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Masked Graph Autoencoder with Non-discrete Bandwidths
Anonymous Author(s)

ABSTRACT
Masked graph autoencoders have emerged as a powerful graph
self-supervised learning method that has yet to be fully explored.
In this paper, we unveil that the existing discrete edge masking
and binary link reconstruction strategies are insufficient to learn
topologically informative representations, from the perspective of
message propagation on graph neural networks. These limitations
include blocking message flows, vulnerability to over-smoothness,
and suboptimal neighborhood discriminability. Inspired by these
understandings, we explore non-discrete edge masks, which are
sampled from a continuous and dispersive probability distribution
instead of the discrete Bernoulli distribution. These masks restrict
the amount of output messages for each edge, referred to as “band-
widths”. We propose a novel, informative, and effective topological
masked graph autoencoder using bandwidth masking and a layer-
wise bandwidth prediction objective. We demonstrate its powerful
graph topological learning ability both theoretically and empirically.
Our proposed framework outperforms representative baselines in
both self-supervised link prediction (improving the discrete edge
reconstructors by at most 20%) and node classification on numerous
datasets, solely with a structure-learning pretext. Our implementa-
tion is available at https://anonymous.4open.science/r/anadnaB.

CCS CONCEPTS
• Computing methodologies→ Unsupervised learning; • In-
formation systems→ Data mining.

KEYWORDS
Graph neural networks, graph self-supervised learning, masked
graph autoencoders
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1 INTRODUCTION
Today, the demand for massive amounts of data in pre-training
large models has reached an unprecedented level. Self-supervised
learning (SSL) has emerged as a powerful approach to uncover-
ing underlying patterns in unannotated data by pre-training on
some tailor-made tasks called pretexts [31, 46]. Currently, SSL has
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been a go-to method for pre-training large models [10, 55], gather-
ing increasing attention. Graphs, unlike text and images, possess
non-Euclidean structures that are hard for humans to intuitively
understand [5] and lack well-annotated graph benchmark datasets
due to the diversity of graph data and tasks. Thus, SSL is also play-
ing a pivotal role in learning graph representations [33, 35, 75],
especially in various web applications such as social recommenda-
tion [47, 73, 80].

Taxonomy. Contemporary graph SSL studies are mainly con-

trastive methods [68, 79, 88, 89] that leverage metric learning be-
tween augmented data pairs. In spite of this, they suffer from the
thorny problem of dimensional collapse [32, 64]. On the other
hand, autoencoding methods learn by reconstructing the input data
from encoded representations. However, traditional graph autoen-
coders [37, 57] fall short of modeling high-dimensional represen-
tation spaces, while variational autoencoders [19, 37, 52] require
additional assumptions on data distributions. In contrast, masked
graph autoencoders, a novel framework for data reconstruction,
enable the learning of high-dimensional representations without
extra assumptions and show remarkable adaptability to graph data.
One type of masked graph autoencoder aims to reconstruct node
features, referred to as FeatRecs [25, 26, 83]. Another type, on
which our work focuses, aims to reconstruct randomly masked
links to learn graph topology, referred to as TopoRecs [42, 63].
Unlike language or vision tasks, TopoRecs can reconstruct links
directly from graph structures without positional encoding [11, 66].

Problem. In this work, we focus on the topological informative-
ness of traditional TopoRecs’ representations, i.e. how well they
embed graph topology into the latent representation space.
As illustrated in Figure 1(a), traditional TopoRecs rely on two key
components: (i) discrete edge masking, where binary edge masks
are sampled from a discrete distribution, and (ii) binary link re-
construction, which distinguishes the masked positive edges from
negative ones. Despite some prominent results [42, 45, 63] derive
from these two strategies, we argue that discrete random mask-
ing and binary link reconstruction lead to limited informa-
tiveness, both globally and locally (in Section 3.3). (i) Globally,
pathways for long-range information are likely to be stretched or
blocked by indiscriminate masking, leading to the vulnerability
to over-smoothing. (ii) Locally, discrete masking strategies can-
not provide fine-grained neighborhood discriminability, leading to
suboptimal topological learning performance.

Present work. To tackle the problems, a topologically informa-
tive non-discrete masking strategy is desired. We introduce a
new perspective by considering the message propagation of a GNN
analogously as the (transient) transmission between nodes in a
telecommunication network. By randomly setting a limit for each
connection link (edge) on the amount of messages transferred in
one single propagation step, named the “bandwidth”, we manage to
mask a portion of information through each edge, as shown in
Figure 1(b). Bandwidths provide topological informativeness both
globally and locally: (i) the graph topology is kept intact during
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Figure 1: Discrete masks vs. the proposed bandwidths. (a)
Traditional TopoRecs randomly mask a fixed proportion of edges
and try to reconstruct them. However, messages from some neigh-
boring nodes (e.g. the red one) as well as their predecessors will not
be received by the target node (white). (b) We propose bandwidth
masking and prediction, which first restricts the message propa-
gated through each edge in varying degrees and then predicts how
much it is restricted. The white node can now receive messages
from every neighbor. (c) The connected component of Cora [58]
before and after different masking schemes. Left: discretely masked
graph breaks the connectivity of the original component, whereas
right: bandwidth masked graph (where the width and grayscale of
each edge denote the assigned bandwidth) keeps the original graph
topology intact, so the reconstructor learns more topologically in-
formative representations. Best viewed in color.

the training (Figure 1(c)), and long-range information can reach its
destination unimpeded, which provides global informativeness.
(ii) By sampling bandwidth values from a dispersive Boltzmann-
Gibbs distribution, each node learns its neighborhood in a more
fine-grained and discriminative way, which provides local infor-
mativeness. Accordingly, we propose a novel masked graph au-
toencoder with bandwidth prediction instead of link reconstruction.
It is termed “Graph autoencoder aided by Bandwidths”, Bandana in
reverse. We showcase Bandana’s great topological informativeness
both theoretically (in Section 4.2) and empirically (in Section 5)
by conducting extensive experiments on numerous datasets. We
present the following main contributions:
• Weunveil that discreteTopoRecs are insufficient to learn topolog-

ically informative representations. Globally, blocked message
flowsmake the TopoRec vulnerable to the over-smoothing prob-
lem of deeper GNNs; locally, uniformized weight distribution
results in the indiscriminative neighborhood.

• We explore a non-discrete masking mechanism in masked
autoencoders, named “bandwidths”. We establish a theoretical
relationship between our bandwidth mechanism and regularized
denoising autoencoders to prove its informativeness.

• We propose Bandana, a novel graph self-supervised learning
framework that learns topologically informative representations.
It outperforms representative baselines in both link prediction
and node classification solely with a structure-learning pretext.

2 RELATEDWORK
In this section, we briefly review priorwork on graph self-supervised
learning and compare their advantages and disadvantages.

Contrastive Learning [3] was born initially for the visual do-
main [22, 24]. The most popular contrastive learning framework [7]
feeds augmented data pairs into two shared-weight neural networks.
Then it computes pairwise similarities between positive and nega-
tive samples by InfoNCE contrastive loss [50]. A flood of prominent
work has appeared since contrastive learning was introduced to
the graph domain [74, 78, 79, 81, 85, 88, 89]. However, they must
face the serious problem of representation collapse [32, 64, 72], that
is, the output of the encoder will degenerate to a scalar indepen-
dent of the input. In addition, InfoNCE itself does not provide the
power to learn graph structures, because it measures the distance
in the feature space. Therefore, contrastive learning methods rarely
discuss the generalization performance of structure learning tasks
such as link prediction unless they are specifically designed [60].

Autoencoding, another line of work, encodes the graph into a
latent space via GNNs and then decodes the representations to
reconstruct the original features or structure. The pioneering work
of GAE [37] stimulated the research of traditional graph autoen-
coders [52, 57]. However, an overcomplete autoencoder, whose di-
mension of the representation space is no less than that of the data
space, may degenerate into an identity map [16], severely limiting
its expressive power. Graph variational autoencoders [19, 37, 45, 52]
learn prior variational distributions of latent representations to ob-
tain better latent spaces and generate new representations from
them. Nevertheless, they still induce a suboptimal latent space be-
cause of the simplistic prior assumption [19].

MaskModeling. The “mask-then-reconstruct” scheme has already
been adopted to model natural language, computer vision, etc.,
and has achieved great success [10, 20, 21]. Masked autoencoders
(MAEs) are simple, efficient, and almost immune to collapses, which
have been introduced into the graph domain just recently [63]. As
mentioned above, we call the feature space learners FeatRecs, the
most well-known of which is the GraphMAE series [25, 26]. In addi-
tion, GMAE [83] introduces feature reconstruction into pre-training
graph transformers. Yet, they are not suitable for link prediction
due to the neglect of graph topology. TopoRecs, the structural space
learners, learn by discrete random edge masks and link reconstruc-
tion, the most well-known of which are S2GAE (formerly MGAE) [63]
and MaskGAE [42]. S2GAE resorts to a cross-correlation decoder to
capture the information lost by perturbation, and MaskGAE employs
path masks and another degree regression decoder. Despite being
empirically beneficial to performance improvement, there are no
theoretical guarantees that these strategies can induce a better
topological learner. Moreover, despite some existing theoretical
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frameworks for MAEs in the visual domain [6, 39, 51, 82], they are
currently incompatible with TopoRecs. Our work aims to bridge
this gap.

3 PRELIMINARIES
In this section, we illustrate the principle of message propagation
(Section 3.1) and TopoRecs (Section 3.2). Then, we discuss the
problems of discrete masking and link reconstruction (Section 3.3).

3.1 Notations and Concepts
We use different types of one specific symbol 𝑆 to denote different
forms of onemathematical object. A bold symbol S denotes amatrix,
with its 𝑗 th column in bold italics 𝑺 𝑗 = S:, 𝑗 . The element at the 𝑖th
row and 𝑗th column is in italics with subscripts 𝑆𝑖 𝑗 .

Let G = (X,A) be an undirected graph with 𝑛 nodes, where
X ∈ R𝑛×𝑑 is the node feature matrix and A ∈ {0, 1}𝑛×𝑛 is the
adjacency matrix. We also denote by E the edge set and V the
node set. deg(𝑖) is the degree of node 𝑖 . We call any 1-hop subgraph
G𝑖 = (XG𝑖 ,AG𝑖 ) ⊂ G of node 𝑖 an ego-graph [87], where XG𝑖 =

[𝑿 𝑗 ] 𝑗∈N𝑖∪{𝑖 } , and AG𝑖 ∈ {0, 1}𝑛𝑖×𝑛𝑖 is a principal submatrix of A.
Here 𝑛𝑖 = |N𝑖 ∪ {𝑖}| withN𝑖 the 1-hop neighborhood set of node 𝑖 .

Message-passing GNNs (MPNNs) [14] learn by exchanging in-
formation between neighboring nodes. To begin with, every node
receives messages from its neighbors and processes them with
non-linear neurons. Then, messages are aggregated as the new
representation of that node. This iterative updating mechanism can
be formalized as Z(𝑘 ) ← GZ(𝑘−1)W(𝑘−1) , where W(𝑘 ) is a learn-
able weight matrix of the 𝑘th layer. For notational convenience,
we integrate message aggregation and activation into one message
propagation matrix G, with the general form G = ΣA where Σ is
an activation operator such as Sigmoid 𝜎 (·) and ReLU. G varies
with GNN types, such as G = ΣD̂−1/2ÂD̂−1/2 for a Graph Convo-
lutional Network (GCN) [38]. Here Â represents the graph with
self-loops: Â = A + I𝑛 and 𝑑𝑖𝑎𝑔(D̂) = 1⊤𝑛 Â, where I𝑛 ∈ {0, 1}𝑛×𝑛
and 1𝑛 ∈ {1}𝑛 are respectively the identity matrix and the all-ones
vector. To sum up, we can denote the output of the𝐾th MPNN layer
as Z(𝐾 ) = ΓXΘ, where Γ = G𝐾 and Θ =

∏𝐾−1
𝑖=0 W(𝑖 ) .

3.2 TopoRec
TopoRecs mask a subset of edges E𝑚 ⊂ E and use the unmasked
set Ē𝑚 = E −E𝑚 along with the entire node set to train an encoder.
Ē𝑚 (resp. E𝑚) induces a subgraph with adjacency matrix Ā𝑚 (resp.
A𝑚 = A − Ā𝑚). The masking process is defined as

Ā𝑚 = A ◦M, M := [1[ (𝑖, 𝑗 ) ∈ Ē𝑚 ] ]
𝑛×𝑛 ∈ {0, 1}𝑛×𝑛 (1)

with ◦ the Hadamard product. For discrete TopoRecs, every entry
of the masking matrix M is an indicator 1[ (𝑖, 𝑗 ) ∈ Ē𝑚 ] that determines
if the edge (𝑖, 𝑗) is retained. It follows an i.i.d. Bernoulli distribution
𝑀𝑖 𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (1 − 𝑝),∀𝑖, 𝑗 where 𝑝 controls the mask ratio.

Formally, A TopoRec is a parameterized binary map 𝑟 (X, Ā𝑚) :
R𝑛×𝑑 × {0, 1}𝑛×𝑛 → (0, 1)𝑛×𝑛 implemented by two head-to-tail
networks, the so-called encoder-decoder. Encoder, the GNN to be
pre-trained, encodes the input features as latent representations,
with the 𝑘th-layer weights W(𝑘 )𝑒 . Decoder plays an auxiliary role
in recovering the representations, with the 𝑘th-layer weights W(𝑘 )

𝑑
.

A TopoRec with a single-layer MLP decoder is formalized as

𝑟 (X, Ā𝑚 ) := Σ𝑑 (𝒃𝑑 +W𝑑

decoder

(ΓXΘ)
encoder

), Γ = (Σ𝑒 Ā𝑚 )𝐾 ,Θ =

𝐾−1∏
𝑖=0

W(𝑖 )
𝑒 (2)

where Σ𝑒 (resp. Σ𝑑 ) is the activation operator of the encoder (resp.
decoder). Finally, the reconstruction loss L = L(𝑟 (X, Ā𝑚),A𝑚)
minimizes the error between the output and the masked data. The
cross-entropy is widely adopted to reconstruct links:

L(𝑟 (X, Ā𝑚 ),A𝑚 ) := 1⊤𝑛

(
𝛿E𝑚
| E𝑚 |

+ 𝛿E
−

| E− |

)
(−A𝑚 ◦ log 𝑟 (X, Ā𝑚 ) )1𝑛 (3)

Here 𝛿E = 𝛿 (𝑖, 𝑗 ) (E) :=
{

1, (𝑖, 𝑗 ) ∈ E
0, (𝑖, 𝑗 ) ∉ E is the Dirac measure: the term

𝛿E𝑚
| E𝑚 | in eq. (3) filters and averages every masked edge from the
cross-entropy matrix (−A𝑚 ◦ log 𝑟 (X, Ā𝑚)), while 𝛿E−

| E− | indicates
the sampled negative edge set E− ⊂ V ×V − E.

3.3 A Message Propagation View of TopoRecs
In this subsection, we revisit the message propagation to answer the
question “why are discrete TopoRecs topologically uninformative?”.

3.3.1 Global uninformativeness: blocked message flows. A message

flow is the directed message pathway from a source node to a sink
(target) node. It has already been an explanation tool for GNN be-
haviors [17]. Let us analyze themessage flows of a discrete TopoRec.
For an ego-graph G𝑖 , the central node 𝑖 randomly selects a subset
of nodes from its neighborhood N𝑖 and aggregates messages from
them only. This indiscriminate selection obstructs the message
flows that may be crucial to the sink nodes. Source nodes of
these message flows are not able to transmit their messages directly
to the sink nodes, resulting in a large amount of stretched or even
blocked flows, which are very likely to disrupt the connectivity of
the original graph, as shown in Figure 2(a) (as the mask ratios of
these masked autoencoders are usually very high [21, 42]).

Moreover, we reveal that discretemaskingmakes the encoder
vulnerable to the over-smoothing problem. To formalize, we
introduce a commonly used metric, the Dirichlet energy [56, 86], to
evaluate the over-smoothness of a discretely masked graph. The
lower the energy, the severer the over-smoothness. Our conclusion
is summarized by the following theorem.

Theorem 3.1 (Vulnerability of discrete TopoRecs to over-s-
moothing). Let G𝑖 = (XG𝑖 ,AG𝑖 ) be an ego-graph with 𝑛𝑖 ≥ 2.
Assume 𝑿G𝑖

𝑗
= 𝑿G𝑖

𝑘
for ∀𝑗, 𝑘 ∈ N𝑖 . Define the ego Dirichlet

Energy of G𝑖 as

𝐸𝐷 (G𝑖 ) :=
1
𝑛𝑖

∑︁
𝑗∈N𝑖
∥𝑿G𝑖

𝑖
− 𝑿G𝑖

𝑗
∥2 (4)

If a connected component G𝑖,𝑚 of G𝑖 is induced by imposing masks

following the i.i.d. 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (1 − 𝑝), 0 < 𝑝 ≤ 1 to AG𝑖 , then we

have 𝐸𝐷 (G𝑖,𝑚) ≤ 𝐸𝐷 (G𝑖 ). This inequality is an equality iff 𝑝 = 1.

Proof. Please refer to Appendix A.1. □

Note that the Dirichlet energy of the entire graph is exactly the
sum of ego Dirichlet energies over all ego-graphs. So Theorem
3.1 remarks that a discretely masked graph is more likely to be
over-smoothed. As such, discrete TopoRecs obtain relatively trivial
expressive power with deeper GNN layers. We have also conducted
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Figure 2: Blocked message flows. (a) A toy example: two paths
are available from A to E in the pentagonal graph. Left: edge (A,E)
is masked out. Message from A can only reach E at the cost of
being aggregated 3 more times. Right: (C,D) is also masked out. E
is now out of reach of A (as well as B and C). (b) Node classification
accuracy of a GCN pre-trained by two counterparts of MaskGAE
(blue, magenta) and Bandana (red) w.r.t. the network depth on 5
datasets (with error bands).

an experiment to verify this on 5 graph benchmark datasets. It is
shown in Figure 2(b) that the performance of MaskGAE goes into a
nosedive with a 5-or-more-layer GCN.

3.3.2 Local uninformativeness: indiscriminative neighborhood. A
GCN or Graph Attention Network (GAT) [67] is usually chosen as
the encoder of a TopoRec. However, both of them are not capable
of distinguishing the messages among different neighbors
effectively. We quantify the discriminability of each neighbor 𝑗 ’s
message in an ego-graph G𝑖 as the dispersion of edge weights as-
signed by node 𝑖 . In GCN, such assignment is realized only by a
function of node degrees𝑤𝑖 𝑗 = 1/

√︁
(deg(𝑖) + 1) (deg( 𝑗) + 1). This

does not work well due to the power-law tendency and assortiv-
ity of networks [2, 49]. GAT, by contrast, explicitly models the
neighborhood by introducing learnable self-attention matrices:
𝑤𝑖 𝑗 = softmax𝑗 (LeakyReLU(a⊤ [W𝑎𝑡𝑡𝒁𝑖 | |W𝑎𝑡𝑡𝒁 𝑗 ])), but its dis-
criminability is limited either. Previous research [43, 44] indicates
that the attention weights assigned by GAT are roughly the same
for different neighbors, so effort should be made to improve the dis-
criminative power of neighbors. Unfortunately, such power is not
provided by the discrete masking and link reconstruction, because
their only concern is the existence of links to some neighbors.

We have conducted another experiment on Cora for demon-
stration. Edge weights assigned by GCN and GAT pre-trained by
MaskGAE are first computed. Then, entropies of the weights in every
ego-graph 𝐻𝑖 = −∑

𝑗∈N𝑖 𝑤𝑖 𝑗 log𝑤𝑖 𝑗 are calculated. The smaller
the entropy value, the more discriminative the edge weights. We
visualize the entropies in Figure 3 (left, center) and observe that
for both GCN and GAT, the entropy distribution peaks shift towards
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Figure 3: Entropy histograms of the edge weight distribution
in ego-graphs on Cora. Blue solid lines are the Gaussian kernel
density estimation curves with the red dashed lines medians.

the larger area, since MaskGAE is not able to provide discriminative
power of neighbor messages for them.

To sum up, a new masking scheme is desired instead of discrete
edge masking for better topological informativeness.

4 BANDANA
In this section, we aim to answer the questions “what is Bandana?”
in Section 4.1 and “why does Bandana learn informative representa-

tions?” in Section 4.2. Bandana is a novel topological masked graph
autoencoder that encompasses two main mechanisms: continuous
bandwidth masks and layer-wise bandwidth prediction.

4.1 Bandwidth Masking and Prediction Pipeline
4.1.1 Continuous bandwidth masks. According to Section 3.2, a
discrete TopoRec samples edge masks from a Bernoulli distribution.
As bandwidths are non-discrete, each entry of the masking matrix
M should be randomly sampled from a continuous distribution
instead, with the following requirements:
(i) Probabilistic:𝑀𝑖 𝑗 ∈ [0, 1] (0 for non-existent edges).
(ii) Simplicial:

∑
𝑗∈N𝑖 𝑀𝑖 𝑗 = 1,

∑
𝑗∉N𝑖 𝑀𝑖 𝑗 = 0.

(iii) Dispersive: bandwidths of neighbors should be discriminative.
For (i) and (ii), every column of M, i.e., bandwidths of neighbors

in an ego-graph, should form a probabilistic simplex to stabilize the
message passing process. For (iii), we want bandwidths to provide
the discriminative power of neighbors. In light of these conditions,
we choose the bandwidth distribution as follows.

Definition 4.1 (Bandwidth). For the rest of the paper, M ∈
[0, 1]𝑛×𝑛 is a continuous matrix consisting of i.i.d. probabilistic
simplicial column vectors, of which each nonzero entry follows
a Boltzmann-Gibbs distribution:

𝑀𝑖 𝑗 = softmax𝑗
(𝑚𝑖 𝑗
𝜏

)
=

exp(𝑚𝑖 𝑗/𝜏)∑
𝑘∈N𝑗∪{ 𝑗 } exp(𝑚𝑘 𝑗/𝜏)

(5)

where𝑚𝑖 𝑗 ∼ N(0, 1) and 𝜏 denotes the temperature.

Intuitively, a “bandwidth” on an edge is the maximum proportion
of the output messages to the input messages through that edge
per message passing step. The softmax in eq. (5) plays a dual role of
normalization and amplification: (i) normalization guarantees a
probabilistic simplex; (ii) exponential softmax amplifies the weight
dispersion in an ego-graph, which has already been discovered and
utilized by some attention-based studies [54]. Though both are edge
weights, bandwidths are fundamentally different from attention
weights, which is further discussed in Appendix B.1.

Instead of the discrete masking matrix, we use bandwidths to
perturb the adjacency matrix: Ã = A ◦M. This converts the initial
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discrete adjacencymatrix with𝐴𝑖 𝑗 ∈ {0, 1} into a continuousmatrix
with �̃�𝑖 𝑗 ∈ [0, 1]. Unlike the discrete case, both M and Ã are no
longer symmetric, because there are two different bandwidth values
on every edge for the bidirectional message propagation.

Note that we also adopt the temperature 𝜏 to control the band-
width distribution. Specifically, it controls the continuity of the
mask: when 𝜏 → 0, the Boltzmann-Gibbs distribution degenerates
to the superposition of Dirac 𝛿 functions at 0 and 1, that is, the
discrete Bernoulli mask; when 𝜏 →∞, it degenerates to Uniform.

4.1.2 Encoding. Bandana’s encoder network propagates bandwidth-
restricted messages. To be more specific, the perturbed adjacency
matrix Ã represents an undirected graph with bidirectional edge
weights, on which Bandana performs message propagation instead
of Ā𝑚 . Propagation on the 𝑘th layer can be formalized as

Z(𝑘 ) ← G̃Z(𝑘−1)W(𝑘−1)
𝑒 , G̃ = Σ𝑒 Ã (6)

The entire encoder-decoder is defined as

𝑟 (X,A) := Σ𝑑 (𝒃𝑑 +W𝑑

decoder

(Γ̃XΘ)
encoder

), Γ̃ = G̃𝐾 (7)

where Σ𝑑 refers to the softmax function. It now models the repre-
sentation space in a way that every node receives and aggregates
different ratios of messages from different neighbors.

4.1.3 Bandwidth prediction. Following the asymmetric encoder-
decoder architecture [21], Bandana employs a lightweight MLP as
its decoder. What the bandwidth decoder “reconstructs” is the band-
width value of every edge, i.e. it predicts how much every edge
is masked during training. This is in fact a logistic regression
problem as Bandana aims to predict softmax probabilities, which
can still be optimized by the cross-entropy objective:

L(𝑟 (X,A), Ã) := 1⊤𝑛

(
𝛿E
|E | +

𝛿E−
|E− |

)
(−Ã ◦ log 𝑟 (X,A))1𝑛 (8)

The difference is that all positive edges (𝛿E ) are now participating
in training. We still keep the term 𝛿E− and add blocked edges as
zero samples.

4.1.4 Layer-wise masking and prediction. It has become common
knowledge that different network layers capture different gran-
ularities of information: shallower layers capture more general
information, while deeper layers capture information more specific
to the pretext task [27, 77, 84]. We propose a layer-wise masking
scheme to explicitly capture different granularities. We generate dif-
ferent bandwidth masks for every layer of GNN, with the 𝑘th-layer
perturbed adjacency matrix Ã(𝑘 ) and the corresponding message
propagation matrix G̃(𝑘 ) . On the backend, we share one MLP de-
coder for every layer. We calculate the reconstruction loss for each
layer and the final loss is the average of all layer losses:

L =
1
𝐾

𝐾−1∑︁
𝑘=0
L (𝑘 ) = 1

𝐾

𝐾−1∑︁
𝑘=0
L(Σ𝑑 (𝒃𝑑 +W𝑑 (Γ̃(𝑘 )XΘ(𝑘 ) ) ), Ã(𝑘 ) ) (9)

where Γ̃(𝑖 ) =
∏𝑘−1
𝑖=0 G̃(𝑘 ) ,Θ(𝑘 ) =

∏𝑘−1
𝑖=0 W(𝑖 )𝑒 .

4.2 Why Are Bandwidths Informative?
In this subsection, we give empirical and theoretical support for
our bandwidth schemes.

4.2.1 A fine-grained strategy for informative topology. The advan-
tages of bandwidth masking and prediction are threefold.
• Compared with binary link reconstruction, predicting a continu-

ous bandwidth value is a more fine-grained and challenging
task which is more meaningful to the mask modeling [21].

• Global informativeness, as non-discrete bandwidth masks
guarantee a complete graph topology and unimpeded message
flows so that deeper GNNs can be pre-trained more effectively.
As shown in Figure 2(b), Bandana greatly outperforms MaskGAE
on GNN pre-training with 5 or more layers.

• Local informativeness, as Bandana can provide the discrimi-
native power of neighbor messages by bandwidth prediction. As
shown in Figure 3 (right), Bandana has the most discriminative
neighborhood weights.

4.2.2 Implicit optimization on the topological manifold. Bandana’s
excellent topological learning ability is theoretically guaranteed.We
elucidate that Bandana can be interpreted as a regularized denoising
autoencoder [70] in an implicit graph topological space, while a
discrete TopoRec cannot. Furthermore, bandwidth prediction is
mathematically equivalent to optimizing a “score” in that space. To
this end, we first assign each column of the adjacency matrix A to
the corresponding node in the graph as its new “feature”.

Definition 4.2 (Topological encoding). A topological encoding ma-

trix is defined as T := A−1𝑛1⊤𝑛 ∈ R𝑛×𝑛 , where 1𝑛 is the all-ones
vector. Denote 𝑻 𝑗 as the topological encoding of node 𝑗 .

One advantage of the topological encoding is that it allows us to
write the bandwidth masking as adding random noises on it:

T̃ = 𝛿E (T + 𝝐) = T + 𝝐, 𝝐𝑖 ∼ softmax(N (0, I𝑛)) (10)

Assume 𝑻 𝑗 and the perturbed �̃� 𝑗 follow the probability distribu-
tions 𝑝 (𝑻 𝑗 ) and 𝑝 (𝑻 𝑗 ) respectively. From the topological encoding
perspective, X and Θ are conversely the non-linear transformations
on Ã, in which case we denote our bandwidth reconstructor by 𝑟X.
Under this premise, the following Proposition gives that 𝑟X can be
viewed as a regularized denoising autoencoder.

Proposition 4.3 (Non-discrete TopoRec is a denoising au-
toencoder). Suppose a TopoRec on vectors 𝑟X : R𝑛 → R𝑛 is at

least first-order differentiable (to 𝑻 𝑗 for the rest of the paper). If the

perturbed topological encoding �̃� 𝑗 on a connected graph follows a

continuous distribution 𝑝 (𝑻 𝑗 ) and satisfies
(i) 𝑛 ≪ 2|E |, and
(ii) all elements in {�̃� 𝑗 }𝑛𝑗=1 follow an i.i.d. isotropicmultivariate

Gaussian N(𝝁�̃� 𝑗 ,Σ�̃� 𝑗
), i.e. the covariance matrix satisfies

Σ�̃� 𝑗
= 𝑐I where 𝑐 is an arbitrary constant.

Then, L in eq. (8) defines a regularized denoising autoencoder:
L = E𝑗 ∈V [ ∥𝑟X (𝑻 𝑗 ) − 𝑻 𝑗 ∥2 ]

reconstruction

+𝜎2
𝜖E𝑗 ∈V [ ∥∇𝑟X (𝑻 𝑗 ) ∥2𝐹 ]

regularization

+𝑜 (𝜎2
𝜖 ) (11)

where 𝜎2
𝜖 is the noise variance.

Proof. Please refer to Appendix A.2. We also discuss the mild-
ness of the assumptions in Appendix A.4. □

Proposition 4.3 is consistentwith previous studies that themasked
autoencoder is a kind of denoising autoencoder [21], but the noise
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should technically be non-discrete for TopoRecs. According to the
existing analysis of the denoising autoencoder [1], we have the
following theorem.

Theorem 4.4 (Bandwidth prediction optimizes in the topo-
logical encoding space). Suppose 𝑟X fulfills the condition in

Proposition 4.3. Then for 𝜎2
𝜖 → 0, the optimal TopoRec 𝑟∗X =

arg min𝑟X L is asymptotically equivalent to an implicit gradient

optimizer of log 𝑝 (𝑻 𝑗 ):
𝑟∗X (𝑻 𝑗 ) − 𝑻 𝑗 ∝ ∇ log𝑝 (𝑻 𝑗 ) (12)

Proof. Please refer to Appendix A.3. □

By Theorem 4.4, the optimal bandwidth predictor (𝑟X = 𝑟∗X)
optimizes the gradient of log probabilities of the topological encod-
ing, indicating that the bandwidth masking and prediction scheme
are theoretically learning graph topology. Based on our con-
clusions, Bandana can be further expanded to some theoretically
grounded frameworks, such as score-based models [61] and energy-
based models [40]. We have further discussions in Appendix B.2.

5 EXPERIMENTS AND RESULT ANALYSES
In this section, we first introduce experimental configurations in
Section 5.1. More detailed settings can be found in Appendix C.
Then, we showcase the experiment results of Bandana to answer
the following research questions:
• RQ1. Is Bandana able to learn more informative topology than

discrete TopoRecs in practice?

• RQ2. How does Bandana perform on node classification?

• RQ3. How does Bandana perform on link prediction?

• RQ4.How effective are Boltzmann-Gibbs bandwidths and the layer-

wise strategy?

• RQ5. How does the temperature affect Bandana’s performance?

5.1 Experimental Settings
Datasets. Apart from the two synthetic datasets in Section 5.2, we
conduct experiments on 9 well-known undirected and unweighted
graph benchmark datasets, including (i) citation networks: Cora,
CiteSeer, PubMed [58]; (ii) co-purchase networks: Photo, Com-
puters [59]; (iii) co-author networks: CS, Physics [59]; (iv) OGB
networks: ogbn-arxiv (for node classification), ogbl-collab (for link
prediction) [28]. Detailed statistics can be found in Appendix C.1.

Reproducibility. We report all quantitative results as “mean ±
standard deviation” by running 10 times under the same setup.
Hardware, training setups, and hyperparameters can be found in
Appendix C.2 and C.3.

Baselines. As self-supervised methods are being studied, only
self-supervised algorithms are considered as baselines. They are
divided into the following categories: (i) traditional graph autoen-
coders: GAE [37], ARGA [52]; (ii) variational graph autoencoders:
VGAE [37], ARVGA [52], SIG-VAE [19], SeeGera [45]1; (iii) contrastive
and non-contrastive (with no negative sampling) methods: GRACE
[88], GCA [89], COSTA [85], CCA-SSG [81], T-BGRL [60]; (iv) FeatRecs:
GraphMAE [26], GraphMAE2 [25]; (v)TopoRecs: S2GAE [63], MaskGAE-
edge, MaskGAE-path [42] (with edge masking and path masking

1SeeGera fuses mask modeling with the variational autoencoder. We still count it as
variational-based in light of its generative characteristic and learning objective.

MaskGAE Bandana

MaskGAE BandanaTwo-moon (2,000 nodes)

(a) Swiss Roll (500 nodes)

(b)

Figure 4: Manifold learning visualizations. (a) The Swiss Roll.
MaskGAE only learns suboptimal representations loosely scattered
in the latent space, whereas Bandana learns a more compact sur-
face. (b) The Two-moon. While MaskGAE does not give informative
results, Bandana successfully learns the crescent-shaped topology.

separately). We use “†” to mark baselines that are implemented by
us for the current task because they are not officially implemented.

5.2 Learning Topological Manifolds (RQ1)
We verify Bandana’s informative representation learning ability by
performing manifold learning on two undirected synthetic datasets
with structures: Swiss Roll, a curved surface on R3; and Two-moon,
two interleaved crescent-shaped clusters onR2. We assign a column
of the identity matrix I𝑛 to each node as features with no topolog-
ical information. The latent representation spaces are learned by
MaskGAE and Bandana respectively (each model is trained till the
early stopping) and visualized by t-SNE [65]. It is obvious in Figure
4 that Bandana is more topologically informative than MaskGAE.

5.3 Comparison on Node Classification (RQ2)
Similar to other self-supervised models [21, 26, 42, 68, 81], Bandana
follows the linear probing setup to evaluate. That is, we use
the pre-trained encoder’s output representations to train a Xavier-
initialized [15] linear layer.

We report two classic metrics, Micro-F1 and Macro-F1, in Ta-
ble 1. It is evident that Bandana achieves competitive performance
with state-of-the-art contrastive methods and FeatRecs, but only
with a structure-learning pretext. As indicated by the Avg. Rank,
the performance of discrete TopoRecs (S2GAE, MaskGAE) in node
classification tasks is difficult to emulate the dominant FeatRecs
(GraphMAE, GraphMAE2). However, Bandana surpasses both settings
of MaskGAE on 7/8 datasets, surpasses COSTA (one of the most ad-
vanced contrastive frameworks) on 6/7 datasets, and outperforms
GraphMAE and GraphMAE2 by 1.2 and 2.8 ranks, respectively. Our
work, perhaps surprisingly, shows that fine-grained topological
learning can uncover the close relationship between the graph
structure and the intrinsic characteristics of node features.

5.4 Comparison on Link Prediction (RQ3)
Unlike node classification, our evaluation of link prediction is differ-
ent from the old routine. Previous TopoRecs directly performed link
prediction in an end-to-end manner without probing or fine-tuning
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Table 1: Micro-F1(%) and Macro-F1(%) of node classification. Best results in each column are in bold. “Avg. Rank” stands for the average rank. “OOM”
stands for “Out-Of-Memory” on a 24GB GPU.

Micro-F1 Year Model Cora CiteSeer PubMed Photo Computers CS Physics ogbn-arxiv Avg. RankMacro-F1

Traditional
Autoencoder

2016 GAE† [37] 80.15 ± 0.34 69.79 ± 0.36 80.51 ± 0.53 91.07 ± 0.09 87.92 ± 0.12 90.46 ± 0.29 93.04 ± 0.03 69.58 ± 0.32 10.378.44 ± 0.90 62.64 ± 0.58 79.62 ± 0.38 89.83 ± 0.13 86.02 ± 0.25 89.75 ± 0.32 91.02 ± 0.04 48.25 ± 0.53

2018 ARGA† [52] 77.93 ± 0.59 68.55 ± 0.34 77.78 ± 0.63 92.77 ± 0.26 88.11 ± 0.08 92.46 ± 0.14 94.32 ± 0.04 69.81 ± 0.27 9.376.89 ± 0.51 63.33 ± 0.68 76.54 ± 0.82 91.60 ± 0.10 86.34 ± 0.15 90.61 ± 0.19 92.58 ± 0.07 47.89 ± 0.45

Variational
Autoencoder

2016 VGAE† [37] 76.30 ± 0.49 58.85 ± 0.79 75.73 ± 0.22 89.58 ± 0.20 84.99 ± 0.19 92.33 ± 0.07 94.40 ± 0.07 69.94 ± 0.30 12.374.70 ± 0.60 52.80 ± 0.91 75.39 ± 0.24 86.61 ± 0.40 82.26 ± 0.30 89.09 ± 0.16 92.28 ± 0.11 47.05 ± 0.79

2018 ARVGA† [52] 76.85 ± 0.88 54.73 ± 0.46 73.06 ± 0.42 89.51 ± 0.23 85.03 ± 0.15 92.56 ± 0.09 93.64 ± 0.08 69.39 ± 0.36 12.575.15 ± 0.95 48.71 ± 1.27 73.49 ± 0.44 86.88 ± 0.40 81.54 ± 0.36 89.67 ± 0.23 91.08 ± 0.15 47.34 ± 0.59

2023 SeeGera [45] 83.95 ± 0.55 72.11 ± 1.26 79.55 ± 0.29 90.13 ± 0.57 88.39 ± 0.26* 88.79 ± 0.93 OOM OOM 9.682.88 ± 0.66 68.48 ± 0.86 78.36 ± 0.44 87.76 ± 1.01 85.38 ± 1.62

Contrastive &
Non-contrastive

2020 GRACE [88] 80.95 ± 0.29 70.39 ± 0.46 83.55 ± 0.44 92.12 ± 0.14 87.68 ± 0.15 91.90 ± 0.01 OOM OOM 8.379.20 ± 0.44 68.15 ± 0.32 83.29 ± 0.20 90.99 ± 0.36 85.82 ± 0.27 89.09 ± 0.01

2021 GCA [89] 81.92 ± 0.17 71.60 ± 0.27 84.08 ± 0.16 92.39 ± 0.20 87.14 ± 0.15 92.61 ± 0.06 OOM OOM 6.480.76 ± 0.35 68.79 ± 0.37 83.70 ± 0.29 91.17 ± 0.30 85.10 ± 0.31 90.64 ± 0.16

2022 COSTA [85] 84.60 ± 0.20 72.57 ± 0.31 83.76 ± 0.03 90.98 ± 0.00 87.35 ± 0.08 92.48 ± 0.05 95.31 ± 0.04 OOM 6.482.50 ± 0.21 66.11 ± 0.29 83.16 ± 0.02 88.22 ± 0.00 85.99 ± 0.13 89.32 ± 0.08 93.90 ± 0.05

2021 CCA-SSG [81] 83.96 ± 0.38 73.45 ± 0.44 81.81 ± 0.53 92.87 ± 0.36 88.61 ± 0.29 93.01 ± 0.29 95.31 ± 0.07 69.52 ± 0.09 5.183.01 ± 0.48 68.75 ± 0.51 81.31 ± 0.51 91.69 ± 0.49 87.24 ± 0.52 90.73 ± 0.51 93.76 ± 0.10 47.39 ± 0.51

FeatRec
2022 GraphMAE [26] 84.05 ± 0.59 73.06 ± 0.37 80.98 ± 0.47 92.92 ± 0.40 89.24 ± 0.45 93.09 ± 0.14 95.65 ± 0.07 71.30 ± 0.24 3.683.07 ± 0.53 67.78 ± 0.85 80.26 ± 0.48 91.93 ± 0.47 88.12 ± 0.78 91.42 ± 0.15 94.19 ± 0.09 51.15 ± 0.15

2023 GraphMAE2 [25] 83.84 ± 0.54 73.48 ± 0.34 81.34 ± 0.44 93.30 ± 0.20 89.01 ± 1.53 91.31 ± 0.07 95.25 ± 0.05 71.82 ± 0.00 5.282.80 ± 0.46 68.70 ± 0.42 80.68 ± 0.43 92.19 ± 0.24 87.63 ± 1.79 88.89 ± 0.13 93.78 ± 0.07 50.42 ± 0.00

TopoRec

2023 S2GAE [63] 78.34 ± 0.96 65.31 ± 0.64 80.11 ± 0.52 91.43 ± 0.07 85.31 ± 0.07 90.47 ± 0.07 93.98 ± 0.06 67.77 ± 0.36 11.877.44 ± 0.86 62.54 ± 0.64 79.04 ± 0.47 90.47 ± 0.15 81.48 ± 0.18 87.69 ± 0.11 91.95 ± 0.08 36.41 ± 0.24

2023 MaskGAE-edge [42] 83.33 ± 0.15 72.02 ± 0.46 82.33 ± 0.39 93.28 ± 0.08 89.42 ± 0.15 92.29 ± 0.25 95.10 ± 0.04 70.95 ± 0.29 5.982.60 ± 0.24 66.36 ± 0.63 81.63 ± 0.41 92.04 ± 0.08 88.00 ± 0.14 90.17 ± 0.34 93.48 ± 0.04 49.37 ± 0.45

2023 MaskGAE-path [42] 82.54 ± 0.16 72.32 ± 0.39 82.80 ± 0.22 93.29 ± 0.10 89.40 ± 0.10 92.54 ± 0.21 95.15 ± 0.11 71.22 ± 0.40 5.481.84 ± 0.26 65.77 ± 0.40 82.23 ± 0.23 92.16 ± 0.17 87.69 ± 0.15 90.25 ± 0.31 93.51 ± 0.03 49.99 ± 0.54
84.62 ± 0.37 73.60 ± 0.16 83.53 ± 0.51 93.44 ± 0.11 89.62 ± 0.09 93.10 ± 0.05 95.57 ± 0.04 71.09 ± 0.24Bandana 82.97 ± 0.92 68.11 ± 0.48 82.99 ± 0.40 92.26 ± 0.04 87.79 ± 0.20 91.02 ± 0.13 94.20 ± 0.05 49.66 ± 0.50 2.4

*We obtain a much lower score for SeeGera on Computers than the official one. We report the Micro-F1 from the original paper [45] instead.

since they do the exact same thing for pre-training. However, it
is not a self-supervised case and hence not suitable for evaluating
self-supervised models. Thus, we utilize a fairer evaluation scheme
called dot-product probing, which replaces the original MLP de-
coder with a dot-product operator Arecon = 𝜎 (ZZ⊤), as SeeGera
does [45]. We employ the dot-product probing instead of the end-to-
end training for Bandana as well as all baselines (note that this may
lead to some discordance between our results and those officially
reported).

We report Area Under the ROC curve (AUC) and Average Preci-
sion (AP) in Table 2. We have several observations. (i) Despite no
longer using link prediction for pre-training, Bandana still achieves
the best link prediction results. In particular, it greatly outperforms
the performance of MaskGAE by 20% on Computers. (ii) Bandana
gains over 3%-10% improvement compared to the best contrastive re-
sults. From the Avg. Rank, the performance of contrastive methods
under dot-product probing is less than satisfactory, even for the ad-
vanced link prediction model T-BGRL, because they do not explicitly
learn graph structures while pre-training. (iii) FeatRecs (GraphMAE,
GraphMAE2) do not perform as well as TopoRecs and even tradi-
tional autoencoders (GAE, ARGA), since they only pay attention to
node features. (iv) Some contrastive methods and variational au-
toencoders require more memory for large graphs. This highlights
the lightweight property of TopoRecs. More experiment results
of link prediction, including Hits@20/Hits@50 on ogbl-collab and
further analyses of the probing setup, can be found in Appendix D.

5.5 Ablation and Parameter Analysis
5.5.1 The masking strategy (RQ4). We have analyzed the strengths
of Boltzmann-Gibbs bandwidths and the layer-wise strategy in Sec-
tion 4.1. To validate these strengths, we experiment with different
distributions, including the discrete Bernoulli distribution 𝑀𝑖 𝑗 ∼
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝), uniform distribution 𝑀𝑖 𝑗 ∼ 𝑈 (2𝑝 − 1, 1) (𝑝 > 0.5),
truncated Gaussian distribution𝑀𝑖 𝑗 ∼ 𝜓 (𝑝, 1, 2𝑝 − 1, 1) (𝑝 > 0.5)2,
and the Boltzmann-Gibbs distribution in eq. (5) (we ensure that
masks sampled from these distributions have the same mask ra-
tio 𝑝). These variants only feed the output-layer representations
into the decoder. The model employing layer-wise masking only
(each layer uses an independent mask set but only the last layer
performs the prediction) is referred to as LWM, while the one with
both layer-wise masking and prediction is referred to as LWP. It is
obvious from Table 3 that the model with Boltzmann-Gibbs band-
widths outperforms all models with different mask distributions.
Furthermore, Bandana’s setting obtains the best node classification
performance on all three datasets. Note that the model with LWM
only learns suboptimal representations because it only attempts to
predict one set of masks while multiple different sets are used.

5.5.2 Effect of the temperature (RQ5). As discussed in Section 4.1,
the temperature 𝜏 of the Boltzmann-Gibbs distribution controls the
continuity of the mask. This is also called temperature scaling in the

2𝜓 (𝜇, 𝜎2, 𝑎,𝑏 ) denotes a Gaussian distributionN(𝜇, 𝜎2 ) truncatedwithin the interval
[𝑎,𝑏 ] where −∞ < 𝑎 < 𝑏 < +∞.
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Table 2: AUC(%) and AP(%) of link prediction. Best results in each column are in bold. “OOM” stands for “Out-Of-Memory” on a 24GB GPU. “NODATA”
means that the model cannot perform due to the specific data format.

AUC
AP Year Model Cora CiteSeer PubMed Photo Computers CS Physics Avg. Rank

Traditional
Autoencoder

2016 GAE [37] 94.66 ± 0.26 95.19 ± 0.45 94.58 ± 1.12 71.45 ± 0.95 70.99 ± 1.03 93.78 ± 0.36 88.88 ± 1.11 8.694.22 ± 0.39 95.70 ± 0.31 94.26 ± 1.65 65.99 ± 0.96 67.88 ± 0.82 89.87 ± 0.59 82.45 ± 1.59

2018 ARGA [52] 94.76 ± 0.18 95.68 ± 0.35 94.12 ± 0.08 85.42 ± 0.79 67.09 ± 3.93 95.49 ± 0.17 90.70 ± 1.08 6.594.93 ± 0.20 96.34 ± 0.25 94.19 ± 0.08 80.58 ± 1.40 62.53 ± 3.17 92.56 ± 0.33 89.37 ± 1.16

Variational
Autoencoder

2016 VGAE [37] 91.24 ± 0.48 94.55 ± 0.48 95.46 ± 0.04 95.61 ± 0.05 92.69 ± 0.03 87.34 ± 0.43 89.27 ± 0.83 6.592.27 ± 0.43 95.34 ± 0.37 94.29 ± 0.07 94.63 ± 0.06 88.27 ± 0.08 80.24 ± 0.55 82.79 ± 1.14

2018 ARVGA [52] 91.35 ± 0.87 94.47 ± 0.33 96.17 ± 0.21 95.44 ± 0.14 92.38 ± 0.15 87.39 ± 0.37 88.96 ± 0.96 6.991.98 ± 0.85 95.21 ± 0.33 94.81 ± 0.41 94.49 ± 0.12 88.49 ± 0.33 80.31 ± 0.49 82.38 ± 1.31

2019 SIG-VAE [19] 90.36 ± 1.34 88.85 ± 0.69 OOM OOM OOM OOM OOM 11.091.36 ± 1.16 90.27 ± 0.73

2023 SeeGera [45] 95.49 ± 0.70 94.61 ± 1.05 95.19 ± 3.94 95.25 ± 1.19 96.53 ± 0.16 95.73 ± 0.70 OOM 3.895.90 ± 0.64 96.40 ± 0.89 94.60 ± 4.17 94.04 ± 1.18 96.33 ± 0.16 93.17 ± 0.53

Contrastive &
Non-contrastive

2020 GRACE† [88] 81.80 ± 0.45 84.78 ± 0.38 93.11 ± 0.37 88.64 ± 1.17 89.97 ± 0.25 87.67 ± 0.10 OOM 9.282.02 ± 0.50 82.85 ± 0.36 92.88 ± 0.30 83.85 ± 4.15 92.15 ± 0.43 94.87 ± 0.02

2021 GCA† [89] 81.91 ± 0.76 84.72 ± 0.28 94.33 ± 0.67 89.61 ± 1.46 90.67 ± 0.30 88.05 ± 0.00 OOM 8.780.51 ± 0.71 81.57 ± 0.22 93.13 ± 0.62 86.53 ± 3.00 90.50 ± 0.63 94.94 ± 0.37

2021 CCA-SSG† [81] 67.54 ± 1.30 78.88 ± 2.73 74.97 ± 0.28 91.04 ± 2.98 83.85 ± 1.35 83.54 ± 0.98 77.40 ± 0.08 12.072.74 ± 1.18 77.42 ± 4.56 77.11 ± 0.26 89.68 ± 3.85 84.04 ± 1.74 78.66 ± 1.06 73.33 ± 0.10

2023 T-BGRL [60] 73.18 ± 0.54 78.11 ± 0.48 76.21 ± 0.18 80.80 ± 0.04 84.60 ± 0.05 70.08 ± 0.12 89.18 ± 0.04 11.176.81 ± 0.73 83.15 ± 0.47 80.99 ± 0.13 84.34 ± 0.06 86.85 ± 0.05 79.50 ± 0.09 84.30 ± 0.05

FeatRec
2022 GraphMAE† [26] 93.02 ± 0.53 95.21 ± 0.47 87.54 ± 1.06 75.08 ± 1.24 71.27 ± 0.89 92.45 ± 4.18 85.03 ± 7.16 9.991.40 ± 0.59 94.42 ± 0.67 86.93 ± 1.01 70.04 ± 1.12 66.84 ± 1.10 91.67 ± 4.17 82.46 ± 9.33

2023 GraphMAE2† [25] 93.26 ± 1.00 95.26 ± 0.14 90.85 ± 0.91 73.03 ± 2.24 72.20 ± 2.09 94.57 ± 0.32 94.56 ± 0.81 8.191.65 ± 0.98 94.36 ± 0.20 90.37 ± 0.92 68.77 ± 1.50 67.97 ± 1.52 92.76 ± 0.54 93.86 ± 1.09

TopoRec

2023 S2GAE [63] 89.27 ± 0.33 86.35 ± 0.42 89.53 ± 0.23 NODATA NODATA NODATA NODATA 12.089.78 ± 0.22 87.38 ± 0.29 88.68 ± 0.33

2023 MaskGAE-edge [42] 95.66 ± 0.16 97.02 ± 0.27 96.51 ± 0.82 81.12 ± 0.45 76.23 ± 3.13 92.41 ± 0.44 91.94 ± 0.37 5.594.65 ± 0.24 96.89 ± 0.45 96.08 ± 0.68 77.11 ± 0.40 71.71 ± 2.90 87.16 ± 0.69 86.33 ± 0.55

2023 MaskGAE-path [42] 95.47 ± 0.25 97.21 ± 0.17 97.19 ± 0.18 80.46 ± 0.34 73.24 ± 1.26 87.96 ± 0.44 86.19 ± 0.36 6.994.64 ± 0.25 97.02 ± 0.32 96.69 ± 0.19 76.56 ± 0.55 70.94 ± 1.26 80.84 ± 0.58 78.55 ± 0.45
95.71 ± 0.12 96.89 ± 0.21 97.26 ± 0.16 97.24 ± 0.11 97.33 ± 0.06 97.42 ± 0.08 97.02 ± 0.04Bandana 95.25 ± 0.16 97.16 ± 0.17 96.74 ± 0.38 96.79 ± 0.15 96.91 ± 0.09 97.09 ± 0.15 96.67 ± 0.05 1.2

Table 3: Effect of the masking strategies on the average node classi-
fication accuracy (%). Best results in each column are in bold. Second-best
results in each column are underlined.

Variants Cora CiteSeer PubMed

Bernoulli 79.16 ± 0.15 68.60 ± 0.90 82.67 ± 0.40
Uniform 81.36 ± 0.20 70.25 ± 0.55 81.84 ± 0.47
Truncated Gaussian 79.34 ± 0.46 69.95 ± 0.25 82.00 ± 0.56
Boltzmann-Gibbs 84.02 ± 0.09 72.45 ± 0.42 83.31 ± 0.38
Boltzmann-Gibbs, LWM 82.38 ± 0.19 70.75 ± 0.55 81.70 ± 0.57
Bandana (Boltzmann-Gibbs, LWP) 84.62 ± 0.37 73.60 ± 0.16 83.53 ± 0.51

field of calibration [18], distillation [23], etc. Figure 5 illustrates the
node classification performance with different values of 𝜏 , set as 1e-
6, 0.1, 0.2, ..., 0.9, 1, 2, and 5. The extent of performance fluctuation
w.r.t. temperature varies across datasets, as does the temperature
range for the best accuracy, such as [0.8, 0.9] for Cora and [0.2, 1]
for PubMed. However, it can be observed on the vast majority of
datasets that the model performance declines if 𝜏 is too small (i.e.
the discretized mask) or too large (i.e. the uniformized mask).

6 CONCLUSION
This work firstly discusses two limitations in the message propaga-
tion of existing discrete TopoRecs, which induce the insufficiency

ogbn-arxivPhysicsCSComputers
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Figure 5: Node classification accuracy w.r.t. the temperature.

of learning topologically informative representations. To address
the issues, we explore non-discrete masking by a novel bandwidth
masking and reconstruction scheme. We present our masked graph
autoencoder Bandana via the specialized Boltzmann-Gibbs mask-
ing and layer-wise prediction, and thoroughly explore its empirical
and theoretical superiority. We demonstrate that Bandana can learn
more precise graph manifolds and outperform other baselines, in-
cluding the state-of-the-art contrastive methods and FeatRecs, on
link prediction and the feature-related node classification, solely by
pre-training on a structure-learning pretext. While Bandana may
not represent the optimal solution, it is the first attempt to explore
a new paradigm for masked graph autoencoders that diverges from
the discrete mask-then-reconstruct stereotype.
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A MORE THEORETICAL DETAILS
A.1 Proof of Theorem 3.1

Proof. It is obvious that the unmasked ego-graph G𝑖,𝑚 has
𝑝 (𝑛𝑖 − 1) + 1 nodes. So

𝐸𝐷 (G𝑖 ) − 𝐸𝐷 (G𝑖,𝑚)

=
𝑛𝑖 − 1
𝑛𝑖
∥𝑿G𝑖

𝑖
− 𝑿G𝑖

𝑗
∥2 − 𝑝 (𝑛𝑖 − 1)

𝑝 (𝑛𝑖 − 1) + 1
∥𝑿G𝑖

𝑖
− 𝑿G𝑖

𝑗
∥2

=
(𝑛𝑖 − 1) (𝑝 (𝑛𝑖 − 1) + 1) − 𝑝𝑛𝑖 (𝑛𝑖 − 1)

𝑝𝑛𝑖 (𝑛𝑖 − 1) + 𝑛𝑖
∥𝑿G𝑖

𝑖
− 𝑿G𝑖

𝑗
∥2

=
(𝑛𝑖 − 1) (1 − 𝑝)
𝑝𝑛𝑖 (𝑛𝑖 − 1) + 𝑛𝑖

∥𝑿G𝑖
𝑖
− 𝑿G𝑖

𝑗
∥2

≥ 0 (13)

and 𝐸𝐷 (G𝑖 ) − 𝐸𝐷 (G𝑖,𝑚) = 0 iff 𝑝 = 1. □

A.2 Proof of Proposition 4.3
Proof. Under the assumption of �̃� 𝑗 ∼ N(𝝁�̃� 𝑗 ,Σ�̃� 𝑗

) and Σ�̃� 𝑗
=

𝑐I, 𝑟X (�̃� 𝑗 ) is a predictor of the Gaussian mean 𝝁�̃� 𝑗
. As such, the

negative log likelihood in eq. (8) can be rewritten as an ℓ2 error of
topological encoding:

L = −E𝑗∈V [log 𝑟X (�̃� 𝑗 )]

= −E𝑗∈V

log
exp

(
− 1

2 (𝑟X (�̃� 𝑗 ) − �̃� 𝑗 )
⊤Σ−1

�̃� 𝑗
(𝑟X (�̃� 𝑗 ) − �̃� 𝑗 )

)
(2𝜋)

𝑛
2 det(Σ�̃� 𝑗

)
1
2


=

1
2𝑐

E𝑗∈V
[
(𝑟X (�̃� 𝑗 ) − �̃� 𝑗 )⊤ (𝑟X (�̃� 𝑗 ) − �̃� 𝑗 )

]
+ log((2𝜋)

𝑛
2 det(Σ�̃� 𝑗

)
1
2 )

𝒄𝒐𝒏𝒔𝒕

∝ E𝑗∈V [∥𝑟X (�̃� 𝑗 ) − �̃� 𝑗 ∥2] (14)

expanding 𝑟X (·) with the first-order Taylor series yields

𝑟X (�̃� 𝑗 ) = 𝑟X (𝑻 𝑗 + 𝜖) = 𝑟X (𝑻 𝑗 ) + ∇𝑟X (𝑻 𝑗 )𝜖 + 𝑜 (𝜖⊤𝜖) (15)

and we have

L = E𝑗∈V [∥𝑟X (𝑻 𝑗 ) + ∇𝑟X (𝑻 𝑗 )𝜖 − (𝑻 𝑗 + 𝜖) + 𝑜 (𝜖⊤𝜖)∥2]
= E𝑗∈V [∥(𝑟X (𝑻 𝑗 ) − 𝑻 𝑗 ) + (∇𝑟X (𝑻 𝑗 )𝜖 − 𝜖)∥2] + 𝑜 (𝜎2

𝜖 )
= E𝑗∈V [∥𝑟X (𝑻 𝑗 ) − 𝑻 𝑗 ∥2]
+ 2E𝑗∈V [𝜖]⊤E𝑗∈V [(∇𝑟X (𝑻 𝑗 ) − I)⊤ (𝑟X (𝑻 𝑗 ) − 𝑻 𝑗 )]

+
(
E𝑗∈V [∥∇𝑟X (𝑻 𝑗 )𝜖 ∥2] + E𝑗∈V [𝜖⊤𝜖]

−2E𝑗∈V [𝜖]⊤E𝑗∈V [∇𝑟X (𝑻 𝑗 )]
)
+ 𝑜 (𝜎2

𝜖 )

= E𝑗∈V [∥𝑟X (𝑻 𝑗 ) − 𝑻 𝑗 ∥2]
+ tr(E𝑗∈V [𝜖𝜖⊤]E𝑗∈V [∇𝑟X (𝑻 𝑗 )⊤∇𝑟X (𝑻 𝑗 )])
+ 2𝜇⊤𝜖 E𝑗∈V [(∇𝑟X (𝑻 𝑗 ) − I)⊤ (𝑟X (𝑻 𝑗 ) − 𝑻 𝑗 )]
− 2𝜇⊤𝜖 E𝑗∈V [∇𝑟X (𝑻 𝑗 )] + 𝑜 (𝜎2

𝜖 ) (16)

As the noise vector of each ego-graph G𝑖 is a probabilistic simplex,
the mean of noises over every edge in G𝑖 is 1/deg(𝑖). This derives

the statistical mean of bandwidths on the entire graph 𝜇𝝐 as

𝜇𝝐 =
1

2|E |
∑︁
𝑖∈V

deg(𝑖) · 1
deg(𝑖) =

𝑛

2|E | (17)

Therefore, 𝜇𝜖 → 0 when 𝑛 ≪ 2|E |. In that case,
L = E𝑗 ∈V [ ∥𝑟X (𝑻 𝑗 ) −𝑻 𝑗 ∥2 ] + 𝜎2

𝜖 tr(E𝑗 ∈V [∇𝑟X (𝑻 𝑗 )⊤∇𝑟X (𝑻 𝑗 ) ] ) + 𝑜 (𝜎2
𝜖 )

= E𝑗 ∈V [ ∥𝑟X (𝑻 𝑗 ) −𝑻 𝑗 ∥2 ] + 𝜎2
𝜖E𝑗 ∈V [ ∥∇𝑟X (𝑻 𝑗 ) ∥2𝐹 ] + 𝑜 (𝜎

2
𝜖 ) (18)

□

A.3 Proof of Theorem 4.4
Proof. We follow [1] to complete the proof. From a generative

perspective, one may consider the edge set of G𝑗 as a sampled
subset from 𝑝 (𝑻 𝑗 ). Let

𝑓 (𝑻 𝑗 , 𝑟X,∇𝑟X) := 𝑝 (𝑻 𝑗 ) (E𝑗∈V [∥𝑟X (𝑻 𝑗 ) − 𝑻 𝑗 ∥2]
+ 𝜎2

𝜖E𝑗∈V [∥∇𝑟X (𝑻 𝑗 )∥2𝐹 ]) (19)

Then the bandwidth prediction in eq. (11) can be transformed into
finding the extremum of an integral functional L(𝑟X):

𝑟∗ = arg minL(𝑟X), 𝑠 .𝑡 . L(𝑟X) =
∫

R𝑛
𝑓 (𝑻 𝑗 , 𝑟X,∇𝑟X)d𝑻 𝑗 (20)

Despite a multivariate functional, it can be split into individual
components:

L(𝑟X ) =
𝑛∑︁
𝑖=1

∫
R𝑛
𝑝 (𝑻 𝑗 )

(
(𝑟X,𝑖 (𝑻 𝑗 ) − 𝑇𝑖 𝑗 )2 + 𝜎2

𝜖

𝑛∑︁
𝑘=1

(
𝜕𝑟X,𝑖 (𝑻 𝑗 )
𝜕𝑇𝑘 𝑗

)2
)
d𝑻 𝑗

(21)
We know by the Euler-Langrage equation that the optimal 𝑟∗ satis-
fies

𝜕𝑓

𝜕𝑟X

����
𝑟 ∗
− d
d𝑻 𝑗

𝜕𝑓

𝜕∇𝑟X

����
𝑟 ∗

= 0 (22)

By eq. (19), we have
𝜕𝑓

𝜕𝑟X
= 2(𝑟X,𝑖 (𝑻 𝑗 ) −𝑇𝑖 𝑗 )𝑝 (𝑻 𝑗 ), (23)

𝜕𝑓

𝜕 (∇𝑟X )𝑖
= 2𝜎2

𝜖𝑝 (𝑻 𝑗 )
[
𝜕𝑟X,𝑘 (𝑻 𝑗 )
𝜕𝑇𝑖 𝑗

]⊤
𝑘

(24)

⇒ 𝜕

𝜕𝑇𝑖 𝑗

𝜕𝑓

𝜕 (∇𝑟X )𝑖
= 2𝜎2

𝜖

(
𝜕𝑝 (𝑻 𝑗 )
𝜕𝑇𝑖 𝑗

[
𝜕𝑟X,𝑘 (𝑻 𝑗 )
𝜕𝑇𝑖 𝑗

]⊤
𝑘
+ 𝑝 (𝑻 𝑗 )

[
𝜕2𝑟X,𝑘 (𝑻 𝑗 )

𝜕𝑇 2
𝑖 𝑗

]⊤
𝑘

)
(25)

Putting eq. (23) and eq. (25) into eq. (22) yields

𝑟X,𝑘 (𝑻 𝑗 ) − 𝑇𝑘 𝑗 =
𝜎2
𝜖

𝑝 (𝑻 𝑗 )

𝑛∑︁
𝑖=1

(
𝜕𝑝 (𝑻 𝑗 )
𝜕𝑇𝑖 𝑗

𝜕𝑟X,𝑘 (𝑻 𝑗 )
𝜕𝑇𝑖 𝑗

+ 𝑝 (𝑻 𝑗 )
𝜕2𝑟X,𝑘 (𝑻 𝑗 )

𝜕𝑇 2
𝑖 𝑗

)
= 𝜎2

𝜖

𝑛∑︁
𝑖=1

(
𝜕 log𝑝 (𝑻 𝑗 )

𝜕𝑇𝑖 𝑗

𝜕𝑟X,𝑘 (𝑻 𝑗 )
𝜕𝑇𝑖 𝑗

+
𝜕2𝑟X,𝑘 (𝑻 𝑗 )

𝜕𝑇 2
𝑖 𝑗

)
(26)

[1] gives an analytical solution of eq. (26) when 𝜎2
𝜖 → 0:

𝑟∗X,𝑘 (𝑻 𝑗 )
����
𝜎2
𝜖→0

= 𝑇𝑘 𝑗 + 𝜎2
𝜖

𝜕 log 𝑝 (𝑻 𝑗 )
𝜕𝑇𝑖 𝑗

+ 𝑜 (𝜎2
𝜖 ) (27)

so the proof concludes:

𝑟∗X (𝑻 𝑗 ) − 𝑻 𝑗 ∝ ∇ log 𝑝 (𝑻 𝑗 ) (28)

This indicates that the perturbed topological encoding manifold
𝑝 (T̃) is approximately equal to the original manifold 𝑝 (T) when
𝝐 is small enough. Hence, despite the changing bandwidths, the
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optimizing objective remains invariant as the topological manifold
of the original graph data. □

A.4 Mildness of Assumptions
A.4.1 The noise mean 𝜇𝝐 . Proposition 4.3 and Theorem 4.4 hold
under 𝑛 ≪ 2|E |, that is, the mean of bandwidths over every edge
needs to be small enough (in other words, themask ratio needs to be
close to 1). According to eq. (17), Bandana’s mask ratio is a fixed 𝑝 =

1−𝜇𝝐 = 1−𝑛/2|E𝑡𝑟𝑎𝑖𝑛 |, which is very large in large-scale networks
(and even larger in practice because the graph data is not always
connected), thus the assumption can be easily satisfied. For discrete
TopoRecs, this also implies that little information is available during
training. Yet, Bandana keeps the global topology intact, which is
conducive to mitigating the impact of the extremely high mask
ratio. The mask ratios of Bandana throughout our experiments are
listed in Table 4, where “Calculated” represents the mask ratios
calculated by 𝑝 = 1 − 𝑛/2|E𝑡𝑟𝑎𝑖𝑛 |, and “Measured” represents the
actual mask ratios measured during training.

A.4.2 The covariance Σ�̃� 𝑗
. Another prerequisite of Proposition 4.3

and Theorem 4.4 is that the covariance of {�̃� 𝑗 }𝑛𝑗=1 should satisfy
Σ�̃� 𝑗

= 𝑐I with an arbitrary constant 𝑐 . It is obvious that 𝑐 is the
variance of noise 𝜎𝜖 , so we mainly focus on the diagonal covari-
ance matrix, which implies the independence between every two
different entries of �̃� 𝑗 . As
E[𝑇𝑖 𝑗𝑇𝑘 𝑗 ] = E[ (𝑇𝑖 𝑗 + 𝜖𝑖 𝑗 ) (𝑇𝑘 𝑗 + 𝜖𝑘 𝑗 ) ]

= E[𝑇𝑖 𝑗𝑇𝑘 𝑗 +𝑇𝑖 𝑗𝜖𝑘 𝑗 +𝑇𝑘 𝑗𝜖𝑖 𝑗 + 𝜖𝑖 𝑗𝜖𝑘 𝑗 ]
= E[𝑇𝑖 𝑗𝑇𝑘 𝑗 ] + E[𝑇𝑖 𝑗 ]E[𝜖𝑘 𝑗 ] + E[𝑇𝑘 𝑗 ]E[𝜖𝑖 𝑗 ] + E[𝜖𝑖 𝑗 ]E[𝜖𝑘 𝑗 ]
= E[𝑇𝑖 𝑗𝑇𝑘 𝑗 ] + E[𝑇𝑖 𝑗 + 𝜖𝑖 𝑗 ]E[𝑇𝑘 𝑗 + 𝜖𝑘 𝑗 ] − E[𝑇𝑖 𝑗 ]E[𝑇𝑘 𝑗 ]

= E[𝑇𝑖 𝑗 ]E[𝑇𝑘 𝑗 ] + E[𝑇𝑖 𝑗𝑇𝑘 𝑗 ] − E[𝑇𝑖 𝑗 ]E[𝑇𝑘 𝑗 ] (29)
for any 𝑖, 𝑘 ∈ N𝑗 , 𝑖 ≠ 𝑘 , it is equivalent to the independence of the
local topology {𝑇𝑖 𝑗 }𝑖∈N𝑗 of every node 𝑗 , i.e. every two incoming
edges of 𝑗 should be independent. While node relationships in real-
world networks are more likely to be correlated, this assumption
is introduced for the brevity of the mathematical derivation of
Proposition 4.3 and Theorem 4.4. Whether they still hold without
this assumption necessitates further mathematical analysis.

B MORE DISCUSSIONS
In this section, we discuss connections between Bandana and other
deep learning models, including graph attention models, score-
based models, and energy-based models. Our discussions shed light
on the reliability of Bandana from different perspectives, and we
hope they will lead to deeper insights in the future.

B.1 Graph Attention Models
The way we use bandwidth to do weighted message propagation
is inspired by the graph self-attention mechanism [4, 35, 67, 76].
Existing studies have pointed out that attention weights should be
able to distinguish different edges [13], and softmax-based atten-
tion can amplify the dispersion of attention weights to be more
discriminative [54]. Therefore, we hold that it is beneficial to gener-
ate bandwidth values from a softmax-amplified distribution, i.e. the
Boltzmann-Gibbs distribution. Yet, our bandwidth masking and
graph attention mechanisms are fundamentally different.
Graph attention models empirically fit a locally optimal weight

Table 4: Mask ratios of Bandana on various datasets.

Dataset Calculated Measured

Cora 0.6983 0.7077
CiteSeer 0.5702 0.6048
PubMed 0.7383 0.7571
Photo 0.9622 0.9630
Computers 0.9671 0.9679
CS 0.8683 0.8697
Physics 0.9182 0.9185
ogbn-arxiv 0.9140 0.9158
ogbl-collab 0.8840 0.8995

distribution of neighborhood, in which the parameter matrices con-
verge as training goes on. Our bandwidth masking strategy does
not learn the weights, but randomly generates them parameter-free.
For every iteration, each edge is randomly assigned a different
bandwidth, so that different neighbors will be noticed every time
to help the encoder distinguish their messages. Plus, the layer-wise
masking is inspired by SuperGAT [35] which, however, does not
give any explanations, discussions, or even empirical results in
terms of the layer-wise approach. Our work also bridges this gap.

Bandana is currently not able to directly pre-train GAT and
Graph Transformers as it also assigns weights to every edge in
message propagation. It needs to be adjusted to accommodate band-
widths and attention weights. How to improve the topological
learning performance of graph attention-based networks in self-
supervision now remains an interesting future work.

B.2 Score-based & Energy-based Models
By Theorem 4.4, bandwidth prediction is equivalent to optimizing
the gradient of a log probability ∇ log 𝑝 (𝑻 𝑗 ). This is also called a
“score” in the field of generation, which can be directly estimated by
Score Matching [29, 61] to generate samples that match the original
data distribution. Therefore, Bandana can be seen as an implicit
score-based model that adds Gaussian noise to the graph topology
and learns its score.

Energy-based models (EBMs) [40] perform an alternate opti-
mization process: (i) optimizing the output, and (ii) optimiz-
ing the energy. (i) The forward pass (or inference) of the model
𝑓 (𝑥 ;Θ) : 𝑥 ↦→ 𝑦 is viewed as finding the local minimum point𝑦∗ on
a manifold 𝐸Θ ∈ F . Here 𝐸Θ : X × Y → R is a scoring function of
the input-output pair (𝑥,𝑦), judging whether the output 𝑦 matches
𝑥 the best. F is the function space of 𝐸Θ. 𝐸Θ (𝑥,𝑦) is smaller if 𝑦
better matches 𝑥 . As the learning process goes on, 𝑦 has an in-
creasing tendency for minimizing 𝐸Θ (𝑥,𝑦), and 𝑦 = 𝑦∗ when the
model converges. Analogous to the principle of minimum energy in
thermodynamics, 𝐸Θ is called an energy function. (ii) The backward
pass of 𝑓 (𝑥,Θ) is viewed as searching on F for the optimal 𝐸Θ
that meets the above conditions. As the learning process goes on,
𝐸Θ (𝑥,𝑦) has an increasing tendency to assign lower energy values
to more compatible (𝑥,𝑦) pairs and higher values to less compatible
ones.

Probabilistic discriminative models 𝑓 (𝒙;Θ) : 𝒙 ↦→ �̂� based on
maximum likelihood estimation can directly define the energy as
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its negative output logit (i.e. the unnormalized probability) be-
cause it indicates which �̂� matches 𝑥 the best. However, as a non-
probabilistic model, an autoencoder cannot define the energy in
this way. This issue has been solved by [34, 62, 69] who state that
the reconstruction of denoising autoencoders is equivalent to per-
forming regularized score matching, and the energy function can
be derived using the antiderivative of the score (for any output 𝑦):

𝐸Θ (𝑿 ) = log 𝑝 (𝑿 ) =
∫
(𝑟 (𝑿 ;Θ) − 𝑿 )d𝑿 (30)

By Proposition 4.3, discrete TopoRecs are not denoising autoen-
coders and hence not EBMs in this way. On the contrary, Bandana
can be viewed as an EBM. It can be inferred from Theorem 4.4 that
the manifold of 𝑟X (T) − T is a gradient vector field T , on which
inference is allowed to perform gradient descent on T to find the
output 𝑟X (T) that is closest to the input T. Hence, the following
corollary holds:

Corollary B.1 (Bandana is energy-based). Let T = 𝐸X,Θ (T)
be an energy landscape similarly defined by eq. (30). Then
Bandana’s forward and backward passes are equivalent to im-

plicitly performing the following optimization tasks on T :
Forward pass: 𝑟X (T̃) = arg min

T̃
𝐸X,Θ (T̃)

Backward pass: 𝐸∗X,Θ = arg min
𝐸∈F
L

Such correlation between Bandana and EBM provides another
perspective of the reliability and flexibility of bandwidth mecha-
nisms. We see this as a good foundation for future insights.

C MORE CONFIGURATIONS
In this section, we detail our experimental configurations to provide
reproducibility.

C.1 Data Statistics
We use a total of 9 real-world datasets. They are categorized and
briefly introduced as follows.

Citation networks. Cora, CiteSeer, and PubMed [58] are three
benchmark datasets often used for semi-supervised node classifi-
cation. While Cora and CiteSeer consist of research papers mainly
in the field of computer science, PubMed is a collection of scien-
tific abstracts from the field of biomedicine and life sciences. Each
dataset contains a bag-of-words feature matrix as well as a citation
graph, with each node a paper and each edge a citation between
two papers. Each paper is associated with a label indicating one of
several pre-defined categories, such as Neural Networks, Reinforce-
ment Learning for Cora and Artificial Intelligence (AI), Information
Retrieval (IR) for CiteSeer.

Co-purchase networks. Photo and Computers [59] are two net-
works that represent the co-purchase relations of goods in Amazon.
Edges represent that two goods are purchased together more fre-
quently. The node features are bag-of-words encoding product
reviews. The class labels are given by the categories of products.

Co-author networks. CS and Physics [59] are Microsoft Academic
Graph (MAG) [71] datasets based on the KDD Cup Challenge in
2016. Each node represents an author of a paper, the keywords of

Table 5: Dataset statistics. “†” marks the synthetic ones.

Dataset #nodes #edges #features #classes Density (‰)

Swiss Roll† 500 6,712 – – 26.9
Two-moon† 2,000 12,264 – – 3.07
Cora 2,708 10,556 1,433 7 1.44
CiteSeer 3,327 9,104 3,703 6 0.82
PubMed 19,717 88,648 500 3 0.23
Photo 7,487 119,043 745 8 4.07
Computers 13,381 245,778 767 10 2.60
CS 18,333 81,894 6,805 15 0.24
Physics 34,493 247,962 8,415 5 0.21
ogbn-arxiv 169,343 2,315,598 128 40 0.08
ogbl-collab 235,868 2,570,930 128 – 0.05

which are encoded as features. Two linked authors have collabo-
rated on a single paper. The meaning of each category tag is the
most active research direction of each author.

OGB networks. ogbn-arxiv and ogbl-collab [28] are two large-
scale undirected networks provided by the Open Graph Benchmark.
ogbn-arxiv is a citation network of computer science papers pub-
lished in arXiv. Features of the papers are obtained by averaging
the word embeddings generated by word2vec [48] in their titles
and abstracts. In addition, all papers are also associated with the
year that the corresponding paper was published. ogbl-collab is
a large-scale collaboration network between authors indexed by
MAG, with each node representing an author and edge indicating
a collaboration between two authors. Features of the authors are
the averaged word embeddings of their papers, too. As the original
graph is dynamic with the existence of multiple edges between two
authors representing the collaborations in different years, we only
keep the papers published in 2010 and beyond for training.

Detailed statistics of all datasets are listed in Table 5. “Density”
stands for the percentage of all potential connections in a network
that are actually positive edges, formally 𝜌 =

| E |
𝑛 (𝑛−1) .

C.2 Hardware & Environments
Bandana is built upon PyTorch [53] 1.12.1 and PyTorch Geometric
(PyG) [12] 2.3.1. The latter provides all 7 datasets used throughout
the quantitative experiments except ogbn-arxiv and ogbl-collab,
which are from the OGB 1.3.5 package [28]. Two synthetic datasets
used in Section 5.2 come from the PyGSP package [9]. All experi-
ments are conducted on a 24GB NVIDIA GeForce GTX 3090 GPU
with CUDA 11.3.

C.3 Model Setup & Hyperparameters
Training setup. We follow the train/validation/test split of previous
work [42]. To be specific, we use all existing official splits. For
all datasets, edge sets are divided into Etrain : Eval : Etest = 85% :
5% : 10% for training and the downstream link prediction. As for
node classification, the official split of Planetoid and ogbn-arxiv
is adopted and node sets of other datasets are divided intoVtrain :
Vval :Vtest = 10%:10%:80%.

Bandana employs a GCN encoder (G̃ = 𝚺𝑒
ˆ̃D−1/2 ˆ̃A ˆ̃D−1/2 in

eq. (6)) with 1 to 5 layers and a fixed 2-layer MLP decoder with
dropout. For brevity, Bandana does not resort to extra techniques
such as path masking, degree regression [42], cross-correlation
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Table 6: Detailed hyperparameters of Bandana.

Dataset Cora CiteSeer PubMed Photo Computers CS Physics ogbn-arxiv

No. of layers 3 5 2 2 3 2 2 4
Learning rate 𝛾 1e-2 2e-2 1e-3 2e-3 1e-3 1e-2 2e-3 5e-4
Bandwidth temperature 𝜏 0.9 0.2 0.2 1 0.4 1e-6 0.4 0.4
Intermediate feature dim. 256 256 64 256 256 64 256 256
Output feature dim. 256 256 32 64 64 32 128 256
Encoder dropout 0.8 0.8 0.6 0.8 0.5 0.8 0.8 0.2
Decoder dropout 0 0 0.7 0.2 0.2 0.2 0.2 0
Weight decay (for encoder) 5e-5 5e-5 5e-5 5e-5 0 5e-5 5e-5 5e-5
Weight decay (for linear probing) 5e-3 1e-1 5e-5 5e-4 5e-4 1e-3 1e-3 1e-4

Table 7: Average AUC (%) of link prediction under the end-to-end training/fine-tuning (ETE/FT) and the dot-product probing (DPP). “NODATA”
means that the model cannot perform due to the specific data format.

Model Setup Cora CiteSeer PubMed Photo Computers CS Physics

T-BGRL [60] FT 91.34 95.70 95.70 98.22 97.76 95.91 96.42
DPP 73.18 (↓18.2) 78.11 (↓17.6) 76.21 (↓19.5) 80.80 (↓17.9) 84.60 (↓13.2) 70.08 (↓25.8) 89.18 (↓7.24)

S2GAE [63] ETE 93.41 93.14 98.34 NODATA NODATA NODATA NODATADPP 89.27 (↓4.14) 86.35 (↓6.79) 89.53 (↓8.81)

MaskGAE-edge [42] ETE 96.46 97.91 98.84 98.73 98.72 98.92 95.10
DPP 95.66 (↓0.80) 97.02 (↓0.89) 96.51 (↓2.33) 81.12 (↓17.6) 76.23 (↓22.5) 96.50 (↓2.42) 93.09 (↓2.01)

MaskGAE-path [42] ETE 96.43 97.92 98.74 98.56 98.73 98.72 98.76
DPP 95.47 (↓0.96) 97.21 (↓0.71) 97.19 (↓1.55) 80.46 (↓18.1) 73.24 (↓25.5) 92.26 (↓6.46) 94.00 (↓4.76)
ETE 95.84 97.49 97.32 97.61 96.38 98.50 98.53Bandana DPP 95.71 (↓0.13) 96.89 (↓1.08) 97.26 (↓0.06) 97.24 (↓0.37) 97.33 (↑0.95) 97.42 (↓1.08) 97.02 (↓1.51)

decoding [63], re-masking, and random feature substitution [26].
All non-linear layers (of the encoder, decoder, and learnable down-
stream branches) are Xavier-initialized with biases 0. Every layer
of the encoder is equipped with batch normalization [30], dropout,
and an ELU activation function [8]. We perform grid search for the
learning rate 𝛾 and temperature 𝜏 over the searching space {5e-4,
1e-3, 2e-3, 5e-3, 1e-2, 2e-2} and {1e-6, 0.1, 0.2, 0.3, ..., 1} respectively.
Adam [36] is used as the model optimizer. For all datasets except
ogbn-arxiv, we use a fixed training strategy of 1000 epochs with
early stopping, the patience of which is set to 30. For ogbn-arxiv,
100 epochs with batch size 216. As with previous work, both grid
search and early stopping are carried out on the validation set, and
the best validation models are saved for testing.

Linear probing for node classification. The so-called linear prob-
ing [21] first performs unsupervised pre-training on both the en-
coder and decoder. Then, the decoder is substituted with a Xavier-
initialized linear layer. It is trained (with the encoder frozen) for
another 100 epochs with a fixed learning rate of 1e-2 to obtain the
classification logits.

All model hyperparameters for node classification are given in
Table 6. Please refer to the configuration in our source code for link
prediction. They are selected manually on the validation set among
several candidate values, except the grid-searched parameters.

D MORE EXPERIMENT RESULTS
In this section, we showcase the rest of our experimental results to
answer some additional research questions:

• ARQ1. Why is the dot-product probing needed to evaluate self-

supervised link prediction?

• ARQ2. What is the link prediction performance of Bandana on

ogbl-collab?

D.1 The Dot-product Probing (ARQ1)
In this subsection, we reiterate the necessity of dot-product probing
in self-supervised link prediction. We first reveal three shortcom-
ings of the traditional evaluation scheme. Firstly, the end-to-end
training has become more like a fully supervised case than self-
supervised. Secondly, it is an optimistic evaluation that utilizes the
trained parameters on downstream branches, leading to saturation
of the link prediction accuracy on many datasets [41]. Lastly, it is
unfair to methods that do not learn by link reconstruction. In con-
trast, the dot-product probing solely takes the latent representations
provided by the encoder and directly gets the link prediction results.
It does not involve any additional downstream training process, so
it enables a more decoupled evaluation about how the encoder
learns, rather than how the encoder-decoder learns. However,
we have observed that the excellent link prediction results of many
graph self-supervised models are mainly credited to their decoders,
i.e., it is actually their decoders that get well pre-trained.

We consider several baselines specifically designed for link pre-
diction, namely T-BGRL, S2GAE, and MaskGAE. Their link prediction
performance is compared by two evaluation strategies: end-to-end
training or fine-tuning (ETE/FT), and dot-product probing (DPP).
For ETE/FT, T-BGRL fine-tunes with a 1-layer Hadamard-product
MLP decoder, while the others are trained end-to-end with a 2-
layer MLP decoder. For DPP, we keep the pre-training setup and
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Table 8: Hits@20(%) and Hits@50(%) of link prediction on ogbl-collab. Best results in each row are in bold. “OOM” stands for “Out-Of-Memory” on a
24GB GPU. “†” marks the baselines implemented by us for the current task because they are not officially implemented.

Metric Traditional Autoencoder Variational Autoencoder Contrastive Model TopoRec
GAE† [37] ARGA† [52] VGAE† [37] ARVGA† [52] SIG-VAE† [19] SeeGera† [45] GRACE† [88] GCA† [89] S2GAE [63] MaskGAE-edge [42] MaskGAE-path [42] Bandana

Hits@20 58.93 ± 1.13 60.06 ± 1.41 OOM OOM OOM OOM 40.85 ± 3.30 58.59 ± 1.19 58.43 ± 1.06 60.42 ± 0.84
Hits@50 65.97 ± 0.63 66.03 ± 0.66 45.53 ± 1.87* 27.32 ± 2.93* 54.10 ± 1.16 65.58 ± 0.43 65.58 ± 0.58 67.77 ± 0.72
*We obtain much lower scores for VGAE and ARVGA on ogbl-collab than those given by MaskGAE [42]. We report the Hits@50 from [42] instead.

simply replace the decoder with a dot-product decoder during link
prediction evaluation. Table 7 shows that, under the DPP setting,
the link prediction accuracies of all baselines on a vast majority of
datasets show a noticeable decrease compared to those under the
ETE/FT setup. As a contrastive method, T-BGRL is more dependent
on the fine-tuning process for link prediction, so its performance is
the most vulnerable out of all baselines. However, the same phe-
nomenon is observed on the TopoRecs as well. The performance
of MaskGAE even decreases by more than 17% and 22% on Photo
and Computers, respectively. This suggests that the probing strat-
egy is indispensable for a self-supervised model even if it uses a
shared task for both the pretext and the downstream objective. Fur-
thermore, the obvious sensitivity to the DPP setting indicates that
the baseline models’ excellent prediction accuracy is largely con-
tributed by their “auxiliary” trained decoders. Bandana, however, is

relatively immune to DPP, indicating that its effectiveness is indeed
from the pre-trained encoder.

D.2 Link Prediction on ogbl-collab (ARQ2)
Here we provide the additional link prediction results on ogbl-collab
of Bandana and the baselines we have reproduced and implemented.
We keep the end-to-end training on ogbl-collab (on which we ob-
serve that almost all models fail with the dot-product probing, as
it may be too hard to achieve on large-scale datasets). We report
Hits@20 and Hits@50 in Table 8. Bandana outperforms both con-
figurations of MaskGAE by about 2%, indicating its advantage of
topological learning on large-scale data.
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