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(c) Text (d) Background-Image

Multiple Object Images

Object Image

Figure 1: We propose CustomNet, a novel unified customization method that can generate harmonious customized images
without test-time optimization. CustomNet supports explicit (a) viewpoint, (b) location, (c) text, and (d) background image
controls while ensuring object identity preservation.

ABSTRACT
Incorporating a customized object into image generation presents

an attractive feature in text-to-image (T2I) generation. Some meth-

ods finetune T2I models for each object individually at test-time,

which tend to be overfitted and time-consuming. Others train an

extra encoder to extract object visual information for customization

efficiently but struggle to preserve the object’s identity. To address

these limitations, we present CustomNet, a unified encoder-based

object customization framework that explicitly incorporates 3D

novel view synthesis capabilities into the customization process.

This integration facilitates the adjustment of spatial positions and

viewpoints, producing diverse outputs while effectively preserving

the object’s identity. To train our model effectively, we propose a

dataset construction pipeline to better handle real-world objects
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and complex backgrounds. Additionally, we introduce delicate de-

signs that enable location control and flexible background control

through textual descriptions or user-defined backgrounds. Our

method allows for object customization without the need of test-

time optimization, providing simultaneous control over viewpoints,

location, and text. Experimental results show that our method out-

performs other customization methods regarding identity preser-

vation, diversity, and harmony.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Diffusion models, Object Customization

1 INTRODUCTION
Recently, diffusion-basedmodels have achieved new state-of-the-art

in text-to-image (T2I) generation [25, 28, 29, 31], allowing ordinary

users to synthesize text-complied images. Besides, additional con-

trol conditions like layout, style, and depth are applied to these T2I

diffusion models [18, 24, 45], achieving fine-grained controls on the

synthesized images. Customization, another control dimension in

T2I diffusion models, has received significant attention. It allows

1
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users to incorporate objects from reference images into the genera-

tion while preserving the object identity. Pioneering works such

as Dreambooth [30] and Textual Inversion [9] use a few images of

the same object to finetune the parameters of diffusion models or

learn concept textual embeddings through an iterative optimization

process. Although these optimization-based techniques excel at

maintaining object identity, they suffer from certain drawbacks,

such as time-consuming optimization for each object and a ten-

dency to be overfitted when only a single image is provided.

Consequently, researchers have started exploring encoder-based

methods [16, 18, 22, 40, 42] for efficient customization. These meth-

ods train an encoder to encode visual concepts of objects to an

embedding. Once trained, users can use the encoder to get the ob-

ject image embedding and send it into the denoising process during

inference, achieving a speed comparable to the standard diffusion

model sampling process. However, simply injecting an image into a

compressed concept embedding often leads to inadequate identity

preservation [16, 42]. Several methods further propose to enhance

detail preservation by introducing local features [22, 40], which

still cannot preserve complex textures well.

Besides identity-preserving and efficiency, a user may also want

to simultaneously change the object viewpoints, which is hard for

the customization methods mentioned above. Novel View Synthesis

(NVS) diffusion models are capable of addressing viewpoint control.

Recent methods [2, 39] regard NVS as an image-to-image transla-

tion task and train diffusion models in certain specific categories.

Zero-1-to-3 [19], which leverages the massive synthetic 3D object

multiple view dataset Objaverse [8] to train a camera pose condi-

tioned diffusionmodel, extending the generalization capability from

a single category to the open world. However, directly applying an

NVS diffusion model like Zero-1-to-3 into the object customization

task poses several challenges due to its inherent limitations: 1) It is
solely capable of generating centrally positioned objects, lacking

the ability to place them in alternative locations in the synthesized

image; 2) It can not generate diverse backgrounds, being restricted

to a simplistic white background; 3) It also lacks the high-level

semantic information control like text prompts. These constraints

significantly hinder its applicability in object customization tasks.

To efficiently generate harmonious customized images under

the control of viewpoints, location, and text while ensuring ob-

ject identity preservation, We introduce CustomNet. CustomNet

is a unified encoder-based object customization framework that

facilitates diverse viewpoints in text-to-image diffusion models.

Unlike previous optimization-based and encoder-based methods

that simply rely on text-image paired datasets, CustomNet needs

to be trained on more complex data, i.e., a target image with text

description and multi-view images of the objects which come from

the image. Therefore, we design a dataset construction pipeline that

effectively utilizes synthetic multi-view data and massive natural

images to better handle real-world objects and complex background

relationships for training. Moreover, based on latent diffusionmodel

(LDM) [29] architecture, we design dual cross attention to support

both viewpoints and text control for the spatial Transformer in the

LDM UNet, and adjust object size and location by concatenating

the transformed reference object image with the UNet input. We

can further apply style editing to customization through the text-

control branch, as the style condition derives from the text prompt

in the data. We also extend CustomNet to reference background

image inpainting applications that can receive multiple objects and

background images for more flexible customization.

Built upon those designs, CustomNet can achieve harmonious

customization with identity preservation and diverse control with-

out test-time optimization, as shown in Fig. 1. We summarize our

contributions as follows:

• We propose CustomNet, a unified framework for object

customization that explicitly incorporates 3D novel view

synthesis capabilities. CustomNet ensures superior preser-

vation of the object’s identity, allowing for simultaneous

customization of the viewpoint, location of the object, text,

and background-image, without test-time optimization.

• We develop a novel dataset construction pipeline that ef-

fectively leverages synthetic multi-view data and massive

natural images to better customize real-world objects and

complex backgrounds more harmoniously.

• Experimental results demonstrate that the proposed Cus-

tomNet outperforms existing customization methods re-

garding identity preservation, diversity, and harmony of

the customized results.

2 RELATEDWORK
Object customization with text-to-image diffusion models.
With the promising progress of text-to-image diffusion models [11,

25, 28, 29, 31, 33, 34], researches explore to capture the information

of a reference object image and maintain its identity throughout the

diffusion model generation process, i.e., object customization. These

methods can be broadly classified into optimization-based tech-

niques and encoder-based approaches. Optimization-based meth-

ods [5, 9, 20, 30] can achieve high-fidelity identity preservation;

however, they are time-consuming and may sometimes result in

overfitting. In contrast, current encoder-based methods [16, 18, 35,

42] enable zero-shot performance but may either lose the iden-

tity. To address this issue, several methods ELITE [40], Subject-

Diffusion [22] have been proposed to enhance detail preservation

by introducing local features, which still only generate images that

resemble the reference images in content and style and do not allow

for versatile viewpoint control. This limitation makes it difficult

to achieve harmonious results. In contrast, our proposed Custom-

Net aims to preserve high fidelity while supporting controllable

viewpoint variations, thereby achieving more diverse outcomes.

Image harmonization. In image composition, a foreground object

is typically integrated into a given background image to achieve har-

monized results. Various image harmonizationmethods [3, 7, 10, 37]

have been proposed to further refine the foreground region, ensur-

ing more plausible lighting and color adjustments [4, 6, 41]. How-

ever, these methods focus on low-level modifications and cannot

alter the viewpoint or pose of the foreground objects. In contrast,

our proposed CustomNet achieves flexible background generation

using user-provided images and offers additional viewpoint control

and enhanced harmonization.

3D novel view synthesis aims to infer the appearance of a scene of

novel viewpoints based on one or a set of images of a given 3D scene.

Previous methods have typically relied on classical techniques such

2
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(a) Pipeline 1: data construction from 3D object. 

(b) Pipeline 2: data construction from single image. 

BLIP-2 “car,”

Figure 2: Dataset construction pipeline from (a) 3D objects and (b) single image .

as interpolation or disparity estimation [26, 46], as well as gener-

ative models [1, 36]. More recently, approaches based on Scene

Representation Networks (SRN) [32] and Neural Radiance Fields

(NeRF) [13, 23, 44] have been explored. Furthermore, diffusion mod-

els have been introduced into novel view synthesis [19, 39]. Zero-1-

to-3 [19] propose a viewpoint-conditioned diffusion model trained

on large synthetic datasets, achieving excellent performance in

single-view 3D reconstruction and novel view synthesis tasks. Our

CustomNet incorporates the 3D capabilities to diffusion models for

object customization, generating outputs with diverse viewpoints

while preserving the identity.

3 METHOD
Given a reference background-free

1
object image 𝑥 ∈ R𝐻×𝑊 ×3

with height𝐻 and width𝑊 , we aim to generate a customized image

𝑥 where the object of the same identity can be seamlessly placed

in a desired environment (i.e., background) harmoniously with ap-

propriate viewpoint and location variations. As illustrated in Fig. 3,

we propose CustomNet, a novel unified architecture designed to

achieve this given object customization conditioned on the view-

point 𝑅 (where 𝑅 represents a vector that contains the relative

camera polar angle 𝜃 and azimuth angle 𝜙 of the object in desired

viewpoints), object location 𝐿 (bounding box), and text prompt 𝑇

that describes the generated image:

𝑥 = CustomNet(𝑥, 𝑅, 𝐿,𝑇 ) . (1)

In the following, we first introduce the dataset construction

pipeline that helps to obtain such paired data: {𝑥, 𝑥, 𝑅, 𝐿,𝑇 }, which
facilitates harmonious customizationwith both 3D synthetic dataset

and natural image dataset. Then based on LDM [29], we further

design the dual cross-attention and Unet input concatenation that

makes our model support viewpoints, location, and text control

simultaneously. Moreover, similar to other inpainting methods

[18, 42], CustomNet can also be extended to the inpainting-like

1
Background-free images can be easily obtained by segmentation methods, e.g.,
SAM [14].

customization that supports giving the reference background im-

age instead of text prompts.

3.1 Dataset Construction Pipeline
As shown in Fig. 2 (a), we can acquire multi-view object images

and their corresponding camera view parameters from existing

3D datasets, such as Objaverse [8]. However, these datasets only

include object images without backgrounds (usually with a pure

white background), and the objects are rendered only at the center

of the images. This is not suitable for customization tasks. As a naive

solution, we can first collect another background image and specify

a random bounding box 𝐿 located in the background image, then

we resize the object and perform mask-blending with the object

image and background images in the bounding box. The blended

image is the target image 𝑥 and we use another view of the object

and relative camera parameters from the 3D datasets as 𝑥 and 𝑅,

respectively. We use BLIP-2 [17] to caption the textual descriptions

of the blended images for the text prompts 𝑇 .

However, since the composition between the object and back-

ground would be unreasonable (i.e., the object is placed into the

background disharmoniously) and the blended target image is unre-

alistic, the model trained on them often generates a disharmonious

customized image, e.g., the objects float over the background (see

Sec. 4.3).

To alleviate this problem, we propose a dataset construction

pipeline that is the reverse of the above-mentioned way, i.e., directly
utilizing natural images as the target image and extracting objects

from the image as the reference. The specific pipeline is shown in

Fig. 2 (b). For a natural image 𝑥 , we first use BLIP-2 to extract the

foreground object with the instruction {“image”: image, “prompt”:

“Question: What foreground objects are in the image? find them and

separate them using commas. Answer:”}. Then we feed the object

and its corresponding text to SAM. SAM receives text as input and

outputs both the bounding box 𝐿 and the segmentation mask of the

corresponding object. We use a bounding box and a segmentation

mask to crop the object and synthesize a novel view of the object

as 𝑥 by Zero-1-to-3 with randomly sampled relative viewpoints 𝑅.

3
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Figure 3: Overview of CustomNet. CustomNet can simultaneously control viewpoint, location, and text in a unified framework.
In bottom-left, The reference object of desired size and location is concatenated with the UNet input. In top-left, the viewpoints
embedding is concatenated with object image embedding, which is sent into an MLP module. In top-right, the text prompt
embedding is sent to the Dual Attention module to control the generation with the object viewpoints.

The textual description 𝑇 of the image can be also obtained using

the BLIP-2 model. In this way, we can synthesize a large amount of

data pairs from natural image datasets, like OpenImages [15].

3.2 Object Viewpoint Control
To enable synthesizing a target customized image complied with

the given viewpoint parameter 𝑅 ([𝜃, 𝑠𝑖𝑛(𝜙), 𝑐𝑜𝑠 (𝜙)]), we follow

the view-conditioned diffusion method introduced by Zero-1-to-3.

As shown in Fig. 3 (the left-top part), we first apply a pre-trained

CLIP [27] image encoder to encode the reference background-free

object image into an object embedding, containing high-level se-

mantic information of the input object. Then the object embedding

is concatenated with 𝑅 and passed through a trainable lightweight

multi-layer perception (MLP). The fused object embedding further

passes to the denoising UNet as a condition with the cross-attention

mechanism to control viewpoints of the synthesized images. Even

with multi-view datasets, it is worth noting that the explicit view-

points control is of vital importance to perform object variation

and ensure identity consistency, as discussed in 4.3.

3.3 Object Location Control
We further control the object location in the synthesized image by

concatenating the reference object image with the desired location

and size to the UNet input z𝑡−1, where z𝑡−1 represents the noisy
latent at the time step 𝑡−1. The process is illustrated in Fig. 3 (the

left-bottom part). The desired location and size 𝐿, represented as

a bounding box [𝑥,𝑦,𝑤,ℎ], is the object’s desirable location in the

target image. Then, we resize the reference object image into the

size of [𝑤,ℎ] and place its left-top corner at the [𝑥,𝑦] coordinate
of a background-free image (this image is the same size as the

target image being denoised but without background), which is

represented as 𝑥𝐿 . The additional concatenated reference object

image helps the model synthesize the desired image while keeping

the identity and the texture details [19, 29]. Note that Zero-1-to-3

directly concatenates the centrally-located reference object to the

UNet input, which can only synthesize an image where the object

is centered. Our method enables synthesizing the target object at

the desired position with the proposed explicit location control.

3.4 Flexible Background Control
We first introduce how to incorporate text prompts to control the

background generation, then extend it to inpainting-like customiza-

tion with the reference background image.

Text prompt Control. CustomNet is required to generate an ap-

propriate background based on the textual description 𝑇 . Differ-

ent from Zero-1-to-3, which solely accepts the object embedding

without textual descriptions for background, we propose a dual

cross-attention conditioning strategy that accepts both the fused

object embedding with viewpoint control and textual descriptions

for background. The dual cross-attention mechanism integrates

the fused object embedding and the textual embedding through

two distinct cross-attention modules. Specifically, we first employ

the CLIP text encoder to obtain the textual embeddings and subse-

quently inject them into the denoising UNet, along with the fused

object embedding, using the DualAttn:

DualAttn(𝑄,𝐾𝑜 ,𝑉𝑜 , 𝐾𝑇 ,𝑉𝑇 )

= Softmax(𝑄𝐾
𝑇
𝑜√
𝑑

)𝑉𝑜 + Softmax(
𝑄𝐾𝑇

𝑇√
𝑑

)𝑉𝑇 ,
(2)

where the query features 𝑄 come from the UNet, while 𝐾𝑜 ,𝑉𝑜 are

the object features projected from fused object embeddings with

viewpoint control, and 𝐾𝑇 ,𝑉𝑇 are the textural embeddings, 𝑑 is

the dimension of the aforementioned feature embeddings. This

4
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straightforward yet effective design enables us to achieve accurate

background control without affecting the object viewpoint control.

Background Image Inpainting. In many practical scenarios,

users desire to seamlessly insert objects into pre-existing back-

ground images with specific viewpoints and locations. To achieve

this, we extend the input channels of the UNet by concatenating

the provided background image channel-wise, following the Stable

Diffusion inpainting pipeline. Consequently, the diffusion model

accepts [z𝑡−1, object w/ loc, 𝑥𝑏𝑔] as inputs. Note that in this mode,

the textual description is optional, allowing for straightforward

input of NULL to the text prompt. In comparison to existing im-

age composition methods [42] which often struggle with identity

loss issues, our method offers viewpoint and location control over

objects and enhanced identity preservation in 4.2.

3.5 Training Strategies
Model Training. Given paired images (object image and target

image) with corresponding relative camera viewpoint, resized ob-

ject image in specified locations, and text prompt {𝑥, 𝑥𝑡𝑔𝑡 , 𝑅, 𝑥𝐿,𝑇 },
we train our diffusion model conditioned on these explicit con-

trols. We adopt the latent diffusion model (LDM) [29] architecture,

which contains a variational auto-encoder (VAE) with an encoder

E, decoder D, and an UNet denoiser 𝜖𝜃 . LDM uses VAE to convert

the image from pixel-level space to latent space, and performs the

diffusion-denoising process in the latent space rather than the pixel

space for efficiency. The optimization objective is:

min

𝜃
E𝑧𝑡 ,𝜖,𝑡 ∥ 𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑥, 𝑅, 𝑥𝐿,𝑇 ) ∥2, (3)

Once the denoising UNet 𝜖𝜃 is trained, we can perform harmonious

customization conditioned on the target viewpoint, location, and

text prompt with CustomNet.

3.6 Classifier-free Guidance
Classifier-free diffusion guidance [12] is a method for adjusting

the quality and diversity of diffusion generations. In CustomNet,

we divide the conditions into two parts: image (𝑥, 𝑅, 𝑥𝐿, which is

related to object viewpoint and location) and text (𝑇 for textual

description). For sampling , we set two guidance scales (𝑆𝐼 , 𝑆𝑇 ) to

control their influence respectively as follows:

𝜖𝜃 (𝑧𝑡 , 𝑥, 𝑅, 𝑥𝐿,𝑇 ) = 𝜖𝜃 (𝑧𝑡 , ∅𝑥 , ∅𝑅, ∅𝑥𝐿 , ∅𝑇 )
+ 𝑆𝐼 · (𝜖𝜃 (𝑧𝑡 , 𝑥, 𝑅, 𝑥𝐿, ∅𝑇 ) − 𝜖𝜃 (𝑧𝑡 , ∅𝑥 , ∅𝑅, ∅𝑥𝐿 , ∅𝑇 ))
+ 𝑆𝑇 · (𝜖𝜃 (𝑧𝑡 , 𝑥, 𝑅, 𝑥𝐿,𝑇 ) − 𝜖𝜃 (𝑧𝑡 , 𝑥, 𝑅, 𝑥𝐿, ∅𝑇 ))

(4)

where ∅∗ is set the ∗ condition to null. During training, we randomly

drop the image part by 5% and the text part by 15%.

4 EXPERIMENTS
4.1 Training Datasets and Implementation

Details
As introduced in Sec. 3.5, We use multi-view synthetic dataset Ob-

javerse [8] and additionally obtained background images from the

web to synthesize blended images. Then We use natural image

dataset OpenImages-V6 [15] filtered as BLIP-Diffusion [16] to con-

struct data pairs with the pipeline. A total of (250+500)K data pairs

are constructed for model training with sampling ratio 5% : 95%,

respectivaley. We exploit the Zero-1-to-3 checkpoint as the model

weight initialization. For training, we employ AdamW [21] opti-

mizer with a constant learning rate 2×10−5 for 500K optimization

steps. The total batch size is 96, and about 6 days are taken to finish

the training on 8 NVIDIA-V100 GPUs with 32GB VRAM.

4.2 Comparison to Existing Methods
We compare our CustomNet to the optimization-based methods

Textual Inversion [9], Dreambooth [30], and encoder-based method

GLIGEN [18], ELITE [40], BLIP-Diffusion [16], IP-Adapter [43]. We

use their official implementation (for GLIDEN, ELITE, and BLIP-

Diffusion, IP-Adapter) or the diffusers implementations [38] (for

Textual Inversion, Dreambooth) to obtain the results. Note that

Dreambooth requires several images of the same object to finetune.

Figure 4 shows the images generated with different methods. We

see that the methods GLIGEN, ELITE, BLIP-Diffusion, IP-Adapter

and the optimization-based method Textual Inversion are far from

the identity consistent with the reference object. Dreambooth and

the proposed CustomNet achieve highly promising harmonious

customization results, while our method allows the user to control

the object viewpoint easily and obtain diverse results. In addition,

our method does not require time-consuming model fine-tuning

and textual embedding optimization.

We also evaluate the synthesized results quantitatively. All meth-

ods apply 26 different prompts to perform customizations 3 times

randomly on 50 objects, a total of above 3700 cases. Following [16],

we calculate the visual similarity with the CLIP image encoder

and DINO encoder, denoted as CLIP-I and DINO-I, respectively.
We measure the text-image similarity with CLIP directly, denoting

CLIP-T. Tab. 1 shows the quantitative results, where CustomNet

achieves better identity preservation (DINO-I and CLIP-I than
other methods. Meanwhile, CustomNet shows comparable capacity

to the state-of-the-art methods regarding textual control (CLIP-T).
We also conducted a user study and collected 2700 answers for

Identity similarity (ID), View variation (View), and Text alignment
(Text), respectively. As shown in the right part of Tab. 1, most

participants prefer CustomNet in all three aspects (76.11%, 56.67%,

64.67%). For the test-time-consuming comparison, CustomNet and

other encoder-based methods are faster than optimization-based

methods in general.

Comparison to Inpainting-basedMethods Existing inpainting-
based methods (SD-Inpainting model, Paint-by-Example [42], GLI-

GEN [18]) can also place a reference object in the desired back-

ground in an inpainting pipeline. Given an object, the background

can be inpainted with textual descriptions in the SD-Inpainting

model, while this kind of method easily suffers from unreal and

disharmonious results and cannot cast variations to the reference

object. Our CustomNet can obtain more harmonious customization

with diverse viewpoint control. Another line of methods Paint-by-

Example and GLIGEN can inpaint the reference object to a given

background image. From Fig. 5, we see that they cannot maintain

the identity and differ significantly from the reference object.

Comparison to Zero-1-to-3 We show our improvements of

Zero-1-to-3 and its limitations in Fig. 6. In the 1st, and 2nd row, we

compare with Zero-1-to-3 the ability to control the object location

generation. As Zero-1-to-3 can only control polar angle 𝜃 , azimuth
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Figure 4: Qualitative comparison. Our CustomNet demonstrates superior capacities in terms of identity preservation, viewpoint
control, and harmony of the customized image.

Table 1: Quantitative Comparison. We compute DINO-I, CLIP-I, CLIP-T following [16]. We also conducted a user study to
measure subjective metrics: ID, View, Text representing identity preservation, viewpoints variation, and text alignment,
respectively. The last column compares the test-time consumption of different methods.

Method DINO-I ↑ CLIP-I ↑ CLIP-T ↑ ID ↑ View ↑ Text ↑ Time (s) ↓
DreamBooth [30] 0.6333 0.8019 0.2276 0.1322 0.0833 0.1367 ∼600
Textual Inversion [9] 0.5116 0.7557 0.2088 0.0111 0.0911 0.0433 ∼1500
BLIP-Diffusion [16] 0.6079 0.7928 0.2183 0.0511 0.0833 0.0444 ∼8
ELITE [40] 0.5101 0.7675 0.2310 0.0078 0.0656 0.1033 ∼5
GLIGEN [18] 0.5587 0.8152 0.1974 0.0233 0.0678 0.0156 ∼23
IP-Adapter [43] 0.5801 0.8072 0.1919 0.0133 0.0422 0.0100 ∼11
CustomNet (Ours) 0.7742 0.8164 0.2258 0.7611 0.5667 0.6467 ∼8

angle 𝜙 , and radius 𝑟 (the camera distance to the object) of the

central object, users can not control the object location in their

settings directly, so we apply our location control method on Zero-

1-to-3. We resize the object and move it to the location in different

bounding boxes (top left and top right in 1st row, bottom left and

bottom right in 2nd row.). We can see that Zero-1-to-3 generates

distortion in the generated images. This is because Zero-1-to-3 is

only trained on the object-centered image, it can not really control

the object location.

In the 3rd, and 4th row, We compare with Zero-1-to-3 the ability

of novel-view synthesis. We can see from the figure that Zero-1-

to-3 fails to generate reasonable geometry for the dog and cartoon

6
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Figure 5: Comparison to existing textual background inpaint-
ing method SD-Inpainting model and foreground object in-
painting model Paint-by-Example and GLIGEN. Our Cus-
tomNet can achieve a more harmonious output with diverse
viewpoint changes while preserving identity.

Zero-1-to-3Object Image CustomNet

Figure 6: The comparison of CustomNet and Zero-1-to-3. In
the 1st and 2nd rows, CustomNet can control the object loca-
tion well. In the 3rd and 4th rows, CustomNet synthesizes a
better novel view with the help of real-world dataset. Besides,
CustomNet generates harmonious images with the control
of different text prompts.

character. Our CustomNet, training with our real-world constructed

datasets, has a better comprehension of the object geometry. We

can generate a normal dog and a reasonable cartoon character in

multi-views.

Moreover, CustomNet supports diverse text prompt condition

generation that Zero-1-to-3 can not, which is more practical for

customization. In all rows, our CustomNet generates harmonious

customized images with the control of different text prompts.

4.3 Ablation Studies and Analysis
We conduct detailed ablation studies to demonstrate the effective-

ness of each design in CustomNet and the necessity of explicit

viewpoints control for identity preservation in harmonious cus-

tomization.

Object Image w/o R w/ R（Full)

Z
ero

-1
-to

-3
C

u
sto

m
N

et

Figure 7: Explicit viewpoints control. Without the explicit
viewpoint parameters 𝑅, Zero-1-to-3 tends to generate images
that cannot change the viewpoint or have undesired artifacts;
CustomNet easily obtains copy-pasting effects without 𝑅,
even though it is trained on the multi-view dataset.

Explicit viewpoint control is the key for customization that
enables simultaneous viewpoint alteration and object iden-
tity preservation. We conduct a comparison in terms of with and

without explicit viewpoint control parameters 𝑅 on the original

Zero-1-to-3 model. As shown in the left part of Fig. 7, models trained

without viewpoint conditions tend to generate images that cannot

change the viewpoint or have undesired artifacts. This is the same

on CustomNet. Specifically, as shown in the right part of Fig. 7,

without the explicit camera pose control, our model can only ob-

tain copying-and-pasting effects, even though it is trained with the

multi-view dataset. Note that in this setting, we also concatenate

the object image into the UNet input, otherwise, it cannot preserve

adequate identity. This phenomenon may indicate that even with

multi-view data to train, an explicit additional view control is still

necessary, which allows the model to better distinguish between

the distribution of images with different views, rather than learning

a mixed or average of different views.

Pretraining with massive multi-view data is important to
preserve identity in CustomNet. We adopt Zero-1-to-3 as the

initialization, i.e., our CustomNet is pre-trained with massive multi-

view Objarverse data, so that view-consistency information has

been already encoded into the model. When we train Custom-

Net from the SD checkpoint (see the 2nd column in Fig. 8), the

synthesized images cannot maintain view consistency from other

viewpoints and suffer from quality degradation.

Input concatenation helps better maintain texture details.
Previous methods [22, 40] also try to integrate local features to

maintain texture details in synthesized images. In our method, con-

catenating the reference object to the UNet input can also preserve

textures. Without the concatenation (see the 3rd column in Fig. 8),

the color, shape, and texture of the generated images differ signifi-

cantly from the reference object image. We also note that the model
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presents harmonious results with diverse controls. All images in each row are generated with the same viewpoints and text.

would generate copying-and-pasting images without any view vari-

ations when we do not adopt explicit viewpoint control (see Fig. 7).

This is to say, the combination of input concatenation and explicit

view conditions enables precise and harmonious customization.

Our data construction pipeline enables more harmonious
outputs.We adopted a new data construction pipeline for utilizing

the OpenImages dataset in Sec. 3.5. Without this design, the model

trained with only the data constructed by the naive combination

between multi-view object images in Objaverse and background

images can result in unrealistic and unnatural customized results,

usually leading to artifacts that object is ‘floating’ on the back-

ground (see the 4th column in Fig. 7).

Dual cross-attention enables disentangled object and text
controls.We introduce dual attention for the disentangled object-

level control and text control. When directly concatenating the

text embedding and fused object embedding as the condition to be

injected into the attention layers of UNet, the model tends to learn a

coupled control with viewpoint parameters and textual description.

As a result, the viewpoint control capacity would degrade signifi-

cantly and the model cannot generate the desired background (see

5th column in Fig. 8).

Classifier-free guidance weights effects. CustomNet is con-

trolled by both image-related and text conditions for generation us-

ing classifier-free guidance. In Tab. 2, we compare different classifier-

free guidance weights effects and empirically choose 𝑆𝐼 = 3, 𝑆𝑇 =

7.5 for comparison experiments.

5 CONCLUSION
We present CustomNet, a novel unified encoder-based diffusion

object customization approach that explicitly incorporates 3D novel

Table 2: Classifier-free guidance weights effects. We compute
DINO-I, CLIP-I CLIP-T following [16]to compare different
classifier-free guidance weights effects.

Method DINO-I ↑ CLIP-I ↑ CLIP-T ↑
𝑆𝐼 = 1.5, 𝑆𝑇 = 5 0.7293 0.7643 0.2144

𝑆𝐼 = 1.5, 𝑆𝑇 = 7.5 0.7224 0.7604 0.2230

𝑆𝐼 = 3, 𝑆𝑇 = 5 0.7716 0.8185 0.2119

𝑆𝐼 = 3, 𝑆𝑇 = 7.5 0.7742 0.8164 0.2258

view synthesis for enhanced identity preservation and viewpoint

control. We develop a dataset construction pipeline to handle real-

world objects and complex backgrounds effectively. Moreover, we

introduce extra necessary designs for location control and flexi-

ble background control through textual descriptions or provided

background images, which improve the novel view synthesis model

(e.g.Zero-1-to-3), and show potential for bridging the gap between

3D novel-view synthesis and text-to-image object customization.

Our experiments show that CustomNet enables identity preserv-

ing and diverse object customization while controlling location,

viewpoints, and background simultaneously.

6 LIMITATION AND FUTUREWORKS
CustomNet may be limited to some complex prompts and rarely

seen objects and scenery, and existing diffusion models trained with

web-scale datasets would also encounter these problems. Current

research shows that fine-tuning the model with specific small but

high-quality datasets may make the generation better. We will

explore it in future work.
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