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Abstract

The liquid state machine (LSM) combines low training complexity and biologi-
cal plausibility, which has made it an attractive machine learning framework for
edge and neuromorphic computing paradigms. Originally proposed as a model of
brain computation, the LSM tunes its internal weights without backpropagation
of gradients, which results in lower performance compared to multi-layer neural
networks. Recent findings in neuroscience suggest that astrocytes, a long-neglected
non-neuronal brain cell, modulate synaptic plasticity and brain dynamics, tuning
brain networks to the vicinity of the computationally optimal critical phase tran-
sition between order and chaos. Inspired by this disruptive understanding of how
brain networks self-tune, we propose the neuron-astrocyte liquid state machine
(NALSM)1 that addresses under-performance through self-organized near-critical
dynamics. Similar to its biological counterpart, the astrocyte model integrates
neuronal activity and provides global feedback to spike-timing-dependent plasticity
(STDP), which self-organizes NALSM dynamics around a critical branching factor
that is associated with the edge-of-chaos. We demonstrate that NALSM achieves
state-of-the-art accuracy versus comparable LSM methods, without the need for
data-specific hand-tuning. With a top accuracy of 97.61% on MNIST, 97.51%
on N-MNIST, and 85.84% on Fashion-MNIST, NALSM achieved comparable
performance to current fully-connected multi-layer spiking neural networks trained
via backpropagation. Our findings suggest that the further development of brain-
inspired machine learning methods has the potential to reach the performance of
deep learning, with the added benefits of supporting robust and energy-efficient
neuromorphic computing on the edge.

1 Introduction

With the recent rise of neuromorphic [1–4] and edge computing [5, 6], the liquid state machine (LSM)
learning framework [7] has become an attractive alternative [8–11] to deep neural networks owing to
its compatibility with energy-efficient neuromorphic hardware [12–14] and inherently low training
complexity. Originally proposed as a biologically plausible model of learning, LSMs avoid training
via backpropagation by using a sparse, recurrent, spiking neural network (liquid) with fixed synaptic
connection weights to project inputs into a high dimensional space from which a single neural layer
can learn the correct outputs. Yet, these advantages over deep networks come at the expense of 1)
sub-par accuracy and 2) extensive data-specific hand-tuning of liquid weights. Interestingly, these
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two limitations have been targeted by several studies that tackle one [15, 16] or the other [17, 18],
but not both. This has limited the widespread use of LSMs in real-world applications [8]. In that
sense, there is an unmet need for a unified, brain-inspired approach that is directly applicable to the
emerging neuromorphic and edge computing technologies, facilitating them to go mainstream.

As a general heuristic, LSM accuracy is maximized when LSM dynamics are positioned at the edge-
of-chaos [19–21] and specifically in the vicinity of a critical phase transition [22–25] that separates:
1) the sub-critical phase, where network activity decays, and 2) the super-critical (chaotic) phase,
where network activity gets exponentially amplified. Strikingly, brain networks have also been found
to operate near a critical phase transition [26–28] that is modeled as a branching process [25, 26].
Current LSM tuning methods organize network dynamics at the critical branching factor by adding
forward and backward communication channels on top of the liquid [15, 16]. This, however, results
in significant increases in training complexity and violates the LSM’s brain-inspired self-organization
principles. For example, these methods lack local plasticity rules that are widely observed in the
brain and considered a key component for both biological [29] and neuromorphic learning [3, 2, 4].
A particular local learning rule, spike-timing-dependent plasticity (STDP), is known to improve LSM
accuracy [17, 18]. Yet, current methods of incorporating STDP into LSMs further exacerbate the
limitations of data-specific hand-tuning as they require additional mechanisms to compensate for the
STDP-imposed saturation of synaptic weights [17, 30–33]. This signifies the scarcity of LSM tuning
methods that are both computationally efficient and data-independent.

A long-neglected non-neuronal cell in the brain, astrocytes, is now known to play key roles in modu-
lating brain networks [34–39], from modifying synaptic plasticity [40–42] to facilitating switching
between cognitive states [43–46] that have been linked to a narrow spectrum of dynamics around the
critical phase transition [47–51]. The mechanisms that astrocytes use to modulate neurons include
the integration of the activity of thousands of synapses into a slow intracellular continuous signal
that feeds back to neurons by affecting their synaptic plasticity [52–55, 42]. The unique spatio-
temporal attributes [56, 57] identified in astrocytes align well with the brain’s remarkable ability to
self-organize its massive and highly recursive networks near criticality. That is why astrocytes present
a fascinating possibility of forming a unified feedback modulation mechanism required to improve
baseline LSM accuracy while eliminating data-specific hand-tuning.

Here, we propose the neuron-astrocyte liquid state machine (NALSM), where a biologically inspired
astrocyte model organized liquid dynamics near a critical phase transition, by modulating STDP.
We show that NALSM combined the computational benefits of both STDP and critical branching
dynamics by demonstrating its accuracy advantage compared to other LSM methods on two datasets:
1) MNIST [58], and 2) N-MNIST [59]. We demonstrate that, similar to its biological counterpart that
handles new and unstructured information with robustness and versatility, NALSM maintains the
state-of-the-art LSM performance without re-tuning training parameters for each tested dataset. We
also show that a NALSM with a large enough liquid can attain comparable accuracy to fully-connected
multi-layer spiking neural networks trained via backpropagation on 1) MNIST [58], 2) N-MNIST
[59], as well as 3) Fashion-MNIST [60]. Our results suggest that the under-performance and high
training difficulty of current neuromorphic methods can be addressed by harvesting neuroscience
knowledge and further translating biological principles to computational mechanisms.

2 Methods

2.1 The neuron-astrocyte liquid state machine

To construct the NALSM, we started with a baseline LSM model consisting of 2 layers: 1) a spiking
liquid, and 2) a linear output layer. Next, we added STDP to the LSM liquid, forming the LSM+STDP
model. We developed a biologically faithful leaky-integrate-and-modulate (LIM) astrocyte model,
which we embedded in the LSM+STDP liquid, to form the NALSM. The process is formalized below.

LSM Model We implemented the baseline LSM as a 3-dimensional neural network (liquid) con-
sisting of 1, 000 neurons surrounded by 1-dimensional layers of input and output neurons. Number
of input neurons was 784 and 2, 312 for MNIST and N-MNIST, respectively (See Appendix A.1).
We used the leaky-integrate-and-fire (LIF) model [3] for input and liquid neurons, modeled as:

dvi
dt

= − 1

τv
vi(t) + ui(t)− θiσi(t) (1)
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ui(t) =
∑
j 6=i

wij(αu ∗ σj)(t) + bi (2)

where vi is the membrane potential and ui is the synaptic response current of neuron i, θi is the
membrane potential threshold, σi(t) =

∑
k δ(t − tki ) is the spike train of neuron i with tki being

the time of the k-th spike, wij is the weight connecting neuron j to i, bi is the bias of neuron
i, and αu(t) = τ−1u exp(−t/τu)H(t) is the synaptic filter with H(t) being the unit step function
(See Appendix A.2). All LIF neurons had a 2 ms absolute refractory period. Liquid neurons were
excitatory and inhibitory with 80%/20% ratio. Input neurons did not have an excitatory/inhibitory
distinction and had random excitatory and inhibitory connections to liquid neurons. From here on,
we will refer to connections between input neurons and liquid neurons as IL connections, inter-liquid
connections as LL, and liquid to output connections as LO. In line with [7], we created LL connections
using probabilities based on Euclidean distance, D(i, j), between any two neurons i, j:

P (i, j) = C · exp

(
−
(
D(i, j)

λ

)2
)

(3)

with closer neurons having higher connection probability. Parameters C and λ set the amplitude
and horizontal shift, respectively, of the probability distribution (See Appendix A.3). Density of IL
connections was 15%. The output layer was a dense layer consisting of 10 linear neurons.

LSM+STDP Model We added unsupervised, local learning to the LSM model by letting STDP
change each LL and IL connection [61], modeled as:

dw

dt
= A+Tpre

∑
o

δ(t− topost)−A−Tpost
∑
i

δ(t− tipre) (4)

where A+ = A− = 0.15 are the potentiation/depression learning rates and Tpre/Tpost are the
pre/post-synaptic trace variables, modeled as,

τ∗+
dTpre
dt

= −Tpre + a+
∑
i

δ(t− tipre) (5)

τ∗−
dTpost
dt

= −Tpost + a−
∑
o

δ(t− topost) (6)

where a+ = a− = 0.1 are the discrete contributions of each spike to the trace variable, τ∗+ = τ∗− = 10

ms are the decay time constants, tipre and topost are the times of the pre-synaptic and post-synaptic
spikes, respectively. We constrained connection weights to: 1) IL: [−3, 3] , 2) excitatory LL: [0, 3],
and 3) inhibitory LL: [−3, 0]. We used the same STDP parameters for all models and experiments.

LIM Astrocyte Model We developed the astrocyte model as a leaky integrator with a continuous
output value Aastro− , expressed as:

τasto
dAastro−
dt

= −Aastro− + wastro
∑
i∈Nliq

δ(t− ti)− wastro
∑

j∈Ninp

δ(t− tj) + bastro (7)

where Aastro− directly mapped to A− in equation (4), bastro = A+ adjusted the astrocyte output to
the fixed STDP potentiation learning rate, Nliq and Ninp are the sets of liquid and input neurons,
respectively, andwastro set astrocyte responsiveness to network activity (See Appendix A.4). Ignoring
the decay and bias terms, the astrocyte model computed the difference in the number of spikes
produced by liquid neurons and input neurons. Functionally, this is equivalent to computing the ratio
of spikes emitted by the liquid over the input neurons:

BFproxy(t) =

∑
i∈Nliq

δ(t− ti)∑
j∈Ninp

δ(t− tj)
(8)

Specifically, when the liquid produced more spikes than the input neurons, their difference was
positive which translated to BFproxy > 1.0, and vice versa. This approach to measure liquid
dynamics acted as a network level approximation of the branching factor, σBF , which is normally
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Figure 1: NALSM architecture and astrocyte modulation of liquid dynamics. ( A ) The neuron-
astrocyte liquid was modeled as a 3-dimensional network of excitatory and inhibitory spiking neurons
connected with sparse, recurrent connections with spike-timing-dependent plasticity (STDP). Input
neurons projected excitatory and inhibitory connections to the liquid. Receiving each liquid neuron’s
spike count per input sample, a dense linear output layer was trained via gradient descent to classify
inputs. ( B ) To organize liquid dynamics at the critical branching factor, an astrocyte integrated input
and liquid neuron activity and, in turn, set the global STDP depression learning rate. Data points are
binned averages over ‘BF approximation’ metric. Error bars are standard deviation. See Appendix
A.10 for polynomial fits.

evaluated for each neuron (See 2.3.1). We empirically confirmed that BFproxy = 1.0 aligned with
the critical branching factor, σBF = 1.0 (Fig. 1 B). Hence, as dynamics became progressively super-
critical (σBF > 1.0), BFproxy became greater than 1, which caused the LIM astrocyte to increase
STDP depression learning rate above the fixed STDP potentiation learning rate (Aastro− → A− > A+).
This caused STDP to decrease the average weight of LL and IL connections, which decreased number
of spikes produced by the liquid and made dynamics less super-critical (Fig. 1 B). The reverse
occurred as dynamics became progressively sub-critical. As a result of astrocyte modulation, liquid
dynamics oscillated between sub-critical and super-critical until eventual stabilization near the critical
branching factor (See Appendix A.4).

NALSM Model We completed NALSM by adding the LIM astrocyte to the LSM+STDP model’s
liquid (Fig. 1 A). As described above, the LIM astrocyte integrated activity from input and liquid
neurons, and continuously controlled the STDP depression learning rate.

2.2 Training

Model training was done in 3 steps: 1) initialization of IL and LL liquid connections, 2) passing all
data through the liquid resulting in liquid neuron spike counts, and 3) training the output layer on the
spike counts. The steps are further detailed below.

2.2.1 Liquid initialization

LSM We initialized all IL and LL connections with a single weight value, maintaining originally
defined connection signs [62]. Weights were constant during spike count collection.

LSM+STDP We initialized IL and LL connections with STDP by consecutively presenting all
the training images to the liquid. Starting with initially maximal connections, 3(−3) for exci-
tatory(inhibitory) connections, we let STDP continuously adjusted weights while presenting the
liquid with a randomly ordered series of MNIST training image snapshots, each lasting 20 ms. For
N-MNIST, we randomly sampled each 20 ms snapshot from the 0 − 250 ms range, as a way to
account for the variability in the temporal dimension (See 2.3). In each case, we used a total of
50, 000 snapshots, each corresponding to a unique training image. We used STDP only for weight
initialization. Initialized weights were fixed during spike count collection.
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NALSM We used the LSM+STDP weight initialization process with the exception of added STDP
modulation by the LIM astrocyte. We used this set of initialized weights as the starting point for each
sample in the spike counting phase, during which astrocyte-modulated STDP continued to adjust
synaptic weights to compensate for slight deviations in dynamics caused by each input sample’s
different level of activity. For each sample, parameters A+ from (4) and bastro from (7) were both
initialized to 0.15 and decayed at a rate of 0.99 for the duration of sample input.

2.2.2 Output layer training

We assembled spike counts by presenting each sample image to the liquid for 250 ms and counting
the number of spikes emitted by each liquid neuron for the full duration of input. We used Adam
optimizer to batch train the output layer on spike count vectors by minimizing the cross entropy loss
with L2-regularization,

L(yi, ŷ) = − 1

m

m∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi) +
λreg
2m
||Wout||2F (9)

where m = 250 is the batch size, Wout is the output layer weight matrix, λreg = 5× 10−10 is the
regularization hyperparameter, yi and ŷi are the normalized vectors denoting the predicted label
and the target label, respectively. Prior to training, we initialized output layer weights/biases to 0.0,
and the learning rate to 0.1. We trained the output layer until validation accuracy peaked (up to a
maximum of 5, 000 epochs), at which point we evaluated model test accuracy.

2.3 Experiments

We performed all LSM comparison experiments on MNIST and N-MNIST datasets (See A.1). Using
10 randomly generated networks for each dataset, we trained 1) the baseline LSM model, 2) the
LSM+STDP model, 3) the NALSM model (See 2.1), and 4) the LSM+AP-STDP model, a method
for incorporating STDP in the LSM liquid [17] (See Appendix A.5). First, we evaluated LSM model
accuracy with respect to liquid weight, which ranged in 0.4 − 1.2 for MNIST and 0.8 − 1.35 for
N-MNIST. We used a random seed for each training session. Next, we evaluated corresponding
network dynamics of each network/weight combination by measuring the liquid’s branching factor on
20 randomly sampled inputs (See 2.3.1). To have comparable results for each network, we trained the
remaining models using the same seed that resulted in peak LSM accuracy. For NALSM, we used the
same initialization and parameters for all networks and datasets. For LSM+AP-STDP, we hand-tuned
STDP control parameters for each network and dataset combination to maximize validation accuracy
(See Appendix A.5). Additionally, we trained NALSM on Fashion-MNIST dataset (See A.1) using
the same 10 randomly generated networks that we had used for MNIST.

Sparse neuron-astrocyte connectivity We tested NALSM’s accuracy as a function of neuron-
astrocyte connection density on 3 best performing networks (per dataset). Keeping the proportion
of neurons sampled by the astrocyte the same for both input neurons and liquid neurons, we trained
NALSM with 10%, 20%, 40%, 60%, and 80% neuron-astrocyte density over 3 seeds for each of 3
networks. Regardless of connection sparseness, all IL/LL connections were modulated by Aastro−
(See 2.1)

NALSM with larger liquid sizes We tested NALSM performance for larger liquids. For each size,
we trained 3 randomly generated networks, each on a random seed. All parameters and initialization
were same as for 1, 000 neuron liquid. For maximum accuracy, we trained NALSM with an 8, 000
neuron liquid. For each dataset, we used 5 randomly generated networks trained on a random seed.
Parameter wastro = 0.0075 for all datasets. All other parameters and initialization were as before.

2.3.1 Branching factor of liquid

To evaluate a liquid’s dynamics, we used the network branching factor, σBF , which quantifies
network information flow amplification/decay. Liquid dynamics are sub-critical, near-critical and
super-critical when σBF < 1.0, σBF ≈ 1.0, and σBF > 1.0. We calculated σBF as done in [30],
with offset φ = 0 and time window ∆ = 4 ms as per [26].
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2.3.2 Kernel quality of liquid

We evaluated liquid 1) linear separation, and 2) generalization capability using methods from [63].
For the MNIST and N-MNIST test sets, we computed the rank of matrix M assembled from k
randomly selected spike count vectors, resulting in shape Nliq × k. We repeated this on 1, 000
shuffles of spike vectors. For linear separation, we used spike counts from model testing phase. For
generalization capability, we added noise to input data and evaluated new spike count vectors (See
2.2.2). For MNIST, we added N (0, 125) noise to each pixel value. For N-MNIST, we time-shifted
each event by N (0, 10). Taken together across all models and both datasets, we rescaled ranks of
each measure to 0− 1 range and subtracted measure 1 from measure 2 as in [63]. Due to negative
differences, we again rescaled all differences to 0− 1.

3 Results

3.1 Baseline LSM performance

We established a benchmark accuracy for the baseline LSM on MNIST and N-MNIST datasets (See
2.3). We acquired our baseline by averaging over 10 randomly generated liquids with 1, 000 neurons
(See 2.1). The LSM achieved a top accuracy of 95.44% (95.30± 0.11%) on MNIST, and 95.35%
(95.02± 0.15%) on N-MNIST (See 2.2). For MNIST, this was comparable to the previously reported
state-of-the-art LSM accuracy [64], using the same sized liquid. Further, LSM accuracy was very
sensitive to the liquid’s weight (Fig. 2 A).

3.2 LSM performance peaked at the critical branching factor

The peak LSM accuracy on each dataset corresponded to a different liquid synaptic weight. Specifi-
cally, there were cases where a liquid with weights tuned for maximum accuracy on MNIST, would
catastrophically fail on N-MNIST (Fig. 2 A). Also, LSM accuracy on MNIST plateaued for a wider

Figure 2: LSM accuracy depended on liquid weight and dynamics. ( A ) LSM accuracy shown as
a function of its liquid weight, averaged over a set of 10 randomly generated networks for MNIST and
N-MNIST datasets. ( B ) LSM accuracy shown with respect to liquid dynamics set by liquid synaptic
weight. For each weight, liquid dynamics were measured and averaged over all 10 networks. Similarly,
accuracy and resulting liquid dynamics are shown for each model: 1) NALSM, 2) LSM+AP-STDP,
and 3) LSM+STDP. ( C ) Liquid dynamics shown with respect to liquid weight, averaged over all 10
networks. Error bars are standard deviation. See Appendix A.10 for polynomial fits.
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range of weights than on N-MNIST, which can be attributed to N-MNIST’s greater difficulty caused
by its variability over the temporal dimension (See Appendix A.1). Taken together, this indicated that
LSM training requires extensive hand-tuning of weights for each specific dataset.

Since critical dynamics are well known to result in near-maximum LSM performance [65, 19–21],
dataset-specific hand-tuning can be significantly reduced by replacing accuracy with liquid dynamics
as the target output of weight tuning. Indeed, LSM accuracy was near-maximum for both datasets,
when the liquid’s branching factor was in 1.0− 1.2 range, or slightly super-critical (Fig. 2 B) (See
2.3.1). This agrees with studies showing that information transfer in finite sized systems peaks
at slightly super-critical dynamics [66]. Although each dataset still had different weight ranges
corresponding to the critical branching factor, the relationship between liquid dynamics and weight
was positive for both datasets (Fig. 2 C). Known to generalize beyond specific datasets [20], this
relationship suggested that near-critical dynamics can be organized using STDP, by providing it
directional feedback from current liquid dynamics.

3.3 Astrocyte-modulated plasticity organized liquid dynamics near criticality

The LIM astrocyte model stabilized liquid dynamics near the critical branching factor as we presented
a continuous stream of samples to the neuron-astrocyte liquid (Fig. 2 B). The NALSM’s slightly
super-critical stabilization suggested that liquid dynamics were at the edge-of-chaos. While chaotic
activity is known to correspond to super-critical branching dynamics in some cases [25], such
correspondence is not guaranteed. Hence, we examined additional network properties that are
necessary and indicative of chaotic activity (See Appendix A.6). Specifically, the astrocyte-modulated
liquid had coexistence of small and large synaptic weights (Fig. S2), as well as a balance of excitation
and inhibition, both of which are necessary for the existence of chaotic network activity [67, 68].
Further supporting a chaotic activity, the neuron-astrocyte liquid spike activity appeared irregular
(Fig. S3). We also performed autocorrelation analysis on liquid neuron spike trains, which further
suggested the existence of chaotic activity with a correspondence between edge-of-chaos dynamics
and critical branching dynamics (Fig. S4) [69, 70] (See Appendix A.6). Given that liquid dynamics
were directly approximated by the LIM astrocyte, which directly controlled the STDP depression
learning rate (See 2.1), NALSM required no dataset-specific hand-tuning. As a result, we used the
same weight initialization and parameters to benchmark NALSM (See 2.3).

Figure 3: Comparison of model accuracy and liquid computational capacity. ( A ) Accuracy
performance of the proposed NALSM model was compared, on MNIST and N-MNIST, against 3
related models: 1) the baseline LSM, 2) LSM with activity-based STDP (LSM+AP-STDP), and 3)
LSM with unregulated STDP (LSM+STDP). For each dataset and model, accuracy was evaluated
using 10 randomly generated networks, each of which was trained on a random seed. This set of
10 seeds was used for all models. ( B ) Computational capacity of each model was measured using
a kernel quality metric that encompassed the linear separation and generalization capability of the
liquid (See 2.3.2). Error bars are standard deviation.
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3.4 Benchmarking NALSM performance on MNIST and N-MNIST

On both datasets, NALSM achieved superior performance to comparable LSM models of the same
size. Using 1, 000 liquid neurons, NALSM achieved a top accuracy of 96.15% (95.96 ± 0.13%)
on MNIST and 96.13% (95.90± 0.16%) on N-MNIST; outperforming LSM model’s top accuracy
by 0.71% on MNIST and 0.78% on N-MNIST (Fig. 3 A). We also compared NALSM to a state-
of-the-art LSM STDP method, AP-STDP (See 2.3). The LSM+AP-STDP model required more
extensive dataset-specific hand-tuning than the baseline LSM due to its additional STDP control
parameters (See Appendix A.5). Resulting in top accuracy of 95.62% (95.49± 0.09%) and 95.43%
(95.23± 0.16%), the LSM+AP-STDP model was superseded by NALSM by 0.53% and 0.70% on
MNIST and N-MNIST, respectively. As a control measure, we also trained a LSM with unregulated
STDP (See 2.1). The LSM+STDP model significantly under-performed compared to all other models
achieving a top accuracy of 90.52% (89.47± 0.45%) on MNIST and 87.71% (86.80± 0.51%) on
N-MNIST. We attributed this under-performance to the LSM+STDP liquid’s excessive super-critical
dynamics (Fig. 2 B) which are well known to decrease liquid computational capacity [65, 66].

The NALSM had the most robust accuracy performance across the two datasets out of all the
compared LSM models. With no dataset-specific tuning, NALSM’s average accuracy on N-MNIST
was lower than the accuracy on MNIST by only −0.05%. This was 5− 50 times less than for the
LSM+AP-STDP (−0.26%), LSM (−0.29%), and LSM+STDP (−2.66%) models.

We attributed the NALSM’s performance advantage to the improved computational properties of its
liquid. For both tested datasets, the NALSM achieved slightly super-critical branching dynamics
where baseline LSM performance peaked right before it started to decline with increasing super-
critical dynamics (Fig. 2 B). This suggested that NALSM’s performance advantage, compared to a
LSM with similar dynamics, was due to the addition of astrocyte-modulated STDP (See 2.1, 2.2.1).
While LSM+AP-STDP and LSM+STDP models also had STDP, their lower performance can be
explained by their excessively sub-critical and super-critical dynamics, respectively (Fig. 2 B). We
further confirmed that NALSM’s increased performance resulted from the improved computational
properties of its liquid by measuring each model’s liquid kernel quality. This encompassed both
the linear separation and generalization capability of the liquid (See 2.3.2). Higher model accuracy
corresponded to higher kernel quality for all 4 models (Fig. 3 B). This is a further indication that
near-critical dynamics and astrocyte-modulated STDP contributed to the NALSM’s performance
increase.

3.5 NALSM maintained performance with sparse neuron-astrocyte connectivity

The NALSM maintained its accuracy advantage even with neuron-astrocyte connection densities as
low as 10% (Fig. 4). In the brain, astrocytes contact only approximately 65% of all synapses in their
surroundings [71]. We tested NALSM performance as a function of neuron-astrocyte connection
density (See 2.3). The NALSM mean accuracy decreased marginally with increasingly sparse
connectivity, while variability in performance was minimal across densities. At 10% connectivity,
average NALSM accuracy decreased by 0.36% for MNIST and 0.14% for N-MNIST compared
to 100% connection density. In both cases, average NALSM accuracy was still above LSM and
LSM+APSTDP average accuracy.

Figure 4: NALSM maintains accuracy advantage with sparse neuron-astrocyte connectivity.
For MNIST and N-MNIST, NALSM accuracy was evaluated with respect to neuron-astrocyte
connection density. For each density, NALSM performance was compared to LSM and LSM+AP-
STDP average accuracy. NALSM data points are average values over 9 experiments (3 networks × 3
seeds). Error bars and shaded areas are standard deviation. See Appendix A.10 for polynomial fits.
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Table 1: Comparison to brain-inspired and fully-connected multi-layer spiking neural networks.

Model Layers Learning Method Accuracy
Dataset: MNIST

Unsupervised-SNN [75] 2 STDP 95%
Multi-liquid LSM [64] 2 GD on last layer 95.5%
NALSM1000 2 astro-STDP, GD on last layer 96.15%
LIF-BA [73] 3 Broadcast feedback alignment 97.09%
Temporal SNN [76] 2 Temporal backpropagation 97.2%
STiDi-BP [77] 2 Backpropagation 97.4%
NALSM8000 2 astro-STDP, GD on last layer 97.61%
SN [78] 3 Backpropagation 97.93%
GLSNN [72] 4 Global feedback alignment, STDP 98.62%
Balance-SNN [74] 2 Equi-prop, STDP, STP 98.64%
BPSNN [79] 3 Backpropagation 98.88%
STBP [80] 2 Spatial and temporal backpropagation 98.89%

Dataset: N-MNIST
DECOLLE [81] 3 Backpropagation 96%
NALSM1000 2 astro-STDP, GD on last layer 96.13%
AER-SNN [82] 2 Backpropagation 96.3%
NALSM8000 2 astro-STDP, GD on last layer 97.51%
BPSNN [79] 3 Backpropagation 98.74%
STBP [80] 2 Spatial and temporal backpropagation 98.78%
SLAYER [83] 3 Backpropagation 98.89%

Dataset: Fashion-MNIST
VPSNN [84] 2 Equi-prop, STDP 82.69%
NALSM1000 2 astro-STDP, GD on last layer 83.54%
Unsupervised-SNN [85] 2 STDP 85.31%
NALSM8000 2 astro-STDP, GD on last layer 85.84%
BS4NN [86] 2 Temporal backpropagation 87.3%
GLSNN [72] 4 Global feedback alignment, STDP 89.05%

*GD: gradient descent

3.6 Larger liquids increased NALSM accuracy

The NALSM accuracy improved with increased liquid size, saturating at approximately 8, 000
neurons (See Appendix A.7). NALSM8000 achieved a top accuracy of 97.61% (97.49± 0.11%) on
MNIST, 97.51% (97.42± 0.07%) on N-MNIST, and 85.84% (85.61± 0.18%) on Fashion-MNIST.
Compared to previously reported benchmarks on MNIST and Fashion-MNIST, the NALSM8000
outperformed all brain-inspired learning methods that do not use backpropagation of gradients or its
approximation through feedback alignment [72, 73], with the exception of [74] for MNIST. While
[74] demonstrated that a fully-connected 2-layer spiking network can achieve high accuracy through
a combination of biologically-plausible plasticity rules, it is not clear how such an approach would
scale to more layers without some form of backpropagation. Conversely, multi-layered LSMs have
been shown to work without backpropagation [8, 10]. Further, NALSM8000 used approximately
1/3 (≈ 1, 199, 407 ± 453) of number of trainable(plastic) connections as in [74]. Compared to
top accuracies reported for fully-connected multi-layered spiking neural networks trained with
backpropagation, the NALSM8000 achieved comparable performance on all datasets; outperforming
multiple reported results on MNIST and N-MNIST (Table 1) (See Appendix A.8).

4 Discussion and Broader Impact

Ironically, LSMs are one of the most brain-like and at the same time one of the most difficult to train
learning models. Here, we proposed an astrocyte model that merged critical branching dynamics
and STDP into a single liquid, thereby simultaneously improving LSM performance and decreasing
data-specific tuning. We showed that the synergy of STDP and near-critical branching dynamics
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improved the computational capacity of the liquid, which translated to better than state-of-the-art
LSM accuracy on MNIST and N-MNIST, and do so with minimal added computational cost (See
Appendix A.9). Our results indicate that, given a large enough liquid, NALSM performance compares
to current fully-connected multi-layer spiking neural networks trained via backpropagation.

The reported narrowing of the performance gap between brain-inspired LSM and deep networks
suggests that studying the interaction among the brain’s computational principles can help our learning
models to reach human-like performance. Indeed, our results demonstrate that the synergy of brain-
inspired astrocyte-modulated STDP and near-critical dynamics resulted in the superior performance
of NALSM compared to 1) a LSM with critical dynamics but without STDP, and 2) a LSM with
STDP, but without critical dynamics. Aligning with other studies showing that liquid topology
impacts LSM accuracy [87], we also showed that a brain-inspired, sparse, 3D-distance-based network
architecture can improve the computational capacity of a single liquid. Specifically, our baseline
3D LSM achieved comparable accuracy to the multi-liquid LSM [64], which improved performance
of a single dimensionless liquid by partitioning it into multiple liquids. While we demonstrated
NALSM performance using only the 3D-distance-based network architecture, our proposed astrocyte
modulation method does not depend on network topology and, therefore, is applicable to other types
of topology. In fact, our approach is also extendable to multi-liquid architectures and other local
plasticity rules that follow STDP’s separation of potentiation and depression components.

The astrocyte-modulated LSM learning framework is also compatible with the emerging neuromor-
phic hardware. This is because the gradient descent that we used for training the linear output can be
replaced by a single-layer spike based learning rule [88–90]. This makes NALSM compatible with
neuromorphic hardware, exploiting in full its advantages [91]. For example, our method can leverage
even further the energy efficiency of neuromorphic chips, by virtue of its low spiking rates. In line
with biological ranges [92], NALSM had spiking rates that ranged from 12 Hz to 37 Hz, depending
on the input sample. These rates can be reduced further, by modifying input encoding, since liquid
spiking rates are directly adjusted by the astrocyte based on input spiking rates (Fig. 1).

Here, we demonstrated a possible connection between the near-critical branching dynamics of the
NALSM liquid and the edge-of-chaos transition (See Appendix A.6). The critical branching transition
has been extensively used to model critical dynamics in brain networks [27, 26]. Focusing on the
computational benefits of criticality, machine learning has mostly examined network dynamics at the
edge-of-chaos transition. Although the presence of one transition does not guarantee the existence
of the other, both transitions are well connected to the same result, an improved computational
performance [25]. Indeed, the computational performance of systems poised at a critical phase
transition has been widely studied both experimentally [22] and theoretically [23], and are well-
connected to both edge-of-chaos [19, 20] and critical branching transitions [25, 15]. Networks
operating at near-criticality are believed to have simultaneous access to the computational properties
(learning and memory) of both phases, which results in 1) maximizing their information processing
capacity [22], 2) optimizing their dynamical range [93, 24], and 3) expanding their number of
metastable states [25]. Hence, it is not surprising that the NALSM’s astrocyte imposed near-critical
branching dynamics resulted in improved accuracy and generalization capabilities as observed in
LSMs with edge-of-chaos dynamics [19, 20], while adding the benefit of a neuromorphic compatibility
and self-organized criticality.

Our work shows how insights from modern cellular neuroscience can synergize with neuromorphic
computing, and lead to novel intelligent systems, spurring the dialogue between artificial intelligence
and brain sciences. Indeed, given that the known neuronal mechanisms are too slow and uncoordinated
in the brain to modulate STDP [31, 94, 32], it is an open question how neurons modulate synaptic
plasticity. Our demonstration that the distinct temporal and spatial mechanisms of astrocytes may
modulate STDP and subsequently regulate network dynamics, questions the neuron as the only
processing unit in the brain [95–97]. In that sense, it helps in dismantling the 100-year old dogma that
“brain = neurons”, and tackle the absence of astrocytes in both prevailing computational hypotheses
on how the brain learns and efforts to translate such knowledge to effective models of intelligence.

By showing how astrocyte-modulated STDP can maximize computational performance near criticality,
we aimed to broaden the applicability of the LSM to complex spatio-temporal problems that require
integration of data over multiple sources and time-scales, thereby, making LSMs suitable for real-life
applications of edge computing. Our so far results suggest that this is a direction worth pursuing.
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