 7.57 23.55 29.60 36.71 56.44

5.4 Ablation Study576

In this part, we conduct an ablation study to investi-577

gate each component in our pre-training procedure,578

including multi-scale adaptive clustering, label reg-579

ularization, and self-training with pseudo positive580

pairs constructed from the encoder or TF-IDF. We581

add a component once a time on LF-Amazon-131K582

to observe its independent influence on the model583

performance. Table 4 presents detailed perfor-584

mance on seven different configurations.585

Table 4: Ablation study on LF-Amazon-131K.

Index
Ablation Configuration Precision Recall

MAC * LR * E † TFIDF † @1 @3 @5 @1 @3 @5 @10 @100

1 No No No No 13.82 11.41 8.90 7.76 18.09 22.80 28.94 47.40
2 Yes No No No 15.79 13.16 10.22 8.85 20.90 26.27 32.61 49.83
3 No Yes No No 16.02 13.29 10.28 9.04 21.27 26.51 32.97 50.34
4 Yes Yes No No 16.37 13.71 10.65 9.29 21.63 27.03 33.93 51.45

5 Yes Yes Yes No 17.01 14.75 11.41 9.72 23.33 29.04 35.20 53.55
6 Yes Yes No Yes 16.51 14.12 10.92 9.52 22.43 28.02 34.64 52.78
7 Yes Yes Yes Yes 18.13 15.42 11.93 10.35 24.45 30.43 37.28 54.99

* MAC represents adaptive clustering while LR stands for label regularization.
† Pseudo positive pairs are constructed from E or TFIDF.

For two techniques multi-scale adaptive cluster-586

ing and label regularization during the Stage I, they587

can improve the performance of the encoder sep-588

arately, as shown in the performance gain of the589

index 2 and 3 over the index 1. When combined,590

they can further improve the accuracy of the model,591

from 8.90% to 10.65% in P@5 and from 47.40%592

to 51.45% in R@100. As to the second stage, we593

Table 3: Results of FS-XMC where the training subset
covers 5% labels from the whole set.

Method
Precision Recall

@1 @5 @10 @1 @3 @5 @10 @100

LF-Amazon-131K

XR-Linear 5.09 2.09 1.32 2.36 2.86 3.02 3.18 3.74
Astec 3.94 1.92 1.26 2.31 3.34 3.66 4.00 4.96
SiameseXML 5.36 2.23 1.41 3.15 3.89 4.08 4.27 4.82
ZestXML 12.33 10.99 8.71 6.84 17.19 21.97 28.10 46.49
SentBERT 15.47 12.24 9.64 8.63 19.23 24.40 30.82 49.22
MPNet 15.03 11.88 9.28 8.47 18.74 23.69 29.93 48.84
MACLR (ours) 19.56 16.19 12.64 11.15 25.65 32.18 39.63 58.45

LF-WikiSeeAlso-320K

XR-Linear 4.69 2.20 1.46 1.82 2.41 2.63 2.82 3.42
Astec 5.90 2.80 1.86 3.26 4.49 4.95 5.49 6.83
SiameseXML 6.83 3.15 2.06 3.88 5.15 5.56 6.02 7.09
ZestXML 10.06 8.11 6.60 5.33 11.49 14.74 19.57 40.46
SentBERT 18.47 14.19 11.29 10.82 21.55 26.77 33.92 57.02
MPNet 18.59 13.99 11.08 10.89 21.12 26.10 32.82 54.70
MACLR (ours) 20.99 15.57 12.26 12.59 23.94 29.41 36.78 59.81

LF-Wikipedia-500K

XR-Linear 11.80 5.30 3.39 2.76 3.47 3.65 3.82 4.09
Astec 11.23 5.27 3.48 5.46 7.47 8.16 8.90 10.35
SiameseXML 12.44 5.69 3.79 6.05 7.98 8.62 9.22 10.40
ZestXML 27.31 17.31 13.09 8.28 15.13 18.64 23.30 36.50
SentBERT 41.06 26.35 20.25 14.17 25.34 31.32 39.77 66.24
MPNet 42.81 28.07 21.66 14.67 26.81 33.24 42.28 67.76
MACLR (ours) 47.25 30.57 23.54 16.20 29.01 35.81 45.13 71.35

LF-Amazon-1M

XR-Linear 2.11 0.84 0.53 1.45 1.74 1.81 1.88 2.04
Astec 2.22 2.56 0.71 1.54 1.91 2.03 2.16 2.41
SiameseXML 2.60 3.01 1.06 1.81 2.20 2.30 2.41 2.60
ZestXML 7.17 8.35 6.36 5.18 17.49 21.88 26.80 36.51
SentBERT 8.89 10.02 7.93 7.00 21.58 27.35 33.98 54.28
MPNet 9.25 10.41 8.00 7.11 21.87 27.64 34.61 54.72
MACLR (ours) 10.60 11.47 8.80 7.89 24.14 30.44 37.95 58.45

explore the impact of self-training with pseudo pos- 594

itive pairs either from the encoder itself or TF-IDF. 595

We can see from Table 4 that pairs from both E 596

and TF-IDF contribute to the precision and recall 597

gain over the index 5. It further validates that the 598

encoder and TF-IDF provides complementary per- 599

spective when constructing pseudo positive pairs. 600

6 Conclusions 601

This paper is the first to investigate the problem 602

of Extreme zero-shot XMC without any supervi- 603

sion. We develop a two-stage pre-training proce- 604

dure MACLR to train a Sentence-BERT style en- 605

coder on pseudo (context, title) pairs constructed 606

from raw text. We demonstrate that techniques 607

including multi-scale adaptive clustering, label reg- 608

ularization and self-training contribute to the perfor- 609

mance gain of the pre-trained encoder. In particular, 610

MACLR outperforms all unsupervised baselines 611

significantly when there are no (instance, label) 612

pairs provided. It also offers leading accuracy in 613

both precision and recall after fine-tuning on a lim- 614

ited number of paired data. One limitation is rel- 615

ative low accuracy of top candidates and a future 616

direction could be adding a ranker model after the 617

encoder to improve performance on head labels. 618
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Broader Impact619

In the paper all datasets are publicly available with-620

out any private or confidential information and to621

the best of our knowledge, there are no ethical is-622

sues with this paper. For broader impacts of our623

work, we consider a practical scenario, Extreme624

Zero-Shot XMC where no supervision is required.625

Solving problems under EZ-XMC can reduce labor626

of manual annotation significantly. For example,627

the unsupervised model can help narrow the tag-628

ging space remarkably by selecting a small number629

of candidate labels for products in the e-commerce630

domain for efficient annotation. MACLR is such an631

effective method to benefit real-world applications632

like recommendation and advertisement.633
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A MACLR Algorithm861

The whole pre-training procedure of MACLR is862

shown in Algorithm 1. Note that for FS-XMC, we863

simply fine-tune the encoder E from MACLR on864

available positive pairs for several steps by mini-865

mizing the original contrastive loss in Equation (1).866

B Implementation Details867

Datasets and Source Codes Statistics of four868

datasets are presented in Table 5. All XMC datasets869

used in the paper are available in the Extreme Clas-870

sification Repository (Bhatia et al., 2016)1, except871

for LF-Amazon-1M, which is available from the872

ZestXML paper (Gupta et al., 2021)2. Besides,873

sources code can be accessed in this link.874

Table 5: Dataset statistics. Ntrain, Ntest and Nlabel are
the number of training points, test points, and labels
respectively. DBoW is the dimensionality of Bag-of-
Words (BoW) features.

Dataset Ntrain Ntest Nlabel DBoW

LF-Amazon-131K 294,805 134,835 131,073 80,000
LF-WikiSeeAlso-320K 693,082 177,515 312,330 80,000
LF-Wikipedia-500K 1,813,391 783,743 501,070 500,000
LF-Amazon-1M 914,179 1,465,767 960,106 1,000,000

1http://manikvarma.org/downloads/XC/
XMLRepository.html

2https://github.com/nilesh2797/zestxml

Algorithm 1 Pre-training procedure of MACLR

Input: Raw text of instances and labels (X ,Y),
the sentence encoder E , batch size N and M ,
training step parameters TK , Tupdate and Ttotal,
initial cluster size K0, # of top candidates k

Output: A pre-trained sentence encoder E
▷ Stage I: Pre-training with the improved ICT

1: Construct ICT (context, title) pairs from raw
texts in X

2: Feed the context for each pair into the encoder
E and cluster them into K = K0 clusters via
k-means

3: for t = 1, . . . , Ttotal do
4: Sample a mini-batch of pseudo pairs of

size N and a mini-batch of real labels of size
M

5: Compute the loss: L = Lcluster + Llabel
6: Train the encoder by minimizing L
7: if t mod TK = 0 and t < Ttotal/2 then
8: K = K ∗ 2
9: end if

10: if t mod Tupdate = 0 and t < Ttotal/2 then
11: Feed raw texts of X again into E , and

update current cluster assignment via k-means
with the cluster number K

12: end if
13: if t ≥ Ttotal/2 then
14: Treat each instance as an independent

cluster
15: end if
16: end for

▷ Stage II: Self-training with multi-viewed
pseudo pairs

17: Construct pseudo pairs (Xpseu,Ypseu) by select-
ing top-k candidate labels with the similarity
metric on the encoder E and TF-IDF respec-
tively

18: Train the encoder E for Ttotal steps by minimiz-
ing Equation (2)

Compared Baselines of EZ-XMC Here we pro- 875

vide detailed description of each baseline method 876

under the EZ-XMC setting. 877

• TF-IDF (Rajaraman and Ullman, 2011), which 878

represents instances and labels by sparse TF-IDF 879

features and retrieves top labels for each instance 880

based on the similarity of TF-IDF features; 881

• XR-Linear (Yu et al., 2020), a hierarchical linear 882

model trained with pseudo positive pairs con- 883

structed from TF-IDF; 884

• GloVe (Pennington et al., 2014), which adopts 885

11
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Table 6: Mean and variance of MACLR performance of four independent runs under EZ-XMC on LF-Amazon-131K.

Method
Precision Recall

@1 @5 @10 @1 @3 @5 @10 @100

MACLR 17.64 ± 0.11 15.24 ± 0.01 11.81 ± 0.01 10.11 ± 0.04 24.13 ± 0.04 30.14 ± 0.04 37.13 ± 0.03 54.88 ± 0.01

dense average word embeddings with the dimen-886

sion of 300 trained on co-occurrence statistics to887

measure similarity between instances and labels;888

• Sentence-BERT (SentBERT) (Devlin et al., 2019;889

Reimers and Gurevych, 2019), a sentence en-890

coder modeled as a Siamese-Transformer to de-891

rive semantically meaningful embeddings for in-892

stances and labels;893

• Paraphrase MPNet (MPNet) (Song et al., 2020),894

another Sentence-BERT model originally de-895

signed for searching sentence paraphrases;896

• SimCSE (Gao et al., 2021), a Siamese-897

Transformer pre-trained with the contrastive ob-898

jective using dropout noise as augmentation;899

• ICT (Lee et al., 2019), another Siamese-900

Transformer pre-trained with the contrastive ob-901

jective using (context, title) pairs.902

Evaluation Metrics As mentioned before, we903

adopt precision and recall as our evaluation metrics.904

In detail, P@k and R@k are defined as follows:905

P@k =
1

k

∑
i∈rankk(y

′)

yi, R@k =
1∑
l yl

∑
i∈rankk(y

′)

yi.

(5)906

y ∈ {0, 1}L and y′ ∈ RL are the ground truth907

vector and the prediction vector respectively. rankk908

returns the indices of the top-k highest elements.909

Hyper-parameters We use a Siamese Trans-910

former model to embed both instances and labels.911

The encoder consists of a 12 layers BERT-base912

model, topped with a linear head projecting hidden913

state of the [CLS] token into a 512-dimensional914

embedding. The sequence length of the instance915

and the label is set to be 288 and 64 respectively.916

We pre-train the model on eight V100 GPUs for917

100,000 steps with an Adam optimizer and batch918

size of 32 per GPU in both Stage I and Stage II.919

This pre-training process takes about 1 day. We920

adopt an initial learning rate 1 × 10−5 with the921

warm-up ratio 0.1, followed by a linear learning922

rate decay. For fine-tuning, the learning rate of923

Adam is set to 5× 10−6 with 2000 training steps924

for the 1% label ratio and 10K training steps for925

the 5% label ratio. In the Stage I, we use the initial926

cluster size K = 2048 and set TK = 10000 and927

Tupdate = 5000. In Stage II, top 3 ranked labels 928

from predictions of the encoder and TF-IDF are se- 929

lected to constitute the pseudo set for self-training. 930

For hyper-parameters of all baselines, we follow 931

their default setups. All experiments are conducted 932

on the AWS p3dn.24xlarge instance, consisting of 933

96 Intenl Xeon CPUs with 768 GB of RAM and 8 934

Nvidia V100 GPUs with 32 GB of memory each. It 935

takes about half a day to complete the pre-training 936

procedure of MACLR. 937

We present error bars of four independent runs to 938

validate our MACLR results are statistically signifi- 939

cant under EZ-XMC in Table 6. It can be observed 940

that the variance is small, showing that our method 941

can produce similar results with different random 942

seeds, and MACLR is statically better than other 943

baselines compared with results in Table 1. There- 944

fore, we run each method for four times and report 945

the best performance in the main paper. 946

C Additional Experiments on FS-XMC 947

Table 7: Results of FS-XMC where the training subset
covers 1% positive pairs from the whole set.

Method
Precision Recall

@1 @5 @10 @1 @3 @5 @10 @100

LF-Amazon-131K

XR-Linear 5.37 2.66 1.68 2.81 3.92 4.09 4.26 4.99
Astec 3.29 2.04 1.41 1.93 3.33 3.77 4.06 5.06
SiameseXML 7.14 3.74 2.41 4.22 6.17 6.55 6.95 8.09
ZestXML 12.91 11.31 8.91 7.20 17.69 22.51 28.27 42.40
SentBERT 15.08 11.81 9.06 8.38 18.42 22.89 28.62 46.38
MPNet 15.26 12.30 9.42 8.56 19.35 23.98 29.91 48.06
MACLR (ours) 18.92 16.17 12.62 10.98 25.64 32.16 39.46 58.24

LF-WikiSeeAlso-320K

XR-Linear 6.97 3.43 2.31 3.74 5.02 5.44 5.84 6.87
Astec 5.58 3.35 2.48 3.22 5.43 6.51 7.95 11.76
SiameseXML 9.87 5.22 3.59 5.84 8.57 9.53 10.60 13.04
ZestXML 10.40 8.18 6.49 5.57 11.65 14.52 18.81 33.20
SentBERT 18.85 14.23 11.22 11.16 21.77 26.94 33.78 55.88
MPNet 18.04 13.27 10.44 10.51 19.99 24.62 30.86 52.52
MACLR (ours) 20.49 15.50 12.24 12.34 23.88 29.43 36.76 59.82

In this section, we present additional exper- 948

imental results for the setting of FS-XMC on 949

LF-Amazon-131K and LF-WikiSeeAlso-320K. In- 950

stead of sampling a few-shot subset by the label 951

coverage ratio, we turn to sampling based on the 952

pair ratio. Specifically, suppose a training set 953

Dtrain = {(xi, yi)} has |Dtrain| positive pairs. Each 954

time we randomly sample a small ratio of δ (1% 955

12



Table 8: Results of FS-XMC where the training subset
covers 5% positive pairs from the whole set.

Method
Precision Recall

@1 @5 @10 @1 @3 @5 @10 @100

LF-Amazon-131K

XR-Linear 11.20 5.82 3.80 5.98 8.56 9.18 9.80 12.79
Astec 10.71 6.50 4.52 6.12 10.23 11.67 13.35 18.15
SiameseXML 11.88 8.72 5.93 8.50 13.68 15.23 16.80 20.28
ZestXML 12.86 11.28 8.91 7.10 17.62 22.43 28.42 49.41
SentBERT 16.94 13.59 10.52 9.55 21.23 26.55 33.14 51.81
MPNet 17.48 13.58 10.61 9.95 21.38 26.83 33.60 52.31
MACLR (ours) 19.75 16.45 12.87 11.18 25.99 32.70 40.38 59.82

LF-WikiSeeAlso-320K

XR-Linear 13.13 6.88 4.70 7.00 9.64 10.54 11.49 14.20
Astec 15.61 8.73 6.23 8.77 13.17 15.02 17.36 24.30
SiameseXML 16.51 9.68 6.96 9.40 14.78 16.97 19.48 25.26
ZestXML 17.68 8.51 6.85 10.63 12.01 15.20 20.08 43.10
SentBERT 20.12 15.01 11.87 12.05 23.01 28.40 35.52 58.41
MPNet 19.88 14.90 11.76 11.85 22.75 27.96 35.03 57.26
MACLR (ours) 21.80 16.61 13.12 13.27 25.74 31.59 39.25 62.13

or 5% in our paper) pairs from the total set to con-956

stitute the few-shot subset. Then each subset has957

δ|Dtrain| pairs for fine-tuning. Detailed results of958

δ = 1% and δ = 5% are presented in Table 7 and959

8 respectively. MACLR is still the best-performing960

method and outperforms all other baselines signifi-961

cantly in precision and recall.962
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