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Abstract

Out-of-distribution (OOD) detection, which determines whether a given sample
is part of the in-distribution (ID) or not, has recently shown promising results
by training with synthetic OOD datasets. The important properties for effective
synthetic OOD datasets are two-fold: (i) the OOD sample should be close to ID, but
(ii) represents distinct semantic information. To achieve this, we introduce a novel
framework that consists of Semantic-Discrepant (SD) Outlier generation and an
improved OOD detection approach with SD outlier. For SD outlier generation,
we utilize a conditional diffusion model trained with pseudo-labels. Then, we
propose a simple yet effective method, semantic-discrepant guidance, allowing
model to generate realistic outlier that contains semantically shifted information
while preserving nuisances (e.g., background). Furthermore, we suggest SD outlier-
aware OOD detector training and scoring methods which improve. Our experiments
demonstrate the effectiveness of our framework on CIFAR-10 dataset. We achieve
AUROC of 98% when CIFAR-100 are given as OOD. The SD outlier dataset on
CIFAR-10 is available at https://zenodo.org/record/8394847.

1 Introduction

Out-of-distribution (OOD) detection is a fundamental machine learning task which aims to detect
whether a given sample is drawn from the in-distribution (ID) or not. In decades, OOD detection
has found various real-world practical applications, including medical diagnosis [1H3], autonomous
driving [4H6], and forecasting [7]]. Among a number of OOD detection methods [8H12], one promising
approach is to learn a detector using auxiliary OOD dataset, as pioneered by Outlier Exposure (OE)
[L3]. This makes learning relatively easier since such OOD dataset can provide additional information
about discrepancy between ID and OOD. Due to this simple yet effective approach, there have been
studied OE-based methods in the recent literature [14-20].

The most challenging part of the approach using auxiliary OOD is dataset acquisition from the
real-world. This challenge arises since it is hard to identify whether a sample is OOD and effective
enough to learn a detector, especially when label information is unknown. To cope with the challenge,
recent research has explored utilizing GANs [21H28]] or diffusion models [29] to generate synthetic
OOD dataset. To this end, they generate blurred images since such an image can also be considered
as OOD. However, these approaches often fail to detect slight semantic differences due to their
blurriness and being unrealistic.

The crucial properties for synthetic OOD dataset generation are two-fold: (i) a generated sam-
ple should be sufficiently near to ID, but (ii) represents discriminative semantic information. In
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Figure 1: Illustration of our proposed methods framework. This first generates Semantic-Discrepant
(SD) Outliers using a conditional diffusion model (top), and then trains a detector using both ID
samples and the generated outliers (bottom). For scoring, we use distance-based and voting-based
detection scores based on K nearest neighbors on the embedding space.

other words, a sample should be OOD with respect to semantics while preserving nuisances (e.g.,
background) which have no intrinsic relevance to the semantic. Hence, this OOD dataset offers
valuable insights for training detector [30, [16]. Nevertheless, there have been no attempts to address
semantically shifted OOD dataset generation.

Contribution. In this paper, we introduce a novel and effective detection framework that consists
of (i) Semantic-Discrepant (SD) Outlier generation via a diffusion model, and (ii) OOD detection
with SD outliers, as illustrated in Figure m

* Semantic-Discrepant Outlier Generation. Our key idea is generating realistic OOD samples
that contains incoherent semantic shift while preserving nuisances with ID. To this end, we
propose semantic-discrepant guidance, induce the samples struggle with semantic corruption
or acquiring odd semantic as shown in Figure 2] We train conditional diffusion model with
pseudo-labels obtained from a clustering method (e.g., SCAN [31])). Then we generate SD outlier
with semantic-discrepant guidance, which is inconsistent with diffusion process condition. By
employing unexpected guidance, the important semantic gradually lose their coherence.

* OOD Detection with Semantic-Discrepant Outlier. To develop the utilization of SD outlier, we
also suggest SD outlier-aware training and scoring methods for OOD detection. Our loss function
encourages the discrimination between ID samples and the SD outliers, while concurrently learns
their original semantic information. In addition, we derive OOD scoring function based on both
ID and SD outlier samples, distinguishing our approach from the existing method that exclusively
relies on only ID.

We demonstrate the effectiveness of the proposed framework through extensive experiments. For
example, under OOD generation for unlabeled CIFAR-10, we attain FID score of less than 8,
significantly outperforms other generation methods. Moreover, we achieves stats-of-the-art OOD
detection performance compared to several baseline methods.

2 Methodology

In this section, we introduce Semantic-Discrepant (SD) Outlier generation and its further application
of OOD detection framework in detail. In a nutshell, our framework consists of two phases: (a)



generating semantic-wise shifted outliers (Section [2.1)) and (b) semantic-aware OOD detection with
SD outliers (Section[2.2). The overall process is depicted in the Figure

2.1 Semantic-Discrepant Outlier Generation

In this stage, we aim to generate an OOD dataset D, that closely resembles D;, = {x(i)}, but
contains distinguished semantic information. To achieve this, we first attain semantic controllability
by training a conditional diffusion model. Then, we generate SD outliers using semantic-discrepant
guidance during sampling. Since our generation method is based on diffusion models, we provide its
brief background in Appendix [A]

Semantic-Aware Diffusion Model Training. Overall, our method is based on a conditional diffusion
model under unsupervised learning. To obtain a pseudo-label g for each x € D;,, we use a self-
supervised method, SCAN clustering [31]]. It shows competitive performance with the ground-truth
label by successfully generating semantic-wise conditioned samples. This result is consistent with
other self-supervised labeling based approaches, e.g., [32]. Hereafter, D;, := {(x("), 7(*))} denotes a
pseudo-labeled ID dataset.

Classifier-free Diffusion Guidance (CFG) [33] is a simple yet effective conditional diffusion models,
avoiding require for a separate classifier. They obtain a combination of a conditional model param-
eterized with ey(x;, c) and an unconditional model parameterized with €y(x¢) = €p(x¢,¢ = D),
which gives the null token to guidance c in a single network. During training, it randomly drops the
condition with unconditional probability puncond-

In our method, CFG is trained with (x, §) € Dj, as an input. More specifically, the noise prediction
model €y parameterized by U-Net [34] learns with guidance on the condition ¢4 = (g, t) where ¢ is a
pseudo-label of z and ¢ € [0, T is a diffusion timestep. Thus, the noise prediction model ¢y can be
optimized with the following loss:

2
L(0) = ]E(xo,g)Nﬁm,t~Uniform([o,T]),e~N(0,1) [leo(xt, ca) — €ll5]- ey

Semantic-Discrepant Outlier Sampling. Our key idea is semantic-discrepant guidance, sampling
with ¢, selected among other cluster labels, which is inconsistent with the pseudo-label .

¢, ~ Uniform({1, ..., C| ¢, # 3}). 2)

To be specific, while original method perform sampling from random noise for 7" timesteps, we utilize
x € D, to conduct incomplete diffusion process to a limited timesteps .S, which is significantly
shorter than 7". By stopping diffusion at the early steps, we obtain xg with more corruption effect
in the semantically important region. While Gaussian noise exhibits a uniform spectral density, the
high-frequency components experience more perturbations effect in comparison to the low-frequency
components [35]]. This distinct property is directly connected to semantic, displaying a correlation
with high-frequency components [36,37]. Then, we start sampling from xg with semantic-discrepant
guidance ¢, = (¢, t). We here inject c, into the noise prediction function €; with the timesteps S
and feed into every block of the U-Net. Thus, the noise prediction function ¢, is rewritten as:

er = (1 + w)eg(xt, ¢r) — wep(x4) 3)
Through this process, only semantically contaminated X is generated as highly diffused regions are

contaminated in the direction of ¢, while nuisances are almost preserved their originality. This new
SD outlier is saved with the original pseudo-label § into Dy, i.€., Doy = {(X?, §V)}.

2.2 OOD Detection with Semantic-Discrepant Outlier

In this section, we introduce the improved OOD detection strategy to develop SD outlier utilization.
The above semantic insights allows semantic aware training and scoring for OOD detection.

Training with SD Outlier. The common approach to learn a detector using auxiliary OOD is
multi-task learning. Additionally, we construct a new loss that forcing the model distinguish ID
samples from SD outliers while exposing the original semantic to both ID and outlier samples in a
different degree. Given (x,§) € Diy U Doy and the dataset indicator function I(x) € {0, 1}, our
training objective with SD outlier is formulated as:

L(x,9) = Lee(goin(f (%)), 1(x)) + (1 = 1(x)) Lce(gin(f (%)), §) + T(X)ALcE(Gout (f (%)), §) (4)
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Figure 2: Generated samples on CIFAR-10 (32x32 resolution) comparison with diffusion-based
method. As shown, Our SD-outliers are semantically shifted from original samples retaining nuisances
while outliers generated from other method are difficult to distinguish.
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The above objective consists of one binary classification gy, and two multi-class classification
tasks gin, gour While sharing the pre-trained feature extractor f. Binary classification task forces
ID samples to separate from outliers. On the other hands, multi-class classification tasks compel
samples to discriminate semantics with pseudo-labels. Note that SD outliers have partially semantic
contamination, thus we set sufficiently low A to exposing semantic information in different degree
depending on the I. The whole network jointly optimized by minimizing with our loss.

Scoring with SD Outlier. We derive OOD score function based on k nearest neighbours (kNNs). As
we attained semantic-wise outliers, we can enhance the scoring methods in two ways, distance-based
score and voting-based score. For given input x, its kNNs for distance-based score are denoted
as {x},..,x%} € Dj, and for voting-based score are {x},,..,x*} € Dj, U Doy. We measure the
Euclidean distance between f(x) and f(x’) and conduct hard voting of I(x!).

k k
00D Score(z) = 3~ [1£(x) ~ f(xi)I + Y 11(6xi) = 1) ©)

3 Experiments

3.1 Setup

We demonstrate our methods on the most commonly used benchmark CIFAR-10. For pseudo-labeling,
we use the state-of-the-art clustering algorithm SCAN [31]]. We set a number of clusters C' = 10
which is same as and use default parameter setting from the official implementation. We obtain
clustering accuracy 87%.

We train the CFG model using the same architecture as employed on [33]]. For our best result, we set
diffusion timesteps S = 100 and guidance weights w = 2.0 for SD outliers sampling. We evaluate
the quality of generated outliers with Frechet Inception Distance (FID) with 50000 samples. For our
detection network, we adopt ViT-B16 trained with ImageNet as a backbone feature extractor f. We
set A = 0.3 and a = 0.3. More implementation details is in Appendix [B] To evaluate OOD detection
performance, we use k = 10 and Area Under the Receiver Operating Characteristics (AUROC).

3.2 Main Results

Quality Comparison of SD Outlier. Figure 2] shows image samples of original, SD outliers and
another diffusion-based method Fake-it [29]]. Our samples successfully maintain most of the original
image components but cause crucial semantic corruption. For instance, the car loses wheels, the
deer sheds antlers, the bird develops four legs, and the dog’s head sprouts a beak. Furthermore, ours
exhibit a highly realistic appearance with FID score less than 8 while original sampling method shows
2.97 and Fake-it [29] 45.
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Figure 3: Visualization of the embedding space from the feature extractor f by t-SNE. The blue
points represent ID (CIFAR-10), red for OOD (CIFAR-100) and SD-outliers are assigned in different
colors for each pseudo-label §. (a) The embedding space in the early stage of training the OOD
detector. (b) The embedding space after training the OOD detector until last epoch.

OOD Detection Performance Comparison. We evaluate the OOD detection performance by
testing it on multiple datasets, CIFAR-100, SVHN and LSUN. The most challenging benchmark is
CIFAR-100, as it includes the most similar classes found in CIFAR-10.

Table [T] summarizes the OOD detection results compared to previous works on CIFAR-10. Our
method outperforms previous methods in all benchmarks dataset. Especially, one notable result is we
almost reaching to ground-truth level performance in CIFAR-100 dataset (98.2%). Our approach also
surpasses Multi-class AD [38]] that solely employs ID samples for both training and scoring.

We visualize the t-SNE plot of the feature space f in Figure[3] We verify that our SD outlier-aware
training objective is effective to enhancing OOD detection performance. Figure [3(b)] shows that
ID samples are discriminated more elaborately with SD outliers. These results demonstrate the
effectiveness of the SD outlier dataset in detecting real OOD samples.

Table 1: OOD Detection AUROC (%) on various benchmark datasets. The reported results are over
five trials and bold denotes the best results.

(In) CIFAR-10

Methods Networks
CIFAR-100  SVHN LSUN
Likelihood Pixel CNN++ 52.6 8.3 -
Likelihood Likelihood ratio Pixel CNN++ - 91.2
Input Complexity Glow 73.6 95.0
Rot [41] ResNet-18 79.0 97.6 89.2
Self-supervised GOAD [42] ResNet-18 77.2 96.3 89.3
CSI [43] ResNet-18 89.2 99.8 97.5
SSD [44]) ResNet-18 89.6 - -
DN2 [43]) ResNet-18 83.3 88.9 91
DN2 [43]) ResNet-152 86.5 96.2 88.7
MSCL [46] ResNet-152 90.0 98.6 90.6
Pre-trained Multi-class AD [38]] ResNet-18 90.8 98.6 98.6
Multi-class AD [38] ResNet-152 93.3 99.8 954
Multi-class AD [38] ViT-B/16 96.7 99.9 99.3
Fake-it ViT-B/16 95.7 99.9 99.4
Ours ViT-B/16 98.0 99.9 99.9




3.3 Ablation Study
We report ablation studies with CIFAR-10 (ID) vs CIFAR-100 (OOD) comparison.

Dataset Dependence of Sampling Hyperparameter. We confirm that our method is robust to sam-
pling hyperparameters, diffusion timesteps and guidance weight shown on Table[2] Since we are trying
to maintain original nuisances, we adopt sufficiently small timesteps S = {50, 80, 100, 150, 200}.
Within this range, we observed that the OOD performance variation is not significant. In addition, we
found all state-of-the-art performance on various guidance weight w = {2.0,3.0,4.0}.

Table 2: Ablation study of sampling hyperparameter, timesteps .S and guidance weight w.

Sampling timesteps S
50 80 100 150 200

w=20 976 97.8 98.0 978 974
w=3.0 975 97.8 979 98.0 97.6
w=40 97.7 977 98.0 978 97.6

Comparison of OOD Detection Scoring Components We measure the effect of components in
our OOD scoring i.e., distance-based score and voting-based score. Table [3]shows the result with
S =100, w = 2.0. The most common approach, distance-based score, shows our method has already
achieved state-of-the-art compared to other baseline methods. Furthermore, merging with voting
score consistently improves in various sampling timesteps .S

Table 3: Ablation study of OOD scoring function, distance-based score and voting-based score.

Sampling timesteps S

50 80 100 150 200

(FID=4.45) (FID=5.95) (FID=6.88) (FID=7.85) (FID=7.59)
Distance score 97.2 97.5 97.7 97.6 97.3
Distance + Voting Score 97.6 97.8 98.0 97.8 97.4

Evaluation of SD Outlier Test Dataset. To show the quality of our SD outlier dataset, we evaluate
the performance when the generated dataset is considered as test set. The SD outlier test dataset
is generated with S = 150, w = 4.0 which is different with SD outlier for training dataset S =
100, w = 1.8. As we expose SD outlier both training and testing, ours shows best score naturally.
However, the other state-of-the-art baselines show severe performance degradation on our dataset.
In particular, the multi-class AD method that not exposing any auxiliary outlier degrade to 74.3(%)
AUROC score. Therefore, it has been demonstrated that our dataset can become a more challenging
semantic-wise OOD detection task.

Table 4: Performance of SD outlier as test dataset on comparable baselines.

Setting Multi-class AD  Fake-it  Ours
CIFAR-10 vs CIFAR-100 96.7 95.7 98.0
CIFAR-10 vs SD outliers 74.3 81.4 98.2

4 Conclusion

In this paper, we introduce Semantic-Discrepant (SD) outlier generation and further application
to OOD detection framework. Our primary concept is generating realistic OOD samples that
semantically shifted while retaining nuisances found in ID by proposing semantic-discrepant guidance.
Experimental results demonstrate the effectiveness of our approach on several OOD detection
benchmarks. It has been proven that our SD outliers can be served as effective auxiliary OOD to
learn detector without any additional dataset acquisition efforts. We further can apply our method to
large-scale dataset, ImageNet, as [32] surpasses ground-truth performance using pseudo-labels.
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