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ABSTRACT

Node representation learning, such as Graph Neural Networks (GNNs), has
emerged as a pivotal method in machine learning. The demand for reliable expla-
nation generation surges, yet unsupervised models remain underexplored in this re-
gard. To bridge this gap, we introduce a method for generating counterfactual (CF)
explanations in unsupervised node representation learning. We identify the most
important subgraphs that cause a significant change in the k-nearest neighbors of a
node of interest in the learned embedding space upon perturbation. The k-nearest
neighbor-based CF explanation method provides simple, yet pivotal, information
for understanding unsupervised downstream tasks, such as top-k link prediction and
clustering. Consequently, we introduce UNR-Explainer for generating expressive
CF explanations for Unsupervised Node Representation learning methods based on
a Monte Carlo Tree Search (MCTS). The proposed method demonstrates superior
performance on diverse datasets for unsupervised GraphSAGE and DGI. Our codes
are available at https://github.com/hjkng/unrexplainer.

1 INTRODUCTION

Unsupervised node representation learning encodes networks into low-dimensional vector spaces
without relying on labels. Prior studies (Grover & Leskovec, 2016; Kipf & Welling, 2017; Xu et al.,
2019; Veličković et al., 2018; Xu et al., 2021) have demonstrated state-of-the-art performance across
diverse tasks. Notably, the top k-nearest nodes significantly impact downstream tasks such as link
prediction, clustering (Wang et al., 2023), outlier detection (Goodge et al., 2022), and recommen-
dation (Boytsov et al., 2016). The growing prevalence of these models in real-world applications
has led to an increased demand for understanding their outputs. Particularly, understanding why a
node occupies a specific position is pivotal, shedding light on both learned embeddings and related
tasks. Top-k link prediction, for instance, predicts potential future links by considering the top-k
nearest unobserved nodes to the target node in the embedding space. Local clustering in Wang et al.
(2023) efficiently approximates global clusters by categorizing top-k nearest nodes into homogeneous
clusters.

Despite the importance of the top-k nearest nodes in unsupervised representation learning, recent
studies on explainability have largely overlooked them. While existing research (Yuan et al.,
2020; Ying et al., 2019; Luo et al., 2020; Zhang et al., 2023) has mainly focused on explaining
graph representation learning, relying on class labels, this method often falls short in unsupervised
settings. Among the few studies that attempt to explain embedding vectors, Liu et al. (2018)
utilize a hierarchical clustering model to represent learned embeddings in a taxonomy, providing a
comprehensive view of the structure but limited in explaining individual nodes. TAGE (Xie et al.,
2022) provides explanations for each instance by identifying subgraphs with high mutual information
with the learned embeddings. However, TAGE is limited in its capacity for counterfactual reasoning
as it doesn’t optimize for counterfactual properties.
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Figure 1: Scenarios for counterfactual (CF) reason-
ing in downstream tasks. Best viewed in color.

Counterfactual (CF) reasoning methods (Lu-
cic et al., 2022; Lin et al., 2021; Bajaj et al.,
2021; Tan et al., 2022; Ma et al., 2022) offer
human-interpretable explanations by addressing
the question "If certain edges had not occurred,
would the prediction label Y have remained un-
changed?" Despite active research on CF reason-
ing in supervised settings for graph domains, its
application in unsupervised settings remains un-
derexplored. To explain a node of interest in the
embedding space, we employ CF reasoning in
unsupervised settings by minimally perturbing

edges crucial for the current top-k nearest nodes, yielding disparate results. Figure 1-(a) illustrates
general CF reasoning in supervised settings, identifying edges causing label changes. However,
this method is inapplicable in unsupervised settings due to the absence of class labels and decision
boundaries. By utilizing top-k nearest nodes, we can explain learned embedding vectors and related
tasks in unsupervised settings. For instance, Figure 1-(b) depicts CF-reasoning in a clustering task,
where perturbing pertinent edges change the node’s local neighborhood in the embedding space,
potentially changing cluster assignments. Similarly, Figure 1-(c) illustrates CF-reasoning in a top-k
(here, k = 3) link prediction task, where identifying edges that significantly affect top-k neighbors
may yield different results in embedding-based link prediction tasks.

To provide the CF reasoning in unsupervised learning, we introduce UNR-Explainer for unsupervised
node representations (Hamilton et al., 2017; Veličković et al., 2018). Firstly, we define the CF
explanation for unsupervised models by measuring the change of the top-k nearest neighboring nodes
after perturbation, formulating it as Importance. To identify the explanatory subgraph, we employ
Monte Carlo Tree Search (MCTS) (Świechowski et al., 2022) tailored for our problem, inspired by
Random Walk with Restart (Pan et al., 2004). Our novel subgraph traversal approach offers several
advantages: 1) The subgraph by UNR-Explainer is sparse yet efficient as CF explanations. 2) UNR-
Explainer finds more expressive subgraphs than existing MCTS methods by alleviating search bias,
as elucidated in Theorem 1. UNR-Explainer provides meaningful CF explanations for unsupervised
settings as demonstrated by extensive experiments. Given the significance of top-k nearest nodes in
downstream tasks, our method facilitates the exploration of significant factors affecting embedding
vectors, thereby expanding the applicability of CF reasoning in unsupervised learning.

2 RELATED WORKS

XAI for unsupervised models. While active studies have been conducted on explaining supervised
models, the interest in XAI for unsupervised models (Montavon et al., 2022; Crabbé & van der
Schaar, 2022) has just ignited. In Montavon et al. (2022), neuralization-propagation (NEON) is
proposed to explain k-means clustering and kernel density estimation using layer-wise relevance
propagation. On the other hand, the authors in Crabbé & van der Schaar (2022) propose a method to
explain the representation vectors without labels, providing a label-free importance score function
to highlight the important features and examples. However, both approaches are limited to apply to
graph-structure data without consideration of the relationship between instances.

XAI for unsupervised node representation. Recent studies (Liu et al., 2018; Xie et al., 2022;
Park & Neville, 2023) have explored explainability for unsupervised node representation learning
models on graphs. Liu et al. (2018) propose a method to explain the learned network embedding by
describing the inherent hierarchical structures through a taxonomy using the hierarchical clustering
model. This approach converts the representation vector into a taxonomy for a comprehensive view
but is limited to explaining the prediction of a node of interest. On the other side, TAGE (Xie
et al., 2022) explains individual nodes in the form of a subgraph sharing high mutual information
with the embedding vector. Consequently, the explanation from the TAGE could expand to various
downstream tasks predicting node or graph labels by simply updating the gradient of the class label in
the downstream model. However, TAGE has a limitation in providing counterfactual explanations by
minimal perturbation to change the class label. GRAPH-wGD (Park & Neville, 2023) is also relevant
to our proposed method, while it aims to generate global explanations for learned models.

2



Published as a conference paper at ICLR 2024

Counterfactual explanations. Most counterfactual reasonings for graphs explain predictions in
supervised learning. Studies such as CF-GNNExplainer (Lucic et al., 2022), RCExplainer (Bajaj et al.,
2021), and CF2 (Tan et al., 2022) remove the important edges to emphasize the significant impact of
edges in input on the prediction of class labels. CLEAR (Ma et al., 2022), and GCFExplainer (Huang
et al., 2023) encourage the counterfactual result toward desired labels by adding new nodes or
edges and removing the existing ones simultaneously. The mentioned methods are limited to
applying unsupervised models, for instance, CF-GNNExplainer (Lucic et al., 2022) as a pioneer of
counterfactual explanation for the graph domain employs its counterfactual loss which is limited to
applying unsupervised models. RCExplainer (Bajaj et al., 2021) leverages the decision boundaries to
tackle the robustness of counterfactual explanations, but the decision region heavily relies on class
labels. In the same manner, other explainability methods make it difficult to exclude the information
from the class labels. Contrasting with existing XAI methods in supervised learning, UNR-Explainer
is designed to generate counterfactual explanations in unsupervised learning contexts without relying
on labels.

3 PROBLEM FORMULATION

3.1 NODE REPRESENTATION LEARNING

Notation An input graph G = {V,E ,W} has a set of vertices V = {v0, ..., vN} with the node
feature matrices X ∈ RN×d and a set of edges E = {(vi, vj)∣vi, vj ∈ V} with a edge’s weight setW =
{w(vi,vj)

∣w(vi,vj) ∈ [0,1], (vi, vj) ∈ E}. When the node v has edges as Ev = {(vv, vu)∣(vi, vj) ∈ E},
the neighboring nodes of the node v is expressed as u ∈ Nv .

Node representation learning such as GraphSAGE (Hamilton et al., 2017) aims to extract rep-
resentation vectors of nodes by aggregating its attributes and information that is sampled from
the local neighborhood. A trained unsupervised node representation model for an input graph
G are represented as funsup(G) = emb. For a node v ∈ V , the representation vector is given by
funsup(G, v) = embv. It is calculated by stacking the embedding vector hv for a node v following as
hv = σ(Mselfxv +Magg

1
∣Nv ∣
∑u∈Nv

xu) where Mself and Magg are learnable parameter matrices.
In unsupervised settings, it optimizes that nearby nodes are close and distant nodes are far apart in the
embedding space by defining k-hop neighbors as positive samples and other nodes as negative ones.

3.2 COUNTERFACTUAL EXPLANATION FOR UNSUPERVISED NODE REPRESENTATION
LEARNING

Given funsup(G, v) = embv, a counterfactual reasoning aims to identify an explanation Gs =
{Vs,Es,Ws} ⊂ G such that removing or weakening edges in Es from G to form G′ = {V,E − Es,W −
Ws} results in embv /= emb′v as funsup(G′, v) = emb′v while minimizing the difference between
G and G′. The counterfactual explanation Gs for an unsupervised node representation learning
is inherently difficult to define the counterfactual property as embv /= emb′v being subject to
funsup(G, v) = embv and funsup(G

′, v) = emb′v. It is problematic because any edge is possible to
be the trivial counterfactual explanation after perturbation causing embv /= emb′v. Thus, defining
the meaningful difference between two embedding vectors is necessary to provide a relevant counter-
factual explanation for the target node v of interest. Since top-k nearest neighboring nodes are critical
to downstream tasks, we exploit top-k nearest neighboring nodes to define the counterfactual explana-
tion for the unsupervised model. This approach is well aligned with models such as GraphSage and
node2vec (Grover & Leskovec, 2016; Hamilton et al., 2017) since their objective function optimizes
the embedding vector in which similar nodes are located relatively close while dissimilar ones are far
away. Thus, the top-k nearest neighboring nodes share similar features for related downstream tasks.
Therefore, we utilize the top-k nearest neighboring nodes to define the counterfactual property for
unsupervised representation learning models as follows:

Definition 1 Given funsup(G, v) = embv and funsup(G
′, v) = emb′v, a hyper-parameter k, and a

function kNN(emb, v, k), a counterfactual property for the node v as embv /= emb′v is satisfied
when kNN(emb, v, k) /= kNN(emb′, v, k).
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3.3 MEASURING Importance FOR COUNTERFACTUAL EXPLANATIONS

Upon the Definition 1, we define a measure to quantify the Importance of the subgraph Gs as
counterfactual explanation below:

Importance(funsup(⋅),G,Gs, v, k) = ∣set(kNN(funsup(G), v, k)) − set(kNN(funsup(G − Gs), v, k))∣/k, (1)

where kNN is found based on the Euclidean distance. Using Importance, we define a counterfactual
explanation Gs for the embedding vector in unsupervised node representation learning as below:

Definition 2 Given funsup(G, v) = embv, a counterfactual reasoning aims to identify a subgraph
Gs = {Vs,Es,Ws} ⊂ G such that removing or weakening edges in Es from G to form G′ = {V,E −
Es,W −Ws} maximizes the Importance while minimizing the difference between G and G′.

If the subgraph Gs is critical to the target node’s node embedding, the effect of the perturbation must
be significant based on the counterfactual assumption. Hence, the subgraph Gs is employed as the
explanation for the target node’s node embedding. If the Importance is 0, we observe no effect on
the top-k neighboring nodes in the updated embedding space. Meanwhile, when the Importance is
1, all surrounding neighbors are changed, fully satisfying the counterfactual property. We note that
we leverage an LSH hashing (Shrivastava & Li, 2014) to obtain the nearest neighbors efficiently. To
obtain the perturbed G′, we employ the perturbation method which weakens the weight of the input
graph edges equivalent to the edges of the subgraph. An overview of Importance function is provided
in Algorithm 2 in Appendix B. Additionally, we theoretically analyze the upper bound of Importance
upon GraphSAGE in Theorem 2 in Appendix C.2.

4 OUR PROPOSED METHOD

Our goal is to find an explanation subgraph Gs as a counterfactual explanation with the highest
Importance score to change the top-k neighbors in embedding space while maintaining the minimum
edge size ∣Gs∣. It is defined as

argmin
∣Gs∣

max
Gs

Importance(funsup(⋅),G,Gs, v, k). (2)

Due to the exponential number of existing subgraphs, an efficient traversal method is required.
Thus, we leverage the Monte Carlo Tree Search (MCTS) (Sutton & Barto, 2018) which is one of
reinforcement learning and well-known to outperform in large search spaces (Silver et al., 2017).
MCTS utilizes a search tree in which a series of actions is selected from a root to a leaf node resulting
in the maximum reward according to the pre-defined reward function. We tailor the MCTS to suit
our problem setting by applying the Importance as the reward to obtain the explanation subgraph
Gs. This method brings the advantages of not only searching subgraphs efficiently thanks to the
reinforcement algorithm but also searching the subgraph sparse yet expressive.

4.1 SUBGRAPH TRAVERSAL METHOD

We initialize a search tree in which each node Ni has properties as {S(Ni),A(Ni)} where S(Ni)

denotes a state and A(Ni) represents a set of actions. The node Ni in the tree corresponds to the
node v ∈ V in the input graph G, and S(Ni) indicates an index of the node v. The edges in the tree
mean actions a ∈ A(Ni). The action is to select one node in the search tree equivalently meaning
that we add a new edge or node gradually in the candidate subgraph. To start in the initial search
tree, we set a root node N0, S(N0) = v as the index of the node v to explore subgraphs around
the target node v. At each iteration t, the algorithm travels from the root node N0 to a leaf node
Ni, resulting in the trajectory τt = {(N0, a1), ..., (Ni, aj)}. Then, we can transform the path τt to
a subgraph Gs = {Vs,Es,Ws}, Vs = {S(N0), ..., S(Ni)}, Es = {(S(Ni), S(Nk))∣S(Ni), S(Nk) ∈

Vs, aj = Ni, aj+1 = Nk, a0 = N0} defined as a function Convert(τ) = Gτ . Consequently, searching
the subgraph Gs by searching the path via the MCTS algorithm is possible. A pair (Ni, aj) of
node Ni and action aj stores statistics {C(Ni, a),Q(Ni, a), L(Ni, a)} which are described as
following: 1) C(Ni, a) is the number of visits for selecting the action a ∈ A(Ni) at the node
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Algorithm 1 UNR-Explainer with restart
1: Input: trained model funsup(⋅), input graph G, kNN parameter k, target node v, exploration

term λ, a probability p ∼ Uniform(0,1) and restart probability prestart
2: Initialization: Initialize Gl = {}, step t = 0, and set a root node N0, S(N0) = v
3: while termination condition do
4: curNode← N0; a trajectory τ = {}; t + = 1; Expand the child nodes of curNode
5: Select a ∈ A(curNode) by UCB(curNode, a) in Eq.(3)
6: while curNode is not leaf node do
7: if p ≤ prestart then
8: curNode← N0; Append a pair (N0, a) into the trajectory τ
9: Obtain a∗ using Eq.(3) and select randomly action a ∈ A(N0) ∖ a

∗

10: curNode← Ni by action a
11: end if
12: Select a ∈ A(curNode) by UCB(curNode, a) in Eq.(3)
13: Append a pair (curNode, a) into the trajectory τ
14: curNode← Ni by action a
15: end while
16: if the leaf node has no child then
17: Expand the child nodes of curNode
18: Select a ∈ A(curNode) by UCB(curNode, a) in Eq.(3)
19: Append a pair (curNode, a) into the trajectory τ
20: end if
21: Calculate the reward by R(τ)
22: Backpropagate the reward and visit counts to (Ni, a) ∈ τ
23: Gτ ← Convert(τ); Append Gτ into the list Gl
24: end while
25: Return Gs from Gl using Eq.(2)

Ni. 2) Q(Ni, a) is an action value that is calculated as the maximum value in a set of rewards
L(Ni, a) aiming to obtain the highest important subgraph. 3) L(Ni, a) is a list of obtained rewards
from reward function R(τ) in every iteration when (Ni, a) ∈ τ . 4) R(τ) is the reward function to
calculate Importance as R(τ) = Importance(funsup(⋅),G,Gτ , k, v). We obtain the subgraph Gs from
Convert(τ) = Gτ . Utilizing the statistics, the algorithm searches the path with the highest Importance
based on the upper confidence boundary (UCB) in (Świechowski et al., 2022) as UCB(Ni, a) =

Q(Ni, a) + λ P

√
ln(C(N0,a))

C(Ni,a)
:

a∗ = argmax
a

UCB(Ni, a), a ∈ A(Ni) (3)

While the term Q(Ni, a) promotes choosing the action with a higher reward, the latter term relating
to C(Ni, a) encourages exploration by choosing the less visited action. A hyperparameter λ controls
the magnitude of exploration to balance exploitation and exploration. Additionally, the term P
intends to provide useful information for the guidance of exploration. In the case of the term P = 1
as constant, UCB does not utilize the additional guidance. Further, we discuss the benefit of our
setting compared to other employments of MCTS and prove the efficiency of our exploration method
through the ablation study in Table 4.

4.2 THE PROPOSED UNR-EXPLAINER

The vanilla MCTS algorithm in our setting has an issue of low expressiveness in the selection step
in the aspect of the UCB formula theoretically. Because the existing UCB-based search policy
tends to generate the subgraph in a depth-first manner rather than in a breadth-first manner, the
previously appeared node is seldom selected by the UCB-based formula, leading not to explore
close hop neighboring nodes even its importance. Based on an empirical assumption demonstrated
experimentally in studies (Bajaj et al., 2021; Yuan et al., 2021), we present a theoretical analysis of
the expressiveness limitation inherent in the vanilla MCTS algorithm as follows.
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Theorem 1 Let be an action aj at an arbitrary node Ni in a trajectory τt = {(N0, a1), ..., (Ni, aj)},
resulting in a next node Nk. Suppose a1, a2 ∈ A(Nk) where the action a1 leads to a node Nm with a
state function S(Nm) ≠ S(Ni), and the action a2 leads to a node Nn with S(Nn) = S(Ni). Then,
we have

UCB(Nk, a1) ≥ UCB(Nk, a2) (4)

We provide a proof and detailed analysis of Theorem 1 in Appendix C.1. To ensure that the resulting
subgraphs of the traversal are more expressive and accurate, we introduce a new selection policy in
the following section. The overview of the algorithm is described in Algorithm 1.

Selection with a new policy. At every iteration, a restart probability prestart ∈ [0,1], p ∼
Uniform(0,1) is sampled. When p < prestart, it returns to the root node and randomly explores
another path a ∈ A(N0) ∖ a

∗ excluding the optimal one from the root. Thus, it promotes more
connections centered around the target node. Implementing the restart probability as a new selection
policy has several advantages: 1) It reduces the bias towards deep-first traversal, increasing the
likelihood of generating diverse candidate subgraphs. 2) It helps to prevent getting stuck on an
isolated island or infinite iteration. When p ≥ prestart, the algorithms select the child nodes with the
higher UCB score in Eq. (3). The selection continues until it reaches the leaf node. It is described in
line from 5 to 15 of Algorithm 1.

Expansion. When arriving at the leaf node, the tree expands if the number of visits to the leaf node
is more than one. The tree adds the child nodes from the neighboring nodes of the current node’s
state in the input graph G. However, considering all neighbor nodes as child nodes causes exponential
search space. Therefore, we randomly select nodes from the neighbors of the leaf nodes in the input
graph G to compute them more efficiently, setting the expansion number E to be equal to the average
degree of the input graph G. It is described in line from 16 to 20 of Algorithm 1.

Simulation. We transform the obtained trajectory τ to the subgraph Gτ . As The generated subgraph
Gτ is a candidate of the important subgraph stored in a list Gl, we measure the Importance of the
subgraph Gτ for the reward. It is described in line 21 of Algorithm 1.

Backpropagation. Finally, we update the reward and the number of visits to the statistics of related
nodes in the trajectory. The number of visits C(Ni, a) is renewed for C(Ni, a) + 1. Then, we
append the obtained reward to a list of rewards L(Ni, a). Consequently, the action value Q(Ni, a))
is updated by max(L(Ni, a)). These updated statistics are exploited for the next selection to explore
the subgraph with higher Importance. It is described in line 22 of Algorithm 1.

Termination condition. Our subgraphs have two main properties as the counterfactual explanation.
First, the importance is close to 1, affecting all the top-k neighbors after perturbation. Second, the
size of the subgraph is minimal. To achieve the goal, we explore the subgraph setting the terminal
condition as Importance == 1.0 with limited but enough steps T . When the algorithm ends after
meeting the condition, we select the subgraph with a minimum size of the subgraph among the one
with maximum Importance. As a result, we effectively search the explanatory subgraphs satisfying
the properties of counterfactual explanations.

5 EXPERIMENTS

5.1 DATASETS

The experiments are conducted on three synthetic datasets (Ying et al., 2019; Luo et al., 2020) and
three real-world datasets from PyTorch-Geometrics (Fey & Lenssen, 2019). The synthetic datasets
(BA-Shapes, Tree-Cycles, and Tree-Grid (Ying et al., 2019)) are used, containing network motifs
such as houses, cycles, and grid-structure motifs respectively. These motifs serve as the ground
truth of the datasets to evaluate the explanation method (Yuan et al., 2020). The real-world datasets
(Cora, CiteSeer, and PubMed (Grover & Leskovec, 2016)) are citation networks commonly used in
graph domain tasks. Each node indicates a paper and each edge notes a citation between papers. The
features of the nodes are represented as bag-of-words of the papers and each node is labeled as the
paper’s topic. Additionally, we exploit the NIPS dataset from Kaggle to employ the case study of our
method. The statistics of the datasets are reported in Table 7 in the Appendix.
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Table 1: Evaluation of CF explanations on synthetic datasets in unsupervised settings w.r.t. ground-
truth. Prc, Rcl, and Impt indicate Precision, Recall, and Importance. The best performances on each
dataset are shown in bold.

BA-Shapes Tree-Cycles Tree-Grids
Methods Prc ↑ Rcl ↑ Impt ↑ Size ↓ Prc ↑ Rcl ↑ Impt ↑ Size ↓ Prc ↑ Rcl ↑ Impt ↑ Size ↓
1hop-2N 0.934 0.156 0.492 1.0 0.900 0.150 0.277 1.0 0.965 0.161 0.683 1.0
1hop-3N 0.943 0.314 0.817 2.0 0.895 0.298 0.994 2.0 0.959 0.320 0.633 2.0

k-NN graph 0.025 0.012 0.392 1.8 0.017 0.006 0.148 1.5 0.013 0.004 0.337 1.1
RW-G 0.890 0.263 0.597 1.8 0.862 0.302 0.591 2.1 0.925 0.459 0.834 3.4

RW-G w/ Restart 0.881 0.268 0.683 1.9 0.840 0.300 0.641 2.1 0.917 0.496 0.922 3.6
Taxonomy induction 0.731 0.310 0.292 1.8 0.765 0.298 0.454 1.8 0.377 0.140 0.369 0.9

TAGE 0.422 0.225 0.220 2.4 0.290 0.230 0.166 1.7 0.415 0.360 0.260 2.3
UNR-Explainer 0.923 0.288 1.000 1.9 0.903 0.324 1.000 2.1 0.943 0.519 0.994 3.6

5.2 BASELINE METHODS

In unsupervised settings, we compare UNR-Explainer with seven baselines as follows: 1) 1hop-2N
is a subgraph of an ego network in which edges are randomly removed until the number of nodes
is two 2) 1hop-3N is a subgraph of an ego network in which edges are randomly removed until the
number of nodes is three. 3) k-NN graph is a subgraph whose nodes and edges are top-5 nearest
neighbors in the embedding space. 4) RW-G generates a subgraph by the random walk algorithm
by traveling neighboring nodes from the target node v. For a fair comparison, the number of nodes
and edges in the graph is mostly equal to one from our proposed method. 5) RW-G w/ Restart are
generated in the same way as RW-G but applying random walk with restart. 6) Taxonomy induction
(Liu et al., 2018) outputs the clusters as the global explanation of the embedding vector. We expect
that the subgraphs in the cluster can be utilized as a local explanation. 7) TAGE (Xie et al., 2022)
generates a subgraph with high mutual information of the learned embedding vector.

5.3 EVALUATION METRICS

We evaluate explanation subgraphs in the counterfactual aspect by the following metrics: 1) Impor-
tance of the explanation subgraph Gs is utilized to measure the impact in the embedding space. 2) Size
(Tan et al., 2022) shows how the explanation is effective with minimal perturbation on synthetic and
real-world datasets. 3) Precision / Recall (Tan et al., 2022) on average w.r.t ground truth are measured
on the synthetic datasets. 4) Validity (Verma et al., 2020) is commonly used to effectiveness related
to f(G) /= f(G′) in supervised learning. By utilizing Importance, we calculated the averaged validity
for the unsupervised model as V alidity(Gs) = 1[Importance(funsup(⋅),G,Gs, v, k) = 1.0)]. 5)
Probability of Necessity as PN (Tan et al., 2022) in top-k link prediction tasks are used to measure
how predictions as Hit@5 are changed to demonstrate the effectiveness of the explanations. 6)
Homogeneity represents the percentage that the top-k neighbors of a node of interest belong to the
same cluster of the node of interest in the node embedding space after perturbing the generated expla-
nation for each baseline. Original Homogeneity in the learned embedding space before perturbation
is expressed as the input graph in Table 3. 7) ∆ Homogeneity means the difference between the
Homogeneity of Input graph and the Homogeneity of each baseline.

5.4 RQ1: PERFORMANCE OF UNR-EXPLAINER AND OTHER BASELINE MODELS

We demonstrate the performance of UNR-Explainer showing our explanation graphs change the
top-k nearest nodes and impacts related downstream tasks in node classification, link prediction,
and clustering in unsupervised settings in Table 1, 2, and 3. From Table 1 on synthetic datasets,
we demonstrate that UNR-Explainer describes the ground truth, showing the highest Recall and
Importance among baselines on BA-Shapes and Tree-Cycles datasets. In the experiment, 1hop-3N
demonstrates the highest Precision on both the BA-Shapes and Tree-Cycles datasets, and 1hop-2N
exhibits the highest Precision on the Tree-Grids dataset. Regarding the BA-Shape dataset, there
are 80 house-structured motifs, each comprising 5 nodes as the ground truth, and only a few edges
in these motifs are connected to the base BA graph. When we generate explanations as 1hop-2N
and 1hop-3N for nodes within these house motifs, the precision tends to be high. This is due to
the increased probability that the explanation will include another node from the house-structured
motif, thereby aligning with the ground truth. Similarly, for other synthetic datasets constructed
in the same manner, 1hop-2N and 1hop-3N exhibit high precision but low recall. k-NN graph in
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Table 2: Evaluation of CF explanations on real-world datasets in unsupervised settings. Vld, Impt,
and PN indicate Validity, Importance, and Probability of Necessity. The best performances on each
dataset are shown in bold.

Cora CiteSeer PubMed
Methods Vld ↑ Impt ↑ PN ↑ Size ↓ Vld ↑ Impt ↑ PN ↑ Size ↓ Vld ↑ Impt ↑ PN ↑ Size ↓
1hop-2N 0.210 0.465 0.006 1.0 0.340 0.551 0.020 1.0 0.485 0.623 0.000 1.0
1hop-3N 0.428 0.659 0.021 2.0 0.503 0.714 0.035 1.6 0.639 0.724 0.000 1.5

k-NN graph 0.253 0.593 0.019 3.3 0.243 0.609 0.028 3.3 0.022 0.090 0.000 1.0
RW-G 0.265 0.544 0.019 3.6 0.393 0.643 0.024 2.7 0.478 0.631 0.027 2.0

RW-G w/ Restart 0.327 0.614 0.019 3.8 0.453 0.696 0.029 2.8 0.514 0.662 0.029 3.1
Taxonomy induction 0.243 0.548 0.023 9.7 0.236 0.528 0.037 4.9 0.035 0.061 0.000 1.8

TAGE 0.232 0.482 0.016 5.4 0.254 0.487 0.031 3.7 0.082 0.268 0.012 11.8
UNR-Explainer 0.911 0.960 0.051 3.8 0.778 0.910 0.054 2.8 0.847 0.903 0.034 3.7

Table 3: Evaluation of CF explanations upon clustering tasks on real-world datasets. Hmg and ∆
Hmg indicate Homogeneity and the change of Homogeneity.

Cora CiteSeer PubMed
Methods Hmg ↓ ∆ Hmg ↑ Hmg ↓ ∆ Hmg ↑ Hmg ↓ ∆ Hmg ↑

Input graph 0.866 - 0.863 - 0.697 -
1hop-2N 0.695 0.171 0.564 0.298 0.372 0.325
1hop-3N 0.520 0.347 0.401 0.462 0.299 0.398

k-NN graph 0.621 0.245 0.629 0.234 0.636 0.061
RW-G 0.646 0.220 0.487 0.376 0.364 0.333

RW-G w/ Restart 0.594 0.272 0.441 0.422 0.331 0.366
Taxonomy induction 0.598 0.268 0.595 0.268 0.579 0.118

TAGE 0.627 0.240 0.569 0.294 0.555 0.142
UNR-Explainer 0.315 0.551 0.272 0.591 0.243 0.454

the embedding space is limited to constructing the subgraph valid in the input graph since graph
neural networks encounter challenges preserving graph topology. RW-G w/ Restart demonstrates our
proposed selection policy, showing higher recall than RW-G with a slightly larger size. Explanations
from Taxonomy induction based on global clusters are not as sufficient as local CF explanations. On
the Tree-Grid dataset, UNR-Explainer does not reach the ground truth due to the minimal constraint
of the size. In the case of TAGE, it reaches the highest recall on Tree-Grids datasets but the largest
size and the lowest Importance without satisfying counterfactual measurements.

Table 2 shows the results on real-world datasets, where UNR-Explainer records the best score in
all metrics except size. Explanations by UNR-Explainer impact most of the top-k neighbors after
perturbation, showing the highest V alidity and Importance with a smaller size of subgraphs than
Taxonomy induction and TAGE. When we apply the embedding vector into top-5 link prediction tasks,
originally the accuracy of the prediction is 0.570,0.575, and 0.55 respectively on Cora, CiteSeer, and
Pubmed datasets. After the perturbation of each explanation, the predictions w.r.t PN change the
most in the case of UNR-Explainer due to the significant difference of top-k neighbors. None of
Taxonomy induction and TAGE optimize the counterfactual term, resulting in lower PN . On PubMed
datasets, we sample 10% of nodes and evaluate the change of probability in node classification.

In Table 3, we demonstrate that explanatory graphs affect clustering tasks in unsupervised set-
tings. When k is equal to 20, the majority of the top-k neighbors in the embedding space typi-
cally belong to the same cluster of a node of interest, as observed by the homogeneity values of
0.866,0.863, and 0.697 on the Cora, CiteSeer, and PubMed datasets, respectively. After perturbating
of found explanations by UNR-Explainer, the homogeneity of original top-k neighbors drops signif-
icantly at the most among baselines, which means that a node of interest is no longer a part of the
cluster but a different one as a counterfactual result. Hence, explanations by UNR-Explainer affect
top-k neighbors in the embedding but also the output of related downstream tasks.

5.5 RQ2: A CASE STUDY IN COMMUNITY DETECTION ON NIPS DATASETS

Figure 2: Case study on NIPS datasets.

Our explanatory graphs reveal the important con-
nections that impact the top-k neighboring nodes
in embedding space, particularly for here case
study on a social network. We apply our method
on a co-author network dataset of the NIPS con-
ferences (Hamner, 2017). Upon applying Graph-
SAGE in unsupervised settings, we extract signifi-

8



Published as a conference paper at ICLR 2024

cant subgraphs using UNR-Explainer, illustrating its effectiveness in impacting a k-means clustering
task. In Figure 2, a target node, highlighted as yellow node a representing Caglar Gulcehr, is initially
a part of the cluster of Yoshua Bengio, known for publications primarily related to deep learning and
general machine learning, represented by node d. In this figure, node positions in the embedding
space are determined through t-SNE learning (van der Maaten & Hinton, 2008). After perturbing the
found explanation graph, illustrated by red edges, the node aligns with the cluster of Nicolas Heess,
notable for publications primarily related to reinforcement learning, as represented by node n.

5.6 RQ3: ABLATION STUDY WITH OTHER MCTS-BASED SUBGRAPH TRAVERSAL METHODS

Table 4: Ablation study of the MCTS-based
method on Cora dataset.

Name Time(s) Impt Size
MCTS 11.30 0.942 3.43

SubgraphX-1 176.30 0.936 28.49
SubgraphX-2 146.02 0.937 25.66
MCTS-Avg 10.11 0.949 3.62
MCTS-Prx1 9.85 0.951 3.71
MCTS-Prx2 7.14 0.956 3.59
MCTS-Prx3 10.55 0.953 3.60

UNR-Explainer w/o r 8.11 0.955 3.67
UNR-Explainer 4.63 0.960 4.5

We evaluate variants of the MCTS algorithm
considering the design of the action, the expan-
sion, the UCB-based formula, and the restart as
shown in the result in Table 4. As evaluation
metrics, Importance, explanation size, and the
mean inference time (s) per node are measured.
As a result, UNR-Explainer shows the best re-
sults considering the importance and inference
time (s). In SubgraphX (Yuan et al., 2021), its
action is to prune equally meaning to remove
nodes. Since counterfactual explanations must
be minimal with high validity, SubgraphX fails
to find the subgraph particularly when it deals

with the high-degree target node showing bigger size than other baselines. We note that Prx means
proximity as the term P for better guidance in Eq 3. However, none of the Prx helps guide the
important subgraph. On the contrary, our proposed UNR-Explainer makes it possible to search the
sparse yet expressive subgraph efficiently with high importance. Detailed information including the
node’s proximity (Prx) is written in Appendix D.3.

5.7 RQ4: PARAMETER SENSITIVITY

Figure 3: The study of parameter sensitivity for
the number of the nearest neighbors as k and the
restart probability prestart.

We evaluate the robustness of our model relating to
crucial hyperparameters, such as the top-k number
of neighbors k and the restart probability prestart,
using the GraphSAGE model on the Cora dataset.
The results are shown in Figure 3. As the hyper-
parameter k increases, the importance decreases.
This is because the hyperparameter k determines
the range of the local region in the embedding
space, and a larger region containing nodes further
away from the target node is less affected. Further-
more, the importance increases until the restart
probability prestart reaches 0.2, the value used in
our model’s setting. Additionally, we observe that

the exploration term as λ does not affect the models’ performance much.

6 CONCLUSION

In this paper, we propose a counterfactual explanation method, UNR-Explainer, to explain the
unsupervised node representation vector of a single node. We define k-nearest neighbor-based
counterfactual explanation and propose a new selection policy to identify the important subgraph that
prioritizes returning back to the target node to find multiple paths in the search tree. Our experimental
results show that the important subgraphs generated by UNR-Explainer have higher local impacts in
both unsupervised and supervised downstream tasks compared to other baseline methods.
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Figure 4: Overall procedure of UNR-Explainer to explain the unsupervised node representation
embedding of node 0 (target node). Our proposed method is to search the most important subgraph
Gs as the explanation for the target node. (Best viewed in color.)

A OVERVIEW OF UNR-EXPLAINER

The overview of UNR-Explainer is provided in Figure 4. Initially, the input G and a learned model
funsup(⋅) are provided. These are used in the importance function described in Eq. (1) under
Algorithm 1 to traverse the most contributive subgraph.

B THE ALGORITHM OF Importance

We describe the process of calculating the Importance for the subgraph Gs as detailed in Algorithm 2.
First, the perturbation is to remove the edges of the subgraph Gs from the input graph G. Subsequently,
we construct the perturbed graph Gperturbed and obtain the k-nearest neighbors (kNN ) for the target
node v. Finally, the Importance of Gs is evaluated as the difference between the top-k nearest
neighbors in G and Gperturbed.

Algorithm 2 Importance(funsup(⋅),G,Gs, v, k)

1: Input: embedding model funsup(⋅), input graph G = (V,E ,W), subgraph Gs = (Vs,Es,Ws),
target node v, the number of top-k neighbors in kNN as k

2: Gperturbed ← (V,E − Es,W)
3: emb← funsup(G)
4: emb′ ← funsup(Gperturbed)
5: O ← kNN(emb, v, k) # get the top-k neighbors of v in emb
6: N ← kNN(emb′, v, k) # get the top-k neighbors of v in emb′

7: Return ∣(set(O) − set(N)∣/k # Importance

C THEORETICAL ANALYSIS

C.1 EXPRESSIVENESS OF MCTS-BASED SUBGRAPH TRAVERSAL

We present a theoretical analysis of the expressiveness limitation inherent in the vanilla MCTS
algorithm, specifically its restriction to searching for the optimal explanatory subgraph. We analyze
the low expressiveness in the selection step in the aspect of the UCB formula theoretically. In the
vanilla MCTS, generating the subgraph in a breadth-first manner requires a previously appeared
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node as a newly expanded child node in the tree to return back to the root node. Yet, the previously
appeared node is seldom selected by the UCB-based formula, as the action doesn’t yield any gain due
to no difference in Es. Before presenting this analysis, we introduce an empirical assumption that
has been demonstrated experimentally in studies (Bajaj et al., 2021; Yuan et al., 2021), as follows:

Assumption 1 The graph that is perturbed by more edges of v ∈ V results in changes to more
components of kNN(emb, v, k) in the embedding space.

Based on Assumption 1, we theoretically analyze the expressiveness of the vanilla MCTS subgraph
traversal procedure in Theorem 1 and present proof as follows.

Theorem 1 Let be an action aj at an arbitrary node Ni in a trajectory τt = {(N0, a1), ..., (Ni, aj)},
resulting in a next node Nk. Suppose a1, a2 ∈ A(Nk) where the action a1 leads to a node Nm with a
state function S(Nm) ≠ S(Ni), and the action a2 leads to a node Nn with S(Nn) = S(Ni). Then,
we have

UCB(Nk, a1) ≥ UCB(Nk, a2) (5)

Proof. When the algorithm selects an action (Nk, a1) or (Nk, a2) using Equation (3) at the node
Nk, we assume that the number of visit counts is identical as C(Nk, a1) = C(Nk, a2). Then only
term Q(Nk, a∀) matters in Equation (3). To calculate the Imporance as the reward, the trajectory
τt is converted into the subgraph Gτt = {Vτt ,Eτt} using the function Convert(τt). Since the action
(Nk, a1) adds a new edge in the trajectory τt+1, the size of edges in a subgraph G1 is equal to ∣Es∣+ 1.
On the contrary, the action (Nk, a2) does not add any edge such that the size of edges in a subgraph
G2 is equal to ∣Es∣. Accordingly, the size of edges is different as ∣E(G1)∣ > ∣E(G2)∣. Using the
Assumption 1, their Importance values have the following relationship:

Importance(funsup(⋅),G,G1, v, k) ≥ Importance(funsup(⋅),G,G2, k, v) (6)

Therefore, Q(Nk, a1) ≥ Q(Nk, a2) is obtained. Finally, we can see that UCB(Nk, a1) ≥
UCB(Nk, a2) because of C(Nk, a1) = C(Nk, a2). ∎

As demonstrated in Theorem 1, we have ascertained that the importance of a subgraph increases
with the number of edges it contains. With the vanilla MCTS, generated subgraphs exhibit lower
expressiveness, showing less preference for generating in a breadth-first manner, which requires
selecting previously visited nodes, rather than a depth-first manner. Additionally, the vanilla method
also carries the risk of being stuck in an isolated region with infinite iterations.

C.2 UPPER BOUND OF Importance FUNCTION

We theoretically analyze the Importance function by deriving the upper bound.

Theorem 2 Assuming that funsup(⋅) is a trained unsupervised GraphSAGE model with one layer,
using a mean aggregator, let G be an input graph, and Gs be a candidate explanatory subgraph for a
target node v ∈ V where V is a list of nodes in G. When we consider the top-k neighbors for node v,
the Importance of the subgraph Gs can be bounded as follows:

Importance(funsup(⋅),G,Gs, v, k) ≤
1

∣Vtop-k∣
∑

u∈Vtop-k

CLp∣∣Magg∣∣2∣(∣∣∆v −∆u∣∣2)∣

where CLp is a Lipschitz constant vector for the activation function in the GraphSAGE, Magg is
a weight matrix that aggregates information from neighbors, and ∆v is the difference between the
embedding vector funsup(v) (i.e., embv) before and after the perturbation.

Proof. Since the change of top-k nearest nodes in Importance is proportional to the change of distance
of top-k nearest nodes in the perturbed embedding vector, it is expressed as below:

Importance(funsup(⋅),G,Gs, v, k) = ∣set(kNN(emb, v, k)) − set(kNN(emb′, v, k))∣/k

∝
1

∣Vtop-k ∣
∑

u∈Vtop-k

∣dist(hv,hu) − dist(h
′

v,h
′

u)∣
(7)
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where hv means embv, hu means embu, h′v means emb′v, h′u means emb′u after perturbation
for abbreviation. The top-k nearest nodes Vtop-k is output from the kNN algorithm in the embedding
space emb. The function dist(hv,hu) is expressed as ∣∣hv − hu∣∣2 and we can define the upper
bound of the importance using the Reverse triangle inequality below:

∣dist(hv,hu) − dist(h
′

v,h
′

u)∣ = ∣ ∣∣hv − hu∣∣2 − ∣∣h
′

v − h
′

u∣∣2 ∣

≤ ∣∣(hv − hu) − (h
′

v − h
′

u)∣∣2
(8)

In inductive settings, we assume that hv is used in the same way as GraphSAGE (Hamilton et al.,
2017) with a single layer, where Mself and Magg are trainable parameters, xv is a feature of node v,
Nv is a node set of node v’s neighbors, and σ indicates an activation function.

hv = σ(Mselfxv +Magg
1

∣N ∣
∑

u∈Nv

xu) (9)

Next, we substitute hv from Equation (8) into Equation (9). This leads us to Equations (11) and (12),
obtained by canceling out the terms Mselfxv and Mselfxu, under the premise that the node features
remain unchanged. In Equation (17), we then obtain the upper bound by introducing CLp, which is
referred to as the Lipschitz constant for the activation function. By applying the Cauchy-Schwartz
inequality, we derive Equation (18). In this equation, ∆v represents the change in the embedding
vector before and after perturbation, a simplification made for the sake of brevity.

∣∣(hv − hu) − (h
′

v − h
′

u)∣∣2 (10)

= ∣∣σ(Mself (xv − xu) +Magg(
1

∣Nv∣
∑

p∈Nv

xp −
1

∣Nu∣
∑

q∈Nu

xq)) (11)

− σ(Mself (xv − xu) +Magg(
1

∣N ′v∣
∑

p∈N ′v

xp −
1

∣N ′u∣
∑

q∈N ′u

xq))∣∣2 (12)

= ∣∣σ(Magg(
1

∣Nv ∣
∑

p∈Nv

xp −
1

∣Nu∣
∑

q∈Nu

xq (13)

−
1

∣N ′v ∣
∑

p∈N ′v

xp +
1

∣N ′u∣
∑

q∈N ′u

xq))∣∣2 (14)

= ∣∣σ(Magg(
1

∣Nv ∣
∑

p∈Nv

xp −
1

∣N ′v∣
∑

p∈N ′v

xp (15)

− (
1

∣Nu∣
∑

q∈Nu

xq −
1

∣Nu
′∣
∑

q∈Nu
′

xq)))∣∣2 (16)

≤ CLp(∣∣Magg(∆v −∆u)∣∣2) (17)
≤ CLp∣∣Magg∣∣2∣∣∆v −∆u∣∣2. ∎ (18)

Theorem 2 establishes that the upper bound is influenced by the weight matrices Magg, ∆v, and
∆u. Assuming that the weight matrix Magg is fixed after training (i.e., in an inductive setting), we
describe four cases of how the importance score can be changed. First, when ∆v and ∆u are small,
the importance score becomes a low value. Second, when ∆v is large but ∆u is small, the target
vector is relatively changed even further, causing the importance score to become large. Conversely,
if ∆v is small, but ∆u is large, while the neighboring nodes move to a different area, the target vector
remains, leading to a large importance score. Lastly, when both ∆v and ∆u are large, causing the
vector v and its top-k neighboring nodes to move in the same direction, then the importance becomes
small, but in the opposite direction, resulting in significant importance. Overall, the theoretical
analysis suggests that the absolute value of importance is contingent on ∣∣Magg∣∣2.
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Figure 5: The examples of obtained subgraphs by different models on synthetic datasets.

D MORE EXPERIMENT RESULTS

D.1 QUALITIVE ANALYSIS OF SYNTHETIC DATASETS

We conduct a case study utilizing the ground truth of the synthetic datasets. As shown in Figure 5,
the yellow node represents the target node, while the black nodes and edges are parts of the subgraph
obtained by each baseline model. It is important to note that the grey nodes and edges represent
the k-hop neighboring nodes of the target node in the input graph, providing relevant contextual
information. The RW-G method generates path-shaped subgraphs that fail to reach the ground
truth, particularly noticeable on the BA-Shapes dataset. On the other hand, subgraphs generated
by baselines such as 1hop-3N and 1hop-2N are included in the ground truth but prove insufficient
when the ground truth exists beyond a 1-hop distance. In contrast, both UNR-Explainer w/o restart
and UNR-Explainer more closely approximate parts of the ground truth. The difference between
these two methods is not severe on small datasets, but generally, UNR-Explainer encourages the
subgraph to have more connections centered around the target node. In conclusion, we illustrate
how UNR-Explainer more accurately represents the ground truth, offering a superior explanation
compared to other baselines.

D.2 DETAILS OF CASE STUDY

Detailed information of nodes is described in Table 5.

D.3 DESCRIPTION OF THE VARIANTS OF THE MCTS-BASED ALGORITHM

In Table 6, we describe the detailed information about variants of the MCTS-based algorithm
presented in Table 4. The term Action in Table 6 refers to the design of the action in MCTS: Adding
represents the addition of nodes, while Removing denotes the deletion of nodes. The term Expansion
refers to the design of the expansion strategy in MCTS. During child node expansion, All represents
the expansion of all neighboring nodes as child nodes, while Sample means that we select nodes to
match the average degree of the input graph from among the neighboring nodes, thereby reducing the
search space. The term Restart indicates whether we apply our new selection policy, as explained in
Section 3. The term UCB refers to the variant of the UCB formula (Eq. (3)). Prx1, Prx2, and Prx3
represent different proximity measures. Prx1 corresponds to the degree of a node in the input graph,
assuming high-degree nodes are potentially more influential. Prx2 represents the number of common
neighboring nodes of the target node in the input graph, under the assumption that nodes with more
common neighbors related to the target node are potentially more influential. Prx3 corresponds to
the cosine similarity between the current state of a node and the target node in the input graph, with
the assumption that nodes with similar features are potentially more influential. However, these three
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Table 5: Description of nodes representing names of authors on Figure 2
Node Name

a Caglar Gulcehr
b Razvan Pascanu
c Yann Dauphin
d Yoshua Bengio
e Guillaume Desjardins
f Kyunghyun Cho
g Surva Ganguli
h Guido Montufar
i Pieter Abbeel
j Volodymyr Mnih
k Koray Kavukcuoglu
l John Schulma
m Theophane Weber
n Nicolas Heess

Table 6: Description of the variants of the MCTS-based algorithm in Table 4. We abbreviate the E as
√

ln(C(N0,a))
C(Ni,a)

due to the limiation of the space.

No. Name Action Expansion Restart UCB
1 MCTS Adding All X Avg(W (Ni, a) + λE
2 SubgraphX-1 Removing All X Avg(W (Ni, a)) + λE
3 SubgraphX-2 Removing Sample X Avg(W (Ni, a)) + λE
4 MCTS-Avg Adding Sample X Avg(W (Ni, a)) + λE
5 MCTS-Prx1 Adding Sample X Max(W (Ni, a)) + λ Prx1 E
6 MCTS-Prx2 Adding Sample X Max(W (Ni, a)) + λ Prx2 E
7 MCTS-Prx3 Adding Sample X Max(W (Ni, a)) + λ Prx3 E
8 UNR-Explainer w/o r Adding Sample X Max(W (Ni, a)) + λE
9 UNR-Explainer Adding Sample O Max(W (Ni, a)) + λ E

proximity measures did not result in significant gains, contrary to our expectations, and increased the
computational cost; as a result, none of them are applied in our method.

Comparison with SubgraphX

The distinction between UNR-Explainer and SubgraphX is primarily discussed in terms of the reward
function, action definition, and exploration strategy in MCTS. 1) The utilization of the reward function
varies, as each is designed for distinct settings. SubgraphX employs the Shapley value in the reward
function, which is not suitable for unsupervised settings without labels. On the other hand, our reward
metric is specifically tailored to measure the importance of subgraphs in unsupervised settings. 2)
The definition of action in UNR-Explainer differs significantly from SubgraphX. In SubgraphX, the
action involves pruning nodes from the input graph until the number of remaining nodes reaches a
predefined threshold. This approach is problematic when the subgraph serves as a counterfactual
explanation, as more computation is required to achieve the desired size. In contrast, the action in
UNR-Explainer involves adding an edge to the candidate subgraph, a more efficient strategy for
exploring minimal subgraphs. The efficiency of this action is demonstrated in Table 4 which shows
that SubgraphX-based methods generate larger subgraphs and require more inference time. 3) We
propose a new selection strategy, inspired by the Random walk restart, to promote more connections
around the target node, suitable for our problem setting. 4) Moreover, we employ a sampling method
during the expansion stage to reduce the computational cost of exploration. Consequently, UNR-
Explainer is more efficient in searching for counterfactual explanatory subgraphs from the perspective
of the MCTS-based algorithm.
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Table 7: The statistics of each dataset and the performance of the downstream tasks on each dataset
using trained unsupervised node representation vector.

Datasets BA-Shapes Tree-Cycle Tree-Grid
# classes 4 2 2
# nodes 700 871 1,231
# edges 2,055 971 1,565
Model GraphSAGE GraphSAGE GraphSAGE

Homogeneity 0.314 0.013 0.015
Silhouette 0.612 0.998 0.97

Task node node node
ACC/AUC 0.486 0.583 0.587
Datasets Cora CiteSeer Pubmed
# classes 7 6 3
# nodes 2,708 3,312 19,717
# edges 5,429 4,732 44,338
Model GraphSAGE GraphSAGE DGI

Homogeneity 0.471 0.215 0.006
Silhouette 0.177 0.160 0.073

Task link node node
ACC/AUC 0.909 0.830 0.695

D.4 TIME COMPLEXITY ANALYSIS

Let t be the number of iterations, n be the number of nodes in the search tree, ∣V ∣ be the number of
vertices in our input graph G, the time complexity of our UNR-Explainer w/o restart in an inductive
setting mainly depends on O(t ⋅log(n) ⋅ ∣V ∣). Additionally, the O(∣V ∣) is required for the kNN function
due to the simulation. When we employ UNR-Explainer for selection, due to the probability of the
restart prestart, the time complexity for the search is O(n) in the worst case. Therefore, the total
time complexity to search the important subgraph as the explanation for the target node is O(t ⋅n ⋅ ∣V ∣).
In the worst case, if n approaches ∣V ∣, the complexity could become approximately O(∣V ∣

2
). To

circumvent this situation, there are two strategies: establishing stopping criteria and setting an upper
bound for n. Firstly, t is set to 1,000 as a stopping criterion, or the traversal is stopped when a case
meeting Importance = 1.0 is found. Secondly, the number of nodes in the traversal graph is limited
to a constant value; in this paper, we set it to 20. Moreover, in every iteration, we sample at most 3
nodes for the expansion step, which helps avoid the exponential expansion of n. For these reasons,
the time complexity of UNR-Explainer is approximately O(∣V ∣), because both t and n could be
regarded as constants.

D.5 EXPERIMENTAL SETUP

To evaluate our proposed explanation method, we first train the unsupervised node representation
model using GraphSAGE (Hamilton et al., 2017) and DGI (Veličković et al., 2018). The resulting
trained embedding vector is then used for downstream tasks such as link prediction and node
classification. For the node classification task, we use the synthetic datasets and divide the embedding
vector into a random train and test subset with 80% and 20% of the data, respectively. For the
real-world datasets, we perform the link prediction task, so we split the edges of the graph into
random train and test subsets with 90% and 10% of the data. Top-k link prediction is evaluated by the
AUC. A logistic regression model is employed for both the node classification and the performance is
evaluated by calculating the accuracy for node classification.

Additionally, to assess the quality of the initial embeddings, we report Homogeneity using labels and
Silhouette Coefficient without labels, which are commonly used in clustering tasks. The homogeneity
measures how instances with the same labels are contained in the same cluster, and the number of
clusters is set equal to the number of classes. The Silhouette Coefficient measures how well separated
each cluster is. Higher values of homogeneity and Silhouette Coefficient indicate better performance
of the clustering model The above experimental setup is described in Table 7. Noteworthly, we set k
for top-k neighbors as 5, the exploration term λ as 1, and prestart as 0.2.
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D.6 IMPLEMENTATION OF DOWNSTREAM TASKS

• Node classification: Using the trained embedding vector in unsupervised learning, we
conduct the node classification task. The logistic regression model in Scikit-learn is used.
We set the max iter as 300.

• Link prediction: Using the trained embedding vector in unsupervised learning, we conduct
the link prediction task. We split the graph to generate the train and test dataset using
PyTorch-Geometric (Fey & Lenssen, 2019). To predict the link between two nodes, we
assume there is a link between the target node and its top-k nearest nodes.

D.7 IMPLEMENTATION OF UNSUPERVISED NODE REPRESENTATION MODELS

We employ the GraphSAGE (Hamilton et al., 2017) and DGI (Veličković et al., 2018) model to
demonstrate the performance of our proposed method in the inductive setting. We note that the
GraphSAGE model and DGI are implemented using the PyTorch geometric Fey & Lenssen (2019).
The detailed information is as below:

• GraphSAGE (Hamilton et al., 2017): We use the aggregating operator as follows: x′i =
Mselfxi +Magg ⋅meanj∈Nixj . Here, while x means node features, Mself and Magg are
the trainable parameters, and Ni represents local neighboring nodes around node i. We set
the hyperparameters as follows: the batch size as 256, the number of hidden dimensions as
64, the number of hidden layers as 2, the dropout as 0.5, and the optimizer as Adam. On
BA-shapes, we set the number of epochs as 100 and the learning rate as 0.01. On other
datasets, we set the number of epochs as150 and the learning rate as 0.01.

• DGI (Veličković et al., 2018): We use the GraphSAGE as the encoder of the DGI model,
setting the number of hidden dimensions as 512, batch size as 256, the number of hidden
channels as 512, the number of hidden layers as 2, dropout as 0.5, the number of epochs as
50, optimizer as Adam, and the learning rate as 0.001.

D.8 BASELINES IN UNSUPERVISED LEARNING

• Taxonomy Induction (Liu et al., 2018): We implement the model using the code and
the setting of hyperparameters from the authors in Matlab. We set the number of clusters
as 50 for all real-world datasets and 5,3,2 for BA-Shapes, Tree-Cycles, and Tree-Grids
respectively.

• TAGE (Xie et al., 2022): Since TAGE is available to provide the explanation for the
embedding vector, we do not utilize the second stage which connects to the downstream
task MLP to evaluate the explainer in an unsupervised manner. We set the number of epochs
as 100, the learning rate as 0.0001, k as 5, the gradient scale as 0.2, λs as 0.05, and λe as
0.002. The implementation is followed by (Xie et al., 2022).

D.9 PACKAGES REQUIRED FOR IMPLEMENTATIONS

• python == 3.9.7
• pytorch == 1.13.1
• pytorch-cluster == 1.6.0
• pyg == 2.2.0
• pytorch-scatter == 2.1.0
• pytorch-sparse == 0.6.16
• cuda == 11.7.1
• numpy == 1.23.5
• tensorboardx == 2.2
• networkx == 3.0
• scikit-learn == 1.1.3
• scipy == 1.9.3
• pandas == 1.5.2
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E LIMITATION, FUTURE WORK, AND NEGATIVE SOCIETAL IMPACTS

We focus primarily on providing counterfactual explanations for unsupervised node representation
models. However, it’s important to note that actionability and diversity are also key properties to
consider in these explanations. A well-known example of counterfactual explanations is the case
of credit application prediction discussed in (Verma et al., 2020). Counterfactual explanations offer
more than mere output explanations; they also provide actionable recommendations, especially when
a loan application is rejected. Additionally, providing multiple explanations enhances the diversity of
possible actions, thereby allowing applicants to select the most suitable options. However, defining
the desired action in unsupervised settings is challenging. Since the desired action is closely linked
to the problem settings and datasets, specific assumptions, akin to the loan application example,
are required. Therefore, we leave the exploration of actionability and diversity in counterfactual
explanations for unsupervised models to future work. As of the current stage of our research, we
have not recognized any negative societal impacts associated with this work.
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