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ABSTRACT

Machine learning is increasingly used to select which individuals receive limited-
resource interventions in domains such as human services, education, develop-
ment, and more. However, it is often not apparent what the right quantity is for
models to predict. In particular, policymakers rarely have access to data from a
randomized controlled trial (RCT) that would enable accurate estimates of treat-
ment effects – which individuals would benefit more from the intervention. Ob-
servational data is more likely to be available, creating a substantial risk of bias in
treatment effect estimates. Practitioners instead commonly use a technique termed
“risk-based targeting” where the model is just used to predict each individual’s
status quo outcome (an easier, non-causal task). Those with higher predicted risk
are offered treatment. There is currently almost no empirical evidence to inform
which choices lead to the most effect machine learning-informed targeting strate-
gies in social domains. In this work, we use data from 5 real-world RCTs in a
variety of domains to empirically assess such choices. We find that risk-based
targeting is typically inferior to targeting based on even biased estimates of treat-
ment effects. Moreover, these results hold even when the policymaker has strong
normative preferences for assisting higher-risk individuals. Our results imply that
practitioners may benefit from incorporating even weak evidence about heteroge-
neous causal effects to inform targeting in a wider array of settings than current
practice.

1 INTRODUCTION

Policymakers often face the difficulty of allocating a resource-limited intervention with the goal of
targeting the intervention towards those who will benefit most from it. Indeed, the causal inference
literature documents that any given treatment may not have the same effect on every individual that
receives it (Wager & Athey, 2018; Künzel et al., 2019; Varadhan & Seeger, 2013). When there are
observable features that correlated with greater benefit from the treatment, such variation can be
used for targeting. Heterogeneity of treatment effect (HTE) refers to this nonrandom, explainable
variability in the direction and magnitude of treatment effects for individuals within a population.
Given this variability, policymakers often face the problem of selecting who to treat when having to
assign a particular treatment to a group of people under a fixed budget. Machine learning methods
seem to offer the promise of discovering richer forms of heterogeneity, allowing more effective
targeting of interventions in practice.

The main challenge is that heterogeneous treatment effects are difficult to learn: doing so requires
a potentially large amount of data that is unconfounded, i.e., where treatment is assigned in a man-
ner (conditionally) independent of each individual’s outcomes. In an idealized setting, one could
conduct a randomized controlled trial (RCT) and experimentally find the subpopulations that ben-
efit most from a treatment. However, this is not always possible for two reasons: 1) Conducting
an RCT takes time (potentially years) and resources that the policymaker may not be willing to
spend. 2) In some domains, there are ethical objections to experimentation. For example, while
the RCT is being conducted, people in genuine need of the treatment could be assigned to the con-
trol group and suffer negative outcomes. Policymakers may prefer to prioritize access to treatment
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via an already-available proxy metric that is believed to align with need if experimenting to gather
additional evidence would be seen as unethical.

One particularly common proxy is to target according to the baseline risk each individual faces, i.e.,
their expected outcome in the absence of treatment (as opposed to the treatment effect, which is
the difference in outcomes induced by treatment). This strategy has been referred to as risk-based
targeting (Wilder & Welle, 2024). Individuals with poor predicted baseline outcomes may be seen
as needing assistance the most. Policymakers may also believe that these individuals also stand the
most to benefit since their status-quo prognosis is the worst. Importantly, baseline risks can often
be learned using existing administrative data (from before a treatment was introduced) instead of re-
quiring a new experiment, making this strategy easily implementable in many practical settings. For
all of these reasons, risk-based targeting has seen widespread use by policymakers in a wide range of
domains, including targeting humanitarian assistance (Aiken et al., 2021), allocating homelessness
services via vulnerability scores (Shinn & Richard, 2022), and the use of “early warning systems”
in education (Perdomo et al., 2023).

Despite this widespread usage, there is only a limited amount of work which empirically assesses
the effectiveness of risk-based targeting: do individuals with the greatest baseline risk actually tend
to benefit the most from intervention? The few existing studies speak only to a single, specific
application domain each. (Athey et al., 2024) study an RCT where students in a university program
were provided a nudge (treatment) as a reminder to renew their financial aid application, concluding
that students with intermediate non-renewal risk saw the largest treatment effect. Students with
greatest risk of non-renewal, who would be targeted under a risk-based strategy, saw less benefit.
(Ascarza, 2018) study a marketing domain and use two field experiments to show that targeting
high-risk customers, or customers likely to churn as predicted by a machine learning model, can
be ineffective, encouraging practitioners to use RCTs to better inform their decision. However, as
discussed above, running a RCT may be infeasible in many settings. The alternative more likely to
be available to practitioners is to simply estimate treatment effects using observational data which
likely suffers from confounding, potentially leading to biased estimates of treatment effects.

How should practitioners navigate this tradeoff between a more easily-learnable label that may not
always correlate with benefit from an intervention (baseline risk) and a difficult-to-learn quantity
(heterogeneous treatment effects) that captures the impact of the intervention? This corresponds to
the choice of the appropriate target for prediction, as opposed to the specific model used to make the
prediction. The choice of outcome variable has been observed to exert a disproportionate influence
on the impacts of machine learning systems in many settings (Obermeyer et al., 2019; Coster, 2013;
Gerdon et al., 2022). In the setting of targeting interventions for causal impact, practitioners have
little empirically-grounded guidance. Our goal in this work is to inform the selection of an objective
function for machine-learning based targeting of scarce interventions. We make three contributions
towards this goal:

First, we assess the efficacy of risk-based targeting on a wider variety of real RCT datasets encom-
passing settings in economics, healthcare and education in contrast to prior studies that generally
focus on one dataset. We find a generally noisy and variable relationship between baseline risk
and treatment effects: high-risk individuals seem to benefit more on average in most domains, but
with substantial variance in treatment effects which is not explained by baseline risk. Targeting in-
stead based on estimated treatment effects produces better results if the policymaker adopts a typical
utilitarian goal of maximizing the expected improvement in outcomes from the intervention.

Second, we compare risk-based targeting to targeting policies based on biased estimates of treat-
ment effect obtained from confounded data. Such biased estimates are likely when conducting a
full-fledged RCT is infeasible and policymakers have to rely on available observational data alone.
Accordingly, potentially-biased causal estimates represent the likely alternative to risk-based target-
ing in many domains of practical interest. To our knowledge, these two strategies have not been
explicitly compared. We find that across even relatively severe levels of confounding, a utilitarian
policymaker often prefers targeting according to biased estimates of the treatment effect rather than
baseline risk.

Finally, we analyze the setting where a policymaker has inequality-averse preferences: oftentimes,
policymakers may prefer interventions which benefit those who are worse-off to begin with even
if they produce less aggregate impact. Such normative goals are one possible justification for risk-
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based targeting, even if risk-based targeting is less attractive in standard utilitarian terms. We com-
pare the two targeting strategies under popular classes of social welfare functions which capture
inequality-averse preferences. We find that treatment effect based targeting is typically favorable
to risk-based targeting, even in scenarios where policy makers are inequality-averse and the only
available data is confounded to some degree.

2 RELATED WORK

Measuring heterogeneity in treatment effect and choosing which subpopulations to assign a treat-
ment to has long been an active avenue of research in causal inference literature with a variety of
methods proposed to solve this problem. (Green & Kern, 2012; Hill, 2011; Hill & Su, 2013; Foster
et al., 2011; Wager & Athey, 2018) use forest-based algorithms to identify groups that show hetero-
geneity in treatment effect with other identified groups. (Tian et al., 2014) proposed to measure the
interaction between treatment and covariates by numerically binarizing the treatment and including
the products of this variable with each covariate in a regression model. (Künzel et al., 2019) uses
meta-learners that decompose estimating the CATE into several sub-regression problems that can be
solved with any regression or supervised learning method. The problem of choosing who to treat is
closely related to identifying the heterogeneity in treatment effects. This often involves balancing
policies based solely on estimates of conditional average treatment effect (CATE) with additional
prioritization rules set by the policymaker. (Yadlowsky et al., 2021) proposes rank-weighted average
treatment effect metrics for testing the quality of treatment prioritization rules, providing an example
involving optimal targeting of aspirin to stroke patients.

3 PRELIMINARIES

Consider a setting where there is a population of individuals who are candidates for a treatment or
intervention. Each individual has a feature vector X ∈ Rd. Here we are concerned with binary treat-
ments. Following Neyman ((Splawa-Neyman et al., 1990)) and Ruben’s ((Rubin, 1974)) potential
outcomes framework, we use Y (1) to denote the outcome that an individual would experience under
treatment and Y (0) to denote the outcome they would experience if not treated. Their individual
treatment effect, quantifying their benefit from receiving treatment, is Y (1) − Y (0). We assume that
(X,Y (0), Y (1)) are drawn i.i.d. for each individual from some joint distribution. In order to identify
individuals who are likely to benefit, a common strategy is to use individuals’ observed covariates
to predict the expected treatment effect. The conditional average treatment effect (CATE) at X = x
is defined as:

τ(x) = E
[
Y (1) − Y (0)

∣∣∣X = x
]
. (1)

Estimating the CATE in order to target based on treatment effects is a difficult statistical problem.
Suppose we have access to data corresponding to n people, labeled i = 1, ..., n, consisting of fea-
tures Xi, a treatment assignment Wi ∈ {0, 1}, and the observed outcome Yi = Y

(Wi)
i . Importantly,

for each individual, we can observe only the outcome corresponding to the treatment they were
actually assigned. Accordingly, identifying treatment effects typically requires a a no-unobserved-
confounders assumption (Rosenbaum & Rubin, 1983):

{Y (0), Y (1)} ⊥⊥ W | X. (2)

This assumption is most credible in the context of a randomized controlled trial (RCT). In an RCT,
the assignment of treatment, represented by Wi, is assigned independently of the potential outcomes
Yi (potentially after stratification on covariates Xi). When data is purely observational, practitioners
typically try to select a sufficiently rich set of covariates X such that all potential confounders
between outcomes and treatment assignment are measured. However, ensuring that all confounders
are completely captured is notoriously difficult in practice, creating the likelihood that some bias in
the estimated CATE remains (LaLonde, 1986; Pearl, 2009; Skelly et al., 2012; Milli et al., 2022).

As an alternative to targeting on treatment effects, policymakers often decide to treat people who are
more vulnerable or worse-off at present, without attempting to quantify the benefit these individuals
receive from treatment. This is quantified via a ’baseline risk’; we refer to the resulting allocation
strategy as ’risk-based targeting’(Wilder & Welle, 2024). Baseline risk may sometimes be directly
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measured quantity (one of the covariates in X , for example baseline test scores in an educational
context). In many settings though, it is estimated using a predictive model that uses the covariates as
input. Let b be a function that maps a set of covariates to a baseline risk measurement such that b(X)
represents the baseline risk and b(Xi) denotes the baseline risk associated with i. Then this method
involves selecting individuals with the highest values of b for treatment, implying that these individ-
uals have the highest ’risk’ associated with them, which needs immediate resolution. It is important
to note that this strategy requires only data on baseline outcomes prior to program implementation,
with no information about the treatment’s effect being incorporated in the policymaker’s decision.

The example from (Athey et al., 2024) makes the distinction between these two methods clearer. In
an experiment where the objective was to ”nudge” or remind students in a college program to renew
their financial aid applications, targeting based on baseline risk assumes that students predicted to
be least likely to renew their aid applications (as determined by a machine learning model) should
be prioritized. Meanwhile, the results of the RCT conducted during this experiment show that high
values of treatment effect correspond to students with intermediate likelihoods of renewing their aid
applications prior to treatment, demonstrating in a disparity in the two methods of targeting.

4 METHODS

4.1 OVERVIEW

Our goal is to compare risk-based targeting to treatment effect-based targeting on possibly con-
founded datasets, with varying degrees of confounding and under different social welfare functions
for the policymakers making the treatment assignment policy. To enable this comparison, we use a
range of datasets from real-world randomized controlled trials (RCTs). Using RCTs enables us to
credibly estimate heterogeneous treatment effects since the no-unobserved-confounders assumption
is guaranteed to be satisfied. Then, we simulate each of the targeting policies of interest and com-
pare their effectiveness with respect to the randomization-enabled treatment effect estimates, under
varying utility functions for the policymaker. We now detail the methodology used in each step of
this process, starting with the datasets used.

4.2 DATASETS

We conduct experiments on a variety of RCTs across different domains as detailed below:

• Targeting the Ultra Poor (TUP) in India ((Banerjee et al., 2021)): This RCT was conducted
to study the long-term effects of providing large one-time capital grants to low income-
families and observing how family income and overall consumption changed over a period
of 7 years. We consider a family’s total expenditure as the outcome, which is positively
affected by treatment.

• NSW (National Supported Work demonstration) Dataset ((Dehejia & Wahba, 1999; 2002;
LaLonde, 1986): This study estimated the impact of the National Supported Work Demon-
stration, a job training program, on beneficiaries’ income in 1978. We consider an individ-
ual’s income in 1978 as the outcome, which is positively affected by treatment.

• Postoperative Pain Dataset: Patients undergoing operations like tracheal intubations often
experience throat pain following treatment (Mchardy & Chung, 1999). This RCT was con-
ducted to test the efficacy of a licorice solution at reducing postoperative sore throat. The
outcome we focus on is a patient’s throat pain 4 hours after surgery. Here, the effect of
the treatment is to reduce the amount of throat pain, hence the treatment effect is nega-
tive. In order to maintain consistency with other plots, we present results with the sign for
treatment effect reversed.

• Acupuncture Dataset: This RCT aimed to determine the effect of acupuncture therapy on
headache severity in patients with chronic headaches. Our outcome variable is headache
severity 1 year post-randomization. Here again, the effect of the treatment is to reduce
the severity of headaches, hence the treatment effect is negative. In order to maintain
consistency with other plots, we present results with the sign for treatment effect reversed.

• Tennessee’s Student Teacher Achievement Ratio (STAR) project (Achilles et al., 2008):
The Tennessee State Department of Education conducted a comprehensive four-year study
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called the Student/Teacher Achievement Ratio (STAR) to examine the effects of class size
on student performance. The study design included three different classroom configura-
tions: 1) Small classes with 13-17 students per teacher, 2) Regular classes with 22-25
students per teacher, 3) Regular classes with 22-25 students plus a full-time teacher’s aide.
In this paper, we only focus on the first two types of classes mentioned above, so as to main-
tain consistency with treatment value being binary in other RCTs. We focus on students
in kindergarten and a cumulative measure of their scores on various tests as the outcome
under consideration.

For each of these datasets, we estimate E[Y (0)|X] using a machine learning model applied to the
RCT’s control group and set b(X) = E[Y (0)|X] or b(X) = −E[Y (0)|X] as appropriate (i.e.,
depending on whether larger outcome values are better or worse). For instance, children with lower
baseline test scores in the STAR dataset and patients with high baseline headache severity in the
Acupuncture Dataset are considered to be high risk. Additional details about preprocessing for all
datasets are included in A.

4.3 ESTIMATING HETEROGENEOUS TREATMENT EFFECTS

We estimate heterogeneous treatment effects on each dataset using a doubly-robust estimator
(Kennedy, 2023a). The DR estimator splits the data into separate folds. For each fold, we esti-
mate models for both the expected outcome and the treatment variable (estimating the latter even
when the propensity scores are known can increase statistical efficiency Hirano et al. (2000)). Let
µ̂(X,A) be the estimated mean outcome for an individual with covariates X and treatment assign-
ment A, and π̂(X) be the estimated propensity score. For each individual in the held-out data for
the fold, we estimate their pseudo-outcomes, defined as

χi(A) = µ̂(Xi, A) +
1[Wi = A](Yi − µ̂(Xi, A))

Aπ̂(Xi) + (1−A)(1− π̂(Xi))
.

If at least one of µ̂ or π̂ is correctly specified, χi(A) has expectation (over the random treatment
assignment) equal to Y

(A)
i , which allows us to use it as a proxy for the unobserved outcomes in

evaluating counterfactual evaluation policies.

4.4 EXPLORING TREATMENT EFFECT HETEROGENEITY WITH RESPECT TO BASELINE RISK

Our first analysis tests one potential rationale for risk-based targeting strategies: the hypothesis that
individuals with greater baseline risk will also tend to have greater treatment effects. We frame this
as estimating E[Y (1) − Y (0)|b(X)], a conditional average treatment effect just with respect to value
of the risk score b.

We follow the doubly-robust approach to estimating CATEs, where the pseudo-outcome difference
χi(1) − χi(0) is regressed on the covariates of interest (Kennedy, 2023a). Because our covariate
of interest, b, is one-dimensional, we use a kernel regression method to estimate the CATE as a
generic smooth function. Specifically, we employ a Gaussian kernel smoothing method. We sort
every individual/household by their baseline risk and center an adaptive Gaussian kernel about each
data point. The bandwidth of each kernel is determined adaptively based on the local density of
the data, defined as half the range of baseline risk values within a fixed window of 200 data points.
This ensures that we are able to estimate greater variation in data-rich regions of the space, while
imposing greater smoothness at the extremes where less data is present.

Given the kernel function K(u) = exp(− 1
2u

2), the CATE estimate at b(Xi) is given by:

τ̂(b(Xi)) =

∑n
j=1 K(

b(Xj)−b(Xi)
σi

)τ̂j∑n
j=1 K(

b(Xj)−b(Xi)
σi

)
(3)

where τ̂j is the estimated difference in pseudo outcomes, for unit j, χj(1) − χj(0), as determined
by the doubly robust estimator, and σi is the adaptive bandwidth calculated as:

σi =
1

2
(b(Xi+100)− b(Xi−99)) (4)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

for a window of 200 data points centered at i. The confidence intervals are computed using a
weighted variance estimate:

CI = τ̂(b(Xi))± 1.96

√√√√∑n
j=1 K(

b(Xj)−b(Xi)
σi

)(τ̂j − τ̂(b(Xi)))2

(
∑n

j=1 K(
b(Xj)−b(Xi)

σi
))2

(5)

This approach allows us to capture the heterogeneity in treatment effects across different levels of
baseline risk while accounting for the varying density of data points.

4.5 INTRODUCING CONFOUNDING

Our next analysis aims to simulate conditions where we do not have access to perfectly conducted
randomized controlled trials for our problem, in order to compare risk-based targeting to a plausi-
ble alternative in real world settings: targeting according to observational, and potentially biased,
estimates of the CATE.

We introduce varying levels of confounding to the RCTs that we study. We do this by simulat-
ing adverse selection into treatment, where units are more likely to be observed if the estimated
individual-level treatment effects deviate from the mean. Specifically, we generate the biased “ob-
servational” dataset by removing data in a systematic manner. This process, inspired by (Kallus
& Zhou, 2021), is controlled by a parameter k giving the fraction of data removed, with higher k
corresponding to more biased estimates.

From the treated units, we remove the examples that lie in the top k% percent when ordered in
descending order of (χi(1) − χi(0)) (assuming treatment effect is positive) while for the untreated
units, we remove the examples that lie in the bottom k% of examples when ordered in descending
order of (χi(1) − χi(0)). In simpler terms, for treated units, we remove examples for which the
treatment ’went well’(most positive), while for untreated units, we remove examples for which the
lack of treatment did not go well(least positive). This can be seen as a strengthening of a typical
mechanism for confounding: a typical concern is that individuals are selected for treatment based
on unobservable characteristics that are correlated with their potential outcomes, where we simulate
selection into treatment based on the actual potential outcomes.

Our goal is to compare policies learned using this biased data to risk-based targeting. This evaluation
is enabled by access to the original, randomized data. Consider a hypothetical policy that assigns
treatments A(X) ∈ {0, 1} as a function of individuals’ features X . The mean outcome under policy
A, E[Y (A(X))], can be decomposed as

E[Y (A(X))] = E[Y (0)] + Pr(A(X) = 1)E[Y (1) − Y (0)|A(X) = 1].

The term E[Y (1) − Y (0)|A(X) = 1] represents the treatment effect on the treated population and
captures how much the policy improves over no treatment. For policies with the same budget
(equal Pr(A(X) = 1)), only this term varies and so we assess allocation policies by their ex-
pected treatment-on-the-treated. Following standard doubly-robust estimators for (group) average
treatment effects Kennedy (2023b), we empirically estimate this quantity as

1∑n
j=1 A(Xj)

n∑
j=1

A(Xj)(χj(1)− χj(0)). (6)

4.6 FAMILIES OF WELFARE FUNCTIONS

In order to simulate policymakers with varying preferences for who to treat, we compare risk-based
targeting to treatment-effect based targeting on some general utility/social welfare functions that fall
under the category of ’weighted power mean functions’ as described in (Pardeshi et al., 2024). The
weighted power mean M(u;w, p) for u ∈ Rd

+, w ∈ ∆d−1, and p ∈ R ∪ {±∞} is defined as:

M(u;w, p) =


(∑d

i=1 wiu
p
i

)1/p

p ̸= 0∏d
i=1 u

wi
i p = 0

6
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We choose this family of welfare functions it contains all function satisfying a standard set of ax-
iomatic properties Pardeshi et al. (2024). The parameter p determines the specific type of welfare
function:

• Utilitarian welfare (p = 1): M(u;w, p = 1) =
∑d

i=1 wiui

• Nash welfare (p = 0): M(u;w, p = 0) =
∏d

i=1 u
wi
i

We consider utilitarian welfare with two sets of weights. First, the uniform weights wi = 1∀i ∈ [n].

Second, wi = n·eαb′(Xi)∑n
j=1 eαb′(Xj)

where α is a hyperparameter and b′(Xi) is represents the percentile

score of the baseline risk for the ith example, with the example with highest baseline risk having
score 1 and the example with lowest baseline risk having score 0. This assigns greater weight to
individuals with high values of baseline risk for high values of α, thereby simulating a scenario
where a policymaker might value treating treating these ”high risk” individuals for other reasons. α
can be interpreted as 2 log

(
w75

w25

)
where w75 is the weight given to the 75th percentile example by

baseline risk and w25 is the weight given to the 25th percentile example by baseline risk.

The Nash social welfare function has commonly been used to achieve a balance between maximizing
total welfare(utilitarian) and ensuring equitable distribution(egalitarian) Caragiannis et al. (2019);
CHARKHGARD et al. (2022). Egalitarian welfare can sometimes leads to inefficiencies while
utilitarian welfare can lead to unjust outcomes: Nash welfare often strikes a useful compromise
between these two ends. We consider unweighted Nash welfare (wi = 1∀i). In order to avoid the
complications of utility when using an unweighted Nash welfare function, we scale up the estimated
utilities for each example to a minimum value of 1.

Note that the Nash welfare can be equivalently formulated in log space Caragiannis et al. (2019) as

1

n

n∑
i=1

log ui.

When each individual’s utility under an allocation policy corresponds to their realized outcome
Y

(A(Xi))
i (e.g., their income after the interventional period), we compare policies exactly as out-

lined in Equation 6, but with Y (A(X)) replaced by log Y (A(X)), estimated by replicating the same
procedure after taking logs of all outcome variables.

5 RESULTS

Figure 1 shows how treatment effect varies as a function of baseline risk for each of the 5 datasets
we study, with 95% confidence intervals shaded around the estimated treatment effects. These
intervals are pointwise Wald-type confidence intervals (Kennedy et al., 2019) and provide a measure
of uncertainty for our smoothed estimates. The estimated relationship between baseline risk and
treatment effect is variable across domains. In most domains, the point estimate shows a general
upward trend, indicating that individuals at greater risk benefit more (on average) from treatment.
However, in the NSW domain, the point estimate is essentially flat. In addition, the confidence
intervals are wide for all domains and there is very little statistically significant significant evidence
in favor of high-risk individuals benefiting more. Wide confidence intervals reflect that there is
significant variance in the pseudo-outcomes estimated for different individuals at the same level
of baseline risk. That is, there is a great deal of variance in our estimated treatment effects that
is not explained by baseline risk. From these results, we form two hypotheses. First, that risk-
based targeting should, in most domains, perform better than a random allocation, since the point
estimates generally show larger average effects at higher baseline risk. Second, that there is room
to improve on risk-based targeting via strategies that leverage some of the substantial variance in
treatment effects that is unexplained by baseline risk. The next section provides more statistically
precise tests of these hypotheses by comparing the welfare associated with each targeting policy (a
single number, which can be quantified more precisely than the entire curve shown in Figure 1).

Figure 2 shows the comparison between risk-based targeting and treatment effect based targeting
for the 5 datasets we study, with varying degrees of confounding and under different social welfare

7
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Figure 1: Observing Treatment Effect Heterogeneity across Different Settings by plotting Treatment
Effect against Baseline Risk for each of our 5 datasets. We observe a unique trend for each dataset,
indicating a lack of a consistent well-defined relation between the two quantities

functions used to represent policymaker preferences. For reference, we also show the performance
of a random targeting strategy which allocates the same budget but targets uniformly random in-
dividuals. Both targeting methods seem to perform better than random targeting for almost all
combinations of dataset/welfare functions we consider. The improved performance of risk-based
targeting over random reflects the generally increasing relationship that Figure 1 shows between
baseline risk and treatment effects. However, when treatment effects can be accurately estimated
(k = 0, no confounding), targeting based on treatment effects always produces significantly higher
utilitarian welfare (often producing a treatment-on-the-treated effect of three times or more greater
than risk-based targeting). This indicates that when a policymaker seeks only to maximize aggregate
benefit and can credibly estimate treatment effects, the gains from causal targeting are substantial.

As the level of confounding bias in treatment effect targeting increases (increased k), its effec-
tiveness decreases. However, when the policymaker has utilitarian preferences, targeting based on
biased treatment effect estimates still performs at least as well as risk-based targeting (and typi-
cally better) across all datasets, even for relatively severe levels of confounding. This indicates that
using even relatively biased observational data to learn treatment rules is likely superior when the
policymaker’s goal is just to maximize aggregate gain.

The second column of Figure 2 shows an alternative set of preferences, where the policymaker has a
weighted utilitarian welfare function (for these plots, α is 2 log 2, the value at which the ratio of the
75th percentile weight to the 25th percentile weight is 2) which places greater weight on individuals
with higher baseline risk, attaching a higher importance to the welfare of more vulnerable individ-
uals. This welfare function decreases the gap between treatment effect and risk based targeting as
individuals with higher risk now have more weight associated with them. However, targeting on
(biased) treatment effects is still preferable to risk-based targeting across all datasets.
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(a) Utilitarian Welfare on the Ul-
tra Poor RCT

(b) Weighted Utilitarian Welfare
on the Ultra Poor RCT

(c) Nash Welfare on the Ultra
Poor RCT

(d) Utilitarian Welfare on the
NSW RCT

(e) Weighted Utilitarian Welfare
on the NSW RCT

(f) Nash Welfare on the NSW
RCT

(g) Utilitarian Welfare on the
Postoperative Pain RCT

(h) Weighted Utilitarian Welfare
on the Postoperative Pain RCT

(i) Nash Welfare on the PostOp-
erative Pain RCT

(j) Utilitarian Welfare on the
Acupuncture RCT

(k) Weighted Utilitarian Welfare
on the Acupuncture RCT

(l) Nash Welfare on the Acupunc-
ture RCT

(m) Utilitarian Welfare on the
STAR RCT

(n) Weighted Utilitarian Welfare
on the STAR RCT

(o) Nash Welfare on the STAR
RCT

Figure 2: Comparison of risk-based targeting to biased treatment effect-based targeting by plotting
the benefit offered by each policy against the amount of data systematically removed from the RCT
to introduce confounding

9
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This motivates us to ask: how much greater must the policymaker weight high-risk individuals
in order to prefer risk-based targeting? In Table 1 we give the minimum value of α at which risk-
based targeting finally outperformed treatment effect based-targeting at each level of systematic data
removal. We limit α such that the ratio of the 75th percentile weight to the 25th percentile weight
when sorted in descending order is less than 100; otherwise, only a few individuals have non-zero
weights and estimating welfare gains becomes impossible. In general, we note that the required α
values tend to be lower when we increase k, which follows directly from the fact that the treatment
effect estimates become more biased at higher k. We note that most values in the table are at least
α = 4 at which the policymaker places over 7 times more weight on the welfare of an individual
at the 75th percentile of baseline risk than an individual at the 25th percentile. High values of α
act as an indicator that a policymaker prefers to target ”higher risk” individuals more than others.
Interestingly, for the STAR dataset, there is no α value (up to our upper bound) at which risk based
targeting outperforms targeting based on treatment effects. We conclude that relatively extreme
welfare weights are needed to rationalize risk-based targeting.

Table 1: Values of α for different k at which risk-based targeting outperforms treatment effect based
targeting. ’na’ indicates no such α was found

Dataset 5% 10% 15% 20% 25% 30% 35% 40%
Ultra Poor na 8.5 5.5 4.5 3.5 2 1 0
NSW na 6.5 8.25 4.5 4.25 3.5 1.5 1
Postoperative Pain na 8 na 6.5 na 5.5 6.5 4
Acupuncture na 7.5 na 6.75 6 3.75 4.5 5.75
STAR na na na na na na na na

Under the Nash social welfare function (third column of Figure 2), we observe some differences
across our chosen settings but the general trend remains the same: as we increase confounding
(increase the percentage of data we systematically remove), the benefit we accrue by following
a treatment assignment policy based on biased treatment effect values decreases. At high levels
of confounding, risk-based targeting accrues higher utility for a policymakers with a Nash social
welfare function in the Ultra Poor setting in 2. However, across all other datasets, the policymaker
prefers to target based on treatment effects even at high levels of confounding.

Collectively, these results indicate that policymakers are almost always better off targeting interven-
tions based on treatment effect estimates rather than baseline risk values from a machine learning
model, unless they are extremely inequality-averse.

6 CONCLUSION

This paper presents a systematic comparison between two of the most popular treatment assignment
policies in use by policymakers today: risk-based targeting and treatment effect based targeting.
We observe a tendency for risk-based targeting to produce higher welfare than a uniformly random
allocation, confirming some of the intuition behind its widespread use by practitioners. However,
targeting based on treatment effects results in substantially larger welfare gains. We then explore two
potential considerations that may motivate risk-based targeting in practice: the threat of confounding
in treatment effect estimates, and egalitarian preferences for assisting high-risk individuals. We find
that either can narrow the gap between the two strategies, but relatively high levels of either factor
(or typically both) are needed to fully rationalize risk-based targeting. Accordingly, the barriers to
targeting based on treatment effects in practice may be overestimated at present. On some questions,
our results are subject to greater uncertainty. For one, the RCTs we use are too small to quantify
the entire curve giving treatment effects as a function of baseline risk with a high level of statistical
precision. Future work could investigate settings with larger sample sizes, or strategies for pooling
data across studies. Importantly though, we are able to give more precise conclusions (typically
statistically significant) for our main results comparing the utility of risk based vs treatment effect
targeting. Second, our investigation of egalitarian preferences assumes an essentially consequen-
tialist perspective, where the policymaker’s goal is to improve individuals’ welfare as defined by
their outcome. If policymakers have non-consequentialist preferences, for example viewing the as-
sistance of those in need as an inherent good regardless of its effects, targeting directly on a measure
of vulnerability may be more appropriate.

10
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Reproducibility Statement: A rough version of the code is provided in the supplementary mate-
rial, which includes data preprocessing and experimentation for each of the datasets which we intend
to finalize and clean in the camera ready version. We also detail our procedures in the Appendix A
(dataset details) and in Section 4 (step by step experimental procedure).
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A APPENDIX

A.1 DATASETS

• Targeting the Ultra Poor (TUP) in India ((Banerjee et al., 2021)): This RCT was conducted
to study the long-term effects of providing large one-time capital grants to low income-
families and observing how family income and overall consumption changed over a period
of 7 years. We consider a family’s total expenditure as the outcome, which is positively
affected by treatment. We filter the dataset before use by removing null values and per-
forming feature selection to limit the number of covariates. The dataset consists of 796 ex-
amples post filtering. We quantify baseline risk b(X) as an estimate of baseline expenditure
E[Y (0)|X] from a machine learning model, with low values of E[Y (0)|X] corresponding
to high baseline risk and vice versa. This follows the hypothesis that households with low
expenditure at baseline will benefit most from the treatment.
While constructing a doubly robust estimator to estimate pseudo outcomes for this dataset,
we found the estimated propensity scores to be very high/low for certain examples, which
would consequently scale pseudo outcome estimates to unusually large values. Therefore,
we manually set propensity scores uniformly according to the treated:untreated ratio in the
RCT.
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• NSW (National Supported Work demonstration) Dataset ((Dehejia & Wahba, 1999; 2002;
LaLonde, 1986): This is a popular causal inference dataset that was used to estimate the
impact of the National Supported Work Demonstration, a job training program, on ben-
eficiaries’ income in 1978. The covariates include demographic variables like age, race,
marital status and academic background, along with the benficiary’s income in 1975 prior
to the experiment as a baseline. The dataset consists of 722 examples (297 treated and
425 control). Here too, we use an estimate of an individuals baseline income as a measure
of risk, following the hypothesis that low income individuals will benefit more from the
treatment.

• Tennessee’s Student Teacher Achievement Ratio (STAR) project ((Achilles et al., 2008)):
The Tennessee State Department of Education conducted a comprehensive four-year study
called the Student/Teacher Achievement Ratio (STAR) to examine the effects of class size
on student performance. This research, backed by the Tennessee General Assembly, in-
volved 11601 students across 79 schools. The study design included three different class-
room configurations:

– Small classes with 13-17 students per teacher
– Regular classes with 22-25 students per teacher
– Regular classes with 22-25 students plus a full-time teacher’s aide

To ensure unbiased results, both students and teachers were randomly assigned to these dif-
ferent classroom types. The experiment began when the participants entered kindergarten
and continued through their third-grade year, allowing for a longitudinal analysis of the
impact of class size on educational outcomes. In this paper, we only focus on the first two
types of classes mentioned above, so as to stay consistent with treatment value being binary
in other RCTs. This large-scale research project aimed to provide empirical evidence on
the relationship between class size and student achievement. Again, we filter the dataset
before use by removing null values and performing feature selection to limit the number of
covariates. We focus on students in kindergarten and a cumulative measure of their scores
on various tests as the outcome under consideration. The filtered dataset consists of 3712
students examples. Since we do not have the students’ test scores at baseline, we train a
random forest model on rows corresponding to students who did not receive the treatment
with their test scores at endline being the outcome variable. The prediction offered by this
model for every student is then used as a proxy for their baseline test scores and the nega-
tive of this value is used as baseline risk. This follows the general hypothesis that students
with low test scores need the treatment more.

• Postoperative Pain Dataset: Patients undergoing operations like tracheal intubations often
experience throat pain following treatment(Mchardy & Chung, 1999). This RCT was con-
ducted to test the efficacy of gargling with licorice solution prior to endotracheal intubation
on reducing postoperative sore throat, which is a common side-effect of the procedure.
The investigation involved 236 adult participants scheduled for elective thoracic surgeries
necessitating the use of double-lumen endotracheal tubes. The outcome we focus on is a
patient’s throat pain 4 hours after surgery, measured on a discrete Likert scale from 0 to 7.
Additional covariates include a patient’s gender, BMI, age, Mallampati score, preoperative
pain, surgery size and smoking status. Here, the effect of the treatment is to reduce the
amount of throat pain, hence the treatment effect is negative. In order to maintain consis-
tency with other plots, we present results with the sign for treatment effect reversed. Since
we do not have a measured value for throat pain at baseline, we again train a random for-
est model on rows corresponding to patients who did not receive the treatment with their
throat pain at endline being the outcome variable. The prediction offered by this model for
every patient is then used as a proxy for their baseline throat pain and consequently as the
baseline risk. This follows the intuition that patients with more severe throat pain require
the treatment more than their co-patients.

• Acupuncture Dataset: This RCT aimed to determine the effect of acupuncture therapy on
headache severity in patients with chronic headaches. These measures were assessed at
randomization, 3 months post-randomization, and 1 year post-randomization. We focus on
headache severity 1 year post-randomization. Headache severity is measured on a discrete
Likert scale from 0 to 5. The dataset consists of data from 401 patients with covariates
including patient age, sex, chronicity(number of years of headache severity) and whether
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the headaches were diagnosed as migraines or not. Here again, the effect of the treatment
is to reduce the severity of headaches, hence the treatment effect is negative. In order to
maintain consistency with other plots, we present results with the sign for treatment effect
reversed. We estimate headache severity at baseline E(Y (0)|X] using a machine learning
model and use it as a proxy for baseline risk, following the intuition that patients with more
severe headaches need the treatment more.

A.2 ADDITIONAL PLOTS

(a) Budget = 30% (b) Budget = 40%

Figure 3: Comparison of risk-based assignment to biased treatment effect based assignment for the
STAR dataset, with fixed budget of 30% and 40% of the population respectively.

(a) Budget = 30% (b) Budget = 40%

Figure 4: Comparison of risk-based assignment to biased treatment effect based assignment for the
Ultra Poor dataset, with fixed budget of 30% and 40% of the population respectively.
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(a) Budget = 30% (b) Budget = 40%

Figure 5: Comparison of risk-based assignment to biased treatment effect based assignment for the
Postoperative Pain dataset, with fixed budget of 30% and 40% of the population respectively.

(a) Budget = 30% (b) Budget = 40%

Figure 6: Comparison of risk-based assignment to biased treatment effect based assignment for the
Acupuncture dataset, with fixed budget of 30% and 40% of the population respectively.

(a) Budget = 30% (b) Budget = 40%

Figure 7: Comparison of risk-based assignment to biased treatment effect based assignment for the
NSW dataset, with fixed budget of 30% and 40% of the population respectively.
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B ROBUSTNESS CHECK: DISJOINT NUISANCE FUNCTION ESTIMATION

In the main paper, we employ a sample splitting approach, in line with the literature on doubly
robust CATE estimation and previous work on policy optimization/comparison. In particular, our
strategy is equivalent to the cross-validation strategy used in Athey & Wager (2020) to evaluate
learned policies on RCT data. One potential concern with this procedure is that overlapping sets of
data are used both to train the treatment effect-based targeting policy and to fit the nuisance functions
used for evaluation. In theory this should not be an issue because, with RCT data, the DR estimator
used for evaluation will be unbiased even if the outcome regression is mis-estimated (because the
propensity score is guaranteed to be well-specified).

However, as an additional robustness check, in this section we completely separate the data used for
training the CATE estimator for the treatment policy and the estimator used for policy evaluation.
In particular, we set aside half the data for use only for evaluation and one half only for training
allocation policies. The training portion of the data is used to fit a treatment assignment policy
which treats individuals with the highest estimated treatment effects via a DR learner (up to the
budget constraint). Then, we evaluate the average treatment effect on the treated of each policy
using the evaluation split. Within the evaluation split, we also fit a DR estimator, but the nuisance
functions for the this DR estimator are now fit on an entirely disjoint set of data from that used to
optimize the policy.

This procedure has two drawbacks, both related to the reduction in sample size. First, it substantially
reduces the amount of data available for training the allocation policy, and so potentially underesti-
mates the effectiveness of causal targeting. Second, it makes less efficient use of data for evaluation
as well, which tends to inflate the variance of the evaluation and the size of confidence intervals.
We only implement this process for the STAR and NSW datasets because the other datasets are too
small to credibly train the allocation policy after setting aside half the data. Because of these draw-
backs, we do not expect the results from this experiment to be identical to our main analysis, but we
include it to check if the qualitative conclusions are similar.

We indeed see observe similar high-level conclusions with the main analysis (Figure 8, 9, 10).
The effectiveness of causal targeting is reduced, but it still outperforms risk-based targeting by
a substantial margin at low levels of confounding even when the decision maker has egalitarian
preferences.

Table 2 shows the value of α for each level of confounding at which the point estimates for utility
for risk-based targeting exceed those for treatment effect based targeting for the two datasets we
consider, similar to Table 1

Table 2: Values of α for different k at which risk-based targeting outperforms treatment effect based
targeting. ’na’ indicates no such α was found

Dataset 5% 10% 15% 20% 25% 30% 35% 40%
NSW na 4 5 2.5 0 0 0 0
STAR 4 3.5 3.5 2.5 2 1.5 0.5 1

B.1 ADDITIONAL PLOTS

Additional plots with different budgets using disjoint nuisance functions are shown in Figures 9, 10.
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(a) Utilitarian Welfare on the
NSW RCT

(b) Weighted Utilitarian Welfare
on the NSW RCT

(c) Nash Welfare on the NSW
RCT

(d) Utilitarian Welfare on the
STAR RCT

(e) Weighted Utilitarian Welfare
on the STAR RCT

(f) Nash Welfare on the STAR
RCT

Figure 8: Comparison of risk-based targeting to biased treatment effect-based targeting by plotting
the benefit offered by each policy against the amount of data systematically removed from the RCT
to introduce confounding. The DR estimator is trained on a dedicated training sample and targeting
decisions are made on a separate sample.

(a) Budget = 30% (b) Budget = 40%

Figure 9: Comparison of risk-based assignment to biased treatment effect based assignment for the
STAR dataset, with fixed budget of 30% and 40% of the population respectively. The DR estimator
is trained on a dedicated training sample and targeting decisions are made on a separate sample.
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(a) Budget = 30% (b) Budget = 40%

Figure 10: Comparison of risk-based assignment to biased treatment effect based assignment for the
NSW dataset, with fixed budget of 30% and 40% of the population respectively. The DR estimator
is trained on a dedicated training sample and targeting decisions are made on a separate sample.
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