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Abstract

Model fairness is becoming important in class-
incremental learning for Trustworthy Al. While
accuracy has been a central focus in class-
incremental learning, fairness has been relatively
understudied. However, naively using all the sam-
ples of the current task for training results in un-
fair catastrophic forgetting for certain sensitive
groups including classes. We theoretically ana-
lyze that forgetting occurs if the average gradient
vector of the current task data is in an “oppo-
site direction” compared to the average gradient
vector of a sensitive group, which means their
inner products are negative. We then propose a
fair class-incremental learning framework that ad-
justs the training weights of current task samples
to change the direction of the average gradient
vector and thus reduce the forgetting of underper-
forming groups and achieve fairness. For various
group fairness measures, we formulate optimiza-
tion problems to minimize the overall losses of
sensitive groups while minimizing the disparities
among them. We also show the problems can be
solved with linear programming and propose an
efficient Fairness-aware Sample Weighting (FSW)
algorithm. Experiments show that FSW achieves
better accuracy-fairness tradeoff results than state-
of-the-art approaches on real datasets.

1. Introduction

Trustworthy Al is becoming critical in various continual
learning applications including autonomous vehicles, per-
sonalized recommendations, healthcare monitoring, and
more (Liu et al., 2021; Kaur et al., 2023). In particular, it is
important to improve model fairness along with accuracy
when developing models incrementally in dynamic envi-
ronments. Unfair model predictions have the potential to
undermine the trust and safety in human-related automated
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systems, especially as observed frequently in the context of
continual learning. There are largely three continual learn-
ing scenarios (van de Ven & Tolias, 2019): task-incremental,
domain-incremental, and class-incremental learning where
the task, domain, or class may change over time, respec-
tively. In this paper, we focus on class-incremental learning,
where the objective is to incrementally learn new classes as
they appear.

The main challenge of class-incremental learning is to learn
new classes of data, while not forgetting previously-learned
classes (Belouadah et al., 2021; Lange et al., 2022). If we
simply fine-tune the model on the new classes, the model
will gradually forget about the previously-learned classes.
This phenomenon called catastrophic forgetting (McCloskey
& Cohen, 1989; Kirkpatrick et al., 2016) may easily occur in
real-world scenarios where the model needs to continuously
learn new classes. We cannot stop learning new classes
to avoid this forgetting either. Instead, we need to have a
balance between learning new information and retaining
previously-learned knowledge, which is called the stability-
plasticity dilemma (Abraham & Robins, 2005; Mermillod
et al., 2013; Kim & Han, 2023).

In this paper, we solve the problem of fair class-incremental
learning where the goal is to satisfy various notions of fair-
ness among sensitive groups including classes in addition
to classifying accurately. In some scenarios, the class itself
can be considered a sensitive attribute, especially in classi-
fication tasks where a model produces biased predictions
toward a specific group of classes (Truong et al., 2023). In
continual learning, unfair forgetting may occur if the current
task data has similar characteristics to previous data, but be-
longs to different sensitive groups including classes, which
negatively affects the performance on the previous data dur-
ing training. Despite the importance of the problem, the
existing research (Chowdhury & Chaturvedi, 2023; Truong
et al., 2023) is still nascent and has limitations in terms of
technique or scope (see Sec. 2). In comparison, we sup-
port fairness more generally in class-incremental learning
by satisfying various notions of group fairness for sensitive
groups including classes.

We demonstrate how unfair forgetting can occur on a syn-
thetic dataset with two attributes (1, z2), and one true
label y as shown in Fig. 1a. We sample data for each class
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Figure 1: (a) A synthetic dataset for class-incremental learning. (b) After training on Classes 0 and 1, training on Class 2
results in unfair forgetting for Class 1 only. (c) The reason is that the average gradient vector of Class 2, gs, is more than
90° apart from Class 1’s g1, which means the model is being trained in an opposite direction. Our method adjusts g2 to g5
through sample weighting to be closer to g;, but not too far from the original g,. (d) As a result, the unfair forgetting is

mitigated while minimally sacrificing accuracy for Class 2.

from three different normal distributions: (x1,x2)|y =0 ~
N (=2 —2], [1;1]), (@1, 22)ly = 1 ~ N([2:4],[1; 1]). and
(z1,72)|y = 2 ~ N([4;2],[1;1]). Note that each data dis-
tribution can also be defined as a sensitive group with a
sensitive attribute z. To simulate class-incremental learning,
we introduce data for Class O (blue) and Class 1 (orange) in
Task 1, followed by Class 2 (green) data in Task 2, where
Class 2’s data is similar to Class 1’s data. We observe that
this setting frequently occurs in real datasets, where differ-
ent classes of data exhibit similar features or characteristics,
as shown in Sec. B.1. We assume a data replay setting where
only a small amount of previous data from Classes 0 and
1 are stored and utilized together when training on Class
2 data. After training the model for Task 1, we observe
how the model accuracies on the three classes change when
training for Task 2 in Fig. 1b. As the accuracy on Class 2
improves, there is a catastrophic forgetting of Class 1 only,
which leads to unfairness.

To analytically understand the unfair forgetting, we project
the average gradient vector for each class data on a 2-
dimensional space in Fig. 1c. Here gg, g1, and go represent
the average gradient vectors of the samples of Classes 0, 1,
and 2, respectively. We observe that go is 127° apart from
g1, but 88° from gg, which means that the inner products
(g2,91) and (g2, go) are negative and close to 0, respec-
tively. In Sec. 3.1, we theoretically show that a negative
inner product between average gradient vectors of current
and previous data results in higher loss for the previous data
as the model is being updated in an opposite direction and
identify a sufficient condition for unfair forgetting. As a re-
sult, Class 1’s accuracy decreases, while Class 0’s accuracy
remains stable.

Our solution to mitigate unfair forgetting is to adjust the aver-
age gradient vector of the current task data by weighting its
samples. The light-green vectors in Fig. 1c are the gradient
vectors of individual samples from Class 2, and by weight-
ing them we can adjust g» to g5 to make the inner product

with g; less negative. At the same time, we do not want g5
to be too different from g» and lose accuracy. In Sec. 3.2,
we formalize this idea using the weighted average gradient
vector of the current task data. We then optimize the sample
weights such that unfair forgetting and accuracy reduction
over sensitive groups including classes are both minimized.
We show this optimization can be solved with linear pro-
gramming and propose our efficient Fairness-aware Sam-
ple Weighting (FSW) algorithm. Fig. 1d shows how us-
ing FSW mitigates the unfair forgetting between Classes
0 and 1 without harming Class 2’s accuracy much. Our
framework supports the group fairness measures equal er-
ror rate (Venkatasubramanian, 2019), equalized odds (Hardt
et al., 2016), and demographic parity (Feldman et al., 2015)
and can be potentially extended to other measures.

In our experiments, we show that FSW achieves better fair-
ness and competitive accuracy compared to state-of-the-art
baselines on various image, text, and tabular datasets. The
benefits come from assigning different training weights to
the current task samples with accuracy and fairness in mind.

Summary of Contributions: (1) We theoretically ana-
lyze how unfair catastrophic forgetting can occur in class-
incremental learning; (2) We formulate optimization prob-
lems for mitigating the unfairness for various group fairness
measures and propose an efficient fairness-aware sample
weighting algorithm, FSW; (3) We demonstrate how FSW
outperforms state-of-the-art baselines in terms of fairness
with comparable accuracy on various datasets.

2. Related Work

Class-incremental learning is a challenging type of contin-
ual learning where a model continuously learns new tasks,
each composed of new disjoint classes, and the goal is to
minimize catastrophic forgetting (Mai et al., 2022; Masana
et al., 2023). Data replay techniques (Lopez-Paz & Ranzato,
2017; Chaudhry et al., 2019b) store a small portion of pre-
vious data in a buffer to utilize for training and is widely
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used with other techniques including knowledge distilla-
tion, model rectification, and dynamic networks (see more
details in Sec. C). Simple buffer sample selection meth-
ods such as random or herding-based approaches (Rebuffi
et al., 2017) are also commonly used as well. There are also
more advanced gradient-based sample selection techniques
like GSS (Aljundi et al., 2019) and OCS (Yoon et al., 2022)
that manage buffer data to have samples with diverse and
representative gradient vectors. All these works do not con-
sider fairness and simply assume that the entire incoming
data is used for model training, which may result in unfair
forgetting as we show in our experiments.

Model fairness research mitigates bias by ensuring that a
model’s performance is equitable across different sensitive
groups, thereby preventing discrimination based on race,
gender, age, or other sensitive attributes (Mehrabi et al.,
2022). Existing model fairness techniques can be catego-
rized as pre-processing, in-processing, and post-processing
(see more details in Sec. C). In addition, there are other tech-
niques that assign adaptive weights for samples to improve
fairness (Chai & Wang, 2022; Jung et al., 2023). However,
most of these techniques assume that the training data is
given all at once, which may not be realistic. There are tech-
niques for fairness-aware active learning (Anahideh et al.,
2022; Pang et al., 2024; Tae et al., 2024), in which the train-
ing data evolves with the acquisition of samples. However,
these techniques store all labeled data and use them for
training, which is impractical in continual learning settings.

A recent study addresses model fairness in class-incremental
learning where there is a risk of disproportionally forgetting
previously-learned sensitive groups including classes, lead-
ing to unfairness across different groups. A recent study (He,
2024) addresses the dual imbalance problem involving both
inter-task and intra-task imbalance by reweighting gradients.
However, the bias is not only caused by the data imbal-
ance, but also by the inherent or acquired characteristics
of data itself (Mehrabi et al., 2022; Angwin et al., 2022).
CLAD (Xu et al., 2024) first discovers imbalanced forget-
ting between classes caused by conflicts in representation
and proposes a class-aware disentanglement technique to
improve accuracy. Among the fairness-aware techniques,
FalRL (Chowdhury & Chaturvedi, 2023) supports group
fairness metrics like demographic parity for continual learn-
ing, but proposes a representation learning method that does
not directly optimize the given fairness measure and thus
has limitations in improving fairness as we show in experi-
ments. FairCL (Truong et al., 2023) also addresses fairness
in a continual learning setup, but only focuses on resolving
the imbalanced class distribution based on the number of
pixels of each class in an image for semantic segmentation
tasks. In comparison, we support fairness more generally in
class-incremental learning by satisfying multiple notions of
group fairness for sensitive groups including classes.

3. Framework

In this section, we first theoretically analyze unfair forget-
ting using gradient vectors of sensitive groups and the cur-
rent task data. Next, we propose sample weighting to miti-
gate unfairness by adjusting the average gradient vector of
the current task data and provide an efficient algorithm.

Notations In class-incremental learning, a model incre-
mentally learns new current task data along with previ-
ous buffer data using data replay. Suppose we train a
model to incrementally learn L tasks {73, T3, ..., Ty} over
time, and there are N classes in each task as CTt =
{cft, 03, ..., CHY} with no overlapping classes between
different tasks (i.e., CTh N CT2 = P if Iy # 1y). Af-
ter learning the I*" task Tj, we would like the model to
remember all (I — 1) - N previous task classes and an
additional N current task classes. We assume the buffer
has a fixed size of M samples. For L tasks, we allocate
m = M/L samples of buffer data per task. If each task
consists of N classes, then we allocate m/N = M /(L - N)
samples of buffer data per class (Chaudhry et al., 2019a;
Mirzadeh et al., 2020; Chaudhry et al., 2021). Each task
T, = {d; = (Xi,y:)}¥_, is composed of feature-label pairs
where a feature X; € R? and a true label y; € R°. We also
use M; = {d; = (X}, y;)}}~; to represent the buffer data
for each previous [*" task Tj. We assume the buffer data per
task is small, i.e., m < k (Chaudhry et al., 2019b).

When defining fairness for class-incremental learning, we
utilize sensitive groups including classes. According to the
fairness literature, sensitive groups are divided by sensitive
attributes like gender and race. For example, if the sensitive
attribute is gender, the sensitive groups can be Male and
Female. Similarly, the classes can also be perceived as
sensitive groups, with the class itself serving as the sensitive
attribute. Since we would like to support any sensitive
group in a class-incremental setting, we use the following
unifying notations: (1) if the sensitive groups are classes,
then they form the set G, = {(X,y) € D:y=y,y € Y}
where D is a dataset, y is a class attribute, and Y is the
set of y; (2) if we are using sensitive attributes in addition
to classes, we can further divide the classes into the set
Gy.=1{X,y,2) e D:y=y,z=2zy e Y,z € Z}
where z is a sensitive attribute, and Z is the set of z.

3.1. Unfair Forgetting

Catastrophic forgetting occurs when a model adapts to a
new task and exhibits a drastic decrease in performance
on previously-learned tasks (Parisi et al., 2019). We take
inspiration from GEM (Lopez-Paz & Ranzato, 2017), which
theoretically analyzes catastrophic forgetting by utilizing the
angle between gradient vectors of data. If the inner products
of gradient vectors for previous tasks and the current task
are negative (i.e., 90° < angle < 180°), the loss of previous
tasks increases after learning the current task. Catastrophic
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forgetting thus occurs when the gradient vectors of different
tasks point in opposite directions. Intuitively, the opposite
gradient vectors update the model parameters in conflicting
directions, leading to forgetting while learning.

Using the notion of catastrophic forgetting, we propose
theoretical results for unfair forgetting:

Lemma 3.1. Denote G as a sensitive group of data com-
posed of features X and true labels y. Also, denote fé_l as
a previous model and fy as the updated model after train-
ing on the current task T;. Let £ be any differentiable loss
function (e.g., cross-entropy loss), and 1 be a learning rate.
Then, the loss of the sensitive group of data after training
with a current task sample d; € T} is approximated as:

g(f97 G) = f( é_lv G) - anf( é_lv G)Tv9€( é_lv di)v

(D
where 0 (fo, G) is the approximated average loss between
model predictions fo(X) and true labels y, whereas
U(f51, Q) is the exact average loss, Vol(fy™*,G) is the
average gradient vector for the samples in the group G, and
V@ﬁ(fé_l, d;) is the gradient vector for a sample d;, each
with respect to the previous model féfl.

The proof is in Sec. A.1. We employ first-order Taylor
series approximation for the proof, which is widely used in
the continual learning literature, by assuming that the loss
function is locally linear in small optimization steps and
considering the first-order term as the cause of catastrophic
forgetting (Lopez-Paz & Ranzato, 2017; Aljundi et al., 2019;
Lee et al., 2019). We empirically find that the approximation
error is large when a new task begins because new samples
with unseen classes are introduced. However, the error
gradually becomes quite small as the number of epochs
increases while training a model for the task, as in Sec. B.2.

To define fairness in class-incremental learning with the
approximated loss, we adopt the definition of approximate
fairness that considers a model to be fair if it has approxi-
mately the same loss on the positive class, independent of
the group membership (Donini et al., 2018). In this paper,
we compute fairness measures based on the disparity be-
tween approximated cross-entropy losses, which are derived
from Lemma 3.1 using gradients. The following proposition
shows how using the cross-entropy loss disparity can effec-
tively approximate common group fairness metrics such as
equalized odds and demographic parity (see Sec. A.2 and
Sec. B.15 for more justification of the loss function and an
alternative, respectively).

Proposition 3.2. (From Roh et al. (2021; 2023); Shen et al.
(2022)) Using the cross-entropy loss disparity to measure
fairness is empirically verified to provide reasonable proxies
for common group fairness metrics.

Using Lemma 3.1 and Proposition 3.2, the following the-
orem suggests a sufficient condition for unfair forgetting.

Intuitively, if a training sample’s gradient is in an opposite
direction to the average gradient of an underperforming
group, but not for an overperforming group, the training
causes more unfairness between the two groups.

Theorem 3.3. Let ¢ be the cross-entropy loss and we de-
note G and G as the overperforming and underperform-
ing sensitive groups of data, and d; as a training sam-
ple that satisfy the following conditions: £( fé_l, Gp) <
0(fyt, Ga) while Vol (fy~ ", G1) TVol(f)*,d;) > 0 and
Vol(fi, Go)TVel(f1 d;) < 0. Then |{(f,G1) —
Ufo, Go)| > [E(f5~", Gr) = U7 Ga)l.

The proof is in Sec. A.1. The result shows that the loss
disparity between the two groups could become larger af-
ter training on the current task sample, which leads to
worse fairness. This theorem can be extended to when
we have a set of current task samples 7; = {d; =
(Xi,yi)}F_, where we can replace Vol(f)™*,d;) with
ﬁ >aiem, Vol( f3~t,d;). If the average gradient vector
of the current task data satisfies the derived sufficient condi-
tion, training with all of the current task samples using equal
weights could thus result in unfair catastrophic forgetting.

3.2. Sample Weighting for Unfairness Mitigation

To mitigate unfairness, we propose sample weighting as
a way to suppress samples that negatively impact fairness
and promote samples that help. Finding the weights is not
trivial as there can be many sensitive groups. Given training
weights w; € [0,1]/7!| for the samples in the current task
data, the approximated loss of a group G after training is:

U(fo, G) = L[5, G) —
Wt 6 (o 3 wivatsi L d)

d; €Ty

where w7} is a training weight for the current task sample
d;. We then formulate an optimization problem to find the
weights such that both loss and unfairness are minimized.
Here we define Y as the set of all classes and Y. as the set of
classes in the current task. We represent accuracy as the av-
erage loss over the current task data and minimize the cost
function L,.. = €(fo,Gy.) = \Yilcl Zerc U fo,Gy) =
TYoTZ] oyey., ez (fo,G,.~). For fairness, the cost func-
tion Ly, depends on the group fairness measure as we
explain below. We then minimize L ¢4, + ALqc. Where A
is a hyperparameter that balances fairness and accuracy.

Equal Error Rate (EER) This measure (Venkatasubra-
manian, 2019) is defined as Pr(y # y1|ly = y1) = Pr(y #
y2ly = y2) for y1 2 € Y, where y is the predicted class,
and y is the true class. We define the cost function for
EER as the average absolute deviation of the class loss,
consistent with the definition of group fairness metrics:
Lper = 17 Syev |0(fo, Gy) — £(fo, Gy)|. The entire
optimization problem is:



Fair Class-Incremental Learning using Sample Weighting

Gy) - g(va GY)‘ +

mwﬂzm,
|Y PIRe

yeY, 2
where g(fg, Gy) = E(fé_l Gy) —

nVel(fi ', G,) ( > wivel(fy! d))

d €Ty

Equalized Odds (EO) This measure (Hardt et al., 2016)
is satisfied when sensitive groups have the same accuracy,

e, Pr(y=yly=y,z=21) =Pr(y =yly = y,z = 29)
fory € Y and 2; » € Z. We design the cost function for EO

as Lro = [l Lyev,eez |fo: Gy.2) = U(fo, Gy)l, and
the entire optimization problem is:

WZHW Z ‘g(fO,Gy7Z)_g(f0,Gy)|+

yEY z€EZ
E E f97 Y,z

yeY, z€Z ©)
where 0(fp, G,..) = 05t Gye) —

WG (g 3 wivelsy )

d €T

M. HZI

Demographic Parity (DP) This measure (Feldman et al.,
2015) is satisfied by minimizing the difference in positive
prediction rates between sensitive groups. Here, we ex-
tend the notion of demographic parity to the multi-class
setting (Alabdulmohsin et al., 2022; Denis et al., 2023),
ie, Pr(y = ylz = z1) = Pr(y = ylz = 2z9) for
y € Yand 21, € Z. In the binary setting of Y =
7Z = {0,1}, a sufficient condition for demographic par-
ity is suggested using the loss multiplied by the ratios
of sensitive groups (Roh et al., 2021). By extending the
setting to multi-class, we derive a sufficient condition
for demographic parity as follows: :ZZ—’ZE(]"@, Gyz) =

::i :2 E(f@, Y, zz) Where myvz = |{’L : yl = y,z; =
z}| and m, . {¢ : z; = z}|. The proof is in
Sec. A.3. Letus define '(fy, Gy ) = 2=((fg, Gy -) and

U(fo.Gy) = ‘71| ZLZ‘ 1 ::y ;" Z(fg, Gy .z, ). We then define
the cost function for DP using the sufficient condition as
Lop = i Syeves 100, Gyz) — €(fo,Gy)l. The
entire optimization problem is:

L ST (0, Gy) — P (f0, Gyl +

n—m—
v YIZ) e

Z efg, yz
y€Y.,z€Z (4)

where g(f@, Y, z) = ‘e( éil Gy Z) -

nVol(fi ', Gy.) ( 3 wivel (i d))

dET

Y.z HZI

Algorithm 1 Fair Class-Incremental Learning
Input: Current task data 7;, previous buffer data M =

{Mau,..., Mi_1}, previous model féfl, loss function ¢, learning
rate 7, hyperparameters {«, A, 7}, and fairness measure F

1: for each epoch do
20w =FSW(Ti, M, fi=' 4,0, \ F)
3: Geurr = ﬁd%:Tl WZMVQZ(féilydi)
Gorew = Vol (f5', M)
00— n(gcu'rr + Tgp're/u)
end for
M = Buffer Sample Selection(T})
M~ MUM,;

PRAINR

To find the optimal sample weights for the current task
data considering both model accuracy and fairness, we first
transform the defined optimization problems of Eq. 2, 3,
and 4 into the form of linear programming (LP) problems.

Theorem 3.4. The fairness-aware optimization problems
(Eq. 2, 3, and 4) can be transformed into the form of linear
programming (LP) problems.

The loss of each group can be approximated as a linear func-
tion, as described in Lemma 3.1. This result implies that
the optimization problems, consisting of the loss of each
group, can likewise be transformed into LP problems. The
comprehensive proof is in Sec. A.4. We solve the LP prob-
lems using linear optimization solvers (e.g., CPLEX (Cplex,
2009)). As we add the average loss of the current task data in
Eq. 2, 3, and 4 as a regularization term, the optimal sample
weights do not indicate a severely shifted distribution.

3.3. Algorithm

We describe the overall process of fair class-incremental
learning in Alg. 1. For the recently arrived current task
data, we first perform our fairness-aware sample weight-
ing (FSW) to assign training weights that can help learn
new knowledge of the current task while retaining accurate
and fair memories of previous tasks (Step 2). Next, we
train the model using the current task data with its corre-
sponding weights and stored buffer data of previous tasks
(Steps 3-5), where 7 is a learning rate, and 7 is a hyper-
parameter to balance between them during training. The
sample weights are computed once at the beginning of each
epoch, and they are applied to all batches for computational
efficiency (Killamsetty et al., 2021a;b). This procedure is
repeated until the model converges (Steps 1-5). Before mov-
ing on to the next task, we employ buffer sample selection
to store a small data subset for the current task (Steps 7-8).
Buffer sample selection can also be done with consideration
for fairness, but our experimental observations indicate that
selecting representative and diverse samples for the buffer,
as previous studies have shown, results in better accuracy
and also fairness performance. We thus employ a simple
random sampling technique for the buffer sample selection
in our framework.
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Algorithm 2 Fairness-aware Sample Weighting (FSW)
Input: Current task data 7; = {du, . .., dx }, previous buffer data
M = Uyev-v,,2e2Gy,=, previous model féfl, loss function /,
hyperparameters {«, A}, and fairness measure F’

Output: Optimal training weights w; for current task data

sle = [0(fi "t Gra), e (fe 7 Gy
ga = [Vol(fy ", G1a), ..., Vol(fy " Gy z)]

1
2
3: ga = [Vol(fy ' d), .., Vol(fy~" di)]
4: switch F'do

5:  case EER: w; «+ Solve Eq. 2

6

7

8

case EO: w; < Solve Eq. 3
case DP: w; < Solve Eq. 4
: return wj

Alg. 2 shows the fairness-aware sample weighting (FSW)
algorithm for the current task data. We first divide both the
previous buffer data and the current task data into groups
based on each class and sensitive attribute. Next, we com-
pute the average loss and gradient vectors for each group
(Steps 1-2), and individual gradient vectors for the current
task data (Step 3). To compute gradient vectors, we use the
last layer approximation, which only considers the gradi-
ents of the model’s last layer, that is efficient and known to
be reasonable (Katharopoulos & Fleuret, 2018; Ash et al.,
2020; Mirzasoleiman et al., 2020). We then solve linear
programming to find the optimal sample weights for a user-
defined target fairness measure such as EER (Step 5), EO
(Step 6), and DP (Step 7). We use CPLEX as a linear op-
timization solver that employs an efficient simplex-based
algorithm. Since the gradient norm of the current task data
is significantly larger than that of the buffer data, we utilize
normalized gradients to update the loss of each group and
replace the learning rate parameter 1 with a hyperparameter
« in the equations. Finally, we return the weights for the
current task samples to be used during training (Step 8).

Training with FSW theoretically guarantees model conver-
gence under the assumptions that the training loss is Lip-
schitz continuous and strongly convex, and that a proper
learning rate is used (Killamsetty et al., 2021a; Chai & Wang,
2022; Lu et al., 2020). The computational complexity of
FSW is quadratic to the number of current task samples, as
CPLEX generally has quadratic complexity with respect to
the number of variables when solving LP problems (Bixby,
2002). However, our empirical results show that for about
twelve thousand current task samples, the time to solve an
LP problem is a few seconds, which leads to a few min-
utes of overall runtime for MNIST datasets (see Sec. B.3
for details). Since we focus on continual offline training
of large batches or separate tasks, rather than online learn-
ing, the overhead is manageable enough to deploy updated
models in real-world applications. If the task size becomes
too large, clustering similar samples and assigning weights
to the clusters, rather than samples, could be a solution to
reduce the computational overhead.

Table 1: Experimental settings for the five datasets.

Dataset Size  #Features #Classes #Tasks
MNIST 60K 28x28 10 5
FMNIST 60K 28x28 10 5
Biased MNIST 60K  3x28x28 10 5
DRUG 1.3K 12 6 3
BiasBios 253K  128x768 25 5

4. Experiments

In this section, we construct experiments on our FSW and
address the following research questions: RQ1 How well
can FSW mitigate the unfair forgetting that occurs in class-
incremental learning with better accuracy-fairness tradeoff?
RQ2 How does FSW weight the samples? RQ3 Can FSW
be further integrated with fair post-processing techniques?

4.1. Experiment Settings

Metrics. We evaluate all methods using accuracy and
fairness metrics as in the fair continual learning litera-
ture (Chowdhury & Chaturvedi, 2023; Truong et al., 2023).

e Average Accuracy. We denote A; = % Zizl ay ¢ as the
accuracy at the [*" task, where ay; is the accuracy of the
t*" task after learning the [** task. We measure accuracy
for each task and then take the average across all tasks
to produce the final average accuracy, denoted as A; =
i Zle A; where L represents the total number of tasks.

e Average Fairness. We measure fairness for each task and
then take the average across all tasks to produce the final
average fairness. We use one of three measures: (1) EER dis-
parity, which computes the average difference in test error
rates among classes: ﬁ Zer |Pr(y # yly = y)—Pr(y #
y)|; (2) EO disparity, which computes the average differ-
ence in accuracy among sensitive groups for all classes:
iz Lyevsez | Pry =yly =y,z2=2) —Pr(y = yly =
y)|; and (3) DP disparity, which computes the average differ-
ence in class prediction ratios among sensitive groups for all
classes: ryizr Dyev ez | Pr(y = ylz = 2) — Pr(y = y)|.
For all measures, low disparity is desirable.

Datasets. We use a total of five datasets as shown in Ta-
ble 1. We first utilize commonly used benchmarks for con-
tinual image classification tasks, which include MNIST and
Fashion-MNIST (FMNIST). Here we regard the class as
the sensitive attribute and evaluate fairness with EER dis-
parity. We also use multi-class fairness benchmark datasets
that have sensitive attributes (Xu et al., 2020; Putzel & Lee,
2022; Churamani et al., 2023; Denis et al., 2023): Biased
MNIST, Drug Consumption (DRUG), and BiasBios. We
consider background color as the sensitive attribute for Bi-
ased MNIST, and gender for DRUG and BiasBios. We
then use EO and DP disparity to evaluate fairness. We also
consider using other datasets in the fairness field, but they
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Table 2: Accuracy and fairness results with respect to (1) EER disparity, where class is considered the sensitive attribute for
MNIST and FMNIST datasets, and (2) EO disparity, where background color or gender are the sensitive attributes for Biased
MNIST, DRUG, and BiasBios datasets (see DP disparity results in Sec. B.7). We compare FSW with four types of baselines:
naive (Joint Training and Fine Tuning), state-of-the-art (iCaRL, WA, and CLAD), sample selection (GSS and OCS), and
fairness-aware (FalRL) methods. We mark the best and second-best results with bold and underline, respectively, excluding
the naive methods. Due to the excessive time required to run OCS on BiasBios, we are not able to measure the results.

Methods | MNIST FMNIST Biased MNIST DRUG BiasBios
‘ Acc. EER Disp. Acc. EER Disp. Acc. EO Disp. Acc. EO Disp. Acc. EO Disp.
Joint Training | .989+.000 .003+.000 9214002 .024+.002 .944+002 .108+.003 .442+015 1794052 .823+.002 .076+.001
Fine Tuning 455+000 .326+.000 4514000 .325+000 .449+001 0164002 .357+.000 .125+.034 4204001 .028+.002
iCaRL 918+.005 .048+.003 .852+.002 .047+001 .802+.008 .365+.021 4444025 .190+017 .829+.002 .084+.003
WA 911+007 .052+006 .809+.005 .088+.003 .916+.002 .140+004 .408+022 .134+029 .796+.003 .076+.001
CLAD .835+016  .099+016 .782+018 .118+.022 .871+o012 .198+022 .410+.026 .114+043 .799+003 .074+.002
GSS .889+.010 .080+.009 .732+.021 .149+019 .809+.005 .325+017 .426+010 .167+038 .808+.003 .081+.002
0oCS 929+.002  .040+.003  .799+008 .109+007 .8244.007 3314013 4064024 1424003 - -
FalRL ‘ 558+060 .273+018  S531+032 .289+019  4ll+torz A18+om 354+011 .060+.021 . 400+060 .055+.020
FSW \ 9254004  .032+.00s .824+006 .039+.006 .909+.004 .119+007 .406+014 .077+010 .808+.002 .072+.001
are unsuitable for class-incremental learning experiments —@— iCaRL —— CLAD —#— OCS FSW
because either there are only two classes, or it is difficult to WA 1 GSS % FalRL
apply group fairness metrics. See Sec. B.4 for more details. 0.1007+ .
z > B+
Models and Hyperparameters. Following the experimen- £ 0.075 " 503
tal setups of Chaudhry et al. (2019a); Mirzadeh et al. (2020), é g‘
we use a two-layer MLP with each 256 neurons for the ££0.050 vo | 002, ———*
MNIST, FMNIST, Biased MNIST, and DRUG datasets. = + H
For BiasBios dataset, we use a pre-trained BERT language 0.85 0.90 0.7 0.8 09
model (Devlin et al., 2019). For our buffer storage, we store Accuracy Accuracy
32 samples per sensitive group for all experiments. For the (a) MNIST (EER). (b) Biased MNIST (EO).

hyperparameters «, A\, and 7 used in our algorithms, we
perform cross-validation with a sequential grid search to
find their optimal parameters. See Sec. B.5 for more details.

Baselines. We compare FSW with several baselines, in-
cluding iCaRL (Rebuffi et al., 2017), WA (Zhao et al.,
2020), CLAD (Xu et al., 2024), GSS (Aljundi et al., 2019)
and OCS (Yoon et al., 2022). In particular, we consider
FalRL (Chowdhury & Chaturvedi, 2023) as the first fairness
paper for continual learning. To obtain upper and lower
bound performance, we included Joint Training and Fine
Tuning, which have access to all previous data and no access
to previous data, respectively. See Sec. B.6 for more details.

4.2. Accuracy and Fairness Results

To answer RQ1, we compare FSW against other baselines
on the five datasets with respect to accuracy and correspond-
ing fairness metrics as shown in Table 2 and Sec. B.7. The
Pareto front on MNIST and Biased MNIST is represented in
Fig. 2. For any method, we store a fixed number of samples
per task in a buffer, which may not be identical to its original
setup, but necessary for a fair comparison. The detailed se-
quential performance and accuracy-fairness tradeoff results
are shown in Sec. B.8 and Sec. B.9, respectively. Additional
results, including variations in buffer size, are in Sec. B.10.

Figure 2: Tradeoff results between accuracy and fairness on
the MNIST and Biased MNIST datasets.

Overall, FSW achieves better accuracy-fairness tradeoff
results compared to the baselines for all the datasets. For Bi-
ased MNIST, DRUG, and BiasBios, although FSW does not
achieve the best performance in either accuracy or fairness,
FSW shows the best fairness results among the baselines
with similar accuracies (e.g., iCaRL, WA, CLAD, GSS, and
OCYS) and thus has the best accuracy-fairness tradeoff. We
observe that FSW also improves model accuracy while en-
hancing the performance of underperforming groups for
fairness. The state-of-the-art method, iCaRL, generally
achieves high accuracy with low EER disparity results.
However, since iCaRL uses a nearest-mean-of-exemplars
approach for its classification model, the predictions are
significantly affected by sensitive attribute values, result-
ing in high disparities for EO. The fairness-aware method
FalRL leverages an adversarial debiasing framework com-
bined with a rate-distortion function, but the method loses
significant accuracy because training the feature encoder
and discriminator together is unstable. In comparison, FSW
explicitly utilizes approximated loss and fairness measures
to adjust the training weights for the current task samples,
which leads to much better model accuracy and fairness.
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% Table 3: Accuracy and fairness results on the MNIST and
£ 10000 SR Sens. 0 Biased MNIST datasets with or without FSW.
& Sens. Sens. 1
° 5000 Methods | MNIST Biased MNIST
E | Acc. EER Disp. Acc. EO Disp.
0 .
0.0 0.5 1.0 W/oFSW | 912+004  .051+005  .910+.003 .126+.005
Weight FSW 925+.004 0324005 .909+004  .119+.007
(a) Task 2. (b) Task 3. . . .
s Table 4: Accuracy and fairness (DP disparity) results when
E B2 Sens. combining fair post-processing technique (e-fair) with con-
2 B Sens. Sens. 1 tinual learning methods (iCaRL, OCS, and FSW).
=]
;; Methods | Biased MNIST DRUG
Z 0 | Acc. DPDisp.  Acc.  DP Disp.
0.0 0.5 1.0 0.0 0.5 1.0 -
Weight Weight iCaRL 802+.008 .015+.001  444+.025 .093+.009
OCS 8244007 .035+.003 3934017 .053+.012
. (c) Task 4.  (@OTasks. FSW 904+004 .008+001 4054013 .043:+004
Figure 3: Distribution of sample weights for EO in sequen- - -
tial tasks of the Biased MNIST dataset iCaRL — e-fair | .944+.008 .006+002 4274018 .026+.004
) ’ OCS - e-fair 952+.003 .032+.004 .384+009 .051+.002
FSW —e-fair | .906+.006 .005+.001 .405+013 .021+.004

4.3. Sample Weighting Analysis

To answer RQ2, we analyze how our FSW algorithm
weights the current task samples at each task using the
Biased MNIST dataset results shown in Fig. 3. The results
for the other datasets are similar and shown in Sec. B.11.
As the acquired sample weights may change with epochs
during training, we show the average weight distribution of
sensitive groups over all epochs. Since FSW is not applied
to the first task, where the model is trained with only the
current task data, we present results starting from the second
task. Note that the acquired sample weights are mostly close
to 0 or 1 in practice, but they are not strictly binary. See
Sec. B.12 for more details.

Unlike naive methods that use all the current task data with
equal training weights, FSW assigns higher weights on av-
erage to the underperforming group (Sensitive group 1 in
Fig. 3) compared to the overperforming group (Sensitive
group 0 in Fig. 3). The weights are computed by considering
complex forgetting relationships between sensitive groups,
which differs from simply assigning higher weights to un-
derperforming groups. We also observe that FSW assigns
zero weight to a significant number of samples, indicating
that relatively less data is used for training. This weighting
approach provides an additional advantage in enabling effi-
cient model training while retaining accuracy and fairness.

4.4. Ablation Study

To show the effectiveness of FSW on accuracy and fairness,
we perform an ablation study comparing the performance of
using FSW versus using all current task samples for training
with equal weights. The results for the MNIST and Biased
MNIST datasets are shown in Table 3. The results for DP
disparity and other datasets, which are similar, can be found
in Sec. B.13. As a result, applying sample weighting to
the current task data is necessary to improve fairness while
maintaining comparable accuracy.

4.5. Integrating FSW with Fair Post-processing

To answer RQ3, we emphasize the extensibility of FSW
by showing how it can be combined with a post-processing
method to further improve fairness. We integrate FSW and
other existing continual learning methods with the state-of-
the-art fair post-processing technique in multi-class tasks,
e-fair (Denis et al., 2023), as shown in Table 4 and Sec. B.14.
Since e-fair only supports DP, we only show DP results in
the Biased MNIST and DRUG datasets. We mark the best
and second-best results with bold and underline, respec-
tively, regardless of the application of post-processing. Over-
all, combining the fair post-processing technique can further
improve fairness without degrading accuracy much. In ad-
dition, FSW still shows a better accuracy-fairness tradeoff
with the combination of the fair post-processing technique,
compared to existing continual learning methods.

5. Conclusion

We proposed FSW, a fairness-aware sample weighting algo-
rithm for class-incremental learning. Unlike conventional
class-incremental learning, we demonstrated how training
with all the current task data using equal weights may result
in unfair catastrophic forgetting. We theoretically showed
that the average gradient vector of the current task data
should not be solely in the opposite direction of the average
gradient vector of a sensitive group to avoid unfair forgetting.
We then proposed FSW as a solution to adjust the average
gradient vector of the current task data, thereby achieving
better accuracy-fairness tradeoff results. FSW supports vari-
ous group fairness measures by converting the optimization
problem into a linear program. In our experiments, FSW out-
performed other baselines in terms of fairness while having
comparable accuracy across various datasets with different
domains. Future work will focus on generalizing to multiple
sensitive attributes, as discussed in Sec. D.
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Impact Statement We believe our work contributes to ad-
vancing the field of Trustworthy Al by addressing the critical
yet understudied problem of fairness in class-incremental
learning. While existing approaches have primarily focused
on mitigating catastrophic forgetting to improve accuracy,
we identify and tackle the issue of unfair catastrophic forget-
ting that disproportionately affects certain sensitive groups,
including classes. Our Fairness-aware Sample Weighting
(FSW) algorithm effectively balances accuracy and fairness
by adjusting training weights to align gradient updates.

The implications of our work are significant for real-world
applications where fairness is paramount, such as healthcare,
autonomous systems, and personalized recommendations.
Our framework not only enhances trust in continually learn-
ing models by reducing biases, but also provides a scalable
and generalizable solution that supports diverse fairness
measures. By addressing both technical challenges and eth-
ical considerations, our work serves as an important step
toward developing fairer, more transparent, and responsible
Al systems.
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A. Appendix — Theory
A.1. Theoretical Analysis of Unfairness in Class-Incremental Learning

Continuing from Sec. 3.1, we prove the lemma on the updated loss of a group of data after learning the current task data.

Lemma A.1 (Restated from Lemma 3.1). Denote G as a sensitive group of data composed of features X and true labels
y. Also, denote fé71 as a previous model and fy as the updated model after training on the current task T;. Let { be any
differentiable loss function (e.g., cross-entropy loss), and 1 be a learning rate. Then, the loss of the sensitive group of data
after training with a current task sample d; € T; is approximated as follows:

U(fo,G) = L(fi,G) —nVel(fi71, Q) TVl (fi1, dy),

where Z( fo, G) is the approximated average loss between model predictions fo(X) and true labels y, whereas {( féfl, G)is
the exact average loss, ng(féfl, G) is the average gradient vector for the samples in the group G, and Vgﬁ(féfl, d;) is
the gradient vector for a sample d;, each with respect to the previous model fé_l.

Proof. We update the model using gradient descent with the current task sample d; € T} and learning rate 7 as follows:
0=0'"" —nVel(fy~" dy).
Using the Taylor series approximation,
U(fo.G) = L(fg ", G) + Vol(fg,G)T(0 6"
Ufg™"5G) + Vol fy™, G) T (=nVot(fy " dy)
U fy " Q) =nVol(fy ' G) TVal(f5 " dy).
If we update the model using all the current task data 7}, the equation is formulated as £(fs,G) = ((fi ', G) —
NV ol( fé_l, G) "Vl( fé_l, T;). Therefore, if the average gradient vectors of the sensitive group and the current task

data have opposite directions, i.e., Vol(f5~!, G)TVgl(fi~!, T}) < 0, learning the current task data increases the loss of
the sensitive group data and finally leads to catastrophic forgetting. O

We next derive a sufficient condition for unfair forgetting.

Theorem A.2 (Restated from Theorem 3.3). Let ¢ be the cross-entropy loss and we denote G, and G2 as the over-
performing and underperforming groups of data, and d; as a training sample that satisfy the following conditions:
OfY Gr) < e(fhY, Gy) while Vol(fomt,Gh) TVel(fot,di) > 0 and Vel(fi™, Go) TVel(fi,d;) < 0. Then
10(fo, Gr) = U fo, Go)| > |6(f5~", Gh) — L(fy*, Ga)l.

Proof. Using the derived equation in the lemma A.1 £(fy, G) = £( 2 G) = nVel(fy T G)TVel(fi Y, d;), we compute
the disparity of losses between the two groups G; and G after the model update as follows:
[0(fo, G1) = U fo, G2) | = |(0(f3 ™", Gr) = nVol(fy™", G1) " Vol(fy " di))—
(0(fy" Ga) = ¥ ol(fy~". G2) T Vol(fy ", o))
=|(e(fy ", Gr) — U(fy " Ga))—

n(Vel(fy ' G1) T Vol(fg ™t di) = Vol(fy ', G2) Vol (fy~t i)l
Since £(fi71,G1) < £(f)7,Ga), it leads to £(fi ', Gy) — L(fi',G2) < 0. Next, the two assumptions of
Vol(fy' . G1)TVel(fy™" di) > 0 and Vol(fy™!, G2) TVel(fy™", di) < 0 make —n(Vol(fy~",G1)TVol(fg™" . di) -
Vol(fy™, Ga)TVel(fi,d;)) < 0. Since the two terms in the absolute value equation are both negative,

|6(fo,G1) = (fa, Ga)| = [€(f57, Gr) = €(fy ™, Ga) |+
| = n(Vol(fy ', Gh) T Val(fy ™t di) = Vol(fy™", Ga) Vol fy,dy))]
> e(fy 1 Gh) = U fy 1, Ga)l.

We finally have |£( fo, G1) —£(fo, Go)| > [6(f)*, G1) —£(fi~1, G2)|, which implies that fairness deteriorates after training
on the current task data. O
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A.2. From Cross-Entropy Loss to Group Fairness Metrics

Continuing from Sec. 3.1, we explain how to approximate the group fairness metrics using cross-entropy loss disparity.
Existing works (Shen et al., 2022; Roh et al., 2021; 2023) empirically verified that using the cross-entropy loss disparity
can provide reasonable proxies for common group fairness metrics such as equalized odds (EO) and demographic parity
(DP) disparity. In addition, we theoretically describe how minimizing the cost function for EO using the cross-entropy
loss disparity (i.e., Lgo = W > yev.zez (U fo, Gy,2) — U(fo, Gy)| where £ is a cross-entropy loss) leads to ensuring EO
disparity. (Shen et al., 2022) theoretically and empirically showed that using cross-entropy loss instead of the 0-1 loss (i.e.,
1(y # y) where 1(-) is an indicator function, which is equivalent to the probability of correct prediction) can still capture
EO disparity in binary classification. We now prove how applying the cross-entropy loss disparity for EO can be extended to
multi-class classification as follows:

Let m,, . be the size of a sensitive group (i.e., my , := [{i : y; = y,z; = z}|) and Y be a set of all classes y. Also, let
y{ be the one-hot encoding vector of y,. Similarly, §, is a predicted label and j/f denotes a probability distribution

for each label of the sample 7. Then, the cross-entropy loss for a sensitive group G, , can be transformed as follows:

My,z [Y
ﬁﬁh,G%z)z-—n; > (E:Y§-bgﬁfﬂ
# =1 j=1
— 1 my’zl oY
= *my,z ; 0g(y;)-

Since y? is equivalent to p(y, = y) and we are measuring a loss for the sensitive group (y =y, z = 2), {(f9,Gy,.) =
L% log(p(y;)) is an unbiased estimator of — log p(§|y = y,z = z). Likewise, ¢(fy, G,) is an unbiased estimator of

My, 2

r(Ily=y) r(ly=y)
p(Ily=y,z=2) p(ly=y,z=2)

Y 1l Z | Y, we conclude that minimizing the cost function for EO can satisfy equalized odds.

—log p(y|y = y) and our cost function becomes equivalent to ‘ log . Since = 1 for all y, z implies

We next perform experiments to evaluate how well the cost function for EO approximates EO disparity (i.e.,
Wl\zl > yevaez | Pr(y = yly = y,z = z) — Pr(y = yly = y)|) on the Biased MNIST dataset as shown in Fig. 4.
Although the scales of the two metrics are different, the simultaneous movements of these two trends suggest that our cost
function is effective in satisfying equalized odds.

— EO Disparity Cost function for EO
0.5

-1.5
0.4+ ©)
s3]
) =
€03 F1.0<
2 g
a 3]
0.21 =
o ﬁ 0.5 2
o}
01 | \ | | \—\_v .

0.0 — 0.0

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 4: Comparison of EO disparity and cost function for EO during training on the Biased MNIST dataset. We train a
model for 15 epochs per task.
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A.3. Derivation of a Sufficient Condition for Demographic Parity in the Multi-Class Setting

Continuing from Sec. 3.2, we derive a sufﬁcient condition for satisfying demographic parity in the multi-class setting.

Proposition A.3. In the multi-class setting, = K(fg, o) = L2 é(fe, y,22) Where my, . = {i 1y, = y,z; = 2}

™
and m. , = |{i 1 z; = z}| fory € Y and z1, 2o E Z can serve as a suﬁ‘ictent condition for demographic parity.

Proof. In the multi-class setting, we can extend the definition of demographic parity as Pr(y = y|z = z1) = Pr(y = y|z =
z9) fory € Y and 21, z2 € Z. The term Pr(y = y|z = z) can be decomposed as follows: Pr(y = y|z = z) = Pr(y =
vy =ylz=2)+>, o, Pr(y =y,y = yalz = 2). Without loss of generality, we set z; = 0 and zo = 1. Then the
definition of demographic parity in the multi-class setting now becomes

Pr(y =y,y=ylz=0)+ ZPr Y,Y = ynlz=0)
YnFY

=Pr(§=yy=ylz=1)+ Y Pr§=y,y =yalz=1).
YnFY

The term Pr(y = y,y = y|z = 0) can be represented with the 0-1 loss as follows:
Pr(y =y,y=9,2=0)

Pr(y=y,y=ylz=0) =

Pr(z = 0)
_Pri=yly=92=0)Pr(y=y,2=0)
Pr(z = 0)
1 .
= > (1 =1y #9:)-
#0 diyi=y,2i=0

Similarly, Pr(y = y,y = yn|z = 0) for y,, # y can be transformed as follows:
Pr(y=y,y =yn,2=0)

Pr(y:yvy:yn‘zz 0) =

Pr(z = 0)
_Pry=yly=yn,z=0)Pr(y = yn,z=0)
Pr(z =0)
1
=— L(y; # ).
Mo Z (y; # ;)

J1Yj=Yn,2;=0

By applying the same technique to Pr(y = y,y = y|z = 1) and Pr(y = y,y = yn|z = 1), we have the 0-1 loss-based
definition of demographic parity:

! Z (1_]]-yz7éyz Z P Z ]]-(y]#gj)

My . %0
Y Gyi=y,2:=0 ity 0 jiyspazy=0

:mi Z (1—]13/@75% Z —_— Z ]l(yJ#/gj)

R ,
iy =Y,z =1 uﬁfy ’ Jyj:yi,zj-zl

Since the 0-1 loss is not differentiable, it is not suitable to approximate the updated loss using gradients as in Eq. 1. We thus
approximate the 0-1 loss to a standard loss function ¢ (e.g., cross-entropy loss),

mto > e d; Zi > Ufedy)

oy =y,2;=0 1Y Y *0 JY;=vi,2;=0
1
= m E fea E § E(f@ad])a
1.
T iy =y,zi=1 i yﬁﬁy *1 Jyi=vi,z;=1

where £(fg, d;) is the loss between the model prediction fp(d;) and the true label y;. By replacing >, _ . __{(fp, d;) =
My, 2 (f@a )

my,0 My,

( (fev )) Z M0 (f97 1/1,)_

*, *
1Y £Y

Ll(fo, Gyn) + Y Tl (fy, Gyp)

mMy.0 . My 1
LY AY

s
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To satisfy the constraint for all y € Y, the corresponding terms on the left-hand side and the right-hand side of the equation

should be equal, i.e., my E@ (fo,Gyo) = Zy 16 (fo, Gy,1). In general, we derive a sufficient condition for demographic

parity as My,zy é( fo,Gyz) = :1’ =2 E( fo, Gy, Zz) Note that the number of samples in sensitive groups (e.g., m. ., and m,, )

is derlved from the definition of demographlc parity, which is independent of sample weights. O
A.4. LP Formulation of Fairness-aware Optimization Problems

Continuing from Sec. 3.2, we prove Theorem 3.4, which implies that fairness-aware optimization problems can be
transformed into linear programming problems. This transformation is made possible by using Lemma A.4, which suggests
that minimizing the sum of absolute values with linear terms can be transformed into a linear programming form.

Lemma A.4. The following optimization problem can be reformulated into a linear programming form. Note that in the
Jfollowing equation, y and z refer to arbitrary variables, not to the label or sensitive attribute, respectively.

n
m)in2|yz| + 2
i=1
G m—a-blx n—c-dlx
Qiy Ciy Yiy 24 €R7 bz,dl €R7n><1 Vi € {1,...,71}, X € [07 1]"L><1_

Proof. The transformation for minimizing the sum of absolute values was introduced in (Ferguson & Sargent, 1958; McCarl
& Spreen, 1997; Asghari et al., 2022). Note that considering the additional affine term does not affect the flow of the proof.
We first substitute y; for y;r — vy, where both y;“ and y,;  are nonnegative. Then, the optimization problem becomes

n
. + —
miny |y —y; |+ 2
i=1
— T T —
s.t. y;”—yi =a;—b;x, z=c¢—d;x, y;r—yi =y

vy, €RT, ay, ey, 2 €R, b;,d; € R™*' Vie{1,...,n}, xe€][0,1]™*

This problem is still nonlinear. However, the absolute value terms can be simplified when either y;r or gy, equals to zero
(i.e., yf y; = 0), as the consequent absolute value reduces to zero plus the other term. Then, the absolute value term can be
written as the sum of two variables,

Wit =l =y + =y +u if yfys =0

By using the assumption, the formulation becomes

n
minZy?‘ +y; +z
X
i=1
st. Yyl —y; =ai—b/x, z=c—-d/x, y -y =vi, yy =0

yf,yl_ S R+, i, Ciy Yis 2 € ]R, bi,di S RmX1 Vi € {1, - ,n}, X € [0, 1]m><1

with the underlined condition added. However, this condition can be dropped. Assume there exist yf and y; , which do not
satisfy y;"y; = 0. When y;" > y;~ > 0, there exists a better solution (y;” — y[ , 0) instead of (y;, y;”), which satisﬁes all
the conditions, but has a smaller objective function value yl —y; +0+2 < yz +1y, + z;. For the case of y, > yl > 0,
a solution (0, y;” — y; ) works better for similar reasons. Thus, the minimization automatically leads to yl y; = 0, and the
underlined nonlinear constraint becomes unnecessary. Consequently, the final formulation becomes this linear problem:

n

min Yyt oy

i=1
st. oyl —yr =ai—blx, z=c¢-dlx, yf -y =y
yj,y;eR*7 a;, ¢, yi, 7z €R, b, d; € RM*1 Vie{l,...,n}, xe[O,l]le.
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Applying Lemma A .4, we next prove Theorem 3.4. By using the result of Theorem 3.4, we show that the fairness-aware
optimization problems, where the objective function includes both fairness (L rq;-) and accuracy (L) losses, can be
transformed into linear programming (LP) problems.

Theorem A.5 (Restated from Theorem 3.4). The fairness-aware optimization problems (Eq. 2, 3, and 4) can be transformed
into the form of linear programming (LP) problems.

Proof. For every update of the model, the corresponding loss of each group can be approximated linearly in the same way
asin Sec. A.1: £(fp, G) = £(f51,G) — nVel(fi1,G)TVel(fi~t, T;). With a technique of sample weighting for the
current task data, Vof(f)~*,77) can be changed as ﬁ Ya.er, WiVel( f471, d;) where wi represents a training weight for
the current task sample d;.

We believe that this transformation is natural and valid, as models are generally updated using the average gradient of
training data, formulated as \lel > aer, Vol ( fé_l, d;), and a training weight is additionally assigned to each sample for
weighting. Here, |7T}| is the number of samples in the current task data, and this is independent of the fairness notions
considered. Note that if the normalization coefficient |T T is replaced with Z T the revised equation cannot handle the case

where all weights are zero. Also, our revised optimization problems of Eq. 2, 3 and 4 would no longer be linear programs.

Thus, /(f5, G) can be rewritten as follows:

@) = 01516 = w1y 60 (g X wivattsh )

d; €T
— U a) - |T|v9a LA Vel(fitdy) -] wl
=ag — biw,
where ag := ((f;”",G) and b := mrl o Vol(fi b dy) - ]T Vol(fi~ ', G) are a constant and a vector with
constants, respectively, and w := w; is a variable where wlZ € [0,1].

Case 1. If target fairness measure is EER (L t4:r = LEER),

LEER+)\Lacc = |Y‘ Zw f97 ) (f07GY)| +)\|Y | Z Z f6’7

yeY yEY,
mZ' —ag,) — (bg, —bg,)" W|+>\| 7] > (ag, —bb,w).
yeY yEY,

Case 2. 1If target fairness measure is EO (L4 = LEo),

1 - . -
Lgo + Mace = an D U0, Gy) = U, G,y )|+AIYHZI >, UfeGye)

yeY,z€Z yeY,,zEZL

1
=5z 2 @6, —ea,) = (ba, . ~ba,) wl+
yeY,z€Z

1
A (ag,. — bl w).
|Yc||Z‘ yeéez , G-
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Case 3. If target fairness measure is DP (L4 = Lpp),

1 , ; 1 ]
Lop + Mlace = rzn 90 (0, Cye) = U0 Gl 4 A D2 U0 Gy)
Y2l e Yol 2,
1
- w Z |(aby’z o ale) o (b/GVy,z - b,Gy)TW|+
| || I yeEY,2€Z
1 T
My 2 (a6,. G, W),
¢ y€EY,,2EZL
whete a;, = T2a, . 0, = X fitaa, b, = Rba, L b, = B Tba,
’ z€L , ' z€EZL !

Since ag and b are composed of constant values, each equation above can be reformulated to a linear programming form
by applying the above lemma. O

B. Appendix — Experiments
B.1. T-SNE Results for Real Datasets

Continuing from Sec. 1, we provide t-SNE results for real datasets to show that data overlapping between different classes
also occurs in real scenarios, similar to the synthetic dataset results depicted in Fig. 1a. Using t-SNE, we project the
high-dimensional data of the MNIST, FMNIST, Biased MNIST, and DRUG datasets into a lower-dimensional 2D space with
x1 and x2, as shown in Fig. 5. Since BiasBios is a text dataset that requires pre-trained embeddings to represent the data, we
do not include the t-SNE results for it. In the MNIST dataset, the images with labels of 3 (red), 5 (brown), and 8 (yellow)
exhibit similar characteristics and overlap, but belong to different classes. As another example, in the FMNIST dataset, the
images of the classes ‘Sandal’ (brown), ‘Sneaker’ (gray), and ‘Ankel boot” (sky-blue) also have similar characteristics and
overlap.

60 . 0 60 . T-shirt/top
. B 1 : e Trouser
40 e 2 40 *  Pullover
20 e 3 20 e Dress
~ e 4 N e  Coat
>< 0 : e 5 >< e  Sandal
-20 . 6 —20 . Shirt
—40 7 —-40 Sneaker
8 _ Bag
00750 =40 20 0 20 40 60 9 —60 Ankel boot
X1
(a) MNIST.
60 e 0 60
. 1
40 . 2 40 e Never Used
¢« 3 20 »  Used over a Decade Ago
s 4 o~ 0 »  Used in Last Decade
e 5 < e Used in Last Year
. 6 20 s  Used in Last Month
—40 « 7 _ e  Used in Last Day
X 40
60 i 8
-60 —40 20 0 20 40 60 9 6960 -40 20 0 20 40 60
X1 X1
(c) Biased MNIST. (d) DRUG.

Figure 5: t-SNE results for the MNIST, FMNIST, Biased MNIST, and DRUG datasets.
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B.2. Approximation Error of Taylor Series

Continuing from Sec. 3.1, we provide empirical approximation errors between true losses and approximated losses derived
from first-order Taylor series on the MNIST and Biased MNIST datasets as shown in Fig. 6. For each task, we train the
model for 5 epochs and 15 epochs on the MNIST and Biased MNIST datasets, respectively. The approximation error is large
when a new task begins because new samples with unseen classes are introduced. However, the error gradually decreases as
the number of epochs increases while training a model for the task.

2.0 2.0

1.5 151 1

Approximation error
[S—

'. <
Approximation error
—
<)

Task 2 Task 3 Task 4 Task 5 Task2 Task3 Task4  Task5
(a) MNIST. (b) Biased MNIST.

Figure 6: Absolute errors between true losses and approximated losses derived from first-order Taylor series while training a
model.

B.3. Computational Complexity and Runtime Results of FSW

Continuing from Sec. 3.3, we provide computational complexity and overall runtime results of FSW using the MNIST and
Biased MNIST datasets as shown in Fig. 7 and Fig. 8. Our empirical results show that for about twelve thousand current-task
samples, the time to solve an LP problem is a few seconds for the MNIST dataset as shown in Fig. 7. By applying the
log-log regression model to the results in Fig. 7, the computational complexity of solving LP at each epoch is O(|Tj|':64%)
where |T;| denotes the number of current task samples. We note that this complexity can be quadratic in the worst case.
If the task size becomes too large, we believe that clustering similar samples and assigning weights to the clusters, rather
than samples, could be a solution to reduce the computational overhead. In Fig. 8, we compute the overall runtime of FSW
divided into three steps: Gradient Computation, CPLEX Computation, and Model Training.
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Figure 7: Runtime results of solving  Figure 8: Overall runtime results of our framework on all tasks for three datasets:
a single LP problem in FSW using MNIST-EER, Biased MNIST-EO, and Biased MNIST-DP.

CPLEX for the MNIST dataset.

19



Fair Class-Incremental Learning using Sample Weighting

B.4. More Details on Datasets

Continuing from Sec. 4.1, we provide more details of the two datasets using the class as the sensitive attribute and the three
datasets with separate sensitive attributes. For datasets with a total of C classes, we divide the datasets into L sequences of
tasks where each task consists of C/L classes, and assume that task boundaries are available (van de Ven & Tolias, 2019).
We also consider using standard benchmark datasets in the fairness field, but they are unsuitable for class-incremental
learning experiments either because there are only two classes (e.g., COMPAS (Angwin et al., 2016), AdultCensus (Kohavi,
1996), and Jigsaw (cjadams, 2019)), or because it is difficult to apply group fairness metrics. For instance, in the case of
CelebA (Liu et al., 2015), each person is considered a class, making the sensitive attribute dependent on the true label.

e MNIST (LeCun et al., 1998): The MNIST dataset is a standard benchmark for evaluating the performance of machine
learning models, especially in image classification tasks. The dataset is a collection of grayscale images of handwritten
digits ranging from 0 to 9, each measuring 28 pixels in width and 28 pixels in height. The dataset consists of 60,000
training images and 10,000 test images. We configure a class-incremental learning setup, where a total of 10 classes
are evenly distributed across 5 tasks, with 2 classes per task. We assume the class itself is the sensitive attribute.

¢ Fashion-MNIST (FMNIST) (Xiao et al., 2017): The Fashion-MNIST dataset is a specialized variant of the original
MNIST dataset, designed for the classification of various clothing items into 10 distinct classes. The classes include
‘T-shirt/top’, ‘“Trouser’, ‘Pullover’, ‘Dress’, ‘Coat’, ‘Sandal’, ‘Shirt’, ‘Sneaker’, ‘Bag’, and ‘Ankle boot’. The dataset
consists of grayscale images with dimensions of 28 pixels by 28 pixels including 60,000 training images and 10,000
test images. We configure a class-incremental learning setup, where a total of 10 classes are evenly distributed across 5
tasks, with 2 classes per task. We assume the class itself is the sensitive attribute.

¢ Biased MNIST (Bahng et al., 2020): The Biased MNIST dataset is a modified version of the MNIST dataset that
introduces bias by incorporating background colors highly correlated with the digits. We select 10 distinct background
colors and assign one to each digit from O to 9. For the training images, each digit is assigned the selected background
color with a probability of 0.95, or one of the other colors at random with a probability of 0.05. For the test images, the
background color of each digit is assigned from the selected color or other random colors with equal probability of 0.5.
The dataset consists of 60,000 training images and 10,000 test images. We configure a class-incremental learning setup,
where a total of 10 classes are evenly distributed across 5 tasks, with 2 classes per task. We set the background color as
the sensitive attribute and consider two sensitive groups: the origin color and other random colors for each digit.

* Drug Consumption (DRUG) (Fehrman et al., 2017): The Drug Consumption dataset contains information about
the usage of various drugs by individuals and correlates it with different demographic and personality traits. The
dataset includes records for 1,885 respondents, each with 12 attributes including NEO-FFI-R, BIS-11, ImpSS, level of
education, age, gender, country of residence, and ethnicity. We split the dataset into the ratio of 70/30 for training and
testing. All input attributes are originally categorical, but we quantify them as real values for training. Participants were
questioned about their use of 18 drugs, and our task is to predict cannabis usage. The label variable contains six classes:
‘Never Used’, ‘Used over a Decade Ago’, ‘Used in Last Decade’, ‘Used in Last Year’, ‘Used in Last Month’, and ‘Used
in Last Day’. We configure a class-incremental learning setup, where a total of 6 classes are distributed across 3 tasks,
with 2 classes per task. We set gender as the sensitive attribute and consider two sensitive groups: male and female.

* BiasBios (De-Arteaga et al., 2019): The BiasBios dataset is a benchmark designed to explore and evaluate bias in
natural language processing models, particularly in the context of profession classification from bios. The dataset
consists of short textual biographies collected from online sources, labeled with one of the 28 profession classes, such
as ‘professor’, ‘nurse’, or ‘software engineer’. The dataset includes gender annotations, which makes it suitable for
studying biases related to gender. The dataset contains approximately 350k biographies where 253k are for training
and 97k for testing. We configure a class-incremental learning setup using the 25 most-frequent professions, where a
total of 25 classes are distributed across 5 tasks, with 5 classes per task. As the number of samples for each class varies
significantly, we arrange the classes in descending order based on their size (Chowdhury & Chaturvedi, 2023). We set
gender as the sensitive attribute and consider two sensitive groups: male and female.
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B.5. More Details on Models and Hyperparemeters

Continuing from Sec. 4.1, we provide more details on experimental settings. We implement FSW using Python and PyTorch.
To solve the fairness-aware optimization problems and find optimal sample weights, we use CPLEX, a high-performance
optimization solver developed by IBM that specializes in solving linear programming (LP) problems. For training, we
use an SGD optimizer with momentum 0.9 and a batch size of 64 for all experiments. We also set the initial learning rate
and the number of epochs for each dataset as follows: For the MNIST, FMNIST, Biased MNIST, and DRUG datasets, we
train both our model and baselines with initial learning rates of [0.001, 0.01, 0.1], for 5, 5, 15, and 25 epochs, respectively.
For the BiasBios dataset, we use learning rates of [0.00002, 0.0001, 0.001] for 10 epochs and set the maximum token
length to 128. For hyperparameters, we perform cross-validation with a grid search for o € {0.0005, 0.001,0.002,0.01},
A €{0.1,0.5,1}, and 7 € {1,2,5,10}. We employ single-head evaluation where a final layer of the model is shared for all
tasks (Farquhar & Gal, 2018; Chaudhry et al., 2018). All evaluations are performed on separate test sets and repeated with
five random seeds. We write the average and standard deviation of performance results and run experiments on Intel Xeon
Silver 4114 CPUs and NVIDIA RTX A6000 GPUs.

B.6. More Details on Baselines

Continuing from Sec. 4.1, we provide more details on baselines. In the continual learning literature (Aljundi et al., 2019;
Yoon et al., 2022), it is natural for all the baselines to be continual learning methods. We compare our algorithm with the
following baselines categorized into four types:

L]

Naive methods: Joint Training assumes access to all the data of previous classes for training and thus has an upper-
bound performance; Fine Tuning trains a model using only new classes of data without access to previous data and thus
has a lower-bound performance.

State-of-the-art methods: iCaRL (Rebuffi et al., 2017) performs herding-based buffer selection and representation
learning using additional knowledge distillation loss; WA (Zhao et al., 2020) is a model rectification method designed
to correct the bias in the last fully-connected layer of the model. WA uses weight aligning techniques to align the norms
of the weight vectors over classes; CLAD (Xu et al., 2024) is a representation learning method that disentangles the
representation interference between old and new classes.

* Sample selection methods: GSS (Aljundi et al., 2019) and OCS (Yoon et al., 2022) are gradient-based sample selection
methods. GSS selects a buffer with diverse gradients of samples; OCS uses gradient-based similarity, diversity, and
affinity scores to rank and select samples for both current and buffer data.

Fairness-aware methods: Fa/RL (Chowdhury & Chaturvedi, 2023) performs fair representation learning by controlling
the rate-distortion function of representations. FairCL (Truong et al., 2023) addresses fairness in semantic segmentation
tasks arising from the imbalanced class distribution of pixels, but we consider this problem to be unrelated from ours to
add the method as a baseline.

B.7. More Results on Accuracy and Fairness

Continuing from Sec. 4.2, we compare FSW with other baselines with respect to EER, EO, and DP disparity as shown in
Tables 5, 6, and 7, respectively. Due to the excessive time (>5 days) required to run OCS on BiasBios, we are not able to
measure the results. Overall, FSW achieves better accuracy-fairness tradeoff results compared to the baselines for all the
datasets. The state-of-the-art method, iCaRL, generally achieves high accuracy with low EER disparity results. However,
since iCaRL uses a nearest-mean-of-exemplars approach for its classification model, the predictions are significantly affected
by sensitive attribute values, resulting in large EO and DP disparity. Although WA also performs well, the method adjusts the
model weights for the current task classes as a whole, which leads to an unfair forgetting of sensitive groups and unstable
results. The closest work to FSW is CLAD, which disentangles the representations of new classes and a fixed proportion of
conflicting old classes to mitigate imbalanced forgetting across classes. However, the proportion of conflicts may vary by
task in practice, limiting CLAD’s ability to achieve group fairness. While the two sample selection methods GSS and OCS
store diverse and representative samples in the buffer, these methods sometimes result in an imbalance in the number of
buffer samples across sensitive groups. The fairness-aware method FalRL leverages an adversarial debiasing framework
combined with a rate-distortion function, but the method loses significant accuracy because training the feature encoder and
discriminator together is unstable.
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Table 5: Accuracy and fairness results on the MNIST and FMNIST datasets with respect to EER disparity, where the
class is the sensitive attribute. We compare FSW with four types of baselines: naive (Joint Training and Fine Tuning),
state-of-the-art (iCaRL, WA, and CLAD), sample selection (GSS and OCS), and fairness-aware (FalRL) methods. We mark
the best and second best results with bold and underline, respectively.

Methods \ MNIST FMNIST
| Acc. EER Disp. Acc. EER Disp.

Joint Training .989+ 000 .003+.000 921+ .002 .024+ 002
Fine Tuning 455+ .000 .326+.000 451+.000 .325+.000
iCaRL .918+.005 .048+.003 .852+.002 .047 +.001
WA 911+.007 .052+.006 .809+.005 .088+.003
CLAD .835+.016 .099+ 016 7824018 1184022
GSS .889+.010 .080.009 7324021 149+ 019
OCS 929+ .002 .0404+.003 799+ 008 109+ 007
FalRL | .558+.060 273+018 .531+.032 289+ 019
FSW | .925+ 004 .032+.005 824+ 006 .039-+.006

Table 6: Accuracy and fairness results on the Biased MNIST, DRUG, and BiasBios datasets with respect to EO disparity,
where background color is the sensitive attribute for Biased MNIST, and gender for DRUG and BiasBios, respectively. Due
to the excessive time (>5 days) required to run OCS on BiasBios, we are not able to measure the results and mark them as
‘~’. The other settings are the same as in Table 5.

Methods | Biased MNIST DRUG BiasBios

| Acc. EO Disp. Acc. EO Disp. Acc. EO Disp.
Joint Training 944+ 002 .108+.003 442+ 015 179+ 052 .823+.002 .076+.001
Fine Tuning 449+ 001 .016+.002 .357+.009 1254034 .420+.001 .028+.002
iCaRL .802+.008 .365+.021 444+ 025 .190+.017 .829+.002 .084+.003
WA 916-+.002 .140+.004 408+.022 1344029 .796+.003 .076+.001
CLAD 871+.012 .198+.022 410+.026 1144043 799+ 003 .074+.002
GSS .809+.005 .325+.017 426+.010 .167+.038 .808+.003 .081+.002
OoCS 824+ 007 331+.013 406+.024 142+ 030 - -
FalRL \ A11+.012 118+.011 3544+ 011 .060+.021 .400+.060 .055+.020
FSW ‘ 909+ 004 .119+.007 .406+.014 .077+.010 .808+.002 .072+.001

Table 7: Accuracy and fairness results on the Biased MNIST, DRUG, and BiasBios datasets with respect to DP disparity.
The other settings are the same as in Table 6.

Methods | Biased MNIST DRUG BiasBios

| Acc. DP Disp. Acc. DP Disp. Acc. DP Disp.
Joint Training 944+ 002 .006+.001 442+ 015 .090+.020 .823+.002 .021+.000
Fine Tuning 449+ 001 .017+.008 .357+.009 .102+.013 420+.001 .028+.002
iCaRL .802+.008 .015+.001 444+ 025 .093+.009 .829+.002 .022+.000
WA .916+.002 .009+ 001 408+.022 .067+.013 .796+.003 0224000
CLAD 871+.012 .013+.001 410+.026 .069+.019 799+ 003 0224000
GSS .809+.005 .039+.003 3924022 .065+.015 .808+.003 .023+.000
OCS 824+ 007 .035+.003 .393+.017 .053+.012 - -
FalRL \ A11+.012 .026+.008 354+ 011 .040+.008 .400+.060 .015+.002
FSW ‘ 904+ 004 .008+.001 405+.013 .043+ 004 .809+.003 .022+.000

22



Fair Class-Incremental Learning using Sample Weighting

B.8. More Results on Sequential Accuracy and Fairness

Continuing from Sec. 4.2, we present the sequential performance results for each task as shown in Fig. 9-Fig. 16. Due to the
excessive time required to run OCS on BiasBios, we are not able to measure the results.
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Figure 9: Sequential accuracy and fairness (EER) results on the MNIST dataset.
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Figure 10: Sequential accuracy and fairness (EER) results on the FMNIST dataset.
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Figure 11: Sequential accuracy and fairness (EO) results on the Biased MNIST dataset.
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Figure 12: Sequential accuracy and fairness (DP) results on the Biased MNIST dataset.
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Figure 13: Sequential accuracy and fairness (EO) results on the DRUG dataset.
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Figure 14: Sequential accuracy and fairness (DP) results on the DRUG dataset.
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Figure 15: Sequential accuracy and fairness (EO) results on the BiasBios dataset.
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Figure 16: Sequential accuracy and fairness (DP) results on the BiasBios dataset.
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B.9. More Results on Tradeoff between Accuracy and Fairness

Continuing from Sec. 4.2, we evaluate the tradeoff between accuracy and fairness of FSW with other baselines as shown in
Fig. 17-Fig. 20. FSW in the figures represents the result for different values of A, a hyperparameter that balances fairness
and accuracy. Since other baselines do not have a balancing parameter, we select Pareto-optimal points from all search
spaces, where a Pareto-optimal point is defined as a point for which there does not exist another point with both higher
accuracy and lower fairness disparity. The figures show FSW positioned in the lower right corner of the graph, indicating
better accuracy-fairness tradeoff results compared to other baselines. Due to the excessive time required to run OCS on
BiasBios, we are not able to measure the results.
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Figure 17: Tradeoff results between accuracy and fairness (EER) on the MNIST and FMNIST datasets.

—@- iCaRL WA @ cLAD - GSS = 0CS - FalRL FSW
¢ 0041 I
| b .
203 2
§= = 0.031
< <
3 &
2 A 0.02
] [l . 1
8 0.2 / =
L 4
x 0.011 | | |
04 0.6 0.8 0.80 0.85 0.90
Accuracy Accuracy
(a) Biased MNIST (EO). (b) Biased MNIST (DP).

Figure 18: Tradeoff results between accuracy and fairness (EO and DP) on the Biased MNIST dataset.
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Figure 19: Tradeoff results between accuracy and fairness (EO and DP) on the DRUG dataset.
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Figure 20: Tradeoff results between accuracy and fairness (EO and DP) on the BiasBios dataset.
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B.10. More Results of FSW when Varying the Buffer Size

Continuing from Sec. 4.2, we have additional experimental results of FSW on the MNIST and Biased MNIST datasets
when varying the buffer size to 16, 32, 64, and 128 per sensitive group as shown in Fig. 21. As the buffer size increases,
both accuracy and fairness performances improve. In addition, we compute the number of current task data assigned with
non-zero weights as shown in Fig. 22, and there is no clear relationship between the buffer size and weights.
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Figure 21: Accuracy and fairness results of FSW when varying the buffer size on the MNIST and Biased MNIST datasets.
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Figure 22: Number of current task data assigned with non-zero weights when varying the buffer size on the MNIST and
Biased MNIST datasets.
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B.11. More Results on Sample Weighting Analysis

Continuing from Sec. 4.3, we show more results from the sample weighting analysis for all sequential tasks of each dataset,
as shown in the figures below (Fig. 23-Fig. 30). We compute the number of samples for weights in sensitive groups including
classes. For each task, we show the average weight distribution over all epochs, as sample weights may change during each
epoch of training. Since FSW is not applied to the first task, where the model is trained with only the current task data, we
present the results starting from the second task.

[
£ 10000 EZ Class 2 10000 B Class 4 B Class 6 10000 B2 Class 8
E Class 3 Class 5 Class 7 BN Class 9
3
5 5000 5000 5000
=)
=
=
2 0 0 0 0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Weight Weight Weight Weight
(a) Task 2. (b) Task 3. (c) Task 4. (d) Task 5.

Figure 23: Distribution of sample weights for EER in sequential tasks of the MNIST dataset.
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Figure 24: Distribution of sample weights for EER in sequential tasks of the FMNIST dataset.
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Figure 25: Distribution of sample weights for EO in sequential tasks of the Biased MNIST dataset.
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Figure 26: Distribution of sample weights for DP in sequential tasks of the Biased MNIST dataset.
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Figure 27: Distribution of sample weights for EO in sequential tasks of the DRUG dataset.
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Figure 28: Distribution of sample weights for DP in sequential tasks of the DRUG dataset.
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Figure 29: Distribution of sample weights for EO in sequential tasks of the BiasBios dataset.
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Figure 30: Distribution of sample weights for DP in sequential tasks of the BiasBios dataset.
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B.12. Binarity of the Sample Weight

Continuing from Sec. 4.3, the acquired sample weights are mostly close to O or 1, which are extreme values. However, there
are also some values that do not lie at these boundaries (0 or 1). The average number of binary (0 or 1) and non-binary
(not 0 or 1) samples weights are shown in Table 8. For the distribution of binary values, please refer to Fig. 23-Fig. 30 in
Sec. B.11. We also emphasize that if we limit the solution of the optimization problem to binary, which is equivalent to
sample selection, the problem would transform into a mixed-integer linear programming problem, which is NP-hard and
cannot be solved efficiently.

Table 8: Average counts of binary (0 or 1) and non-binary (not O or 1) sample weights for each optimization task. Since
we take averages of different tasks excluding the first task, the sum of (# Binary) and (# Non-binary) are not necessarily
integers.

Dataset (Metric) | MNIST (EER) FMNIST (EER) Biased MNIST (EO) Biased MNIST (DP)

# Binary 11830.8 11997.4 11831.9 11831.6

# Non-binary 3.0 2.6 1.9 2.1
Dataset (Metric) | Drug (EO) Drug (DP) BiasBios (EO) BiasBios (DP)
# Binary 446.5 446.1 25274.7 25273.2

# Non-binary 0.0 0.4 2.0 35

B.13. More Results on Ablation Study
Continuing from Sec. 4.4, we present additional results of the ablation study to demonstrate the contribution of FSW to the

overall accuracy and fairness performance. The results are shown in Tables 9, 10, and 11.

Table 9: Accuracy and fairness results on the MNIST and FMNIST datasets, with respect to EER disparity with or without
FSW.

Methods \ MNIST FMNIST

| Acc. EER Disp. Acc. EER Disp.
W/o FSW 912+ 004 .051+.005 .810+.004 .092+ 003
FSW 925+ 004 .032+.005 .824+.006 .039+.006

Table 10: Accuracy and fairness results on the Biased MNIST, DRUG, and BiasBios datasets with respect to EO disparity
with or without FSW.

Methods | Biased MNIST DRUG BiasBios

\ Acc. EO Disp. Acc. EO Disp. Acc. EO Disp.
W/o FSW 910+.003 .126+.005 402+.010 .080+.005 .806+.003 .073+.002
FSW 909+ 004 119+ .007 .406-+.014 077 +.010 .808+.002 .072+.001

Table 11: Accuracy and fairness results on the Biased MNIST, DRUG, and BiasBios datasets with respect to DP disparity
with or without FSW.

Methods | Biased MNIST DRUG BiasBios

Acc. DP Disp. Acc. DP Disp. Acc. DP Disp.
W/o FSW .910+.003 .009+.001 402+ 010 .044 + 004 .805+.002 .022+.000
FSW 904+ .004 .008+.001 405+.013 043+ .004 .809+.003 .022+.000
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B.14. More Results on Integrating FSW with a Fair Post-processing Method

Continuing from Sec. 4.5, we provide additional results on integrating continual learning methods with a fair post-processing
method (e-fair) as shown in Table 12. Since e-fair only supports DP, we only show DP results. We mark the best and
second-best results with bold and underline, respectively, regardless of the application of post-processing.

Table 12: Accuracy and fairness (DP disparity) results when combining fair post-processing techniques (e-fair) with
continual learning methods (iCaRL, WA, CLAD, GSS, OCS, and FSW). Due to the excessive time (>5 days) required to run
OCS on BiasBios, we are not able to measure the results and mark them as ‘-’.

Methods \ Biased MNIST DRUG BiasBios

\ Acc. DP Disp. Acc. DP Disp. Acc. DP Disp.
iCaRL .802+.008 .015+.001 444+ 025 .093+.009 .829+.002 .022+.000
WA 916+.002 .009t.001 408+.022 .067+.013 796+ .003 .022+ 000
CLAD 871+.012 .013+.001 410+.026 .069+.019 799+ 003 .022+.000
GSS .809+.005 .039+ 003 392+ 022 .065+.015 .808+.003 .023+ 000
OCS .824+ 007 .035+.003 .393+.017 .053+.012 - -
FSW 904 + 004 .008+.001 405+.013 .043+.004 .809+.003 .022+ 000
iCaRL — e-fair 944+ 008 .006+.002 A27+.018 .026+.004 U753 +.002 .017+.000
WA — e-fair 9531003 .006-+.002 404 +.021 044+ 020 .708+.003 .016-+.000
CLAD - e-fair 924+ 012 .006+.002 406+.027 .030+.010 716+.004 .016+.001
GSS - e-fair .938+.006 .006+.002 .382+.014 .035+.017 717 +.005 .016-+.000
OCS - e-fair 952+ 003 .032+.004 .384+.009 .051+.002 - -
FSW - e-fair .906+.006 .005+.001 405+.013 .021+.004 723 +.004 .016-.000

B.15. Alternative Loss Function for Group Fairness Metrics

Continuing from Sec. 3.1, we use cross-entropy loss disparity to approximate group fairness metrics such as EER, EO, and
DP disparity. Both theoretical and empirical results show that the cross-entropy loss disparity can effectively approximate
these group fairness metrics, as discussed in Sec. A.2. However, the cross-entropy loss disparity is not the only possible type
of loss for approximating the group fairness metrics; the disparity of other loss functions may yield better performance. Our
method can be applied regardless of the loss definition if (1) the loss update process can be linearly approximated (as in
Sec. A.1) and (2) the loss disparity promotes fairness (as in Sec. A.2).

To verify if FSW can also be effective with different loss function designs, we conduct simple experiments using hinge loss
(e, >, ity max(0, s; — s,, + 1) where y; is the true integer label, and s; is the softmax output for label j) to approximate
group fairness metrics in FSW. The results are shown in Tables 13, 14, and 15. Overall, both methods show comparable
accuracy-fairness results, suggesting that FSW performs well regardless of the type of loss function used to approximate
group fairness metrics. Here, we would like to note that the cross-entropy loss disparity is widely used and empirically
verified as a reasonable proxy for capturing group fairness metrics (Shen et al., 2022; Roh et al., 2021; 2023; Gupta et al.,
2024), which is why we use it, although we could also use other losses.

Table 13: Accuracy and fairness results on the MNIST and FMNIST datasets with respect to EER disparity. “FSW (hinge)”
uses hinge loss, while “FSW” uses cross-entropy loss to approximate the group fairness metric.

Methods | MNIST FMNIST

| Acc. EER Disp. Acc. EER Disp.
FSW 925+ .004 .032+.005 .824+ 006 .039+.006
FSW (hinge) 925+ .003 .030-t.006 .825+.006 .039-t.005

Table 14: Accuracy and fairness results on the Biased MNIST, DRUG, and BiasBios datasets with respect to EO disparity.
The other settings are the same as in Table 13.

Methods \ Biased MNIST DRUG BiasBios

\ Acc. EO Disp. Acc. EO Disp. Acc. EO Disp.
FSW 909+.004 119+.007 406+.014 077 +.010 .808+.002 .072+.001
FSW (hinge) 909+.004 119+.006 406+.014 077 +.010 .807+.002 071+.002
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Table 15: Accuracy and fairness results on the Biased MNIST, DRUG, and BiasBios datasets with respect to DP disparity.
The other settings are the same as in Table 13.

Methods \ Biased MNIST DRUG BiasBios

| Acc. DP Disp. Acc. DP Disp. Acc. DP Disp.
FSW 904 +.004 .008-+.001 405+.013 .043+.004 .809-+.003 .022+.000
FSW (hinge) 904 +.004 .008-+.001 405+.013 .043+.004 .807+.006 .022+.000

C. Appendix — More Related Work

Continuing from Sec. 2, we discuss more related work.

Class-incremental learning is a challenging type of continual learning where a model continuously learns new tasks, each
composed of new disjoint classes, and the goal is to minimize catastrophic forgetting (Mai et al., 2022; Masana et al., 2023).
Data replay techniques (Lopez-Paz & Ranzato, 2017; Rebuffi et al., 2017; Chaudhry et al., 2019b) store a small portion of
previous data in a buffer to utilize for training and are widely used with other techniques (Zhou et al., 2023a) including
knowledge distillation (Rebuffi et al., 2017; Buzzega et al., 2020), model rectification (Wu et al., 2019; Zhao et al., 2020),
and dynamic networks (Yan et al., 2021; Wang et al., 2022; Zhou et al., 2023b). Simple buffer sample selection methods such
as random or herding-based approaches (Rebuffi et al., 2017) are also commonly used as well. There are also more advanced
gradient-based sample selection techniques like GSS (Aljundi et al., 2019) and OCS (Yoon et al., 2022) that manage buffer
data to have samples with diverse and representative gradient vectors. All these works do not consider fairness and simply
assume that the entire incoming data is used for model training, which may result in unfair forgetting, as we show in our
experiments.

Model fairness research mitigates bias by ensuring that a model’s performance is equitable across different sensitive groups,
thereby preventing discrimination based on race, gender, age, or other sensitive attributes (Mehrabi et al., 2022). Existing
model fairness techniques can be categorized as pre-processing (Kamiran & Calders, 2011; Feldman et al., 2015; Calmon
et al., 2017; Jiang & Nachum, 2020), in-processing (Agarwal et al., 2018; Zhang et al., 2018; Cotter et al., 2019; Roh
et al., 2020), and post-processing (Hardt et al., 2016; Pleiss et al., 2017; Chzhen et al., 2019). In addition, there are other
techniques that assign adaptive weights for samples to improve fairness (Chai & Wang, 2022; Jung et al., 2023). However,
most of these techniques assume that the training data is given all at once, which may not be realistic. There are techniques
for fairness-aware active learning (Anahideh et al., 2022; Pang et al., 2024; Tae et al., 2024), in which the training data
evolves with the acquisition of samples. However, these techniques store all labeled data and use them for training, which is
impractical in continual learning settings.

D. Appendix — Future Work

Continuing from Sec. 5, we discuss future work.

D.1. Generalization to Multiple sensitive attributes

FSW can be extended to tasks involving multiple sensitive attributes by defining a sensitive group as a combination of sensi-
tive attributes. For instance, recall the loss for EO in a single sensitive attribute is Wl\z\ > oyev ez (U(fo, Gy.2) — U fo, Gy)l.

This definition can be extended to the case of multiple sensitive attributes as m D eV o1 €T 22T 10(fo, Gy 1 zn) —

l (fo, Gy)|- The new definition for multiple sensitive attributes allows the overall optimization problem to optimize both
sensitive attributes simultaneously. The design above can also help prevent ‘fairness gerrymandering’ (Kearns et al., 2018),
a situation where fairness is superficially achieved across multiple groups, but specific individuals or subgroups within those
groups are systematically disadvantaged. This is achieved by minimizing all combinations of subgroups, thereby disrupting
the potential for unfair prediction based on certain attribute combinations. However, having multiple loss functions may
increase the complexity of optimization, and a more advanced loss function may need to be designed for multiple sensitive
attributes. We leave the extension of this work to multiple sensitive attributes in future work.
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