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Abstract
With the rapid advancement of AI applications, the grow-
ing needs for data privacy and model robustness have high-
lighted the importance of machine unlearning, especially in
thriving graph-based scenarios. However, most existing graph
unlearning strategies primarily rely on well-designed archi-
tectures or manual process, rendering them less user-friendly
and posing challenges in terms of deployment efficiency. Fur-
thermore, striking a balance between unlearning performance
and framework generalization is also a pivotal concern. To ad-
dress the above issues, we propose Mutual Evolution Graph
Unlearning (MEGU), a new mutual evolution paradigm that
simultaneously evolves the predictive and unlearning capac-
ities of graph unlearning. By incorporating aforementioned
two components, MEGU ensures complementary optimiza-
tion in a unified training framework that aligns with the pre-
diction and unlearning requirements. Extensive experiments
on 9 graph benchmark datasets demonstrate the superior per-
formance of MEGU in addressing unlearning requirements
at the feature, node, and edge levels. Specifically, MEGU
achieves average performance improvements of 2.7%, 2.5%,
and 3.2% across these three levels of unlearning tasks when
compared to state-of-the-art baselines. Furthermore, MEGU
exhibits satisfactory training efficiency, reducing time and
space overhead by an average of 159.8x and 9.6x, respec-
tively, in comparison to retraining GNN from scratch.

Introduction
Recently, graphs have been a trending AI topic. To en-
able graph learning with human-like intelligence, graph neu-
ral networks (GNNs) have achieved state-of-the-art perfor-
mance in node- (Chen et al. 2020; Zhang et al. 2022), link-
(Cai et al. 2021; Tan et al. 2023), and graph-level (Xu et al.
2019; Yang et al. 2022) scenarios.

As most academic works center on training GNN under
experimental settings, its real-world implementation often
requires extra modifications to meet practical demands, such
as the deletion of graph elements. It is critical in practic-
ing data-driven AI applications, where the presence of ir-
relevant, inaccurate, or privacy-sensitive data elements can
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significantly impact the predictive performance of trained
GNNs. Two motivations behind the real-world AI deploy-
ment of data deletion can be further illustrated as follows:
(i) Data privacy: Deletion of elements takes into account
the ”right to be forgotten” in machine learning, enabling
users to request the removal of sensitive elements used for
training. As a result, this changes node presence and helps
protect data privacy. (ii) Model robustness: The presence
of industry-related noise and fluctuation compromises data
quality. By employing data deletion, the impact of such
noise on contaminating node attributes and edge presence
can be mitigated, leading to enhanced model robustness.

To achieve data deletion, machine unlearning (MU) is in-
troduced, aiming to enable trained models to forget the in-
fluence of unlearning entities (deleted elements). In general,
the MU strategy contains two crucial modules for practical
demands: (i) Predictive module: It maintains predictive per-
formance for non-unlearning entities; (ii) Unlearning mod-
ule: It removes the influence of unlearning entities. Given
the distinctive graph-based challenges in real-world deploy-
ments, addressing fundamental tasks of graph unlearning
(GU) involves designing strategies for feature, node, and
edge-level operations. Compared to MU in computer vision,
GU poses unique challenges since the extensive entity in-
teractions by GNN training (i.e., message-passing). A naive
approach is to retrain the model from scratch but it suffers
from the high costs of frequent unlearning requests.

Recently, some approximate-based GU methods are pro-
posed. GIF (Wu et al. 2023) establishes the graph influence
function to capture the relationship between data variations
and model weights, and certified GU approaches (Chien,
Pan, and Milenkovic 2022, 2023) propose a theoretical
framework for approximate unlearning in linear GNNs.
These methods mainly focus on the unlearning module but
overlook the predictive module. As a result, although these
methods offer high flexibility, related research (Mitchell
et al. 2022) highlights potential compromises in their prac-
tical performance due to limited consideration for non-
unlearning entities. Meanwhile, seeking a balanced trade-
off between generalization boundaries and performance re-
mains challenging in real world deployment. Other GU
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Methods Types Model
Agnostic?

Preserve
Performance?

Continue
Training?

Deploy
Efficiency?

GIF (Wu et al. 2023) Appro. ! % ! !

CGU (Pan et al. 2022) Appro. % % ! %

GUIDE (Wang et al. 2023) Learn. ! ! ! %

Projector (Cong et al. 2023) Learn. % ! % !

Delete (Cheng et al. 2023) Learn. ! ! % !

Eraser (Chen et al. 2022) Learn. ! ! ! %

MEGU (This Paper) Learn. ! ! ! !

Table 1: A summary of recent GU studies.

approaches (Chen et al. 2022; Cong and Mahdavi 2023a;
Cheng et al. 2023; Wang, Huai, and Wang 2023) introduce
learnable mechanisms to adjust the original model or output
for non-unlearning entities while eliminating the impact of
unlearning entities. However, their predictive and unlearn-
ing capabilities often rely on well-designed architectures and
handcrafted mechanisms, leaving room for improvement.

Building upon this, we review recent GU methods in Ta-
ble 1 and suggest that a successful GU method should be
capable of both handling unlearning requests at any time
and being applicable to any backbone model (Model Ag-
nostic). Hence, it should not only generate predictions that
prioritize the performance of non-unlearning entities (Pre-
serve Performance) but also possess the ability to adjust the
trained model and continue training (Continue Training).
Notably, the focus should be on designing these processes
with a priority on mitigating the impact of unlearning en-
tities. Furthermore, considering the real-world deployment
requirements, they should demonstrate high efficiency in the
both training and inference process (Deploy Efficiency).

Our contributions. (1) New Perspective. In this paper,
we first emphasize the constraints of current GU strate-
gies from a new perspective involving two distinct mod-
ules. Then, we provide a comprehensive review in Table 1
to clarify the design target of GU. (2) New Method. Building
upon this, we propose Mutual Evolution Graph Unlearning
(MEGU), which comprises original model-based predictive
module and linear unlearning module to adjust the original
model and generate predictions for non-unlearning entities,
respectively. From the mutual evolution perspective, the ef-
fectiveness of the predictive module in eliminating the influ-
ence of unlearning entities relies on the forgetting capability
of the unlearning module, and the reasoning capability of
the predictive module is essential for the unlearning module
to generate reliable predictions. (3) SOTA Performance. Ex-
tensive experiments on 9 benchmark datasets demonstrate
that MEGU achieves not only state-of-the-art performance
but also high training efficiency and scalability. Especially,
MEGU outperforms GNNDelete (Cheng et al. 2023) by a
margin of 2.8%-6.4% in terms of predictive accuracy, while
achieving up to 4.5×-7.2× training speedups, respectively.

Preliminaries
Problem Formalization
In this work, we focus on the semi-supervised node classi-
fication task based on the topology of labeled set VL and
unlabeled set VU , and the nodes in VU are predicted with

the supervised by VL. Consider a graph G = (V, E ,X ) with
|V| = n nodes, |E| = m edges, and X = X. The feature
matrix is X = {x1, . . . , xn} in which xv ∈ Rf represents
the feature vector of node v, and f represents the dimension
of the node attributes, the adjacency matrix (including self-
loops) is Â ∈ Rn×n. Besides, Y = {y1, . . . , yn} is the label
matrix, where yv ∈ R|Y| is a one-hot vector and |Y| repre-
sents the number of the classes. In GU, after receiving un-
learning request ∆G = {∆V,∆E ,∆X} on original model
parameterized by W, the goal is to output the predictions of
non-unlearning entities (i.e. VU ) and adjusted model param-
eterized by W⋆, both with minimal impact from the unlearn-
ing entities. The typical unlearning requests include feature-
level ∆G = {∅,∅,∆X}, node-level ∆G = {∆V,∅,∅},
edge-level ∆G = {∅,∆E ,∅} in VL.

Graph Neural Networks

Motivated by spectral graph theory and deep neural net-
works, the concept of graph convolution is initially intro-
duced in (Bruna et al. 2013). However, the computational
complexity associated with eigenvalue decomposition hin-
ders its deployment. To overcome this challenge, the Graph
Convolutional Network (GCN) (Kipf and Welling 2017) is
proposed, which approximates the convolution operator us-
ing the first-order approximation of Chebyshev polynomi-
als. GCN propagates node information iteratively to neigh-
boring nodes for label prediction. Building upon this frame-
work, recent studies (Hamilton, Ying, and Leskovec 2017;
Veličković et al. 2018; Chen et al. 2020) have further op-
timized the model architectures, achieving remarkable per-
formance improvements. Further research advancements on
GNNs can be found in recent surveys (Zhou et al. 2022;
Bessadok, Mahjoub, and Rekik 2022; Song et al. 2022).

Graph Unlearning

In this part, We provide an overview of recent advancements
in GU. GraphEraser (Chen et al. 2022) attempts to partition
the graph into multiple shards to handle unlearning requests
within each shard. Building upon this, GUIDE (Wang, Huai,
and Wang 2023) further optimizes the partitioning and shard
aggregation strategies. However, their performance depends
heavily on partitioning quality and aggregators. GraphEd-
itor (Cong and Mahdavi 2023b) and Projector (Cong and
Mahdavi 2023a) provide closed-form solutions with theoret-
ical guarantees. However, their application is limited due to
the linear assumption. Approximate-based methods (Chien,
Pan, and Milenkovic 2023, 2022; Wu et al. 2023) have
emerged as efficient solutions. However, as highlighted by
MEND (Mitchell et al. 2022), the lack of consideration for
non-unlearning entities may impact their practical perfor-
mance. Meanwhile, balancing the trade-off during deploy-
ment between generalization and performance remains chal-
lenging. GNNDelete (Cheng et al. 2023) proposes layer-
based unlearning operators to obtain predictions without ad-
justing the original trained model, but its deployment effi-
ciency decreases with model depth and cannot handle un-
learning requests for continue training.
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Figure 1: Overview of our proposed MEGU. Unlearning Prediction represents the prediction of non-unlearning entities.

Model Framework
In this section, we introduce MEGU, which provides a new
paradigm for GU by deconstructing the MU targets. To be-
gin with, we provide an overview of the MEGU pipeline and
its intuitions. Then, considering the unique challenges posed
by GNNs and aiming to achieve graph-based mutual evolu-
tion, we introduce adaptive high-influence neighborhood se-
lection and topology-aware unlearning propagation. Build-
ing upon these technologies, the predictive module and un-
learning module are trained in a topology-guided mutually
boosting manner by a well-designed optimization objective.

Architecture Overview
As illustrated in Fig. 1, we initialize the predictive module
with the original trained model. Throughout the unlearning
process, its target is to adjust the original model under un-
learning requirements while retaining the reasoning capa-
bility. This design preserves the original model’s predictive
accuracy while efficiently achieving unlearning through an
end-to-end learnable mechanism with minimal cost. More-
over, the adjusted original model can be further utilized for
continued training, offering deployment flexibility. As for
the unlearning module, its target is to generate predictions
for non-unlearning entities based on the predictive mod-
ule while offering forgetting capacity for model adjustment.
This strategy minimizes the computational overhead asso-
ciated with unlearning. From the mutual evolution perspec-
tive, the predictive module relies on the unlearning module’s
forgetting ability, guiding the modification of the original
trained model. Similarly, the unlearning module depends on
the predictive module’s reasoning capability to generate reli-
able predictions. Consequently, these two modules mutually
optimize each other within the unified MEGU framework.

For the three downstream unlearning tasks, our process-
ing details are as follows: (1) Feature-level: we treat nodes
as unlearning entities while preserving their topology; (2)
Node-level: we consider nodes as unlearning entities and re-
move their related topological connections; (3) Edge-level:
we consider connected nodes as unlearning entities but pre-
serve their topology and remove the unlearning edge.

Adaptive High-influence Neighborhood Selection
Due to the rich interactions in the GNNs, we need to iden-
tify the nodes that are highly influenced by unlearning en-
tities. This is pivotal in forming an optimization objective
that preserves predictive accuracy while reducing unlearn-
ing entity impacts. Existing methods consider nodes within
a fixed neighborhood of unlearning entities as highly influ-
enced nodes (HIN). Unfortunately, they neglect the distinct
roles of graph elements in topology-based propagation.

To address this issue, we propose adaptive high-influence
neighborhood selection, which leverages the forward and in-
verse feature propagation based on the original topology to
obtain smoothed features from two perspectives. Formally,
the above process in l-layer original GNN can be defined as

X̃ = ÂlX, X̃′ = ÂlX′,

X′
i = Xi, X

′
j = 1−Xj , ∀i ∈ V/∆V, ∀j ∈ ∆V,

(1)

where 1 is the 1-vector of size f and X′ is the inverse fea-
ture for unlearning entities. Meanwhile, taking into account
that the original l-layer GNN aggregates information from
the l-hop neighborhoods, we employ l-step feature smooth-
ing by default. Notably, in the case of edge unlearning, we
treat the two nodes connected by ∆E as unlearning entities
to perform inverse features. Intuitively, when we reverse the
features of unlearning entities, it leads to significant changes
in the smoothed features of HIN from two topology-based
propagation perspectives. To quantify this difference, we in-
troduce the following concept of influence distance, which
serves as a measure to adaptively select HIN (see Alg. 1). By
considering the unique structural properties of different en-
tities, our approach effectively mitigates the bias that arises
from treating all nodes within a fixed neighborhood equally.
Definition 1 (Influence Distance). The influence distance
Dk parameterized by node k and forward and inverse fea-
ture propagation results X̃ and X̃′ is formally defined as

∀k ∈ V/∆V, Dk = Dis(X̃k, X̃
′
k), (2)

where X̃k denotes the kth row of X̃, Dis(·) is a function
positively relative with the difference, which can be imple-
mented using Euclidean distance, cosine similarity, etc.



Topology-aware Unlearning Propagation
To achieve mutual evolution for two individual modules and
improve final predictions in graph scenarios, we propose the
topology-aware unlearning propagation based on the predic-
tive module and non-unlearning entities A⋆,X⋆, where we
remove the unlearning entities in A,X. This strategy con-
siders both the topological structure and the self-supervised
information L from the predictive module, which effectively
integrates the predictive and unlearning modules while up-
holding the homophily assumption to improve predictions.
Specifically, its foundation lies in the expectation that con-
nected nodes in a graph exhibit similar labels, aligning with
the network’s inherent homophily or assortative characteris-
tics. Thus, we can encourage smoothness over the distribu-
tion over labels by another label propagation (i.e. L). Mean-
while, it introduces a novel paradigm for two module inter-
action in the GU process, which is formally expressed as

Y
(
Ŷ,E (L)

)
:=Yu=Ŷu,Yv=G

(
Ŷv +G(Ev)

)
,

E(L) :=E(0)
u =0⃗,E(0)

v =L− Ŷv,∀u ∈ VL,∀v ∈ VU ,

G(T) :=T
(l)
i =αT

(0)
i +(1−α)

∑
j∈N (1)

i

1√
d̃id̃j

T
(l−1)
j ,

(3)

where E denotes the error correction matrix. Building upon
this, we adopt the approximate calculation for the personal-
ized PageRank (Chien et al. 2021), where N (1)

i denotes the
one-hop neighbors of node i. Meanwhile, we set α according
to datasets and backbone-based propagation step l by default
to capture structural information. The aforementioned pro-
cess can be regarded as the materialization of the unlearn-
ing module leveraging the reasoning capacity of the predic-
tive module to generate reliable predictions. As depicted in
Fig. 1, this thoughtful technology forms the unlearning mod-
ule in MEGU, which generates final predictions Y⋆ for non-
unlearning entities. It is formally represented as

Y⋆ := Y⋆
(
Ŷ⋆,E(Ŷ)

)
,

P̂ = Encoder(A⋆,X⋆,W⋆), P̂⋆ = WuP̂,

Ŷ = Softmax
(
P̂
)
, Ŷ⋆ = Softmax

(
P̂⋆

)
,

(4)

where Encoder(·) parameterized by W⋆ is any adjusted
original trained model in the predictive module, Wu is the
trainable linear unlearning operator.

Optimization Objective
Since the unlearning request occurs within the training set,
we exclusively utilize self-supervised information during the
unlearning process to prevent potential label leakage con-
cerns. As illustrated in Fig 1, we freeze the original model
at the time of receiving the unlearning request to provide
self-supervised information Ỹ, preserving the reasoning and
forgetting capacity of the predictive and unlearning module.

Specifically, the predictive module utilizes the cross-
entropy (CE) loss based on the output of the frozen model
to preserve its reasoning capability. Simultaneously, it lever-
ages Kullback-Leibler divergence (KL) loss and the output

Algorithm 1: Adaptive HIN Selection

1: Initialize: HIN = ∅, ω = 0, ϵ = 0.1, µ =True;
2: Execute forward and inverse feature propagation based

on the Eq. (1) to obtain X̃, X̃′;
3: Calculate cosine similarity-based influence distance D

according to the Eq. (2);
4: while µ do
5: for node u in ∆V , node v in V/∆V do
6: if Dv ≤ ϵ and v ∈ N (l)

u then
7: HIN = HIN ∪ v;
8: end if
9: end for

10: Calculate the maximum Dmax in HIN, µ =False;
11: if Dmax ̸= ω then
12: ω = Dmax, ϵ = ϵ+ 0.1, µ =True;
13: end if
14: end while

of the unlearning module to eliminate the impact of unlearn-
ing entities on the original model. Remarkably, benefiting
from the initialization of the original model, the predictive
module already possesses commendable predictive perfor-
mance for non-unlearning entities. However, to mitigate the
impact of unlearning entities, it is crucial to remove the re-
lated knowledge in HIN (KL loss) while maintaining their
predictive accuracy (CE loss). Hence, we narrow down the
optimization scope of the predictive module from all non-
unlearning entities to HIN, which aligns with our dual ob-
jectives of unlearning and efficiency improvement.

Lp =
∑

u∈HIN

LCE

(
Ŷu, Ỹu

)
+

∑
v∈HIN

LKL(Ŷ
⋆
v , Ŷv). (5)

For the unlearning module, it utilizes the reverse CE loss
to enhance its forgetting capability for unlearning entities.
Meanwhile, it leverages the KL loss and the output of the
predictive module to ensure the predictive performance

Lu =−
∑

u∈∆V(X ,E)

LCE

(
Ŷ⋆

u, Ỹu

)
+

∑
v∈∆V(X ,E)

LKL(Ŷv, Ŷ
⋆
v). (6)

Based on Eq. (5) and Eq. (6), in the perspective of mutual
evolution, we formulate the overall optimization objective in
MEGU to achieve κ-based flexible unlearning

L = Lp + κLu. (7)

Experiments
In this section, we conduct a thorough evaluation of MEGU.
We commence by introducing 9 benchmark datasets and
baselines. Then, we present the methodology used to eval-
uate the effectiveness of GU. Details about the experimental
setup can be found in (Li et al. 2023)A.1-A.4. In general, we
aim to address following questions: Q1: Compared to exist-
ing GU strategies, can MEGU achieve state-of-the-art per-
formance? Q2: If MEGU is effective, where do its reason-
ing and forgetting capabilities come from? Q3: Does MEGU
really achieve mutual evolution between the predictive mod-
ule and unlearning module? For more extended experiments
and discussions please refer to (Li et al. 2023)A.5-A.6.



Backbone Strategy Cora CiteSeer PubMed Photo Computer CS Physics
F1 Score Time F1 Score Time F1 Score Time F1 Score Time F1 Score Time F1 Score Time F1 Score Time

GCN

Retrain 85.6±0.3 14.5 75.6±0.2 41.0 86.5±0.1 71.4 91.2±0.1 39.2 83.1±0.2 62.7 91.4±0.1 43.9 95.2±0.1 169.1
Eraser-LPA 42.1±0.0 15.4 48.0±0.0 16.4 63.7±0.0 33.0 45.2±0.0 17.7 38.2±0.0 18.0 58.3±0.0 24.2 65.3±0.0 35.5

Eraser-KMeans 48.0±0.0 14.7 39.6±0.0 15.7 64.4±0.0 32.1 54.4±0.0 17.9 40.4±0.0 17.9 67.0±0.0 22.1 73.5±0.0 33.8
GUIDE-SR 79.2±0.5 10.0 74.0±0.1 11.6 85.2±0.0 27.9 80.5±0.1 5.1 74.8±0.1 9.2 85.6±0.1 11.2 91.6±0.1 23.2
GUIDE-Fast 79.0±0.2 8.9 73.6±0.0 12.4 85.1±0.0 28.0 80.7±0.0 5.3 75.9±0.0 9.1 85.4±0.0 11.1 91.4±0.0 23.0

GIF 83.8±0.3 0.3 73.9±0.2 0.4 85.4±0.6 0.5 89.8±0.3 0.3 83.2±0.3 0.3 90.5±0.2 0.4 93.8±0.1 0.5
GNNDelete 81.7±0.6 1.1 72.8±0.4 1.1 85.0±0.4 2.0 88.6±0.4 1.2 83.4±0.2 1.3 90.7±0.5 1.4 93.0±0.6 1.8

MEGU 85.2±1.1 0.2 75.8±0.0 0.2 86.9±0.0 0.3 92.2±0.1 0.2 85.6±0.0 0.2 92.0±0.0 0.3 95.9±0.0 0.6

GAT

Retrain 86.3±0.5 17.0 77.3±0.4 43.0 86.8±0.2 80.9 91.8±0.3 38.8 83.5±0.3 63.2 91.5±0.2 49.9 95.4±0.2 198.5
Eraser-LPA 44.6±0.0 23.3 48.5±0.0 23.2 62.5±0.0 55.4 48.7±0.0 28.5 40.7±0.0 28.4 61.3±0.0 36.9 67.2±0.0 63.2

Eraser-KMeans 48.3±0.0 22.8 39.3±0.0 23.9 64.8±0.0 52.0 66.0±0.0 28.0 43.0±0.0 28.3 70.0±0.0 36.1 74.0±0.0 59.6
GUIDE-SR 76.5±0.5 14.6 74.1±0.2 19.2 83.2±0.0 38.2 81.6±0.1 7.6 76.5±0.2 9.6 84.9±0.0 13.0 89.7±0.1 29.7
GUIDE-Fast 78.2±0.3 15.9 74.2±0.2 18.2 83.4±0.1 37.8 80.7±0.1 6.3 76.3±0.2 9.1 84.8±0.1 13.8 89.6±0.0 28.3

GIF 82.8±0.6 0.9 73.6±0.2 0.8 84.5±0.1 0.9 88.3±0.2 0.9 82.6±0.3 1.1 88.3±0.1 0.9 92.2±0.1 1.8
GNNDelete 83.0±0.8 1.7 73.0±0.5 1.5 84.7±0.2 2.7 88.5±0.4 1.4 82.0±0.3 1.6 88.5±0.4 1.8 92.4±0.2 2.9

MEGU 86.4±0.1 0.3 77.8±0.1 0.3 86.2±0.0 0.4 91.5±0.1 0.3 83.8±0.1 0.5 91.7±0.1 0.7 95.6±0.1 1.5

Table 2: Transductive performance and training efficiency on the node unlearning. The best result is bold.

Backbone Strategy PPI Flickr
F1 Score Time F1 Score Time

GraphSAGE

Retrain 56.65±0.20 249.2 50.64±0.33 478.5
GIF 54.23±0.16 1.4 48.66±0.44 1.7

GNNDelete 54.84±0.22 9.2 48.50±0.56 12.6
MEGU 57.48±0.18 1.3 50.32±0.36 1.0

GraphSAINT

Retrain 55.32±0.13 212.1 49.62±0.23 402.8
GIF 53.28±0.04 0.5 48.10±0.53 1.0

GNNDelete 52.85±0.07 5.7 47.83±0.42 4.8
MEGU 55.64±0.37 1.0 49.95±0.54 0.5

Cluster-GCN

Retrain 56.37±0.82 221.1 51.23±0.05 425.7
GIF 53.15±1.67 0.6 48.72±0.69 1.0

GNNDelete 54.24±0.98 5.7 48.55±0.53 4.9
MEGU 57.39±1.02 0.2 50.24±0.96 0.4

Table 3: Inductive performance on the node unlearning.

Strategy PubMed Flickr
Feature Edge Feature Edge

Retrain 86.85±0.1 87.13±0.1 48.29±0.2 48.14±0.2
Eraser-LPA 64.28±0.0 64.26±0.0 43.51±0.0 42.63±0.0

Eraser-Kmeans 67.63±0.0 65.97±0.1 43.18±0.1 42.45±0.0
GUIDE-SR 83.73±0.1 82.25±0.0 46.90±0.0 47.02±0.0
GUIDE-Fast 83.54±0.0 82.32±0.1 46.78±0.1 46.93±0.1

CGU 79.70±0.1 78.31±0.0 OOT OOT
GIF 83.05±0.0 82.10±0.1 47.09±0.1 47.04±0.2

Projector 80.79±0.1 81.64±0.1 47.06±0.1 47.13±0.1
GNNDelete 83.86±0.1 82.17±0.1 47.12±0.1 47.22±0.0

MEGU 86.95±0.0 86.80±0.0 48.35±0.2 48.10±0.2

Table 4: Predictive performance with SGC backbone.

Experimental Setup
Datasets. We split all datasets following the guidelines of
recent GU approaches (Cheng et al. 2023; Wu et al. 2023),
which randomly split nodes into 80% for training and 20%
for testing. For a comprehensive overview of datasets and
baselines, please refer to (Li et al. 2023)A.1.

Baselines. We list Retrain and compare MEGU with
the following baselines: (1) GraphEraser (Chen et al.
2022) and GUIDE (Wang, Huai, and Wang 2023); (2)
CGU (Chien, Pan, and Milenkovic 2022) and GIF (Wu et al.
2023); (3) Projector (Cong and Mahdavi 2023a) and GN-
NDelete (Cheng et al. 2023). For details regarding the base-
lines, please refer to (Li et al. 2023)A.2. Unless otherwise
stated, we adopt GCN as the backbone and the node un-
learning by default to present results. Notably, we experi-
ment with multiple backbone GNNs in separate modules to
validate the generalizability of MEGU and avoid complex
charts, making the results more reader-friendly. To allevi-
ate the randomness and ensure a fair comparison, we repeat
each experiment 10 times to present unbiased performance.
We customize the training epochs for each GU strategy to
their respective optimal values, ensuring convergence and
reporting the average training time (second report).

Unlearning Targets. In our experiments, GU requests
are categorized as follows: (1) Feature-level: We randomly
select 10% of nodes from the training set and mask the
full-dimensional features. (2) Node-level: We randomly se-
lect 10% of nodes from the training set and remove related
edges. (3) Edge-level: We randomly select 10% of edges
from the training graph. Then, the two nodes connected by
the unlearning edges are considered unlearning entities. Af-
ter that, we evaluate the performance of the predictive mod-
ule using the Micro-F1 score for the semi-supervised node
classification, being a harmonic mean of precision and re-
call, which places greater emphasis on each individual sam-
ple. As a result, it effectively captures instances of classifi-
cation errors, making it well-suited for evaluating such un-
learning cases. Additionally, to verify the forgetting ability
of GU strategies, we adopt the Edge Attack. In this strategy,
we randomly select two nodes with different labels as tar-
gets for adding noisy edges, which are treated as unlearning
entities. Intuitively, as a method achieves better unlearning,
it tends to effectively mitigate the negative impact of noisy
edges on predictive performance, thus ensuring robustness.
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Figure 2: Edge Attack performance on Cora. The x-axis is the ratio of noisy edges to the existing edges.

Model Component Cora CiteSeer
Feature Edge Feature Edge

GCN
w/o Ada. HIN 87.8±0.6 87.3±0.4 74.6±0.2 76.7±0.3
w/o Topo. UP 87.3±0.4 87.6±0.3 74.5±0.2 76.0±0.1

MEGU 88.5±0.3 78.5±0.3 75.8±0.3 77.8±0.1

GAT
w/o Ada HIN 83.2±0.3 84.8±0.5 72.8±0.3 73.8±0.2
w/o Topo. UP 82.8±0.2 83.4±0.1 73.1±0.1 73.6±0.1

MEGU 84.0±0.3 85.3±0.2 74.3±0.2 74.8±0.1

GIN
w/o Ada HIN 85.1±0.3 84.3±0.4 74.4±0.2 74.9±0.2
w/o Topo. UP 85.7±0.1 83.4±0.2 74.3±0.1 74.7±0.1

MEGU 86.5±0.2 75.1±0.1 75.5±0.2 75.6±0.1

Table 5: Ablation study on three representative backbones.

Performance Comparison
To answer Q1 from the perspective of the predictive module,
we report the transductive performance in Table 2, which
validates that MEGU consistently outperforms baselines.
For instance, on the Cora, MEGU exhibits a remarkable av-
erage improvement of 2.4% over the SOTA approach. No-
tably, the under-performing results of shard-based methods
(i.e., GraphEraser and GUIDE) align with their original pa-
pers and are likely attributed to the heavy reliance on the
partition quality, making them less suitable for scenarios in-
volving substantial element forgetting (10% unlearning en-
tities). Besides, the results presented in Table 3 consistently
demonstrate the superior performance of MEGU over all
baselines in the inductive setting, underscoring MEGU’s re-
markable ability to predict unseen nodes. Furthermore, we
include GU baselines relying on linear model assumptions
in Table 4. Experimental outcomes demonstrate that MEGU
outperforms the most competitive methods, achieving aver-
age performance gains of 1.7% and 2.3% for feature and
edge unlearning. This observation demonstrates that MEGU
can achieve satisfactory performance without relying on a
powerful backbone. Its potential for widespread application
in linear GNNs is evident, showcasing its generalizability.

Remarkably, in some cases, MEGU outperforms training
GNN from scratch (Retrain). This is because unlearning re-
quests involve the removal of existing graph entities, which
could have a negative impact on the Retrain. Fortunately,
MEGU’s mutual evolution mechanism has the capability to
capture such data variations and can mitigate the perfor-
mance limitations through its optimization framework.

Unlearning Capability
To answer Q1 from the perspective of the unlearning mod-
ule, we visualize the forgetting capability of various GU
strategies under the Edge Attack setting through Fig. 2. Intu-
itively, as the number of noisy edges increases, the accuracy
of the unlearning predictions tends to decline. Therefore,
for a clear comparison, we introduce vanilla train, a base-
line retrained directly on the noisy graph. In the context of
Edge Attack, we treat noisy edges as unlearning entities. If a
GU approach possesses robust unlearning capabilities, it can
mitigate the adverse effects caused by noisy edges, thereby
ensuring consistent and satisfactory performance. From the
experimental results, we observe that GNNDelete and GIF
do not consistently achieve optimal unlearning performance,
whereas MEGU consistently outperforms other baselines in
terms of unlearning abilities. This advantage is particularly
prominent in scenarios where GCN, GIN, and SGC are em-
ployed as backbones. Notably, GAT, which heavily relies on
edge-based attention mechanisms for information aggrega-
tion, is more susceptible to the negative impact of edge at-
tacks, resulting in performance degradation.

Training Efficiency
Since GU strategies allow for efficient inference through
quick forward computation post-training. Thus, we report
the average training time in Table 2 and Table 3. In this re-
gard, the pre-training time of the backbone is not included
in the report but we incorporate the time required for shard
partitioning. Notably, to ensure a fair comparison, we cus-
tomize the training epochs for each GU strategy, guarantee-
ing model convergence and optimal performance. Accord-
ing to the results, our findings are as follows: (1) Shard-
based GU methods and retraining GNN from scratch incur
significantly long training time; (2) Benefiting from the mu-
tual evolution, MEGU achieves model convergence and su-
perior performance within a much shorter time frame (30 -
50 epochs) compared to other strategies. (e.g., GNNDelete
requires over 200 epochs) This observation is also validated
by the experimental results presented in Fig. 3. Additionally,
Table 4 demonstrates that CGU encounters the OOT (Out of
Time) error when dealing with relatively larger-scale graphs
(i.e. Flickr), with instances of runtime exceeding 3600 sec-
onds. This arises due to the substantial computational over-
head inherent in the process of performing original model
corrections based on the gradient Hessian matrix.
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Figure 3: The training trajectories of MEGU and its variants without the mutual evolution design on the same loss landscape.
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Figure 4: Sensitivity analysis on GAT backbone.

Ablation Study and Sensitivity Analysis
To answer Q2, we investigate the contributions of Adaptive
HIN Selection (Ada. HIN) and Topology-aware Unlearn-
ing Propagation (Topo. UP) in MEGU. For Ada. HIN, it
constructs a tailored loss function for the predictive mod-
ule. This ensures the preservation of the predictive mod-
ule’s reasoning ability. Results in Table 5 show significant
performance improvement with Ada. HIN. For instance,
in the CiteSeer feature unlearning case using GAT as the
backbone, F1 Score increases from 72.8% to 74.3%. For
Topo. UP, it integrates both modules to generate predictions
and strengthens their interaction through the mutual evolu-
tion loss. Experimental results in Table 5 highlight Topo.
UP’s effectiveness in enhancing prediction quality for non-
unlearning entities, especially in the GAT backbone. This
aligns with our intent to leverage the topology for GU.
Topo. UP’s propagated features excel in capturing interac-
tions across receptive field sizes, aided by self-supervision.

In this part, we present the sensitivity analysis in Fig. 4 to
further answer Q2 from the perspective of the hyperparam-
eter settings (see Eq. (7)). Based on the experimental results
shown in Fig. 4, we notice that MEGU’s predictive perfor-
mance on non-unlearning entities in feature, node, and edge-
level downstream tasks tends to decrease or exhibit unstable
fluctuations with increasing κ. This outcome is attributed to
the dilution effect on Lp, which aims to uphold the predic-
tive strength of the predictive module. Conversely, as the
emphasis on MEGU’s unlearning ability represented by Lu

grows, its performance against Edge Attack progressively
improves. These findings offer practical intuition for select-
ing an appropriate κ in real-world scenarios.

Mutual Evolution in Graph Unlearning
To answer Q3, we visualize the convergence insights into
MEGU and its non-mutual evolution variant (MEGU with-
out ME) in the same loss landscape (Li et al. 2018). Fig. 3
displays the training trajectories of these two variants, il-
lustrating the convergence states under different training
frameworks. In our experimental setup, MEGU without ME
implies that the predictive module and unlearning module
are independent. Specifically, we remove the additional su-
pervision signal P̂ provided by the predictive module in
topology-aware unlearning propagation, as well as the KL
Loss that encourages interaction between these two modules
in the optimization objective. At this time, P̂⋆ in Eq. (3)
is generated by the original frozen model. Building upon
this, we observe that the design of mutual evolution signif-
icantly reduces the convergence difficulty and accelerates
the convergence speed. This can be validated by the dis-
tance between the initial training trajectory point and the
global optimal center point, as well as the trajectory itself.
Moreover, this observation further elucidates the reason be-
hind MEGU’s high training efficiency shown in Table 2 and
Table 3, as it achieves optimal performance with a mini-
mal number of training epochs. In a nutshell, the mutual
evolution-based GU framework not only mitigates the im-
pact of unlearning entities while improving predictions for
non-unlearning entities but also maintains efficient compu-
tational performance and flexibility.

Conclusion
In this paper, we first address the data removal requirements
in graph-based AI applications and provide a new perspec-
tive of two crucial modules to analyze the existing GU ap-
proaches. Building upon this, we provide reasonable anal-
ysis for the essential conditions that GU should satisfy, as
illustrated in Table 1. Then, we propose a new framework
to achieve effective and general GU via a mutual evolution
design. The key insight of our approach lies in leveraging
the predictive module’s inference capability and the unlearn-
ing module’s forgetting ability within a unified optimization
framework, enabling mutual benefits between the two mod-
ules. A promising direction for future GU studies is to ex-
plore traceable message-passing mechanisms to further mit-
igate the impact of unlearning entities and improve predic-
tive performance, allowing both modules to benefit from it.
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Outline
The appendix is organized as follows:
A.1 Dataset Description.
A.2 Compared Baselines.
A.3 Hyperparameter settings.
A.4 Experiment Environment.
A.5 Sparsity Challenge in Feature Unlearning.
A.6 Unlearning Challenges at Different Scales.

A.1 Dataset Description
The 9 statistics of graph benchmark datasets and feature,
node, edge-level unlearning requests are shown in Table.6.
Moreover, the description of all datasets are listed below:

Cora, CiteSeer, and PubMed (Yang, Cohen, and
Salakhutdinov 2016) are three citation network datasets rep-
resenting undirected graphs, where nodes represent papers
and edges represent citation relationships between papers.
The node features are word vectors, where each element is
a binary variable (0 or 1) indicating the presence or absence
of each word in the paper.

Coauthor CS and Coauthor Physics (Shchur et al. 2018)
are co-authorship graphs based on the Microsoft Academic
Graph. Here, nodes are authors, that are connected by an
edge if they co-authored a paper; node features represent
paper keywords for each author’s papers, and class labels
indicate the most active fields of study for each author.

Amazon Photo and Amazon Computers (Shchur et al.
2018) are segments of the Amazon co-purchase graph.
Nodes represent goods and edges represent that two goods
are frequently bought together. Given product reviews as
bag-of-words node features, the task is to map goods to their
respective product category.

PPI (Zeng et al. 2020) stands for Protein-Protein Interac-
tion (PPI) network, where nodes represent protein. If two
proteins participate in a life process or perform a certain
function together, it is regarded as an interaction between
these two proteins. Complex interactions between multiple
proteins can be described by PPI networks.

Flickr (Zeng et al. 2020) dataset originates from the
SNAP, they collect Flickr data and generate an undirected
graph. Nodes represent images, and edges connect images
with common properties like geographic location, gallery, or
shared comments. Node features are 500-dimensional bag-
of-words representations extracted from the images. The la-
bels are manually merged from the 81 tags into 7 classes.

A.2 Compared Baselines
Backbone GNNs. To evaluate the effectiveness of various
GU strategies, we have selected commonly used GNNs as
the backbone models to simulate scenarios where unlearn-
ing requests are received during training. The chosen models
encompass GCN (Kipf and Welling 2017), GAT (Veličković
et al. 2018), GraphSage (Hamilton, Ying, and Leskovec
2017), GIN (Xu et al. 2019), SGC (Wu et al. 2019), Cluster-
GCN (Chiang et al. 2019), and GraphSAINT (Zeng et al.
2020). These models represent successful recent designs in
graph learning, widely applicable in both transductive and

inductive settings. Furthermore, various backbone GNNs
can be employed to assess the generalization capabilities
of diverse GU approaches. The salient characteristics of all
baseline models are outlined below:

GCN (Kipf and Welling 2017) introduces a novel ap-
proach to graph-structured data that uses an efficient layer-
wise propagation rule that is based on a first-order approxi-
mation of spectral convolutions on graphs.

GAT (Veličković et al. 2018) utilizes a graph attention
layer to assign varying importance to different nodes within
a neighborhood, thus better-representing graph information.

GIN (Xu et al. 2019) develops a simple graph learning
architecture with MLP that is as powerful as the Weisfeiler-
Lehman graph isomorphism test.

SGC (Wu et al. 2019) simplifies GCN by removing non-
linearities and collapsing weight matrices between consecu-
tive layers, bringing higher running efficiency.

GraphSage (Hamilton, Ying, and Leskovec 2017) is an
inductive framework that leverages neighbor node attribute
information to efficiently generate representations.

Cluster-GCN (Chiang et al. 2019) is a novel GNN de-
signed for training with Stochastic Gradient Descent (SGD)
by leveraging the graph clustering structure.

GraphSAINT (Zeng et al. 2020) is a novel inductive
learning method that enhances training efficiency and accu-
racy through graph sampling.

Graph Unlearning strategies. In our experimental study,
we delineate the characteristics and provide descriptions of
GU strategies that have been proposed in recent years:

GraphEraser (Chen et al. 2022) propose a novel ma-
chine unlearning framework tailored to graph data. Its con-
tributions include two novel graph partition algorithms and
a learning-based aggregation method.

GUIDE (Wang, Huai, and Wang 2023) improves Gra-
phEraser by the graph partitioning with fairness and balance,
efficient subgraph repair, and similarity-based aggregation.

CGU (Chien, Pan, and Milenkovic 2022) presents the un-
derlying analysis of certified GU using SGC and their gen-
eralized PageRank (GPR) extensions as examples.

GIF (Wu et al. 2023) incorporates an additional loss term
for influenced neighbors, considering structural dependen-
cies, and provides a closed-form solution for better under-
standing the unlearning mechanism.

Projector (Cong and Mahdavi 2023a) achieves unlearn-
ing by projecting the weights of the pre-trained linear model
onto a subspace that is unrelated to the unlearning entities.

GNNDelete (Cheng et al. 2023) is a novel model-agnostic
layer-wise operator designed to optimize topology influence
in the graph unlearning requests.

A.3 Hyperparameter settings
The hyperparameters in the backbones and GU approaches
are set according to the original paper if available. Other-
wise, we perform an automatic hyperparameter search via
the Optuna (Akiba et al. 2019). Specifically, we explore the
optimal shards within the ranges of 20 to 100. The weight
coefficients of the loss function and other hyperparameter is
get by means of an interval search from {0, 1} or the interval
suggested in the original paper. For our proposed MEGU,



Table 6: The statistics of the experimental datasets.

Dataset #Nodes #Features #Edges #Classes #Feat./Node/Edge Unlearn Task type Description

Cora 2,708 1,433 5,429 7 216/216/802 Transductive citation network
CiteSeer 3,327 3,703 4,732 6 266/266/736 Transductive citation network
PubMed 19,717 500 44,338 3 1,577/1,577/5,426 Transductive citation network

Amazon Photo 7,487 745 119,043 8 612/612/5,889 Transductive co-purchase graph
Amazon Computers 13,381 767 245,778 10 1100/1100/10651 Transductive co-purchase graph

Coauthor CS 18,333 6,805 81,894 15 1,466/1,466/9,081 Transductive co-authorship graph
Coauthor Physics 34,493 8,415 247,962 5 2,759/2,759/21,712 Transductive co-authorship graph

PPI 56,944 50 818,716 121 4,555/4,555/39,993 Inductive protein interactions network
Flickr 89,250 500 899,756 7 7,140/7,140/47,449 Inductive image network
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Figure 5: Performance of different feature mask ratios on Photo and Computers with GCN and GAT backbone.

Table 7: Detailed hyperparameter setting on all datasets.

Dataset unlearning rate κ α1 α2

Cora 0.05 0.01 0.8 0.5
CiteSeer 0.09 0.01 0.24 0.12
PubMed 0.04 0.09 0.18 0.12

Amazon Photo 0.065 0.06 0.94 0.2
Amazon Computers 0.001 0.01 0.05 0.05

Coauthor CS 0.007 0.01 0.03 0.13
Coauthor Physics 0.04 0.1 0.02 0.27

PPI 0.03 0.08 - -
Flickr 0.001 0.01 0.05 0.05

the coefficient of personalized PageRank in the context of
the topology-aware unlearning propagation process (α) and
loss function (κ) are explored within the ranges of 0 to 1.
More details can be referred to Eq. (3) and Eq. (7).

To help reproduce the experimental results, we provide
the hyperparameter settings in Table 7, where α1 and α2

correspond to the Ev and Ŷv +Ev propagation coefficients
in Eq. (3). The hyperparameters presented in this table are
applicable to all backbones mentioned in this paper. Since
the PPI dataset is multi-label classification task, in order to
avoid propagating high bias on the graph due to multi-label
classification, we did not use the Topo. UP module when

processing this dataset, therefore the PPI dataset does not
have the corresponding α1 and α2. In addition, we use SGD
as the optimizer and set the number of epochs to 100. Spe-
cific experimental strategies and examples can be found in
https://github.com/xkLi-Allen/MEGU.

A.4 Experiment Environment
Experiments are conducted with Intel(R) Xeon(R) CPU E5-
2686 v4 @ 2.30GHz, and a single NVIDIA GeForce RTX
3090 with 24GB GPU memory. The operating system of the
machine is Ubuntu 20.04.5. As for software versions, we use
Python 3.8.10, Pytorch 1.13.0, and CUDA 11.7.0.

A.5 Sparsity Challenge in Feature Unlearning
In the context of feature sparsity, we posit that the feature
representation of labeled nodes is partially incomplete. In
the context of feature unlearning, these labeled nodes corre-
spond to unlearning entities are afflicted by feature-related
noise, while the incompleteness of feature representation
aligns with the objective of feature unlearning. This necessi-
tates mitigating the impact of unlearning features on other
entities within the graph learning paradigm. In the main
text, we consider masking all dimensions of features for the
unlearning nodes to evaluate the feature unlearning perfor-
mance of different GU strategies. However, such a choice
may not encompass the entirety of the feature unlearning.
To further elucidate the superior performance of MEGU in
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Figure 6: Performance of multiple unlearning entities and different unlearning ratios on Photo and Computer.

the realm of feature unlearning, we expand the experimen-
tal scope of the feature unlearning. Multiple experiments are
conducted using feature masking ratios ranging from 0.1 to
1, and the obtained results are juxtaposed with those of the
most competitive GIF, as illustrated in Fig. 5.

Building upon this, our findings can be summarized as
follows: (1) The feature mask ratio exerts a substantial in-
fluence on GU performance. As the feature mask ratio in-
creases, a diminishing and unstable performance trend be-
comes evident across various GU strategies, particularly
pronounced in the context of GIF. This phenomenon is at-
tributed to the heightened feature mask ratio intensifying
the unlearning cost within the GU framework, thereby pre-
senting a complex trade-off between predictive accuracy for
non-unlearning entities and the efficacy of forgetting un-
learning entities. (2) Notable advantages of MEGU. As de-
picted in Fig. 5, a clear trend emerges wherein the perfor-
mance of the unlearned model derived from GIF demon-
strates a decline with increasing feature mask ratio. In con-
trast, the performance of the unlearned model obtained

through MEGU maintains a consistently superior level. This
resilience is attributed to MEGU’s incorporation of a mu-
tual evolution mechanism, which orchestrates a harmonious
equilibrium between the predictive and unlearning modules.

A.6 Unlearning Challenges at Different Scales

In our experimental setup outlined in the main text, we adopt
a default configuration wherein 10% of the graph elements
are chosen as unlearning entities. In order to comprehen-
sively evaluate the efficacy of MEGU across varying un-
learning scales, we present additional experimental results
in Fig. 6. According to our experiments, we observe that fea-
ture unlearning demonstrates with much less impact by the
scales of unleanring tasks compared to node and edge un-
learning. This discrepancy arises from the nuanced process
associated with node unlearning, wherein the edges directly
connected to the unlearning node are expunged, thereby dis-
rupting the topology and inducing performance deteriora-
tion. In the edge unlearning scenarios, we remove the un-
learning edges and treat the nodes connected through those



edges as the entities, entailing a heightened unlearning cost.
In summation, feature unlearning induces a comparatively
milder impact on predictive performance for non-unlearning
entities when compared to the other unlearning scenarios.

MEGU excels in accommodating diverse unlearning re-
quests. Most evidently, as the unlearning ratio increases, an
inevitable decline in the performance of the unlearned model
becomes apparent across the three GU methodologies. This
decline is attributed to the increased ratio of forgetten data,
which thereby magnifies the negative impact on the model
predictive performance, and consequently leads to a grad-
ual erosion of the performances. In this context, it becomes
evident that MEGU outperforms GNNDelete and GIF un-
der identical unlearning conditions. These empirical find-
ings and analyses underscore MEGU’s capability to address
unlearning tasks at the node, edge, and feature levels.


