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ABSTRACT

Protein folding models have achieved groundbreaking results typically via a com-
bination of integrating domain knowledge into the architectural blocks and train-
ing pipelines. Nonetheless, given the success of generative models across different
but related problems, it is natural to question whether these architectural designs
are a necessary condition to build performant models. In this paper, we intro-
duce SimpleFold, the first flow-matching based protein folding model that solely
uses general purpose transformer blocks. Protein folding models typically employ
computationally expensive modules involving triangular updates, explicit pair rep-
resentations or multiple training objectives curated for this specific domain. In-
stead, SimpleFold employs standard transformer blocks with adaptive layers and
is trained via a generative flow-matching objective with an additional structural
term. We scale SimpleFold to 3B parameters and train it on approximately 9M
distilled protein structures together with experimental PDB data. On standard
folding benchmarks, SimpleFold-3B achieves competitive performance compared
to state-of-the-art baselines, in addition SimpleFold demonstrates strong perfor-
mance in ensemble prediction which is typically difficult for models trained via
deterministic reconstruction objectives. SimpleFold challenges the reliance on
complex domain-specific architectures designs in protein folding, opening up an
alternative design space for future progress.

1 INTRODUCTION

Protein folding, the task of predicting a protein’s three-dimensional atomic structure from its amino
acid (AA) sequence, is a longstanding challenge in computational biology with far-reaching im-
plications in drug discovery (Jumper et al., 2021; Baek et al., 2021). In this paper, we approach
the protein folding problem purely from a generative modeling perspective without making strong
assumptions about the natural generation process of protein structures. We draw parallels between
protein folding and vision generative models (i.e., text-to-image or text-to-3D generation (Poole
et al., 2022; Lin et al., 2023a; Hong et al., 2024a;b)), where the input AA sequence plays the role of
a “text prompt” to a generative model which outputs the all-atom 3D coordinates. Inspired by the
recent success of generative models in the vision domain we build a general-purpose yet powerful
architecture based solely on standard transformer blocks with adaptive layers (Vaswani et al., 2017;
Peebles & Xie, 2023) which we trained at larger scale than previous protein folding models, both in
terms of model size and training data.

Established protein folding models like AlphaFold2 (Jumper et al., 2021) and RoseTTAFold (Baek
et al., 2021) have achieved groundbreaking accuracy by relying on carefully engineered architec-
tures that integrate computationally heavy domain-specific designs for protein folding tasks such
as multiple sequence alignments (MSAs), pair representations, and triangle updates (Jumper et al.,
2021; Baek et al., 2021). These design choices attempt to hard-code our current understanding of the
underlying structure generation process into these models, instead of opting to let models to learn
this directly from data, which could be beneficial for a variety of reasons. For example, (Lin et al.,
2023b) showed that for orphan proteins (those with few or no close homologs) approaches based on
protein language models (PLM) tend to outperform approaches that rely on MSA like AlphaFold2.
Although folding models initially treated protein structure prediction as a deterministic problem via
reconstruction objectives (Jumper et al., 2021; Baek et al., 2021; Lin et al., 2023b), recent works
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(b) (c) (e)

(a) (d)

8DAY, TM: 0.98 GDT: 0.92 

7QSW, TM: 0.99 GDT: 0.99

6DNW ensemble

Figure 1: Example predictions of SimpleFold on targets (a) chain A of 7QSW (RubisCO large
subunit) and (b) chain A of 8DAY (Dimethylallyltryptophan synthase 1), with ground truth shown
in light aqua and prediction in deep teal. (c) Generated ensembles of target chain B of 6NDW
(Flagellar hook protein FlgE) with SimpleFold finetuned on MD ensemble data. (d) Performance
of SimpleFold on CASP14 with increasing model sizes from 100M to 3B. (e) Inference time of
different sizes of SimpleFold on consumer level hardware, i.e., M2 Max 64GB Macbook Pro.

have explored building generative modeling for folding (Jing et al., 2024a). Generative approaches
provide a way to model how native protein structures appear in nature, i.e., as a non-deterministic
minimizer of the the Gibbs free energy of the atomic system. Generative models naturally capture
this uncertainty and make it straightforward to generate ensembles of viable conformations instead
of a single deterministic output (Jing et al., 2023; Abramson et al., 2024; Wohlwend et al., 2024;
Bose et al., 2023; Watson et al., 2023b; Yim et al., 2023b;a; Geffner et al., 2025; Lin et al., 2024).
However, these approaches still employ the expensive architectural components from AlphaFold2
like pair representations and triangle updates.

In this work, we propose SimpleFold, a flow-matching based folding model that directly maps a
protein sequence to its full 3D atomic structure without relying on MSA, pair representations, trian-
gular updates or any equivariant modules. Our architecture is inspired by recent transformer-based
flow matching generative models (Peebles & Xie, 2023; Ma et al., 2024), with a strong emphasis on
departing from current architecture designs using a general-purpose transformer backbone trained
end-to-end with a flow-matching training objective. Crucially, we demonstrate that strong folding
performance (see Fig. 1 can be achieved without explicit pairwise representations, triangle updates,
or MSA, which significantly reduces architectural complexity and challenges preconceived notions
around the necessity of these designs (Lin et al., 2023b). SimpleFold represents a strong departure
from previous of protein folding models, and we summarize our contributions as follows:

• We revisit protein folding as a conditional generative task and introduce SimpleFold, a flow-based
transformer folding model that eliminates MSA, pairwise representations, and triangle modules.

• We scale SimpleFold to 3B parameters and train it on approximately 9M distilled structures to-
gether with PDB experimental data.

• Our most powerful SimpleFold-3B shows strong results in folding compared to baselines with
hard-coded heuristic designs and also achieves competitive performance on ensemble generation.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We train a family of models ranging from 100M to largest 3B (see Fig. 1(d)). SimpleFold-100M
recovers ∼90% performance of our best model on major folding benchmarks while being very
efficient in inference even on consumer-level devices.

2 SIMPLEFOLD

2.1 FOLDING WITH FLOW-MATCHING

SimpleFold casts protein folding as a flow-matching generative model which generates protein struc-
tures from noise, conditioned on a given amino acid sequence. This “amino acid sequence-to-protein
structure” generative model is conceptually very similar to “text-to-image” generative models. Flow-
matching models (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023) approach generation as
a time-dependent process that moves noise to data through integrating an ordinary differential equa-
tion (ODE) over time. For time t ∈ [0, 1], flow matching defines a path of probability distributions
pt(xt) that continuously transforms a tractable distribution p0 (e.g., Gaussian) into an arbitrarily
complex data distribution pD. In practice, the transformation is parameterized by a learnable time-
dependent velocity field vθ(xt, t), and the generative process is defined by integrating the ODE,
dxt = vθ(xt, t) dt, from noise to data.

SimpleFold implements a linear interpolant path (Albergo & Vanden-Eijnden, 2023) (also referred
to as a rectified flow (Liu et al., 2023; Esser et al., 2024)) between samples from the empirical data
distribution x ∼ pD and noise samples ϵ ∼ N (0, I), such that xt = tx+ (1− t)ϵ, where the target
velocity is defined as vt = x−ϵ. In flow matching, we train a network vθ to match the target across
time and data via ℓ2 regression objective E[||vθ(xt, t)− vt||2].
In particular, given a protein with Na heavy atoms, we build a linear interpolant between noise ϵ and
all-atom positions x, where ϵ,x ∈ RNa×3, conditioned on the amino acid sequence s ∈ RNr , where
Nr is number of residues or amino acids in the protein. Unlike earlier work that modeled only the
Cαbackbone with flow-matching models (Lin & AlQuraishi, 2023; Lin et al., 2024; Geffner et al.,
2025), we generate full-atom conformations including both backbones and side chains.

Training objective. The network vθ takes the amino acid sequence as a conditioning input
vθ(xt, s, t) to model the target velocity field. In particular, the flow-matching objective is defined as
follows:

ℓFM = Ex,s,ϵ,t

[
1

Na
∥vθ(xt, s, t)− (x− ϵ)∥2

]
. (1)

We also include an additional local distance difference test (LDDT) loss similar to (Abramson
et al., 2024). This loss measures the atomic pairwise distances error between the generated structure
x̂(xt) at timestep t and ground truth structures x. During training, x̂(xt) is estimated through one
step Euler, i.e., x̂(xt) = xt + (1− t)vθ(xt, s, t). The LDDT loss is formulated as follows:

ℓLDDT = Ex,s,ϵ,t

[∑
i̸=j 1(δij < C)σ(∥δij − δ̂tij∥)∑

1(δij < C)

]
, (2)

where δij = ∥xi − xj∥ and δ̂tij = ∥x̂(xt)i − x̂(xt)j∥ denote the distances between atom i, j in
ground truth and predicted structures, respectively. The term σ(·) is a nonlinear function on pair
distance errors and C is a cutoff distance which controls neighboring atoms to be included in the
loss. The model is trained with a weighted combination of flow-matching and LDDT terms:

ℓ = ℓFM + α(t)ℓLDDT, (3)

where α(t) is a weighting term related to timestep t in flow process and is also dependent to different
training phases (see Sect. 4.1).

Timestep resampling. To improve training efficiency and force generating structures with fine
details (Esser et al., 2024; Geffner et al., 2025), the timestep t is sampled from the distribution:
p(t) = 0.98LN(0.8, 1.7) + 0.02U(0, 1), where LN is logistic-normal distribution (Atchison & Shen,
1980) and U is a uniform distribution. Unlike popular timestep resampling in image generation
(Esser et al., 2024), where timesteps are more densely sampled in the middle of the flow process

3
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(i.e., around t = 0.5), we shift the sample weight towards timesteps that are closer to clean data
(i.e., t = 1), similar to findings in (Geffner et al., 2025) in the context of unconditional generation.
This improves quality of generated samples especially in modeling refined structures of side chain
atoms. We attribute this to the fact that protein structures contain a strong coarse-to-fine hierarchy
“secondary structure - Cαbackbone - side chain”, thus oversampling close to the data manifold
drives the model to better learn the refined atomic positions. Additional details regarding the LDDT
loss and timestep resampling can be found in Appendix C.1.

2.2 ARCHITECTURE
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Figure 2: Overview of SimpleFold’s architec-
ture built on general-purpose standard Trans-
former block with adaptive layers. Atom encoder,
residue trunk, and atom decoder all share the same
general-purposed building block. Our model cir-
cumvents the need for pair representations or tri-
angular updates.

Fig. 2 shows an architecture diagram of Sim-
pleFold, which contains three major mod-
ules: light-weighted atom encoder and decoder
which are symmetric (i.e., same number of
blocks and hidden size) and a heavy residue
trunk. All modules are implemented with stan-
dard transformer blocks with adaptive layers
conditioned on the timestep t (see bottom left
of Fig. 2).

The atom encoder takes in “noisy“ atomic co-
ordinates xt together with their corresponding
atomic features (e.g., atomic type and charge,
see Appendix A for details) and outputs atom
tokens a ∈ RNa×da . In the atom encoder we
use a local attention mask that constraints atom
latents to only attend to a local neighborhood
around their residue (i.e., atom tokens only at-
tend to atom tokens of nearby residues in the
sequence). The grouping operation takes the
output of the atom encoder and conducts av-
erage pooling to atom tokens within the same
residue to obtain residue tokens r ∈ RNr×da

(see an illustration of grouping and ungrouping
operations in Fig. 5).

Similar to text-to-image and text-to-3D gener-
ative models, we use a frozen pretrained pro-
tein language model (PLM) to embed the AA
sequence into an informative latent representa-
tion. We leverage ESM2-3B (Lin et al., 2023b)
in all our models to encode the AA sequence s
into per-residue conditioning embeddings e ∈ RNr×de . Sequence embeddings are then concate-
nated with the residue tokens along the channel dimension and fed into the residue trunk. The
residue trunk contains most of the parameters of the model and is where most of the compute is
spent on. The ungrouping operation projects residue tokens to corresponding atom tokens. Specif-
ically, we broadcast the same residue token to the number of atoms a particular residue contains,
which is defined by AA types. A skip connection from the output of atom encoder is also added to
distinguish between different atoms within the same residue.

Finally, the atom decoder updates the atom tokens and outputs the predicted velocity field v̂t. Local
attention masks are also applied in the atom decoder as the encoder. The overall architecture of
SimpleFold incorporates the hierarchical structure in proteins implementing a “fine - coarse - fine"
scheme to balance the performance and efficiency.

SimpleFold strongly departs from the design choices in previous work (Chakravarty & Porter, 2022;
Lin et al., 2023b; Abramson et al., 2024). Unlike AlphaFold2 (Chakravarty & Porter, 2022) or
ESMFold (Lin et al., 2023b) which explicitly keep a pair representation initialized by embeddings
from expensive MSA search or attention score from the pretrained PLM, SimpleFold only keeps a
single sequence representation which does not require triangle update and is thus far more efficient.
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In contraposition to previous works Lin et al. (2024); Chakravarty & Porter (2022); Lin et al. (2023b)
which rely on equivariant architectures to generate physically meaningful results, SimpleFold is built
on standard non-equivariant Transformer blocks.

2.3 SAMPLING

To fold a protein with a given amino acid sequence s in inference, we initialize atomic coordinates
as Gaussian noise x0 ∼ N (0, I) and integrate the learned vector field from t = 0 to t = 1,
which generates a full-atom structure corresponding to the input sequence. We perform stochastic
generation using a Langevin-style SDE formulation of the flow process, leveraging the equivalence
between the learned velocity field vθ and a score function sθ, namely sθ(xt, s, t) = (tvθ(xt, s, t)−
xt)/(1 − t) (Albergo et al., 2023; Song et al., 2021). In particular, we apply the Euler–Maruyama
integrator (Ma et al., 2024):

dxt = vθ(xt, s, t) dt+
1

2
w(t)sθ(xt, t, c) dt+

√
τ · w(t) dW̄t, (4)

where w(t) > 0 is a time-dependent diffusion coefficient, W̄t is a reverse-time Wiener process, and
τ controls the scale of stochasticity. We find w(t) = 2(1−t)

t+η , which defines stochasticity scheduler
following SNR of flow process and η is a small constant for numerical stability, gives the best
sampling quality. We stick to this setting in all our experiments unless mentioned otherwise. Similar
to previous flow-matching based protein generative models (Geffner et al., 2025), we find that τ
balances the generation of accurate refined structures and modeling the ensemble of conformations.

2.4 TRAINING ON DISTILLED DATA

We train SimpleFold with a data mix of 3 different sources. First, we include around 160K structures
from PDB with a cutoff of May 2020 following ESMFold (Lin et al., 2023b). Additionally, we
use the SwissProt set from AFDB. Within SwissProt distilled structures, we select samples with
average pLDDT greater than 85 and standard deviation of pLDDT smaller than 15, which yields
approximately 270K distilled samples. Moreover, we use representative protein structures for each
cluster in AFESM (Yeo et al., 2025). We filter these structures with pLDDT larger than 0.8 resulting
in more than 1.9M distilled strictures. All SimpleFold models except the largest 3B model are
trained on the combination of three datasets listed above, adding up to approximately 2M structures.

To train our biggest model SimpleFold-3B, we explore an extended version AFESM (which we call
AFESM-E) by also including structures beyond the cluster representatives. In particular, for each
cluster, we randomly pick a maximum of 10 proteins structures with average pLDDT larger than
80, which resulting in a total of 8.6M distilled structures. Since larger models with larger capacity
benefit from larger training sets, we train our largest SimpleFold-3B on the distilled AFESM-E data
together with PDB and SwissProt.

3 RELATED WORK

Protein Folding Since the development of AlphaFold2 (Chakravarty & Porter, 2022) and
RoseTTAFold (Baek et al., 2021) which achieved groundbreaking performance in protein folding
with learning-based methods, many works have continued to investigate this problem (Ahdritz et al.,
2024; Baek et al., 2023; Li et al., 2022). AlphaFold2 introduced domain specific modules like tri-
angle attention, explicit modeling of pair representations, and MSA to extract evolutionary informa-
tion of proteins. OmegaFold (Wu et al., 2022) and ESMFold (Lin et al., 2023b) replaced MSA with
learned embeddings from pretrained PLM, which are efficient in inference and especially beneficial
for orphan proteins. Some works also aimed at accelerating the models through efficient implemen-
tations of AlphaFold2 modules, like FastFold (Cheng et al., 2022) and MiniFold (Wohlwend et al.).
These folding models are built on regression objectives and lack diversity for ensemble generation.

Flow-Matching for Proteins Generative models, especially diffusion and flow-matching based
methods, have been introduced to protein modeling. AlphaFlow/ESMFlow (Jing et al., 2024a) pro-
posed to tune AlphaFold2/ESMFold with flow-matching objectives and demonstrated advantages in
ensemble generation. AlphaFold3 (Abramson et al., 2024) and its architectural reproductions (e.g.,
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Table 1: Performance of protein folding on the CAMEO22 (top) and CASP14 (bottom) benchmarks.
For each metric, we report the average / median over all samples. Here, orange denotes baselines
trained with regression objectives, green denotes baselines trained with generative objectives (i.e.,

diffusion/flow-matching or autoregression), and blue denotes our SimpleFold, which is trained
with generative objective but without MSA.

Type Model TM-score ↑ GDT-TS ↑ LDDT ↑ LDDT-Cα ↑ RMSD ↓
CAMEO22

MSA-
based

RoseTTAFold (Baek et al., 2021) 0.780 / 0.860 0.715 / 0.775 0.575 / 0.605 0.798 / 0.827 5.721 / 2.864
AlphaFlow (Jing et al., 2024a) 0.840 / 0.927 0.808 / 0.853 0.741 / 0.798 0.855 / 0.893 3.846 / 2.122
AlphaFold2 (Jumper et al., 2021) 0.863 / 0.942 0.844 / 0.903 0.816 / 0.856 0.893 / 0.923 3.578 / 1.857
RoseTTAFold2 (Baek et al., 2023) 0.864 / 0.947 0.845 / 0.904 0.727 / 0.767 0.893 / 0.926 3.571 / 1.707

PLM-
based

ESM3 (Hayes et al., 2025) 0.746 / 0.840 0.694 / 0.758 – – –
ESMDiff (Lu et al., 2024a) 0.754 / 0.847 0.701 / 0.760 – – –
EigenFold (Jing et al., 2023) 0.750 / 0.840 0.710 / 0.790 – – –
OmegaFold (Wu et al., 2022) 0.805 / 0.899 0.767 / 0.844 0.746 / 0.815 0.829 / 0.892 5.294 / 2.622
ESMFlow (Jing et al., 2024a) 0.818 / 0.893 0.774 / 0.832 0.696 / 0.745 0.827 / 0.867 4.528 / 2.693
ESMFold (Lin et al., 2023b) 0.853 / 0.933 0.826 / 0.875 0.792 / 0.834 0.871 / 0.906 3.973 / 2.019

Ours

SimpleFold-100M 0.803 / 0.878 0.746 / 0.787 0.721 / 0.752 0.822 / 0.852 4.897 / 2.855
SimpleFold-360M 0.826 / 0.905 0.782 / 0.841 0.773 / 0.803 0.844 / 0.878 4.775 / 2.681
SimpleFold-700M 0.829 / 0.915 0.788 / 0.845 0.775 / 0.809 0.850 / 0.886 4.557 / 2.423
SimpleFold-1.1B 0.833 / 0.924 0.793 / 0.851 0.776 / 0.807 0.850 / 0.883 4.350 / 2.334
SimpleFold-1.6B 0.835 / 0.916 0.799 / 0.864 0.782 / 0.816 0.853 / 0.889 4.397 / 2.187
SimpleFold-3B 0.837 / 0.916 0.802 / 0.867 0.773 / 0.802 0.852 / 0.884 4.225 / 2.175

CASP14

MSA-
based

RoseTTAFold (Baek et al., 2021) 0.654 / 0.678 0.562 / 0.572 0.464 / 0.456 0.705 / 0.723 9.676 / 6.420
AlphaFlow (Jing et al., 2024a) 0.740 / 0.812 0.661 / 0.711 0.632 / 0.662 0.767 / 0.799 7.091 / 3.949
RoseTTAFold2 (Baek et al., 2023) 0.802 / 0.881 0.740 / 0.824 0.638 / 0.669 0.824 / 0.869 6.744 / 3.292
AlphaFold2 (Jumper et al., 2021) 0.845 / 0.907 0.783 / 0.855 0.778 / 0.817 0.856 / 0.897 5.027 / 3.015

PLM-
based

ESMDiff (Lu et al., 2024a) 0.521 / 0.499 0.447 / 0.430 – – –
ESM3 (Hayes et al., 2025) 0.534 / 0.567 0.459 / 0.488 – – –
EigenFold (Jing et al., 2023) 0.590 / 0.637 0.539 / 0.575 – – –
ESMFlow (Jing et al., 2024a) 0.627 / 0.679 0.539 / 0.544 0.525 / 0.539 0.669 / 0.730 10.503 / 6.974
OmegaFold (Wu et al., 2022) 0.693 / 0.773 0.625 / 0.723 0.627 / 0.726 0.715 / 0.824 9.845 / 4.042
ESMFold (Lin et al., 2023b) 0.701 / 0.792 0.622 / 0.711 0.637 / 0.705 0.725 / 0.802 8.679 / 4.016

Ours

SimpleFold-100M 0.611 / 0.628 0.513 / 0.544 0.537 / 0.549 0.659 / 0.685 11.157 / 8.976
SimpleFold-360M 0.674 / 0.758 0.585 / 0.654 0.617 / 0.657 0.703 / 0.762 9.382 / 4.828
SimpleFold-700M 0.680 / 0.767 0.591 / 0.668 0.630 / 0.674 0.714 / 0.763 9.289 / 4.431
SimpleFold-1.1B 0.697 / 0.796 0.607 / 0.668 0.640 / 0.676 0.723 / 0.758 9.249 / 4.462
SimpleFold-1.6B 0.712 / 0.801 0.630 / 0.709 0.660 / 0.699 0.741 / 0.798 8.424 / 4.722
SimpleFold-3B 0.720 / 0.792 0.639 / 0.703 0.666 / 0.709 0.747 / 0.829 7.732 / 3.923

Boltz-1 (Wohlwend et al., 2024), Protenix (Team et al., 2025), Chai-1 (Boitreaud et al., 2024)) also
used diffusion to build generative models for protein complexes of biomolecular interactions. In
addition, several works have investigated diffusion or flow-matching models for de novo protein
structure generation with heuristic architectural designs from AlphaFold, like RFDiffusion (Watson
et al., 2023a), Genie-2 (Lin et al., 2024), P(all-atom) (Qu et al., 2024). (Jing et al., 2023) also de-
veloped crafted equivariant diffusion process. Proteina (Geffner et al., 2025) attempts to build a
simplified architecture but still explicitly applies pair representation, and it only models Cα gen-
eration. In a strong departure from previous protein folding models, SimpleFold aims at tackling
the folding problem with a general purpose transformer backbone and learning symmetries in the
underlying data generation process directly from training data (Wang et al., 2023).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We train a family of SimpleFold models at different sizes (i.e., 100M, 360M, 700M, 1.1B, 1.6B, and
3B) to investigate the scaling ability of proposed framework in folding (see detailed configurations
in Tab. 5). The overall training of SimpleFold consistent of two training stages pre-training and
finetuning. During the pre-training stage of SimpleFold we use a large dataset containing as much
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available data as possible. Finetuning, on the other hand, is performed on high-quality data to
increase the fidelity of generated structures (see details in Appendix C.1).

4.2 PROTEIN FOLDING

We evaluate SimpleFold on two widely adopted folding benchmarks: CAMEO22 and CASP14,
which are rigorous tests for generalization, robustness, and atomic-level accuracy in folding models.
We set τ = 0.01 for SimpleFold in inference which empirically shows best general performance
in folding. We report standard structure prediction metrics: TM-score and GDT-TS assess global
structural similarity; LDDT and LDDT-Cα measure local atomic accuracy across all atoms and
Cα atoms, respectively; RMSD measures the averaged distance of atomic positions between two
superimposed structures. For each metric, we report both the mean and the median score over all the
test samples (separated by slashes). We report all the metrics for all-atom models and only report
TM-score and GDT-TS for backbone-only models (see details in Appendix D).

Table 9 summarizes results on CASP14 and CAMEO22. We group approaches based on strategies to
encode protein sequence, namely MSA or protein language model (PLM). For example, AlphaFold2
is MSA-based while ESMFold leverages PLM in place of MSA search. We also color baselines
based on whether they are trained with generative objectives, i.e., diffusion / flow-matching or au-
toregression instead of direct regression to ground truth structures, e.g., AlphaFlow and ESMFlow
are flow-matching models finetuned from AlphaFold2 and ESMFold, respectively.

Despite its simplicity, SimpleFold achieves competitive performance compared with these baselines.
In both benchmarks, SimpleFold shows consistently better performance than ESMFlow which is
also a flow-matching model built with ESM embeddings. On CAMEO22, SimpleFold demonstrates
comparable results to the best folding models (e.g., ESMFold, RoseTTAFold2, and AlphaFold2). In
particular, SimpleFold achieves over 95% performance of RoseTTAFold2/AlphaFold2 on most met-
rics without applying expensive and heuristic triangle attention and MSA. On the more challenging
CASP14 benchmark, SimpleFold achieves even better performance than ESMFold. In particular,
SimpleFold-3B obtains a TM-score of 0.720 / 0.792 and GDT-TS of 0.639 / 0.703 in comparison
to 0.701 / 0.792 and 0.622 / 0.711 of ESMFold. SimpleFold also shows competitive or even better
performance to baselines that applies MSA like RoseTTAFold and AlphaFlow.

Moreover, scaling up the model sizes of SimpleFold models results in better performance across the
board, which indicates the benefit of designing a general purpose approach that benefits from scale.
It is notable that scaling up model sizes improves performance substantially more in CASP14, i.e
the more challenging benchmark, than in CAMEO22. This is a clear empirical evidence that models
with larger capacity are more capable of solving complex folding tasks.

4.3 ENSEMBLE GENERATION

4.3.1 MOLECULAR DYNAMIC ENSEMBLE

SimpleFold trivially models the distribution of protein structures, due its generative training ob-
jective. Namely, SimpleFold does not only generate one deterministic structure for an input AA
sequence but is also capable of generating the ensemble of different conformations. To demonstrate
this ability of SimpleFold, we benchmark the performance on the ATLAS dataset (Vander Meer-
sche et al., 2024), which assess generation of molecular dynamic (MD) ensemble structures. We set
τ = 0.6 (Eq. 4) in inference to add more stochasticity than folding tasks.

Compared to baselines without additional tuning on MD simulation data in ATLAS (e.g., MSA-
subsampling), SimpleFold achieves superior performance on generating ensembles that match the
distribution from MD simulations. We also report the results of SimpleFold-MD, a finetuned model
on the training data split of ATLAS, comparing to baselines that are also additionally tuned (i.e.,
ESMDiff (Lu et al., 2024a), ESMFlow-MD (Jing et al., 2024a), and AlphaFlow-MD (Jing et al.,
2024a)). As shown in Tab. 2, SimpleFold consistently achieves better performance than ESMFlow-
MD where both rely on the ESM embedding without MSA. SimpleFold also shows better perfor-
mance than AlphaFlow-MD on metrics related to ensemble observables (e.g., exposed residue and
MI matrix), which are a key feature in the identification of cryptic pockets in drug discovery.
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Table 2: Evaluation on MD ensembles. Results of baseline models are taken from (Jing et al., 2024a;
Lu et al., 2024a), to which the evaluation pipeline for our SimpleFold (SF) and SimpleFold-MD (SF-
MD) adheres.

No Tuning Tuned
AF2 MSA-sub. SimpleFold ESMDiff ESMFlow-MD AlphaFlow-MD SimpleFold-MD

Pairwise RMSD r ↑ 0.10 0.22 0.44 0.18 0.19 0.48 0.45
Global RMSF r ↑ 0.21 0.29 0.45 0.49 0.31 0.60 0.48
Per target RMSF r ↑ 0.52 0.51 0.60 0.68 0.76 0.85 0.67
RMWD ↓ 3.58 4.28 4.22 7.48 3.60 2.61 4.17
RMWD trans contri ↓ 2.86 3.33 3.74 5.18 3.13 2.28 3.40
RMWD var contri ↓ 2.27 2.24 1.74 3.37 1.74 1.30 1.88
MD PCA W2 ↓ 1.99 2.23 1.62 2.29 1.51 1.52 1.34
Joint PCA W2 ↓ 2.86 3.57 2.59 6.32 3.19 2.18 2.85
% PC sim > 0.5 ↑ 23 21 37 23 26 44 38
Weak contacts J ↑ 0.27 0.37 0.36 0.52 0.55 0.62 0.56
Transient contacts J ↑ 0.28 0.27 0.27 0.26 0.34 0.41 0.34
Exposed residue J ↑ 0.32 0.37 0.39 - 0.49 0.50 0.60
Exposed MI matrix ρ ↑ 0.02 0.10 0.14 - 0.20 0.25 0.32

Table 3: Two-state conformation results. For the last two metrics, both mean and median are reported
over the targets. Results are taken from the ESMDiff paper (Lu et al., 2024a), to which the evaluation
pipeline for the rest models adhere.

Type Model Res. flex.
(global) ↑

Res. flex.
(per-target) ↑ TM-ens ↑ Res. flex.

(global) ↑
Res. flex.

(per-target) ↑ TM-ens ↑

Apo/holo Fold-switch

Seq-
based

FoldFlow2 (Huguet et al., 2024) 0.027 0.057 / 0.055 0.216 / 0.208 0.051 0.009 / 0.005 0.199 / 0.191
MultiFlow (Campbell et al., 2024) 0.113 0.211 / 0.194 0.360 / 0.342 0.092 0.068 / 0.061 0.269 / 0.250
Str2Str (Lu et al., 2024b) 0.174 0.326 / 0.307 0.731 / 0.728 0.161 0.246 / 0.233 0.615 / 0.644
Eigenfold (Jing et al., 2023) 0.126 0.407 / 0.401 0.830 / 0.870 0.225 0.279 / 0.255 0.614 / 0.653
ESMDiff (Lu et al., 2024a) 0.420 0.489 / 0.515 0.838 / 0.877 0.402 0.341 / 0.288 0.626 / 0.685
ESMFlow (Jing et al., 2024a) 0.416 0.496 / 0.522 0.856 / 0.893 0.269 0.345 / 0.329 0.700 / 0.755

MSA-
based

MSA-Subs. (Jumper et al., 2021) 0.398 0.404 / 0.371 0.856 / 0.894 0.350 0.320 / 0.303 0.714 / 0.765
AlphaFlow (Jing et al., 2024a) 0.455 0.527 / 0.527 0.864 / 0.893 0.385 0.384 / 0.376 0.730 / 0.788

Ours

SimpleFold-100M 0.492 0.500 / 0.532 0.852 / 0.887 0.391 0.291 / 0.241 0.656 / 0.677
SimpleFold-360M 0.537 0.520 / 0.528 0.864 / 0.898 0.359 0.310 / 0.314 0.689 / 0.746
SimpleFold-700M 0.552 0.524 / 0.538 0.870 / 0.899 0.307 0.328 / 0.310 0.693 / 0.713
SimpleFold-1.1B 0.557 0.526 / 0.537 0.870 / 0.900 0.337 0.346 / 0.344 0.698 / 0.755
SimpleFold-1.6B 0.501 0.522 / 0.508 0.877 / 0.912 0.240 0.339 / 0.318 0.721 / 0.770
SimpleFold-3B 0.639 0.550 / 0.552 0.893 / 0.916 0.292 0.288 / 0.263 0.734 / 0.766

4.3.2 MULTI-STATE STRUCTURE PREDICTION

We also evaluate the capacity of SimpleFold in generating protein structures with multiple natu-
ral conformation. We adopt the benchmarking set of Apo/holo (Saldaño et al., 2022) and Fold-
switch (Chakravarty & Porter, 2022) following Jing et al. (2023). The model is assessed to produce
a diverse yet accurate set of samples “covering” both conformational states and reflecting correct
local flexibility. As shown in Tab. 3, SimpleFold obtains state-of-the-art performance on Apo/holo,
where SimpleFold outperforms strong MSA-based approaches like AlphaFlow significantly. On
Fold-switch, SimpleFold shows comparable or even better performance than ESMFlow which is
also applies flow-matching objective and is built on ESM embeddings. The results validate the ca-
pability of our SimpleFold in predicting the structures of high quality (i.e., ensemble TM-score) as
well as correctly modeling the flexibility in structures (i.e., residue flexibility). Also, the overall per-
formance of SimpleFold increases with the model size growing, which further showcase potential
of our proposed framework in generating protein ensembles.

4.4 EFFECTS OF SCALING IN PROTEIN FOLDING

SimpleFold benefits from increasing model sizes as proven by recent success of generative models
in vision and language generation. We note that the effects of scaling both training data and model
sizes have not yet been rigorously investigated in protein folding. The section empirically shows
the scaling behavior of SimpleFold from both model and data perspectives, highlighting important
considerations for building powerful biological generative models. We train models with different
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(c)(a) (e)

(b) (d) (f)

Figure 3: Scaling behavior of SimpleFold. Training Gflops vs. folding performance on GDT-TS
and (b) TM-score. Training steps vs. folding performance on (c) GDT-TS and (d) TM-score. How
data scale affects the performance (e) GDT-TS and (f) TM-score. All models are benchmarked on
CAMEO22.

sizes from the smallest with 100M parameters to the largest with 3B parameters on full pre-training
data containing PDB, SwissProt from AFDB, and AFESM (AFESM-E for 3B model). Fig. 3(a)-
(d) illustrate how model sizes affect folding performance (also see Fig. 1(d)). Larger models trained
with a larger training budget (i.e., training Gflops and training iterations) achieve better performance.
We believe these results highlight the positive scaling behavior of SimpleFold and an direction of
progress to obtain more powerful generative models in biology.

We also show the benefits of scaling up training data in SimpleFold. We train SimpleFold-700M
with different sources of training data. As shown in Fig. 3(e) and (f), SimpleFold when increasing
the total number of unique structures in the data mix, the final performance of SimpleFold tends to
improve after sufficient training iterations. These experimental results support our core contribution
to build a simplified and scalable folding model that benefits from the growing total of protein data
available either experimentally or distilled from different models.

5 CONCLUSIONS AND FUTURE WORK

We introduced SimpleFold, a flow-matching generative model for protein folding that represents a
strong departure from the architectural designs in previous approaches. SimpleFold is solely built
with general-purpose transformer blocks with adaptive layers, dispensing away with heuristic de-
signs like expensive pair representations and triangular updates introduced by AlphaFold2. This
simplified framework allows us to train SimpleFold at scale both in terms of model size and training
data. Our largest (and most powerful) model, SimpleFold-3B, demonstrates competitive perfor-
mance on standard folding tasks and it also show very strong or even state-of-the-art results on
ensemble generation tasks. To the best of our knowledge, SimpleFold is the first work that rigor-
ously demonstrates good scaling behavior in protein folding. We believe SimpleFold represents a
disruptive approach for protein folding that relies on scaling up general purpose architecture blocks
to learn the symmetries of the underlying data generation process directly from training data.
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A DATA PIPELINE

We largely adopt the data pipeline implemented in Boltz-11 (Wohlwend et al., 2024), which is an
open-source replication of AlphaFold3 (Abramson et al., 2024). Tab. 4 lists the input features for
SimpleFold. It is noted that since SimpleFold does not apply MSA or template search, input features
are also simplified compared to AlphaFold.

In cropping larger proteins, we follow a cropping algorithm that combines both spatial and contigu-
ous cropping strategies introduced in previous work (Chakravarty & Porter, 2022; Abramson et al.,
2024; Wohlwend et al., 2024). Following this setting, we set the neighborhood size in cropping
uniformly between zero and 40 tokens to balance spatial and contiguous cropping.

Table 4: Input features to SimpleFold.

Feature Shape Description

residue_index [Nr] Residue number in the token’s original input chain.
token_index [Nr] Token number. Increases monotonically.
restype [Nr] One-hot encoding of the sequence: 20 amino acids + unknown.
esm_embed [Nr, 37, 2560] Protein sequence embedding from all layers in ESM2-3B.

noised_pos [Na, 3] Noised atom positions, xt in Å (random rotation applied).
ref_pos [Na, 3] Atom positions in the reference conformer in Å (no rotation applied).
ref_mask [Na] Mask indicating atoms used in the reference conformer.
ref_element [Na, 128] One-hot encoding of the element number for each atom.
ref_charge [Na] Charge for each atom in the reference conformer.
ref_atom_name_chars [Na, 4, 64] One-hot encoding of atom names in the reference conformer.
ref_space_uid [Na] Encoding of the residue index associated with reference conformer.

time [1] Timestep in flow process.
length [1] Number of residues, Nr.

During training, atomic positions of a protein are mean centered and augmented with random rota-
tion. After centering, we scale the position by global factor of 1/16 to make the atomic positions
live in the [−1, 1] interval. Similarly, we also scale ref_pos by 1/5 to standardize the positions in
reference conformers.

B MODEL ARCHITECTURE

B.1 ARCHITECTURE COMPARISON TO ALPHAFOLD2

Fig. 4 depicts the comparison of major compute blocks in AlphaFold2 and SimpleFold (Fig. 4(a)
borrowed from original AlphaFold2 paper (Chakravarty & Porter, 2022)). As shown in the fig-
ure, SimpleFold does not rely on either explicit pair representations or MSA. Instead, we only
keep a sequence-level representation and leverage embeddings extracted from pretrained PLM (i.e.,
ESM2 (Lin et al., 2023b)). Compared AlphaFold’s Evoformer block which includes expensive tri-
angle attention to interact between pair and sequence representations, SimpleFold follows a simple
DiT architecture (Peebles & Xie, 2023) which is more computationally efficient.

B.2 COMPARISON TO ALPHAFLOW AND ESMFLOW

Though SimpleFold, AlphaFlow and ESMFlow (Jing et al., 2024a) all use a flow-matching training
objectives, the architectural design and the training paradigm are drastically different: the architec-
tural design and the training paradigm are drastically different.

AlphaFlow and ESMFlow are built upon the AlphaFold (Chakravarty & Porter, 2022) and ESM-
Fold (Lin et al., 2023b) network architectures, respectively. This means they inherit domain-specific
heuristic architectural designs like pair representation and triangle attention. On the other hand,
SimpleFold is based purely on standard transformer blocks without any domain-specific network

1https://github.com/jwohlwend/boltz
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Figure 4: Major neural network blocks of (a) Evoformer in AlphaFold2, and (b) Transformer with
adaptive layer in SimpleFold.

blocks. In addition, AlphaFlow and ESMFlow use a generative training objective merely as a fine-
tuning strategy on top of already fully trained checkpoints from AlphaFold2 and ESMFold which
use a deterministic regression objective. On the contrary, SimpleFold is built from the ground up to
be a pure generative model trained from scratch with a flow-matching objective.

Building SimpleFold from the ground up as a generative model that is trained from scratch with a
flow-matching objective results in improvements in multi-state benchmarks over models that only
fine-tune pre-trained deterministic models like AlphaFold and ESMFold.

B.3 IMPLEMENTATION DETAILS

We adopt a modern implementation stack for all the transformer blocks including QK-
normalization (Esser et al., 2024) and SwiGLU (Shazeer, 2020) in place of standard FFN for better
performance and training stability. To encode the positional information of atoms and residues, we
employ rotary position embedding (RoPE) (Su et al., 2024). Particularly in each attention block
within the residue trunk, they query and key vectors of the n-th residue in a amino acid sequence
are rotated by eiθn. In both the atom encoder and decoder, we extend the positional embedding to
a 4D axial RoPE. The first three axes are 3D atomic coordinates from reference conformers (see
Appendix A), which are local structures predicted at the amino acid level by a rule-based chemin-
formatic method. The last axis is the 1D indexing to the corresponding residue token. Each axis in
4D axial RoPE controls rotation of a quarter of the hidden dimension in both query and key.

B.4 MODEL CONFIGURATIONS

Table 5 lists the configurations of different SimpleFold models from the smallest 94M to largest
2.86B. In implementation, we apply the same architecture for the atom encoder and atom decoder.
Though AlphaFold2 is similar to our smallest SimpleFold-100M in terms of number of parameters
(both are around 95M), its forward Gflops are much higher than our largest SimpleFold-3B (∼
30Tflops vs. ∼ 1.4Tflops). This is because AlphaFold2 relies on expensive triangle update as well
as explicit modeling pair representations from MSA. SimpleFold, on the other hand, is built on
general-purposed transformer blocks which are much more computationally efficient.
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Table 5: Configurations of different variants of SimpleFold with comparison to AlphaFold2 and
ESMFold in number of parameters and forward Gflops.

Atom Enc. / Dec. Residue Trunk
Model # Params Gflops Dim. # Heads # Blocks Dim. # Heads # Blocks

AlphaFold2 95M 30935.0 - - - - - -
ESMFold 710M 3399.7 - - - - - -

SimpleFold-100M 94M 66.5 256 4 1 768 12 8
SimpleFold-360M 360M 189.9 256 4 2 1024 16 18
SimpleFold-700M 687M 310.4 256 4 2 1152 16 28
SimpleFold-1.1B 1.11B 496.0 384 6 2 1280 20 36
SimpleFold-1.6B 1.58B 750.0 512 8 3 1536 24 36
SimpleFold-3B 2.86B 1382.4 640 10 4 2048 32 36

B.5 GROUPING AND UNGROUPING

Fig. 5 illustrates how grouping and ungrouping operations are conducted in SimpleFold. In group-
ing, we conduct average pooling over atoms tokens from one residue to obtain a residue token.
While in ungrouping, we replicate the same updated residue tokens to all atoms within the residue.

OCA CN CN CACB CDCB CGO CN CA CDCB CGO CDCG

KA P

Average 
Pool

Average 
Pool

Average 
Pool

OCA CN CN CACB CDCB CGO CN CA CDCB CGO CDCG

KA P

Replicate Replicate Replicate

Atom tokens

Residue tokens

Grouping 

Residue tokens

Atom tokens

Ungrouping 

(b)

(a)

Lysine Proline  Alanine   

Figure 5: Illustration of (a) grouping and (b) ungrouping operations in SimpleFold.

C TRAINING AND INFERENCE

C.1 ADDITIONAL TRAINING DETAILS

Pre-training. In pre-training, SimpleFold is trained on structures from all three data sources,
namely PDB, SwissProt from AFDB, and AFESM (AFESM-E for 3B model). We set the maxi-
mal amino acid sequence length to 256, where we keep shorter sequence without padding while
crop longer sequences to 256 residues. We set α(t) = 1 in Eq. 3. All models are trained with
effective batch size 512 except for 1.6B and 3B models which are trained with batch size 1024 and
3072, respectively. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with learning rate
0.0001 and linear warmup for the first 5000 steps. We also apply SO(3) data augmentation during
training, which randomly rotates structure targets, and rely on the capacity of the model to directly
learn such symmetries during training.

Finetuning. In finetuning, SimpleFold is trained on PDB and SwissProt subsets only which
contain higher quality data. We set a maximal sequence length to 512 which allows access to
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larger protein structures in this training phase and accordingly half effective batch size. We set
α(t) = 1 + 8ReLU(t − 0.5) in Eq. 3 which gradually increases weight of LDDT loss to maximum
value of 5 when approaching clean data (t = 1). We keep AdamW as an optimizer with the same
learning rate 0.0001 in finetuning. In both pre-training and finetuning, we apply an exponential
moving average (EMA) of all model weights with a decay of 0.999 following a common practice in
flow-matching generative models.

Timestep Resampling. In training, we resample timestep with p(t) = 0.02U(0, 1) +
0.98 LN(0.8, 1.7), and logit-normal distribution LN is given:

LN(t;m, s) =
1

t(1− t)s
√
2π

exp− (logit(t))−m)2

2s2
. (5)

We set m = 0.8, s = 1.7 to sample timestep more densely around t = 1 so the model better learns
to capture the refined details as shown in Fig 6.

0.0 0.2 0.4 0.6 0.8 1.0
Timestep

0.0

0.5

1.0

1.5
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2.5

De
ns

ity

Resampled
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Figure 6: Distribution of resampled timestep compared to uniform distribution.

Rigid alignment. Following Abramson et al. (2024); Wohlwend et al. (2024), we apply a rigid
alignment between one-step denoising atomic coordinates and true coordinates before computing
the flow-matching MSE loss (Eq. 1) in training to reduce the loss variance. In particular, x̂(xt) is
estimated through one step Euler, i.e., x̂(xt) = xt+(1−t)vθ(xt, s, t), and the true coordinates x is
aligned with the denoised coordinates through Kabsch algorithm (Wohlwend et al., 2024) to obtain
x′. The velocity target is re-calculated by interpolating the aligned x′ and noise ϵ. Though such a
rigid alignment strategy helps in faster convergence, it does not make a significant difference in final
performance as also mentioned in Wohlwend et al. (2024).

LDDT Loss. Following AlphaFold3 (Abramson et al., 2024), the nonlinear function σ in Eq. 2 is
given as:

σ(x) =
1

4
(sigmoid(0.5− x) + sigmoid(1− x) + sigmoid(2− x) + sigmoid(4− x)), (6)

which mimics the how LDDT is computed for evaluation. We set the cutoff distance C = 15Åin
Eq. 2, which is the typical setting for the LDDT metric.

Batching. During training we copy one protein Bc times per GPU with different flow timestep
t sampled and accumulate gradients from Bp different proteins on different GPUs, following Al-
phaFold2 (Chakravarty & Porter, 2022; Abramson et al., 2024). Therefore, the effective batch size
is Bc × Bp. We empirically find that this strategy leads to a more stable gradient and better perfor-
mance than naively building a batch with randomly selected proteins. Tab. 6 lists the detailed setting
of training batch for different model sizes.
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Table 6: Settings of pre-training and finetuning batches for different SimpleFold models.

Pre-training Finetuning
Model # Copies Bc # Prot. Bp Eff. Bsz. # Copies Bc # Prot. Bp Eff. Bsz.

SimpleFold-100M 16 32 512 8 32 256
SimpleFold-360M 16 32 512 8 32 256
SimpleFold-700M 16 32 512 8 32 256
SimpleFold-1.1B 16 32 512 8 32 256
SimpleFold-1.6B 8 128 1024 4 128 512
SimpleFold-3B 24 128 3072 12 128 1536

Figure 7: Illustration of pLDDT module training.

Confidence Module. Providing a confidence estimation for generated protein structures can
greatly help understand the quality of generation (Chakravarty & Porter, 2022; Lin et al., 2023b). To
this end, we develop an additional predicted LDDT (pLDDT) module which predicts a per-residue
LDDT value (ranging from 0 to 100) as a confidence score. After the folding model is fully trained,
we train the pLDDT module in a separate training stage while freezing all the parameters in the
folding model (see Fig. 7). During training the pLDDT module, we sample protein structures x̂ on
the fly, and feed x̂ into the folding model with timestep t = 1 for adaptive layers to acquire the
final residue tokens r. The pLDDT module is composed of 4 layers of standard transformer blocks
without adaptive layers, which takes in r and outputs pLDDT. Following (Chakravarty & Porter,
2022), the target LDDT is discretized into 50 bins and the pLDDT module is trained through a
cross-entropy objective.

After SimpleFold is pretrained and finetuned, we train the pLDDT module with all other components
frozen. The pLDDT module is trained on combination of PDB and SwissProt data, which contains
experimental and high-quality distilled data. During pLDDT training, we set α(t) = 1, and Simple-
Fold generates structure samples on the fly with 200 steps and τ = 0.3. As in finetuning, We set
maximal sequence length to 512 and apply AdamW optimizer with the learning rate 0.0001. Fig. 7
shows the training pipeline for pLDDT module. In particular, we use fully trained SimpleFold-1.6B
to extract residue tokens.
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C.2 ADDITIONAL INFERENCE DETAILS

During inference, we use the Euler–Maruyama integrator shown in Eq. 4 starting from tϵ = 0.0001
and the number of time steps is set to be 500 without additional statement. In practice, we set
η = 0.01 in w(t) = 2(1−t)

t+η for numerical stability. And following (Geffner et al., 2025), we set
w(t) = 0 for t ≥ 0.99 and discretize the time interval logarithmically from t = tϵ to t = 1. After
each sampler step, we rescale the center of all atomic positions to origin to align with the training
setting. At the end of the flow trajectory, we rescale the coordinates by multiplying 16 to map the
protein structure back to Å scale.

C.3 INFERENCE TIME

Tab. 7 lists inference time of SimpleFold in comparison to baseline models, AlphaFold2, ESMFold,
AlphaFlow, and ESMFlow. SimpleFold shows advantage in inference efficiency especially when
sequence is longer (e.g., 1024). Also, ESM2 adds little overhead in inference.

Table 7: Inference time (in seconds) of different models. All models are benchmarked on a single
H100 with batch size 1.

Sequence length
Steps/Recycles 64 128 256 512 1024

AlphaFold2 3 3.0 3.7 8.0 25.5 111.5
ESMFold 3 1.100 1.1 1.745 7.4 43.6
AlphaFlow 10 10.0 12.3 26.6 85.2 371.7
ESMFlow 10 3.7 3.7 5.8 24.6 145.5
ESM2 1 <0.1 <0.1 0.1 0.2 0.4

SimpleFold-100M 200 3.6 3.6 3.8 4.2 5.6
SimpleFold-360M 200 7.2 7.4 7.6 8 11.6
SimpleFold-700M 200 9.8 10.2 10.4 11.4 16.6
SimpleFold-1.1B 200 12.6 12.8 12.8 15 22.2
SimpleFold-1.6B 200 13.0 13.0 13.8 18.2 29.4
SimpleFold-3B 200 14.0 14.0 15.6 27.8 44.6
SimpleFold-100M 500 9.0 9.0 9.5 10.5 14
SimpleFold-360M 500 18.0 18.5 19 20 29
SimpleFold-700M 500 24.5 25.5 26 28.5 41.5
SimpleFold-1.1B 500 31.5 32.0 32 37.5 55.5
SimpleFold-1.6B 500 32.5 32.5 34.5 45.5 73.5
SimpleFold-3B 500 35.4 35.4 37.2 72.2 111.4

D EVALUATION

D.1 FOLDING BASELINES

AlphaFold2. The AlphaFold2 (AF2) baseline was established using the official implementation
wrapped using ColabFold (Mirdita et al., 2022). We utilized the standard released weights with
three model recycles. We adopt the MMSeqs2 engine (Steinegger & Söding, 2017) to search for
multiple sequence alignments (MSAs) as model input. No template or Amber relax is applied to the
predictions.

RoseTTAFold. We utilized the release models of RoseTTAFold (Baek et al., 2021) via Colab-
Fold (Mirdita et al., 2022), employing its publicly available pre-trained model weights. We keep
the default configurations of both models for inference and use MMseqs2(Steinegger & Söding,
2017) for MSA search. In specific, we use the proposed pipeline in the ColabFold Notebook in-
cluding the end-to-end 3-track model forward, TRFold refinement and side-chain packing using
SCRWL4 (Krivov et al., 2009).

RoseTTAFold2. Experiments of RoseTTAFold2 (Baek et al., 2023) are similarly conducted via
ColabFold (Mirdita et al., 2022) with the pre-trained model weights. We follow the default inference
configuration as described in the RoseTTAFold2 (Baek et al., 2023) official repository by setting
-n_recycles=3, -nseqs=256 and -subcrop=-1.
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ESMFold. Our experiments employed the ESMFold implementation from ColabFold (Mirdita
et al., 2022) and model checkpoints from (Lin et al., 2023b). We used the pretrained esmfold_v1
model for inference as recommended by the authors, the performance of which is better than the
esmfold_v0 model which was used for experiments in ESM2 paper (Lin et al., 2023b). We set the
number of recycles to be 3, aligned with the AF2 setting.

OmegaFold. The implementation of OmegaFold used was based on the original repository (Wu
et al., 2022). We relied on the default pre-trained model shipped with the release. The inference
pipeline is strictly adhering to the default setting.

EigenFold. The EigenFold implementation as provided (Jing et al., 2023) was leveraged for our
baseline runs. We utilized the standard pre-trained weights for decoder and make node/edge em-
beddings from OmegaFold as instructed by the authors. Defaults settings applied during inference
included -alpha 1 -beta 3 -elbo_step 0.2 .

AlphaFlow/ESMFlow. We utilized the codebase for AlphaFlow and ESMFlow released by the
authors of (Jing et al., 2024a), employing its pre-trained model checkpoints on PDB data (with suffix
pdb_base_202402.pt). The setup largely mirrored the default configurations for both models
described in the repository, specifically by setting tmax to be 1.0 and the flow steps to be 10.

ESM3/ESMDiff. The implementation of ESMDiff and ESM3 used was based on the ESMDiff
original repository (Lu et al., 2024a). No additional training was performed; the provided pre-trained
model was used directly (both pretrained ESM3 and finetuned ESMDiff) to predict the structures for
each target. We used standard hyperparameters as listed by the authors, including num_steps=25,
T=1.4, top_p=0.9.

D.2 PDB CUTOFF DATE

Tab. 8 lists the PDB cutoff date of most baselines in training. SimpleFold uses May 1, 2020 as the
cutoff date following most baselines.

Table 8: Cutoff date of PDB for training.

Model PDB cutoff date

AlphaFold2 Chakravarty & Porter (2022) May 1, 2018
RoseTTAFold2 (Baek et al., 2023) April 30, 2020
ESMFold (Lin et al., 2023b) May 1, 2020
EigenFold (Jing et al., 2023) April 30, 2020
AlphaFlow (Jing et al., 2024a) May 1, 2018
ESMFlow (Jing et al., 2024a) May 1, 2020
ESM3 (Hayes et al., 2025) May 1, 2020
ESMDiff (Lu et al., 2024a) May 1, 2020

SimpleFold May 1, 2020

D.3 ESTIMATION OF GFLOPS

We leverage DeepSpeed (Rasley et al., 2020) library to estimate forward
flops for SimpleFold as well as baseline models. In particular, we use
deepspeed.profiling.flops_profiler.get_model_profile 2 function to get the compute

profile for the models. In estimating the flops, we set the number of residues to be 256 and number
of atoms to be 2304, namely, 9 atoms per residue.

D.4 TARGETS IN FOLDING TASKS

List of 183 targets in CAMEO22 (Haas et al., 2018):

2https://www.deepspeed.ai/tutorials/flops-profiler/
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7dz2-C, 7eoz-A, 7fac-A, 7fgb-A, 7fgp-A, 7fh0-B, 7lt7-A, 7lx4-A, 7m1z-B,
7mj3-A, 7n3y-A, 7n6h-A, 7n99-A, 7oj1-A, 7oj2-A, 7oju-A, 7pc1-A, 7pce-A,
7pcv-A, 7pk5-A, 7pkw-A, 7pl4-A, 7pl7-A, 7pqi-A, 7pqw-A, 7pup-A, 7pwe-A,
7q6d-A, 7q6g-A, 7q83-D, 7q9e-C, 7qau-A, 7qpe-A, 7qsw-B, 7qsw-C, 7qsx-A,
7qys-L, 7r08-E, 7r0o-B, 7r3w-D, 7r49-B, 7rlk-D, 7rmy-A, 7roa-A, 7rpn-A,
7rt7-D, 7rup-A, 7ruq-A, 7s03-A, 7s8k-B, 7sao-A, 7sbd-H, 7sfn-B, 7skh-B,
7skj-A, 7snc-A, 7snj-A, 7soo-A, 7spn-A, 7sz2-B, 7t12-B, 7t1j-B, 7t5w-B,
7te2-A, 7tgi-B, 7th2-C, 7tif-A, 7tol-A, 7tvw-A, 7u04-H, 7u0e-H, 7uav-A,
7ug9-A, 7upm-A, 7upv-A, 7uqv-D, 7uwg-C, 7ux0-A, 7uxt-A, 7v2s-B, 7v5f-A,
7v8t-A, 7vbo-A, 7vd7-B, 7vf3-B, 7vfc-A, 7vfq-C, 7vi8-B, 7vil-A, 7vma-A,
7vmf-A, 7vmh-C, 7vp3-C, 7vp6-D, 7vpu-A, 7vqk-A, 7vr2-A, 7vrf-A, 7vt4-A,
7vt5-A, 7vyu-A, 7w06-A, 7w16-A, 7w42-B, 7w52-B, 7w6x-A, 7w7h-E, 7w89-A,
7w8u-A, 7wa9-A, 7wbn-A, 7wf6-A, 7wf8-B, 7wf9-A, 7wfx-A, 7whf-G, 7wj0-A,
7wjt-B, 7wq5-A, 7wua-A, 7x0g-A, 7x0q-A, 7x0r-B, 7x15-A, 7x1k-A, 7x7w-A,
7x8c-B, 7xce-A, 7xjt-B, 7xtm-B, 7y0i-A, 7y39-B, 7y3k-A, 7y3w-A, 7y4n-A,
7y78-B, 7y79-B, 7y8u-E, 7y9b-A, 7ycv-A, 7ymo-A, 7yrt-C, 7yta-B, 7yvt-B,
7yvz-A, 7ywq-A, 7z06-A, 7zc8-A, 7zgi-B, 7zgm-A, 7zk1-A, 7zty-A, 7zva-A,
7zw9-A, 8a28-A, 8a4a-A, 8ag9-A, 8ajp-A, 8b26-A, 8b55-A, 8b5t-A, 8b5v-A,
8b73-A, 8cwp-A, 8cxl-A, 8d03-A, 8d08-D, 8d7f-A, 8day-A, 8dgg-A, 8di0-C,
8di1-A, 8dkr-B, 8doa-A, 8ds5-A, 8dt0-A, 8dt6-C, 8dte-A, 8dys-A, 8e8t-B,
8e8u-C, 8gxf-B, 8qcw-A

List of 70 targets in CASP14 (Pereira et al., 2021):

T1024, T1025, T1026, T1027, T1028, T1029, T1030, T1031, T1032, T1033,
T1034, T1035, T1036s1, T1037, T1038, T1039, T1040, T1041, T1042, T1043,
T1045s1, T1045s2, T1046s1, T1046s2, T1047s1, T1047s2, T1048, T1049, T1050,
T1052, T1053, T1054, T1055, T1056, T1057, T1058, T1060s2, T1060s3, T1061,
T1062, T1064, T1065s1, T1065s2, T1067, T1068, T1070, T1072s1, T1073, T1074,
T1076, T1078, T1079, T1080, T1082, T1083, T1084, T1087, T1088, T1089,
T1090, T1091, T1092, T1093, T1094, T1095, T1096, T1098, T1099, T1100,
T1101

D.5 EVALUATION PIPELINE

Folding. In evaluation for folding tasks (Tab. 9), all metrics for all-atom models are computed
using OpenStructure (Biasini et al., 2013) unless mentioned otherwise. In particular, we deploy
the official docker image of OpenStructure 2.9.13 and use the following command to evaluate the
structures.

ost compare-structures \
-m {MODEL_FILE} \
-r {REFERENCE_FILE} \
-o {OUTPUT_FILE} \
--fault-tolerant --min-pep-length 4 \
--lddt --bb-lddt --rigid-scores --tm-score

Notably, for protein folding / generation models that cannot output all-atom structures, we instead
adopt the TM-score (Zhang & Skolnick, 2004) for evaluation because the OpenStructure pipeline
fails in those cases. We compile the TMscore.cpp c++ source code and compare two structures as
follows:

TMscore -seq {MODEL_FILE} {REFERENCE_FILE}

MD ensemble generation. For ATLAS MD ensemble generation (Tab. 2), we base our evaluation
pipeline on the dataset split and benchmarking metrics used in previous studies (Jing et al., 2024a;b;
Lu et al., 2025), which cover from predicting flexibility to ensemble observables. To obtain the

3https://git.scicore.unibas.ch/schwede/openstructure/
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predicted ensemble, N = 250 (Jing et al., 2024a) conformations are sampled from baselines and
SimpleFold for each of the 82 test targets, where the median across all targets is reported for each
metric. In specific, we report the Pearson’s correlation r for pairwise RMSD, global and per-target
RMSF; the root mean of 2-Wasserstein distance (W2 distance) and its translation and variance con-
tribution, W2 distance between predicted and true ensembles regarding the first two principal com-
ponents from PCA by either MD or joint (MD and predicted), and the percentage of samples with
cosine similarity > 0.5 between the top principal components of predicted and true ensemble; for
the observables, we evaluate the Jaccard similarity (J) of the weak contacts, transient contacts, and
exposed residue as well as the Spearman correlation ρ of the exposed mutual information (MI) ma-
trix. We refer the readers to Jing et al. (2024a) for more detailed definition of these metrics. For
ESMDiff (Lu et al., 2024a), the Jaccard similarity of exposed residue and the Spearman correlation
of exposed MI are left empty because it only generates backbone conformation.

Two-state prediction. In order to evaluate the two-state conformation prediction tasks (Tab. 3),
we follow the evaluation pipeline in EigenFold (Jing et al., 2023): the global and per-target residue
flexbility (in terms of RMSD Pearson’s correlation r) is calculated after sequence alignment and
structural superposition. The TM-ensemble score (at ensemble size 5 following Jing et al. (2023)) is
calculated by computing the maximum TM-score (Zhang & Skolnick, 2004) between the ensemble
and either ground truth conformation, and averaged across both. We use the same command as
above to compute the TMscore.

E ADDITIONAL EXPERIMENTS

E.1 DE NOVO AND ORPHAN PROTEINS

We further compare our model with AlphaFold2 and ESMFold on two additional datasets: de novo
(designed) proteins and orphan proteins as established in Chowdhury et al. (2022). These evaluation
sets are really important because they represent new protein-coding innovations that cannot be traced
to ancestral genes (for example proteins that are designed from scratch or those who might evolve so
rapidly that they lose detectable homology). The orphan proteins dataset contain 77 targets that have
no known sequence homologs (i.e., maximal MSA depth is 1). De novo proteins contain synthetic
proteins that were originally de novo designed with computational tools like Rosetta and Amber.
We filter it to 62 targets by cutoff data of May-01-2020 such that targets are not used in training
all three models. As shown in the following two tables, SimpleFold shows better performance than
AlphaFold2 and ESMFold on de novo benchmark. On the orphan protein dataset, SimpleFold shows
significant better LDDT than AlplaFold2 while being comparable in other metrics. This evidence
supports SimpleFold being a strong generalizable single-sequence folding model that doesn’t rely
on MSA.

Table 9: Performance of protein folding on the de novo and orphan protein targets.

Model TM-score ↑ GDT-TS ↑ LDDT ↑ LDDT-Cα ↑ RMSD ↓
De Novo

AlphaFold2 (Jumper et al., 2021) 0.831 / 0.866 0.850 / 0.898 0.781 / 0.805 0.876 / 0.894 2.950 / 2.307
ESMFold (Lin et al., 2023b) 0.839 / 0.871 0.852 / 0.885 0.781 / 0.810 0.878 / 0.904 3.024 / 1.924

SimpleFold-3B (ours) 0.852 / 0.880 0.877 / 0.928 0.807 / 0.823 0.906 / 0.922 2.729 / 1.535
De Novo

AlphaFold2 (Jumper et al., 2021) 0.430 / 0.379 0.747 / 0.752 0.618 / 0.611 0.778 / 0.816 3.251 / 2.935
ESMFold (Lin et al., 2023b) 0.391 / 0.320 0.700 / 0.706 0.485 / 0.471 0.731 / 0.761 3.775 / 3.329

SimpleFold-3B (ours) 0.433 / 0.390 0.728 / 0.750 0.651 / 0.687 0.764 / 0.799 3.646 / 3.113

E.2 TRAINING WITH SELF-DISTILLED DATA

A relatively common conception for SimpleFold is that such a general purpose architecture and
training recipe is only useful as student that distills knowledge from teachers using strong domain-
specific inductive biases (i.e., AlphaFold2 and ESMFold). In practical terms, the concern is that the
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general purpose recipe of SimpleFold will completely fail when is not trained on data distilled from
other models with strong domain-specific architectures and training objectives (i.e., AlphaFold2 and
ESMFold predictions in AFDB and AFESM). In order to clearly understand if this is actually a valid
concern we trained SimpleFold models via self-distillation, without using any data from AFDB or
AFESM.

We start by training a SimpleFold-700M model on PDB data only (SimpleFold-700M-PDB in
Tab. 10). We then use SimpleFold-700M-PDB to generate self-distillation data (on the same pro-
tein sequences contained in the filtered SwissProt subset of AFDB and AFESM datasets for a fair
comparison) and train a new model, SimpleFold-700M-R1, on this self-distilled data. Finally, we
perform a second step of self-distillation where we take SimpleFold-700M-R1 and use it to generate
self-distillation data one more time and train a final model which we denote as SimpleFold-700M-
R2. All these models follow the training paradigm described in Sect. 4.1 of the main paper. Struc-
tures with pLDDT larger than 80 are included in the pre-training phase and those with pLDDT larger
than 85 are included in the finetuning phase. It is noted that we train a separate pLDDT modules
for both self-distilled version of SimpleFold-700M on PDB data only, and we use these pLDDT
modules to filter the self-distilled data.

Our results on both CASP14 and CAMEO22 on Tab. 10 show that SimpleFold does not necessarily
require training data distilled from other models to obtain reasonable performance. While training
on AFDB/AFESM data provides an edge (potentially due to the use of MSA in AlphaFold2), it does
not represent a fundamental requirement for SimpleFold.

Table 10: Performance of SimpleFold trained with self-distilled data.

Model TM-score ↑ GDT-TS ↑ LDDT ↑ LDDT-Cα ↑ RMSD ↓
CAMEO22

SimpleFold-700M-PDB 0.785 / 0.864 0.726 / 0.767 0.703 / 0.719 0.799 / 0.826 5.565 / 3.240
SimpleFold-700M-R1 0.798 / 0.876 0.741 / 0.802 0.725 / 0.756 0.813 / 0.847 5.435 / 3.158
SimpleFold-700M-R2 0.805 / 0.878 0.749 / 0.796 0.727 / 0.754 0.819 / 0.858 5.160 / 3.106
SimpleFold-700M-AFDB/AFESM 0.829 / 0.915 0.788 / 0.845 0.775 / 0.809 0.850 / 0.886 4.557 / 2.423

CASP14

SimpleFold-700M-PDB 0.606 / 0.573 0.501 / 0.507 0.555 / 0.586 0.644 / 0.671 12.796 / 9.504
SimpleFold-700M-R1 0.644 / 0.695 0.556 / 0.577 0.604 / 0.636 0.694 / 0.760 11.482 / 7.581
SimpleFold-700M-R2 0.649 / 0.698 0.565 / 0.595 0.601 / 0.621 0.696 / 0.765 11.327 / 6.605
SimpleFold-700M-AFDB/AFESM 0.680 / 0.767 0.591 / 0.668 0.630 / 0.674 0.714 / 0.763 9.289 / 4.431

E.3 CONFIDENCE MEASURE WITH PLDDT

Fig. 8(a) shows an example of a predicted structure with pLDDT where red and orange denotes
low pLDDT and blue denotes high pLDDT. As illustrated, SimpleFold is confident about most
predictions of secondary structures while being uncertain about flexible loops. Fig. 8(b) and (c)
depict comparison of pLDDT and actual LDDT-Cα. We include targets from CAMEO22 and 1000
random selected protein chains from PDB after Jan 2023. pLDDT achieves the Pearson’s corelation
of 0.77 w.r.t LDDT-Cα, which indicates that pLDDT module of SimpleFold correctly models the
overall quality of predicted structures. It is also noted that our pLDDT module does not adhere to
the generative flow process to output pLDDT. Therefore, it can be applied to measure the quality of
predictions from other models seamlessly, which we leave for future investigation.

E.4 MD ENSEMBLE GENERATION

Tab. 11 lists the results of SimpleFold and SimpleFold-MD on MD ensemble generation of AT-
LAS. In particular, no tuning is applied to SimpleFold whereas SimpleFold-MD is tuned on ATLAS
training data. It is shown that on MD ensemble generation, SimpleFold also benefits from scaling,
namely, larger SimpleFold and SimpleFold-MD achieve better performance.
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8OZC Chain A

(a) (b) (c)

Figure 8: (a) An example prediction of SimpleFold with pLDDT (color red to dark blue denote
pLDDT low to high following visualization from Chakravarty & Porter (2022)). (b) & (c) Compar-
ison of pLDDT and LDDT-Cα.

Table 11: Evaluation of SimpleFold (SF) of different sizes on MD ensembles.
No Tuning Tuned

SF-100M SF-360M SF-700M SF-1.1B SF-1.6B SF-3B SF-MD-100M SF-MD-360M SF-MD-700M SF-MD-1.1B SF-MD-1.6B SF-MD-3B

Pairwise RMSD r ↑ 0.17 0.21 0.29 0.30 0.38 0.44 0.19 0.27 0.30 0.32 0.40 0.45
Global RMSF r ↑ 0.23 0.27 0.33 0.36 0.42 0.45 0.26 0.34 0.38 0.39 0.45 0.48
Per target RMSF r ↑ 0.59 0.63 0.65 0.64 0.63 0.60 0.62 0.67 0.67 0.68 0.68 0.67
RMWD ↓ 5.41 4.36 4.35 4.26 4.20 4.22 5.88 4.71 4.56 4.12 4.07 4.17
RMWD trans contri ↓ 4.83 4.02 3.95 3.84 3.79 3.74 5.32 4.22 4.19 3.60 3.44 3.40
RMWD var contri ↓ 2.24 1.76 1.69 1.68 1.74 1.75 2.21 1.91 1.80 1.79 1.78 1.88
MD PCA W2 ↓ 1.79 1.54 1.43 1.58 1.57 1.62 1.86 1.34 1.51 1.39 1.37 1.34
Joint PCA W2 ↓ 4.49 2.89 2.82 2.91 2.65 2.59 4.78 3.36 3.37 2.85 2.29 2.18
% PC sim > 0.5 ↑ 30 29 28 32 34 37 28 30 37 37 37 38
Weak contacts J ↑ 0.47 0.43 0.43 0.44 0.36 0.36 0.52 0.55 0.57 0.58 0.58 0.56
Transient contacts J ↑ 0.25 0.30 0.31 0.30 0.28 0.27 0.25 0.32 0.33 0.35 0.36 0.34
Exposed residue J ↑ 0.47 0.48 0.46 0.50 0.41 0.39 0.55 0.62 0.60 0.62 0.63 0.60
Exposed MI matrix ρ ↑ 0.24 0.23 0.24 0.24 0.16 0.14 0.29 0.31 0.33 0.35 0.33 0.32

E.5 LDDT LOSS

LDDT loss plays an important role in SimpleFold training. In practice, we find LDDT loss is
required to generate structures with refined local atomic positions, which largely affects the LDDT
metric in folding tasks. We also find that in the second training phase when finetuning the pretrained
model on high-quality data, PDB and SwissProt (filtered at pLDDT > 85). Adding a loss weight
α = 1 + 8ReLU(t − 0.5) (Eq. 3) helps getting better results than keeping α = 1 as pretraining.
Tab. 12 shows the effect of different LDDT loss weighting strategies in finetuning. Applying loss
weight schedule 1 + 8 ∗ ReLU(t− 0.5) achieves best overall performance.

Table 12: Ablation of LDDT loss weighting on CAMEO22.

Model α(t) TM-score ↑ GDT-TS ↑ LDDT ↑ LDDT-Cα ↑ RMSD ↓
SimpleFold-700M 0.0 0.831 / 0.907 0.785 / 0.845 0.711 / 0.746 0.847 / 0.882 4.445 / 2.423
SimpleFold-700M 1.0 0.831 / 0.913 0.785 / 0.844 0.767 / 0.797 0.846 / 0.884 4.586 / 2.742
SimpleFold-700M 1 + 8 ∗ ReLU(t− 0.5) 0.826 / 0.904 0.784 / 0.844 0.762 / 0.788 0.848 / 0.884 4.476 / 2.588

E.6 INFERENCE SETTINGS

Tab. 13, Tab. 14, and Tab. 15 show the ablation of inference settings of SimpleFold-700M on
CAMEO22, CASP14, and Apo/Fold-switch, respectively. By default, we set number of steps to
500, τ = 0.01, and w(t) = 1−t

t for folding tasks while set τ = 0.8 for multi-state tasks to encour-
age stochasticity in inference.
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Table 13: Ablation of inference settings on CAMEO22.

# Steps τ w(t) log time TM-score ↑ GDT-TS ↑ LDDT ↑ LDDT-Cα ↑ RMSD ↓
500 0.0 1−t

t T 0.831 / 0.918 0.790 / 0.844 0.777 / 0.815 0.851 / 0.887 4.497 / 2.410
500 0.01 1−t

t T 0.829 / 0.915 0.788 / 0.845 0.775 / 0.809 0.850 / 0.886 4.557 / 2.423
500 0.02 1−t

t T 0.831 / 0.919 0.788 / 0.845 0.775 / 0.808 0.850 / 0.886 4.501 / 2.519
500 0.05 1−t

t T 0.831 / 0.913 0.787 / 0.848 0.775 / 0.808 0.849 / 0.885 4.461 / 2.429
500 0.1 1−t

t T 0.830 / 0.913 0.785 / 0.839 0.773 / 0.807 0.848 / 0.884 4.574 / 2.452
500 0.2 1−t

t T 0.826 / 0.909 0.781 / 0.832 0.768 / 0.805 0.845 / 0.882 4.597 / 2.558
500 0.01 tan (π(1−t)

2 ) T 0.833 / 0.917 0.788 / 0.845 0.775 / 0.803 0.848 / 0.884 4.504 / 2.403
500 0.01 1

t T 0.820 / 0.904 0.768 / 0.818 0.005 / 0.001 0.826 / 0.857 4.665 / 2.443
500 0.01 1−t2

t T 0.829 / 0.916 0.788 / 0.841 0.775 / 0.808 0.849 / 0.885 4.571 / 2.421
500 0.01 1−t

t F 0.832 / 0.919 0.790 / 0.848 0.776 / 0.811 0.851 / 0.886 4.473 / 2.427
250 0.01 1−t

t T 0.828 / 0.916 0.785 / 0.850 0.776 / 0.808 0.849 / 0.884 4.626 / 2.445
200 0.01 1−t

t T 0.831 / 0.915 0.788 / 0.843 0.777 / 0.808 0.850 / 0.888 4.417 / 2.491
150 0.01 1−t

t T 0.826 / 0.912 0.785 / 0.845 0.774 / 0.806 0.850 / 0.885 4.581 / 2.478
100 0.01 1−t

t T 0.821 / 0.902 0.779 / 0.839 0.769 / 0.802 0.847 / 0.884 4.922 / 2.450
50 0.01 1−t

t T 0.654 / 0.618 0.605 / 0.599 0.615 / 0.641 0.717 / 0.746 10.971 / 11.024

Table 14: Ablation of inference settings on CASP14.

# Steps τ w(t) log time TM-score ↑ GDT-TS ↑ LDDT ↑ LDDT-Cα ↑ RMSD ↓
500 0.0 1−t

t T 0.684 / 0.762 0.591 / 0.678 0.628 / 0.662 0.713 / 0.762 9.184 / 4.226
500 0.01 1−t

t T 0.680 / 0.767 0.591 / 0.668 0.630 / 0.674 0.714 / 0.763 9.289 / 4.431
500 0.02 1−t

t T 0.677 / 0.770 0.589 / 0.667 0.629 / 0.676 0.712 / 0.758 9.319 / 4.645
500 0.05 1−t

t T 0.675 / 0.778 0.587 / 0.665 0.624 / 0.661 0.711 / 0.767 9.521 / 4.867
500 0.1 1−t

t T 0.675 / 0.779 0.585 / 0.668 0.621 / 0.662 0.706 / 0.766 9.391 / 5.029
500 0.01 1−t

t T 0.673 / 0.780 0.585 / 0.647 0.617 / 0.652 0.708 / 0.764 9.167 / 5.018
500 0.01 tan (π(1−t)

2 ) T 0.683 / 0.768 0.591 / 0.660 0.629 / 0.638 0.714 / 0.753 8.787 / 4.294
500 0.01 1

t T 0.671 / 0.737 0.572 / 0.642 0.005 / 0.002 0.691 / 0.742 9.414 / 4.876
500 0.01 1−t2

t T 0.680 / 0.767 0.590 / 0.669 0.626 / 0.668 0.712 / 0.756 9.313 / 4.388
500 0.01 1−t

t F 0.677 / 0.763 0.586 / 0.671 0.626 / 0.656 0.709 / 0.758 9.317 / 4.281
250 0.01 1−t

t T 0.679 / 0.777 0.593 / 0.683 0.627 / 0.677 0.715 / 0.764 9.374 / 4.765
200 0.01 1−t

t T 0.677 / 0.767 0.588 / 0.699 0.624 / 0.660 0.713 / 0.758 9.363 / 4.544
150 0.01 1−t

t T 0.657 / 0.742 0.572 / 0.624 0.625 / 0.641 0.709 / 0.750 11.305 / 7.234
100 0.01 1−t

t T 0.633 / 0.680 0.558 / 0.584 0.615 / 0.657 0.701 / 0.759 12.370 / 6.615
50 0.01 1−t

t T 0.481 / 0.358 0.402 / 0.305 0.452 / 0.374 0.554 / 0.465 17.792 / 17.868

Table 15: Ablation of inference settings on Apo and Fold-switch.

τ
Res. flex.
(global) ↑

Res. flex.
(per-target) ↑ TM-ens ↑ Res. flex.

(global) ↑
Res. flex.

(per-target) ↑ TM-ens ↑

Apo/holo Fold-switch

0.2 0.466 0.484 / 0.478 0.868 / 0.901 0.297 0.281 / 0.245 0.699 / 0.750
0.4 0.538 0.501 / 0.512 0.869 / 0.901 0.314 0.305 / 0.228 0.697 / 0.748
0.6 0.531 0.513 / 0.510 0.870 / 0.901 0.302 0.313 / 0.289 0.695 / 0.734
0.8 0.552 0.524 / 0.538 0.870 / 0.899 0.307 0.328 / 0.310 0.693 / 0.713
1.0 0.562 0.525 / 0.520 0.867 / 0.896 0.319 0.337 / 0.329 0.687 / 0.716

F ADDITIONAL VISUALIZATION

F.1 FOLDING

F.2 ENSEMBLE GENERATION

F.3 FAILURE CASES

Fig. 11 shows some examples of failure cases from CAMEO22 and CASP14. In particular, we show
predictions with TM-score smaller than 0.6 and also include predictions from ESMFold (Lin et al.,
2023b). In these shown cases, SimpleFold mostly predicts the secondary structures correctly. How-
ever, the relative positions between the different secondary structure domains are not well modeled.
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Figure 9: Examples of folding results from SimpleFold with ground truth shown in light aqua and
prediction in deep tea (first row from CAMEO22 targets and second row from CASP14 targets).

Figure 10: Examples of ensemble generation results from SimpleFold. We align 5 generated con-
formations of the same protein for visulization.

Interestingly, this failure mode can also be observed in ESMFold, e.g., 7SZ2-B and 7WF9-A. We
attribute this to the ESM2 embedding shared by SimpleFold and ESMFold. This indicates a future
direction to build more powerful protein language models for representation learning that further
benefits protein folding models.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 11: Examples of failure cases (TM-score < 0.6) of SimpleFold predictions with ground truth
shown in light aqua and prediction in deep tea (first row from CAMEO22 targets and second row
from CASP14 targets). We also include predictions from ESMFold for comparison.
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