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ABSTRACT

In this paper, we have proposed a new pipeline for landscape analysis of machine
learning datasets that enables us to better understand a benchmarking problem
landscape, allows us to select a diverse benchmark datasets portfolio, and reduce
the presence of performance assessment bias via bootstrapping evaluation. Com-
bining a large multi-domain representation corpus of time-series specific features
and the results of a large empirical study of time-series classification (TSC) bench-
mark, we showcase the capability of the pipeline to point out issues with non-
redundancy and representativeness in the benchmark. By observing discrepancy
between the empirical results of the bootstrap evaluation and recently adapted
practices in TSC literature when introducing novel methods we warn on the po-
tentially harmful effects of tuning the methods on certain parts of the landscape
(unless this is an explicit and desired goal of the study). Finally, we propose a set
of datasets uniformly distributed across the landscape space one should consider
when benchmarking novel TSC methods.

1 INTRODUCTION

Reliable and unbiased algorithm performance evaluation is paramount in machine learning (ML)
research, due to its indispensable role in the identification of the strengths and weaknesses of exist-
ing algorithms, tracking the improvements made by newly introduced algorithms, and determining
directions for future research efforts (Cawley & Talbot, 2010). Such an evaluation is conditioned
on the existence of high-quality benchmark datasets, which are typically subjected to the require-
ments of high representativeness, non-redundancy, scalability, reusability, experimental verification,
and inclusion of both positive and negative cases (Sarkar et al., 2020; Schaafsma & Vihinen, 2018;
Bartz-Beielstein et al., 2020). The role of representativeness is especially highlighted by the fact that
low diversity of instances in benchmark libraries can lead to developing algorithms that are tuned
to achieve good results on the benchmark instances, without taking into account their generalization
to diverse or previously unseen instances, and making sure the performance is invariant to certain
instance properties (Smith-miles et al., 2014).

The necessity of generating a time series benchmark has been claimed for a long period. Eamon
et al. (Keogh & Kasetty, 2003) argue that the low quality of the empirical evaluation is manifest-
ing itself in different tasks like clustering indexing, classification, and segmentation. Furthermore,
the authors identify data bias, defined as the conscious or unconscious use of a particular testing
dataset to confirm the desired finding, to be one of the main obstacles towards fair evaluation and
comparison of time series algorithms. They further show that many of the advances claimed in
the literature have little generalizability to other problems and introduce the need for assembling
large, heterogeneous benchmark datasets, which provide good coverage of the entire spectrum of
time series properties, such as stationarity, smoothness, symmetry, among other relevant time series
properties. Since then, efforts have been dedicated to mitigating the data bias issue in the evaluation
of time series algorithms by increasing the quantity of the available benchmark datasets. However,
the part that is often overlooked is the evaluation of the extent to which the benchmarks satisfy the
previously introduced quality requirements and which parts from the problem landscape they cover.

The University of California, Riverside (UCR) repository of time series classification and clustering
datasets (Dau et al., 2018), has been one of the major contributors to the improvement of the evalua-
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tion of algorithms tackling the multi-class classification task of time series data. Over the years, the
repository has gradually been expanded, and currently, it contains 128 datasets. In a recent study,
the authors of (Bagnall et al., 2016) reported one thousand published papers that made use of at least
one of the datasets in the repository (Dau et al., 2018). Because of its frequent use in evaluating
existing and newly introduced algorithms, the affirmation of its quality is of critical importance.

According to a survey done for the latest expansion of the UCR repository in 2018, the most active
researchers in the time series data mining community pointed out the following directions for further
improvement of the repository: the inclusion of longer time series, datasets of variable length, multi-
variable datasets, highly unbalanced datasets, and data sets with very small training sets, suitable for
benchmarking data augmentation techniques. This is an indicator that time series practitioners were
aware of the lack of representativeness in the benchmark, and proposed an expansion of the work
to address these concerns and other criticisms of the repository (Hu et al., 2015). We believe that
further investigation of the coverage of the time series properties provided by the benchmark is
required, to reveal potentially unknown areas of the feature space (i.e., the problem landscape) that
are over, or under-represented, i.e., to identify issues with non-redundancy and representativeness.

In this study, we introduce a general benchmark evaluation pipeline for landscape analysis of ML
datasets and we showcase its applicability on the UCR time series classification (TSC) datasets.
By generating a shared representation of the instances belonging to the different datasets within
the benchmark, we generate a problem vector space which enables us to perform a complementary
analysis of the benchmark, i.e. to determine the degree to which the instances from all datasets
complement each other to produce a better coverage of the problem benchmark landscape. Sampling
this problem space allows the generation of subsets of problem instances with reduced redundancy
and increased representativeness, which we use to identify potential discrepancies in the evaluation
of existing TSC algorithms and warn on the potentially harmful effects of tuning the methods on
certain parts of the landscape. The contributions of the paper can be summarized in the following:

• Introduce a general pipeline for analysis of problem space coverage by benchmark datasets.
• Evaluate the extent to which the UCR benchmark satisfies the quality requirements of non-

redundancy and representativeness.
• Provide directions for fairer evaluation of time series algorithms achieved by a careful

selection of the benchmark dataset portfolio.
• To select an algorithm that performs well across the entire landscape of dataset distribu-

tions, we should uniformly select a set of benchmark datasets; sample the same number of
datasets from all distributions, and then select the algorithm that performs the best.

• To select an algorithm that performs well for a specific application, first based on the shared
representations of the new dataset we should select the cluster that consists of datasets with
similar distributions and then select the best performing algorithm (and not look in all
dataset distributions).

2 RELATED WORK

Instance space analysis. The most closely related methodology with the pipeline introduced herein,
resides with the Instance Space Analysis (ISA) methodology (Smith-Miles et al., 2014). ISA is a
visualization methodology for benchmark evaluation that employs analysis of the distribution of
feature-vector representations of dataset instances to understand how instance characteristics af-
fect algorithm performance, analyzing the diversity of benchmark instances, identifying areas of
the instance space where certain algorithms perform better than others to support automated algo-
rithm selection. It further extends to generating instances that maximize the performance difference
between algorithms to highlight their strengths and weaknesses. ISA has been already tested for
different ML learning tasks including classification (Muñoz et al., 2017), regression (Muñoz et al.,
2021), and clustering (dos Santos Fernandes et al., 2021). Its application is also shown in different
problems such as car sequencing (Sun et al., 2020), rotating workforce scheduling (Kletzander et al.,
2020), and outlier detection (Kandanaarachchi et al., 2019). Several recent studies also addressed
the coverage of the single- and multi-objective optimization problems and investigate their distribu-
tion over the problem space to create more unbiased benchmark sets (Škvorc et al., 2020; Yap et al.,
2020; Lang & Engelbrecht, 2021). The main difference of the newly proposed pipeline with the
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ISA is that it performs analysis only in the feature space (i.e., the problem landscape), focusing only
on the distribution of the dataset over the problem space and not investigating the relations with the
performance space. This means that the analysis is not affected by the ML algorithms involved in
the analysis, and it helps understand the problem landscape no matter which ML algorithms it will
be further tested on.

TSC studies. We did an overview of 8 recent papers on TSC published over the last year (2020-
2021) (Anthony Bagnall & Keogh, 2021), where novel methods were introduced. We selected these
papers since we want to check what are the current most commonly-used benchmarking practices.
From the analysis conducted on these papers, we concluded that even though all of these papers
were published shortly after the latest update of the UCR archive (in 2018), the authors benchmark
the algorithms on the previous version, i.e., on the 85 datasets from the 2015 version of the archive,
which are all fixed-length univariate time series. From the 8 papers that we reviewed, four of them
(Cabello et al., 2020; Fawaz et al., 2020; Dempster et al., 2020; Shifaz et al., 2020) use the 2015
version of the UCR archive, one of which (Fawaz et al., 2020) uses an additional synthetic univariate
TSC dataset, intending to control the length of the time series data as well as the number of classes
and their distribution in time. Only one of these four studies (Dempster et al., 2020) performs an
additional evaluation of their proposed methodology on the newly added 43 datasets to the UCR
archive 2018 version. An important thing to note here is that the benchmark analyses on the UCR
2018 version archive are done on 112 out of the 128 datasets, removing any datasets that are unequal
length or contain missing values, a summary of these 112 datasets is given in (Matthew Middlehurst,
2021) 1. An additional change that is common (Middlehurst et al., 2021; 2020a;b) is removing the
dataset Fungi as it only provides a single train case for each class. From the performed analysis,
we concluded that the most commonly-used benchmarking approach is to involve all datasets that
are available in some version of the UCR repository and then to perform statistical analysis of
algorithms’ performance achieved on them.

3 LANDSCAPE ANALYSIS PIPELINE

Figure 1 presents the proposed pipeline for landscape analysis of ML datasets. It consists of three
parts: i) defining a shared representation - where data instances characteristics (i.e., features) are
calculated (i.e., feature extraction) to define a shared representation across different datasets; ii)
complementary analysis - where the data instances are clustered to find similar instances (either from
the same or different datasets) that cover the same problem space. This analysis helps us understand
how instances from different datasets complement each other to produce a good benchmark; and
iii) bootstrapping statistical evaluation - where the landscape analysis results are used to select a
portfolio of benchmark datasets to be involved in hypothesis testing of ML algorithms’ performance.

To demonstrate how the proposed pipeline is executed, we consider a use case in univariate time-
series analysis. The big boxes presented in the figure are the steps that are performed for an arbitrary
ML problem. The details inside the boxes are specific for the ML problem, i.e time-series classifi-
cation demonstrated herein. In the remainder of the section, all parts from the pipeline are discussed
in more detail specifically for time-series data. In general, the applicability of the methodology
is related to the existence of shared representation (i.e., meta-features) for the ML problem being
solved, which is completely another goal and is not the focus of this paper. However, nowadays,
with the huge progress done in representation learning, finding a representation for different ML
learning tasks should not be a problem. The key idea behind the representation or finding a set of
shared meta-features across different datasets is projecting them to the same embedded space.

3.1 DEFINING A SHARED REPRESENTATION / FEATURE EXTRACTION

The landscape analysis methodology requires a shared representation of the instances of the different
datasets. The datasets originate from various application domains where different characteristics of
the time series can be relevant. For example, the presence or absence of a certain shape in the time
series (e.g., absence of the T-interval in supraventricular fibrillation) is relevant when distinguishing
the specifics of the different classes in classifying ECG signals (Kaplan Berkaya et al., 2018). In

1https://sites.google.com/view/icdm-cif/home
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Figure 1: Landscape analysis pipeline for ML datasets. (The icons in the flowchart are taken from
(S.L, 2021))

other datasets describing the problem of movement detection, for example, the features representing
the burstiness of the signal (e.g. increased temporal stationarity) are more important.

Owning to the diverse problems as part of the UCR TSC benchmark, we considered a rich set of
multi-domain time-series feature extractors collected in tsfresh (Christ et al., 2018). Tsfresh is a li-
brary for the extraction of global and local features from time series. The collected features originate
from diverse scientific areas, yielding diverse complementary views over the individual time series
instances. In general, we considered 8 groups of features, namely: statistical, information-theoretic,
model-based, stationarity, fractal, frequency-based (Fourier and wavelet transform), symbolic and
domain-specific features. In this work, we use 794 features for each dataset.

3.2 COMPLEMENTARY ANALYSIS

To assess the structural differences between the dataset instances we performed complementary
analysis over the instances. The complementary analysis is performed in two steps: learn a self-
organizing map (SOM) representation and cluster the learned SOM representations to find similar
data instances.

Self-Organizing Maps representation. We used SOM as a pre-step for the clustering since the
reduction of dimensionality and grid clustering is a natural fit when contrasting the quantifiable and
topographical structures of the instance representation space (Yang et al., 2012). Furthermore, it
fosters the interpretation of the similarities between the data instances (Kaski & Lagus, 1996). The
quality of the generated SOMs is evaluated in terms of the quantization error and the topographic
error. When training a SOM model, both measures are subject to minimization. Since the evaluation
is treated as a multi-objective optimization (i.e., two objectives) problem, the evaluation result is a
Pareto front, consisting of solutions that are pairs of quantization and topographic errors. To select
the best SOM, we adopt a decision-making strategy based on maximizing the amount of explained
variance as a quality measure.

Hierarchical clustering. The result of SOM is a map that consists of cells composed of the different
time-series instances that fall within. Each of the cells is represented by its unique prototypical
codebook. The number of SOM’s cells can be large, leading to over-specification of the shared
properties among the different instances. To foster the practical usage of the obtained mappings
(e.g. when accessing the performance of the different algorithms), we further clustered the SOM’s
codebooks. The codebooks were clustered using agglomerative hierarchical clustering. The cluster
that is obtained for each codebook is further assigned to all time-series data instances that belong to
it. Therefore, a higher level of specification of the instances is achieved. Ultimately, this improves
the interpretability and comprehension of the landscape analysis.

3.3 STATISTICAL ANALYSIS

The output of the landscape analysis is a distribution of the datasets (i.e., clusters of datasets) across
the problem landscape. We used the clusters to select a benchmark datasets portfolio that will be
uniformly distributed over the whole problem landscape. Further, the selected portfolio will be
used to perform a statistical analysis of algorithms’ performance. Such kind of benchmark datasets
portfolio selection is required to provide a fair and robust evaluation, not biased by over or under
representativeness in the problem space that can be in favour only for some algorithms tuned on
those parts of the problem landscape.
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Coverage matrix. The distribution of the datasets across the problem landscape is given as a cov-
erage matrix. In the coverage matrix, the rows correspond to the different datasets and the columns
to the different clusters. As such, it provides information about the percentage of each dataset that
belongs to each cluster. Since the same dataset can be distributed across different clusters (i.e., have
some percentage of instances that belong to them), the datasets between clusters can overlap. To
assess the degree to which the benchmark can provide fair and robust evaluation, we need to ensure
uniform coverage over the problem landscape. To avoid redundancy of dataset selection across dif-
ferent clusters, the representative datasets for each cluster has to be identified. Therefore, we adopt
a thresholding technique that specifies the percentage of dataset instances that should be preserved
in the cluster, so the dataset to be considered as representative of the cluster itself.

Hypothesis testing. To test the outcome of the selected portfolio of benchmark datasets, 14 multi-
class classification algorithms were compared using accuracy as a performance measure. We would
like to point out that we are not training the multi-class classification time-series algorithms, but
using the algorithms’ performance results which are publicly available at (Ruiz et al., 2021). The
comparison was performed using a bootstrapping approach that involved hypothesis testing of the
algorithms’ performance (i.e., comparing the algorithms several times using different selected port-
folios of benchmark datasets). Comparing the algorithms several times on different samplings of the
representatives from each cluster, we tested the consistency and robustness of the statistical outcome
(i.e., whether there is statistical significance between the algorithms’ performance). The bootstrap-
ping approach allows us to explore if the results are robust if we repeat the hypothesis testing using
different benchmark datasets which uniformly cover the space of all possible dataset distributions.

4 EVALUATION

In this section, we provide details about the data and the conducted experiments. We conducted the
experiments using the UCR repository, containing 128 datasets (Dau et al., 2018).2

4.1 FEATURE EXTRACTION

To represent the instances into a shared representation space, we used 63 feature methods from the
tsfresh library. We parameterized the feature methods with their defaults, a procedure resulting in
794 features for each of the 128 datasets. Due to the scarcity of the datasets with unequal lengths
of the time series per class, as a potential artifact in the benchmark, 15 datasets were marginalized
out in the further experiments. In total, the benchmark was presented with 113 datasets (the list of
the datasets included in this study is available at our GitHub repository). Some of the features were
not computable for specific datasets and were removed. To account for the numerical vector space,
all the non-numeric features were removed. Finally, this resulted in a total of 324 features used in
the analysis. We did not perform any additional feature selection, because the instances are coming
from different time-series nature In addition, we tested the expressiveness of all features introduced
for representing time-series instances.

4.2 COMPLEMENTARY ANALYSIS

SOM’s representation. We used the kohonen R package (Wehrens et al., 2007; Wehrens & Kruis-
selbrink, 2018) to generate SOMs with a hexagonal topology and a radius in the range from 2.65 to
-2.65. The learning rate was initially set to 0.05 and it declined to 0.01, over a set of 100 updates,
and sum of squares was used as a distance function. These are the default values for the parameters
in the 3.0.10 version of the kohonen library. To find the best SOM for the data, we used a grid search
of square maps starting from 25 × 25 to 50 × 50. The range was chosen by apriori empirical ex-
perimentation, using Kohonen’s report formula as a starting formula for estimating the SOM’s grid.
To select the best SOM, the evaluation result is a Pareto optimal front (i.e., an approximation set),
with two non-dominated solutions (SOM configurations: 35×35 and 48×48). In the end, we chose
to work with 48× 48 SOM, since it has a higher percentage of explained variance (i.e., 89.49%).

2For reproducibility purposes, we open-source the code, data, and all results supplementing the paper
at https://anonymous.4open.science/r/stamp-C6F2/README.md. The experiments were
conducted on a system with CPU Intel i7 9750H and 16GB of memory running Ubuntu 18.04.
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With the selected configurations, we ended up with 2,304 cells represented with their codebooks.
The results for 35×35 SOM has a percentage of explained variance of 85.65%.

Hierarchical clustering. The SOM’s cells represented with their codebooks were further clustered
together with agglomerate hierarchical clustering (Python package scikit-learn version 0.24.2 (Pe-
dregosa et al., 2011)) to form fewer clusters. SOM clusters were merged based on average linkage
and the cosine distance between the codebook vectors. Cosine distance is often used when clus-
tering high-dimensional data due to being dependant only on the direction of vectors and not their
length. Compared to other commonly used distance measures (Euclidean, Manhattan, etc.), cosine
distance is not as sensitive to outliers (Shirkhorshidi et al., 2015) and was therefore selected as the
most appropriate distance measure. Due to the presence of outliers, using outlier-sensitive metrics
like euclidean distance produced one cluster with a majority of elements and few small clusters.
When performing hierarchical clustering decision has to be made on the number of clusters we
want as a result. Based on the maximization of the cosine distance silhouette scores (Rousseeuw,
1987), a metric that determines the clustering quality based on mean intra-cluster distance and the
mean nearest-cluster distance, one local optimal number of clusters was determined to be 6. Using
a larger number of clusters can produce clusters that have higher silhouette scores, where datasets
are fragmented/distributed over multiple clusters. However, to determine the number of clusters, we
also took into account the cluster purity and minimized the number instances from the same dataset
belonging to different clusters.

4.3 STATISTICAL EVALUATION

Coverage matrix. Figure 2 depicts the distribution of the datasets within the clusters, i.e. the
percentage of dataset instances that belong to each cluster. As can be seen from Figure 2, 46 of the
datasets belong only to one cluster. Using only one of these datasets will not cover the entire problem
landscape, and may lead to biased evaluation. We can also observe that one of the clusters contains
instances from a single dataset, which are 0.02% of the instances from the UWaveGestureLibraryZ
dataset. This indicates that there are parts of the landscape that are not thoroughly covered by
the benchmark, and introduces a direction for further extension with new instances. Clusters 1-6
contain instances from 65, 53, 7, 68, 55, and 1 unique dataset, respectively. On average, each cluster
contains instances from 41.5 different datasets, meaning that even though the benchmark contains a
large number of datasets, the instances in these datasets cover similar areas of the problem instance
space, i.e. the benchmark does not satisfy the non-redundancy quality requirement.

We can also observe that the instances from some datasets of similar nature are distributed in similar
clusters. For instance, all instances from datasets SemgHandGenderCh2, SemgHandMovementCh2,
SemgHandSubjectCh2 are assigned to cluster five, all instances from datasets ProximalPhalanx-
OutlineAgeGroup, ProximalPhalanxOutlineCorrect, ProximalPhalanxTW belong to cluster four,
all instances from datasets NonInvasiveFetalECGThorax1 and NonInvasiveFetalECGThorax2 are
in cluster one, etc. Even in the cases when not all instances from one dataset are distributed in a sin-
gle cluster, the instances from different datasets that are of the similar nature, are distributed in the
same clusters. Such examples are the datasets CricketX, CricketY, CricketX, and the datasets Freez-
erRegularTrain and FreezerSmallTrain. This suggests that the SOMs and the subsequent clustering
can capture related datasets and map them close in the vector space.

Hypothesis testing results. To select the representative datasets for each cluster that can further
be involved in the comparison, we set a threshold of 90% (see the coverage matrix, Figure 2). It
means that a dataset can be representative of a cluster, if the cluster contains at least 90% of the
dataset instances. The threshold was selected for illustration purposes. Using this criterion, we
selected 23, 9, 5, 25, 16 datasets for the first, second, third, fourth, and fifth cluster, respectively.
The sixth cluster was omitted from the sampling, since it did not have a representative dataset, and
it contained only 0.02% of the instances in the single dataset present. Different thresholds (i.e.,
50%, 80%, and 100%) were also tested and the results are available at our GitHub repository. We
excluded five datasets from the analysis, since not all algorithms had been tested on them: Fungi,
NonInvasiveFetalECGThorax1, HandOutlines, NonInvasiveFetalECGThorax2, and FordB.

Each comparison was performed using the Friedman test (R package scmamp version 0.2.55 (Calvo
& Santafe, 2015)) and the Nemenyi posthoc test (R package PMCMR version 4.3 (Pohlert, 2014))
was utilized to find if there is statistical significance between the performance of all pairwise com-
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Figure 2: Heatmap of the percentage of dataset instances belonging to each cluster.

parisons (i.e., multiple pairwise comparison p-values corrections). The significance level was set to
0.05. The Nemenyi test provides a p-value for each pair of algorithms tested on the selected datasets.
If the p-values are greater or equal than the significance level, the null hypothesis is not rejected (i.e.,
we translate this to 1), otherwise there is a statistical significance between the performance of the
compared pair of algorithms (i.e., we translate this to 0).

Table 1 presents the statistical outcome of the pair-wise comparison of algorithms when all datasets
are involved in the comparison (i.e., in our case 108, after removing 5 datasets for which some of the
algorithms are not tested). This is the most commonly used benchmarking practice across recently
published papers. Looking at the results, it seems that there are a lot of pairs of algorithms where
statistical significance is found. However, we need to be careful when involving all datasets, since
the datasets are not uniformly distributed over the landscape that is also visible from the coverage
matrix. This means that including more datasets from the same part of the landscape is in favour of
some of the algorithms and the statistical outcome is questionable.

Table 1: Statistical results obtained for each pair of algorithms where all 108 datasets are used in
the comparison. Each cell presents 1 or 0, where 1 indicates that there is no statistical significance
between the performance of the pair of algorithms and 0 otherwise.

BOSS Catch22 HIVE-COTEv1 0 InceptionTime ProximityForest RISE ROCKET ResNet S-BOSS STC TS-CHIEF TSF WEASEL
Catch22 0.00

HIVE-COTEv1 0 0.00 0.00
InceptionTime 0.00 0.00 1.00

ProximityForest 1.00 0.00 0.00 0.00
RISE 1.00 1.00 0.00 0.00 0.00

ROCKET 0.00 0.00 1.00 1.00 0.00 0.00
ResNet 1.00 0.00 0.00 0.00 1.00 0.00 0.00

S-BOSS 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00
STC 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00

TS-CHIEF 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00
TSF 1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

WEASEL 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
cBOSS 1.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

Since different algorithms may perform differently to different datasets distribution (i.e., clusters
of datasets), we performed the hypothesis testing comparing the algorithms on the representative
datasets from each cluster separately. For this purpose, we did this analysis for the first, fourth, and
fifth clusters when the threshold for selecting the representatives was set to 90%. The second, third,
and sixth clusters were omitted since the number of representative datasets is lower than 10 and
not enough to talk about statistical significance (i.e., see details about the Friedman test (Eftimov
& Korošec, 2020)). The obtained results are presented in Appendix A.1 (see Table 3). Using the
results presented in the table, we can see that there exist algorithms that have different performances
using different clusters of datasets. For example, using the representatives from the first cluster
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there is no statistical significance between the algorithms HIVE-COTEv1 0 and S-BOSS. The same
results are also true when using the representative datasets from the fifth cluster, while there is a
statistical significance between them if the representatives from the fourth datasets are involved in
the comparison. Such results indirectly indicate that the statistical results depend on the number of
datasets that will be included from each cluster. If the number of datasets is not uniformly distributed
across all clusters, then the statistical results will be biased to the cluster that is represented with the
highest number of datasets (i.e., the selected test statistic is affected).

To perform the bootstrapping hypothesis testing for comparing the performance of 14 multi-class
classification algorithms, we selected datasets that are representatives of each cluster. The compar-
ison process was done three times concerning the number of representative datasets sampled from
each cluster. The sample sizes used are 2, 3, and 4, which means that the algorithms were compared
using 10, 15, and 20 datasets, respectively. In Appendix A.2 we provide empirical guidelines on
how many datasets should be sampled per cluster that depends on the coverage matrix distribution.
For each sample size, the comparison was performed 30 times (30 times selecting 10, 15, and 20
datasets), in order to check the robustness of the statistical results. All selected portfolios of bench-
mark datasets involved in the comparisons are available at our GitHub repository. By repeating this
30 times for each sample size separately, and by performing a summation for each pair of algorithms,
we tested the robustness of the statistical results. The counting approach is only an indicator if the
same statistical results (i.e., multi-hypothesis correction scenario) are robust if we repeat it using
different benchmark datasets that will uniformly cover the space of all possible dataset distributions.
More information about the statistical comparison design can be found in Appendix A.3.

Tables 2a and 2b present the bootstrapping statistical results obtained for each pair of algorithms
where the sample size of the representative datasets was set to 2 and 3, respectively. The results
obtained when the samples size is set to 4 are presented in Appendix A.4. Each cell presents the
number of comparisons where there is no statistical significance between the performance of the
pair of algorithms, with the maximal number of such comparisons being 30. We can conclude that
if the number of such comparisons is greater than 15 then there is no statistical significance between
the performances of the algorithms and vice-versa. Looking across the tables, we can conclude that
the statistical outcome between the pairs of algorithms is almost consistent since they provide robust
statistical results. For example, regardless of the sample size of the representative datasets from each
cluster (i.e., 2, 3, or 4), there is no statistical significance of the performances between the (Catch22
and BOSS, all sample sizes return 30 out of 30). There are also a small number of inconsistencies
when the sample size of the representative datasets changes (i.e., only in 3 out of 88 pairs). For
example, there is no statistical significance between the performance of the algorithms (TSF and
TS-CHIEF) when we sample 2 representatives from each cluster (20 out of 30), however, there is
a statistical significance between their performances when we sample 3 or 4 representatives from
each cluster (10 out of 30 and 2 out of 30, respectively). There is no statistical significance between
the performances of the (ROCKET and TSF) when the sample sizes are 2 or 3 (25 out of 30 and
16 out of 30, respectively), however, there is a statistical significance when the sample size is set
to 4 (7 out of 30 comparisons). Same results are also obtained for the pair (RISE and TS-CHIEF).
This indicates that some of the algorithms can also have different performances in the same part
of the landscape space, which further opens directions to analyze their behaviour more extensively,
focusing on instance analysis and different data instance transformations that are presented there.
The bootstrapping approach provides robust and reproducible statistical outcomes, which is not the
case when different datasets are involved in the most commonly-used practice. This means that
no matter how many datasets are included in the comparison (i.e., in our case 10, 15, or 20), the
statistical results will be the same if they uniformly covered the problem landscape.

By performing a sensitivity analysis of selecting different thresholds for choosing the representa-
tives (i.e., 50%, 80%, 90%, and 100%), similar statistical outcomes are obtained. Having a lower
threshold (in our case 50%) indicates the presence of more statistical inconsistencies between pairs
of algorithms concerning different sample sizes for sampling. In such a case, this is expected since
a dataset representative covers greater or equal than half of the dataset and the other part of it could
be distributed across the other clusters. The remaining part of the dataset landscape distributed in
other cluster/s can also be in favour of some algorithms related to that/those landscape parts. Having
a greater threshold value also means more homogeneous datasets being selected as representatives,
where most of their instances (i.e., the landscape they covered) belong to the same cluster.
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In an ideal scenario, we should select one dataset that is uniformly distributed across all clusters.
However, such a dataset that is uniformly distributed across the problem landscape does not exist.
Selecting the threshold for the representative datasets is related to the number of clusters. To select
it, the distribution of the percentage of coverage from the coverage matrix should be investigated.
Higher threshold values are more welcome since they guarantee the purity of the representatives.
One possible way of determining the number of clusters is also taking into account cluster purity i.e.
minimizing instances from the same dataset belonging to different clusters.

Table 2: Bootstrapping statistical results obtained for each pair of algorithms where the sample size
of the representative datasets is selected with threshold of 90%. Each cell presents the number of
comparisons (out of 30) where there is no statistical significance observed between the pairs.

BOSS Catch22 HIVE-COTEv1 0 InceptionTime ProximityForest RISE ROCKET ResNet S-BOSS STC TS-CHIEF TSF WEASEL
Catch22 30.00

HIVE-COTEv1 0 30.00 2.00
InceptionTime 30.00 13.00 30.00

ProximityForest 30.00 28.00 28.00 30.00
RISE 30.00 30.00 23.00 29.00 30.00

ROCKET 30.00 7.00 30.00 30.00 29.00 26.00
ResNet 30.00 24.00 30.00 30.00 30.00 30.00 30.00

S-BOSS 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00
STC 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00

TS-CHIEF 30.00 6.00 30.00 30.00 29.00 25.00 30.00 30.00 30.00 30.00
TSF 30.00 30.00 16.00 23.00 30.00 30.00 25.00 30.00 30.00 30.00 20.00

WEASEL 30.00 29.00 29.00 30.00 30.00 30.00 29.00 30.00 30.00 30.00 30.00 30.00
cBOSS 30.00 29.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00

(a) Sample size 2

BOSS Catch22 HIVE-COTEv1 0 InceptionTime ProximityForest RISE ROCKET ResNet S-BOSS STC TS-CHIEF TSF WEASEL
Catch22 30.00

HIVE-COTEv1 0 20.00 0.00
InceptionTime 30.00 14.00 30.00

ProximityForest 30.00 29.00 24.00 30.00
RISE 30.00 30.00 7.00 30.00 30.00

ROCKET 27.00 3.00 30.00 30.00 28.00 18.00
ResNet 30.00 26.00 28.00 30.00 30.00 30.00 29.00

S-BOSS 30.00 30.00 27.00 30.00 30.00 30.00 29.00 30.00
STC 30.00 26.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00

TS-CHIEF 25.00 0.00 30.00 30.00 28.00 12.00 30.00 27.00 28.00 28.00
TSF 30.00 30.00 6.00 26.00 30.00 30.00 16.00 30.00 30.00 30.00 10.00

WEASEL 30.00 30.00 25.00 30.00 30.00 30.00 29.00 30.00 30.00 30.00 23.00 30.00
cBOSS 30.00 29.00 26.00 30.00 30.00 30.00 29.00 30.00 30.00 30.00 26.00 30.00 30.00

(b) Sample size 3

5 CONCLUSIONS

In this paper, we have proposed a new pipeline for landscape analysis of ML datasets that helps us
understand the problem landscape, allows us to select a diverse benchmark datasets portfolio, and
reduce the performance assessment bias using a bootstrapping evaluation. The results conducted
using time-series data for multi-class classification have shown that more robust and reproducible
benchmarking statistical results are obtained compared to the results obtained by the most com-
monly used benchmarking practices. In addition, the newly proposed pipeline does not provide an
opportunity to manually selecting datasets that leads to the desired outcome of the study. In addi-
tion, a sensitivity analysis of the hyperparameters and techniques used in each step of the pipeline
will be investigated in more detail. Therefore, different shared time-series representation such as
T-Loss (Franceschi et al., 2019), DTCR (Ma et al., 2019), and TNC (Tonekaboni et al., 2020) will
be tested instead of the tsfresh representation to check if they can lead to reproducible statistical
outcomes. Further, different dimensionality reduction techniques such as PCA (Wold et al., 1987)
will be also tested instead of SOM, since in many ML tasks there are small number of datasets
available for benchmarking. Finally, such selection of a benchmark datasets portfolio will be also
investigated to link the problem landscape to the performance achieved by the ML algorithms more
in the direction of meta-learning studies (Vanschoren, 2018).

With this study, we do not discourage the use of any existing TSC datasets, all of them should be
included in the existing repository. Practitioners can still use all of the datasets in order to develop
new algorithms or solve a specific application scenario. The study showed that we should take great
care when deciding which datasets will be involved in the statistical analysis of a newly introduced
method. Even more, for a newly introduced TSC dataset in the future, the proposed pipeline can
be used as a criterion to decide if the dataset should be included in a benchmark datasets portfolio
or not. This can be done by observing the problem landscape that is covered by it. If the same
problem landscape is also covered by other dataset/s, there is no reason to include the dataset in the
benchmark datasets portfolio, and vice-versa.
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Table 3: Statistical results obtained for each pair of algorithms when all representative datasets from
each cluster are involved in the comparison separately (selected with threshold 90%). Each cell
presents 1 or 0, where 1 indicates that there is no statistical significance between the performance of
the pair of algorithms and 0 otherwise.

BOSS Catch22 HIVE-COTEv1 0 InceptionTime ProximityForest RISE ROCKET ResNet S-BOSS STC TS-CHIEF TSF WEASEL
Catch22 1.00

HIVE-COTEv1 0 0.00 0.00
InceptionTime 1.00 0.00 1.00

ProximityForest 1.00 0.00 1.00 1.00
RISE 1.00 1.00 0.00 1.00 1.00

ROCKET 0.00 0.00 1.00 1.00 1.00 0.00
ResNet 1.00 0.00 1.00 1.00 1.00 1.00 1.00

S-BOSS 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
STC 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TS-CHIEF 0.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
TSF 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00

WEASEL 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
cBOSS 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

(a) First cluster.

BOSS Catch22 HIVE-COTEv1 0 InceptionTime ProximityForest RISE ROCKET ResNet S-BOSS STC TS-CHIEF TSF WEASEL
Catch22 1.00

HIVE-COTEv1 0 0.00 0.00
InceptionTime 1.00 0.00 1.00

ProximityForest 1.00 1.00 1.00 1.00
RISE 1.00 1.00 0.00 1.00 1.00

ROCKET 0.00 0.00 1.00 1.00 1.00 0.00
ResNet 1.00 1.00 1.00 1.00 1.00 1.00 1.00

S-BOSS 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00
STC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TS-CHIEF 0.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00
TSF 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00

WEASEL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
cBOSS 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

(b) Fourth cluster.

BOSS Catch22 HIVE-COTEv1 0 InceptionTime ProximityForest RISE ROCKET ResNet S-BOSS STC TS-CHIEF TSF WEASEL
Catch22 1.00

HIVE-COTEv1 0 1.00 0.00
InceptionTime 1.00 1.00 1.00

ProximityForest 1.00 1.00 0.00 1.00
RISE 1.00 1.00 0.00 1.00 1.00

ROCKET 1.00 1.00 1.00 1.00 1.00 1.00
ResNet 1.00 1.00 0.00 1.00 1.00 1.00 1.00

S-BOSS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
STC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TS-CHIEF 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00
TSF 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

WEASEL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
cBOSS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(c) Fifth cluster.

A APPENDIX

A.1 STATISTICAL RESULTS OBTAINED USING THE DATASETS FROM EACH CLUSTER
SEPARATELY.

A.2 EMPIRICAL GUIDELINES ON HOW MANY DATASETS SHOULD BE SAMPLED PER CLUSTER

In our experiments, the datasets have been distributed across 6 clusters, or actually in 5 clusters,
where only a small percentage of one dataset belongs to the 6th cluster. We started sampling with
2 datasets from each cluster and ended up with 10 datasets. This was done since the required
conditions for the safe use of the parametric test are not satisfied and we have paired samples, so
we should continue with the non-parametric Friedman test (Eftimov & Korošec, 2020). To use the
Friedman test, we should have at least 10 datasets in order to meet the condition that the Friedman
statistic will follow the Chi-square distribution. Further, we continue to select 3 and 4 datasets per
cluster separately, ending up with 15 and 20 datasets. The results showed that the statistical results
obtained with 10, 15, or 20 datasets are robust (i.e., almost the same). The minimum number of
datasets that should be included depends on the omnibus statistical test that will be utilized (i.e., in
most cases the Friedman test is an appropriate one here), so we need to have at least 10 datasets
that will be uniformly distributed across all clusters. The maximum number of datasets that can be
selected should be the number of representatives from the smallest cluster.
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A.3 HYPOTHESIS TESTING DESIGN

Each bootstrap experiment is an independent event that involves a multi-hypothesis correction
method. Within each one, the set of 14 multi-class classification time-series algorithms are com-
pared using a set of 10, 15, or 20 benchmark datasets. The comparison involves a paired samples
scenario and since the required conditions of the safe use of the parametric tests are not satisfied,
the appropriate omnibus statistical test is the non-parametric Friedman. To see between which pairs
of algorithms the statistical significance exists we further utilized the Nemenyi test that is developed
for all vs. all pairwise comparisons. Nemenyi test involves a multi-hypothesis correction method,
where the p-values are corrected using the Bonferroni correction. So each comparison is a separate
event of comparing the algorithms using a set of benchmark datasets. To test if the same statistical
outcome will be reproduced if we follow the selection approach presented in this paper, we repeated
each comparison 30 times using different sets of benchmark datasets. The common thing we are
taking care of is that the selection of the datasets is always uniformly across all datasets distribu-
tions. The counting approach is only an indicator if the same statistical results (multi-hypothesis
correction scenario) are robust if we repeat it using different benchmark datasets that will uniformly
cover the space of all possible dataset distributions.

A.4 BOOTSTRAPPING STATISTICAL RESULTS WHEN THE NUMBER OF SAMPLED
REPRESENTATIVES PER CLUSTER IS SET TO 4

Table 4: Bootstrapping statistical results obtained for each pair of algorithms where the sample
size of the representative datasets (selected with threshold 90%). Each cell presents the number of
comparisons out of 30, where there is no statistical significance between the performance of the pair
of algorithms.

BOSS Catch22 HIVE-COTEv1 0 InceptionTime ProximityForest RISE ROCKET ResNet S-BOSS STC TS-CHIEF TSF WEASEL
Catch22 30.00

HIVE-COTEv1 0 16.00 0.00
InceptionTime 30.00 4.00 30.00

ProximityForest 30.00 23.00 22.00 30.00
RISE 30.00 30.00 2.00 25.00 30.00

ROCKET 22.00 0.00 30.00 30.00 27.00 4.00
ResNet 30.00 20.00 25.00 30.00 30.00 30.00 30.00

S-BOSS 30.00 29.00 17.00 30.00 30.00 30.00 26.00 30.00
STC 30.00 19.00 28.00 30.00 30.00 29.00 29.00 30.00 30.00

TS-CHIEF 20.00 0.00 30.00 30.00 27.00 3.00 30.00 29.00 25.00 28.00
TSF 30.00 30.00 2.00 23.00 30.00 30.00 7.00 29.00 30.00 30.00 2.00

WEASEL 30.00 26.00 17.00 30.00 30.00 30.00 27.00 30.00 30.00 30.00 22.00 30.00
cBOSS 30.00 28.00 16.00 29.00 30.00 30.00 22.00 30.00 30.00 30.00 23.00 30.00 30.00

(a) Sample size 4
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