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ABSTRACT

Classical optimization theory requires a small step-size for gradient-based meth-
ods to converge. Nevertheless, recent findings Cohen et al. (2021) challenge
the traditional idea by empirically demonstrating Gradient Descent (GD) con-
verges even when the step-size η exceeds the threshold of 2/L, where L is the
global smooth constant. This is usually known as the Edge of Stability (EoS)
phenomenon. A widely held belief suggests that an objective function with sub-
quadratic growth plays an important role in incurring EoS. In this paper, we pro-
vide a more comprehensive answer by considering the task of finding linear in-
terpolator β ∈ Rd for regression with loss function l(·), where β admits param-
eterization as β = w2

+ − w2
−. Contrary to the previous work that suggests a

subquadratic l is necessary for EoS, our novel finding reveals that EoS occurs
even when l is quadratic under proper conditions. This argument is made rigorous
by both empirical and theoretical evidence, demonstrating the GD trajectory con-
verges to a linear interpolator in a non-asymptotic way. Moreover, the model un-
der quadratic l, also known as a depth-2 diagonal linear network, remains largely
unexplored under the EoS regime. Our analysis then sheds some new light on
the implicit bias of diagonal linear networks when a larger step-size is employed,
enriching the understanding of EoS on more practical models.

1 INTRODUCTION

In the past decades, gradient-based optimization methods have become the main engine in the train-
ing of deep neural networks. These iterative methods provide efficient and scalable approaches for
the minimization of large-scale loss functions. A key question that arises in the context is under what
conditions, these algorithms are guaranteed to converge. Classical analysis of gradient descent (GD)
answers the question by asserting that a small step-size should be employed to ensure convergence.
To be precise, for the minimization of L-smooth objective functions, sufficient condition rules that
step-size η should never come across the critical threshold 2/L (or equivalently L < 2/η). This
guarantees every GD iteration decreases the objective until it converges. As a result, the iterative
algorithm can be viewed as a discretization of a continuous ODE called Gradient Flow (GF), and
the corresponding convergence behavior is therefore referred to as the GF or stable regime.
Nevertheless, in the work of Cohen et al. (2021), it is observed, in the training process of certain
learning models, GD and other gradient-based methods still converge even when the classical con-
dition is violated, allowing for the use of much larger step-sizes. When this occurs, the objective
does not exhibit the typical monotonic decrease, and the sharpness, defined as the largest eigen-
value of the objective function’s Hessian matrix, frequently exceeds the threshold of 2/η. Unlike
the GF regime under small step-size, the GD trajectory often becomes violent, exhibiting oscillating
and unstable behavior. Despite this, convergence is still achieved in the long run. This unconven-
tional phenomenon is usually known as the Edge of Stability (EoS) regime. Similar results are also
observed for algorithms including momentum methods or adaptive methods (Cohen et al., 2022).
In the recent several years, the new finding from Cohen et al. (2021) has pioneered many works to in-
vestigate the fascinating phenomena, from both empirical and theoretical aspects. Many theoretical
works that attempt to explain the mechanism of EoS suggest that the subquadratic growth of the loss
function plays a crucial role in causing EoS (Chen & Bruna, 2022; Ahn et al., 2022a). In particular,
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Figure 1: Comparison between EoS and GF regime, represented by blue and red lines, under parameterized
linear regression in (1) with l(a) = a2/4. The plots from left to right illustrate the trajectory of regression
weight βwt (star and triangle mark the stable points), the decrease of objective and ηSt, respectively, where
St is the sharpness at iteration t. EoS is featured by the ηSt > 2. Unlike previous assertions, we observe EoS
also occurs with quadratic l(a) = a2/4. Rest parameters: x = (1, 0.5), y = 1 and α = 0.01.

Ahn et al. (2022a)1 and its subsequent work Song & Yun (2023) considered the linear regression
task of finding a vector β that interpolates single-point data (x, y) by minimizing the empirical risk
l
(
⟨x,β⟩ − y

)
. The authors have rigorously shown that when β is allowed a parameterized form

β = β(u,v), a loss l(·) with strictly subquadratic growth leads to the EoS phenomenon in run-
ning GD. When EoS occurs, the GD trajectory converges despite being highly unstable, oscillating
almost symmetrically around zero along the primary axis.
In this work, we aim to challenge the notion that subquadratic loss is necessary for causing EoS
by investigating the same regressional task. We specify that the weight vector β admits quadratic
parameterization as β = w2

+ −w2
−, which recovers and extends the setting of Ahn et al. (2022a).

Our study presents both empirical and theoretical evidence to show that, when a quadratic loss
l(a) = a2/4 is employed, GD with large step-size can converge to a linear interpolator within the
EoS regime, provided certain conditions are met. We believe this the first among existing works to
suggest that quadratic loss function can trigger EoS and to characterize the convergence.
It is important to note that the model we consider is not merely an artificially designed landscape
solely to induce EoS under strict conditions. This investigation is related not only to the community
exploring the intriguing convergence under irregularly large step-size but also to the broader com-
munity tackling implicit bias of gradient methods: when l(·) is quadratic, our framework recovers
the renowned model of depth-2 diagonally linear networks. A diagonal linear network captures the
key features of deep networks while maintaining a simple structure, as each neuron connects to only
one neuron in the next layer. Therefore, the study on the bias and generalization properties of this
model has resulted in a rich line of important works in the past several years (Woodworth et al.,
2020). While it has become well-studied when running GD with a classical step-size, it remains
rather unexplored when it enters the EoS regime. We believe our work provides useful insights into
the study of implicit bias of diagonal linear networks under large step-size by considering a simple
but intuitive one-sample setting.

1.1 OUR CONTRIBUTION AND RELATION TO PREVIOUS WORKS

We discuss the scope and major contributions of our work below.

• We consider running GD with a large constant step-size to find linear interpolators that admit
quadratic parameterization for the one-sample linear regression task in Rd. This model is also
called the depth-2 diagonal linear network. We show that empirically, convergence in the EoS
regime is possible when d > 1 and the data does not constitute a degenerate case that can be
reduced to a d = 1 setting.

• The above conditions are verified in a theoretical analysis, in which we show that the iteration
of GD converges to a linear interpolator β∞ under the EoS regime. We provide convergence

1To be exact, Ahn et al. (2022a) originally considered the model (u, v) 7→ l(uv) where l is a loss function
that grows subquadratically and did not reformulate it as a linear regression with parameterized weight vector.
Instead, the formulation of regression setting was introduced in the subsequent Song & Yun (2023), and Ahn
et al. (2022a)’s model is a special case of it. We combine the discussion here to give the audience a more
complete picture.
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analysis for two sub-regimes under EoS, i.e. µη < 1 and µη > 1 (µ is a scaling parameter
related to the data (x, y)), which exhibit different convergence behavior.

• In addition, we also characterize the generalization property for the implicit bias under the EoS
regime by establishing upper bounds for ∥β∞ − β∗∥, where β∗ is the given sparse prior.

• We also extend the one-sample results by empirically finding conditions in the more general
n-sample case. This suggests that a non-degenerate overparameterized setting (d > n), is
necessary for the EoS phenomenon.

It is important to emphasize that our findings should not be interpreted as overturning existing re-
sults. Rather, they improve and complement the existing understanding of what conditions lead to
EoS for the parameterized linear regression with quadratic l by identifying additional criteria. This
does not contradict that non-quadratic property is necessary to incur EoS, because, despite l being
quadratic, parameterization β = w2

+−w2
− ensures non-vanishing third-order derivative of the entire

objective function, which is proven to be important in works like Damian et al. (2022).
We particularly highlight the significance of the proof under ηµ > 1. A brief explanation is pro-
vided here, with further details in Section 5. Our proof technique is highly related to the bifurca-
tion analysis of discrete dynamical systems, which indicates a parameterized family of systems, as
wt+1 = fa(wt), display different asymptotic properties2 if a is fixed and takes different values.
Some recent works including Chen et al. (2023) showed that such a system with fixed a can de-
scribe GD trajectory for certain models, guaranteeing the convergence for these models, whereas
running GD on our model corresponds to a system with varying a. This poses a more challenging
task than ever, therefore our major innovation and difficulty is to show that under certain conditions,
a phase transition will occur, such that the system travels on the phase diagram and finally becomes
convergent.

1.2 RELATED WORKS

Edge of Stability. Although the phenomena of oscillation during the training process have been
observed in several independent works (Xing et al., 2018; Lewkowycz et al., 2020; Jastrzebski et al.,
2021), the name of Edge of Stability was first found in Cohen et al. (2021), which provided more
formal definition and description. Among the theoretical exploration, some works attempt to find
criteria that allow EoS to occur on general models (Ma et al., 2022; Damian et al., 2022; Ahn et al.,
2022b; Arora et al., 2022). Nevertheless, these works do not provide very convincing arguments
because they often incorporate demanding assumptions. An approach that is closer to this paper
considers specific models and characterizes the convergence or implicit bias when EoS occurs, in-
cluding (Chen & Bruna, 2022; Zhu et al., 2022; Ahn et al., 2022a). Recently, such analysis has been
extended to more complicated and more practical models, for instance, logistic regression (Wu et al.,
2024), parameterized linear regression (Song & Yun, 2023; Lu et al., 2023) and quadratic models
(Chen et al., 2023). It is also worth mentioning that, instead of explaining the unstable convergence
of EoS, some works including Li et al. (2022) studied how the sharpness grows during the early
phases of the GD trajectory.

Implicit bias of diagonal linear networks. The diagonal linear network model, also called linear
regression with quadratic parameterization, is one of the simplest deep network models that exhibit
rich features and bias structure. Vaskevicius et al. (2019); Zhao et al. (2022); Gunasekar et al.
(2017) were among the first works to explore the implicit bias when the weight admits a Hadamard
parameterization u⊙ v, which is provably equivalent to the quadratic parameterization w2

+ −w2
−.

The seminal work of Woodworth et al. (2020) demonstrated that the scale of initialization decides
the transition between rich and kernel regime, and also the recovery of sparse prior for diagonal
linear networks. The subsequent works also considered topics such as the connection to Mirror
Descent (Gunasekar et al., 2021; Azulay et al., 2021), stochastic GD (Pesme et al., 2021), and
limiting initialization (Pesme & Flammarion, 2023). Recently, several papers Nacson et al. (2022);
Even et al. (2023); Andriushchenko et al. (2023) attempted to address the bias of (S)GD under the
large step-size regime, nevertheless, they failed to establish the convergence when EoS occurs.

2By this we mean the system being convergent to stable point or stable periodic orbits or becoming chaotic
or divergent. Only convergence to the stable point of 0 is the case we want to show.
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2 PRELIMINARY AND SETUP

Notations. We introduce the notations and conventions used throughout the whole paper. Scalars
are represented by the simple lowercase letters. We use bold capital like A and lowercase letters like
v to denote matrix and vector variables. For vector v, let ∥v∥2 denote its l2-norm and vp denote the
coordinate-wise p-power. Also, for two vectors u,v of the same dimension, let u ⊙ v denote their
coordinate-wise product. Let I be the identity matrix. For any integer n > 0, let [n] := {1, . . . , n}.
We use asymptotic notations O(·), Ω(·) and Θ(·) in their standard meanings.

2.1 MODEL AND ALGORITHM

Regression with quadratic parameterization. We consider the linear regression task on single
data point (x, y), where x ∈ Rd and y ∈ R. Following Ahn et al. (2022a); Song & Yun (2023);
Lu et al. (2023), it is instructive to study the one-sample setting because it (1) is sufficiently simple
to analyze and (2) demonstrates the key feature under the Edge of Stability regime. This setup is
overparameterized when d ≥ 2 and therefore admits infinitely many linear interpolators β satisfying
⟨x,β⟩ = y. We aim to find one of these linear interpolators by minimizing the empirical risk:

L(β) = l(⟨x,β⟩ − y), (1)

where l(·) is convex, even, and at least twice-differentiable, with the minimum at l(0) = 0.
We consider the model where the regression vector β admits a quadratic parameterization

β := βw = w2
+ −w2

−, w± ∈ Rd, w =

[
w+

w−

]
(Quadratic Parameterization)

where w is the trainable variable. With an abuse of notation we write L(w) := L(βw). In particular,
when l(·) is quadratic, the model is also called the diagonal linear network, well-studied under a
small step-size regime in the past several years (Woodworth et al., 2020; Gunasekar et al., 2021).
We minimize the loss function L(w) by running GD with constant step-size η: for any t ∈ N, it
formalizes the following iteration

wt+1 = wt − η∇wL(wt). (2)

Unpacking the definition in (1), the gradient of the loss function can be written as

∇wL(w) = 2l′(r(w)) ·
[
+x⊙w+

−x⊙w−

]
where r(w) = ⟨βw,x⟩ − y is referred as the residual at w on sample (x, y). In particular, if
l(a) = a2

4 , its derivatives are simply as 2l′(r(w)) = r(w) and 2l′′(r(w)) = 1.

3 EOS UNDER QUADRATIC LOSS: AN EMPIRICAL STUDY

In this section, we empirically investigate the EoS convergence of GD on the model in (1) when
the β admits Quadratic Parameterization. Rigorously, we define EoS as the phenomena that the
sharpness St := λmax(∇2L(wt)) crosses the threshold of 2/η for some t. In particular, we are
interested in finding conditions for it to admit EoS when l is a quadratic function, which has been
less explored in the existing literature.
We briefly discuss the result from Ahn et al. (2022a) and its relation to our model. The authors
considered (u, v) 7→ l(uv), which can be regarded as a special case of our model when d = 1,
x = 1 and y = 0 due to linear transformation (u, v) = (w++w−, w+−w−) that remains invariant
under GD. The authors proved the necessary condition for the model to admit EoS is that the loss
function is subquadratic, i.e. there exists β > 0 such that l′(a)

a ≤ 1−Θ(|a|β) when a is small 3.
However, we deepen the understanding and provide a sufficient condition by empirically testing
under which conditions EoS occurs even with l(a) = a2/4 when we focus on the one-sample model
in (1). The message is stated in the following claim.

3The subsequent work Song & Yun (2023) extended the result to general d, still requiring l to be sub-
quadratic unless non-linear activation is employed. Therefore it is not comparable to this result.
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Claim 1. Consider the one-sample risk minimization task in (1) with Quadratic Parameterization.
For GD, it is sufficient for EoS to occur under properly chosen constant step-size with a quadratic
loss l(s) = s2/4 when the following conditions are satisfied: (1) d ≥ 2, (2) y ̸= 0 and (3) x =
(x1, . . . , xd) is not degenerated, i.e. xi ̸= 0 for any i and there exists at least a pair xi ̸= xj .

We introduce the experimental configurations. For data generation, we sample x ∼ N (0, Id) and
y = ⟨x,β∗⟩, where β∗ ∼ Unif({β ∈ 1√

k
{0,±1}d : ∥β∗∥0 = k}). We use standard scaling

initialization w±,0 = α1d where α > 0 is a factor. We choose the sparse prior and the scaling ini-
tialization because they are important in characterizing the implicit bias of GD under the GF regime,
and hence make our results comparable to the results on diagonal linear networks like Woodworth
et al. (2020).
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Figure 2: Empirical verification for the Claim 1. In the left two columns of plots, we run with configurations
that obey Claim 1 and EoS occurs if we increase step-size. In contrast, we set d = 1 in the third column
and y = 0 in the fourth column, under these settings GD becomes divergent without triggering EoS when we
increase the step-size. Note that we use a modified initialization w0,+ = 2α1, w0,− = α1 in the last column
(y = 0), otherwise the rt = 0 for any t under the original initialization.

Before presenting our empirical evidence, we first explain the major empirical difference between
EoS and GF regime via Figure 1. We characterize the convergence of GD via the residual function
rt = r(wt) instead of loss L(wt) because the latter does not reflect the sign change. For our setting,
the GF regime is featured by the monotonically decreasing of the |rt| until reaching 0. Besides, rt
remains negative and the sharpness is under the threshold 2/η for any t. On the contrary, in the
EoS regime, rt oscillates and changes its sign as rtrt+1 < 0 holds for any t large enough. Also,
the sharpness first exceeds 2/η and decreases until it comes below the threshold. This is similar to
the EoS behavior described in Ahn et al. (2022a). Nevertheless, the major difference between the
GF regime and Ahn et al. (2022a) is, that the envelope of rt does not necessarily shrink under the
EoS regime (which we will discuss later). Another distinction from Ahn et al. (2022a) is that the
sharpness also oscillates.
We proceed by empirically justifying Claim 1. In Figure 2 we test if each one of the three conditions
in Claim 1 is relaxed, EoS does not occur and GD diverges when we increase the step-size away
from the GF regime. We intuitively explain why these conditions are necessary: the importance of
d > 1 is predicted by the result of Ahn et al. (2022a). If (3) does not hold, e.g. x = x1d for some
x ̸= 0. The degenerate case reduces to the d = 1 setting and fails as violating (1).
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Figure 3: Influence of η and different asymptotic properties of rt along GD trajectory. When we increase
the step-size, it displays, from left to right, GF regime, different subregimes of EoS, chaos, and divergence.
In particular, when x is larger than some threshold (see Theorem 2 for details), GD does not converge when
µη > 1. Parameter configuration: µ = 1, α = 0.01.
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Now suppose all the conditions hold, we further investigate how the choice of step-size, scaling
initialization, and other parameters affect the GD trajectory in the EoS regime. We examine how
the scale of initialization and step-size might affect the oscillation, sparsity of solution, and the
generalization property by testing on the case of d = 2 and 1-sparse prior β∗ = (µ, 0). The specific
setting allows us to characterize it in a more qualitative manner and can be directly compared with
theoretical analysis in the next section.
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Figure 4: α decides the length of the intermediate phase in
ηµ > 1: the gap between the start of oscillation t0 and the start of
convergence t is proportional to log(1/α). This is because in the
intermediate phase, rt remains roughly as a constant and causes bt
to increase almost linearly from the scale of αΘ(1) to O(1). We
use x = 0.5, η = 1.1 and µ = 1.

Effect of step-size and types of os-
cillation. The importance of step-
size is not restricted to deciding EoS
or GF regime, as illustrated Fig-
ure 3. We already describe the tran-
sition from GF to EoS and will fo-
cus on different subregimes of EoS.
Another phase transition takes place
at µη: if µη < 1, despite oscillat-
ing, the envelope of rt monotonically
shrinks as |rt+2| < |rt| after the ini-
tial phase; on the contrary, if µη ∈
(1, θ) (θ is a constant between (1,2)),
the end of the initial phase does not
mark the beginning of contraction.
Instead, the envelope will expand un-
til it saturates and reaches a 2-periodic orbit. This intermediate phase will maintain until another
phase transition to the convergence phase occurs. Besides, α decides the length of the intermediate
phase under the ηµ > 1 regime: the gap between the start of oscillation t0 and the start of conver-
gence t4 empirically obeys t− t0 ∝ log(1/α), as in Figure 4. Moreover, when η is increased above
θ, rt will reach the orbit of a higher period during the intermediate phase. If we further increase η,
the trajectory will finally become chaotic or divergent.
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Figure 5: Relationship between error ∥β∞ − β∗∥, α and η: the
x-axis is α and y-axis is the error. The left plot characterizes the
error under µη > 1 and the right plot is for regime µη < 1. Rest
parameters: x = 0.5, µ = 1. The x-axis of both plots are in α.

Effect of α, sparsity and general-
ization error. We also care about
how α decides the error ∥β∞ −β∗∥2
where β∞ is the limit of βwt , as in
Figure 5. We focus on the general-
ization error under the EoS regime.
Similar to the above discussion, it
displays different behavior depend-
ing on ηµ < 1 or not. If ηµ < 1,
∥β∞ − β∗∥ will decrease almost lin-
early in α and recovers the sparse so-
lution if α takes the limit of 0. On
the contrary, when ηµ > 1, the er-
ror will be decided by two quantities:
with α2 ≪ µη − 1, the error ∥β∞ − β∗∥ is solely decided by η regardless of the choice α and does
not recover the sparse solution even when α → 0.

Extension to multi-sample setting. Our previous investigation focuses on the single-sample set-
ting. Nevertheless, we believe that it is also very important to conduct an empirical study of the
more general multiple data points case. Under this setting, the dataset {(xi, yi)}ni=1 has n data
point, where xi ∈ Rd and yi = ⟨xi,β

∗⟩. We aim at finding one linear interpolator by running
GD over the following empirical risk L(w) = 1

n

∑n
i=1 l(⟨xi,βw⟩ − yi). Also, we use a similar

experimental configuration for sparse prior β∗ and initialization w0,± as in the one-sample case,
and the data is generated as xi ∼ N (0,1d) and yi = ⟨xi,β

∗⟩.
When a quadratic loss l(·) is employed, our empirical results suggest that the following two as-
sumptions are important: (1) the setting is overparameterized, i.e. d ≥ n and (2). the setting is not
degenerate. This is illustrated in Figure 6. In particular, it should be noticed that the overparame-

4A more detailed discussion of these quantities are reflected in Theorem 2 in the next section.
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Figure 6: Empirical verification for the necessity of overparameterization under the multi-sample case. We
plot the loss function L(wt) and the sharpness of GD when it admits more than one sample. When the model
is overparameterized (d > n), EoS occurs when we increase the step-size. Otherwise, even with d = n, EoS
does not occur and GD becomes unconvergent. Rest parameters: k = 3 and α = 0.01.

terized condition d ≥ n reduces to d ≥ 2 in the one-sample case, which is exactly condition (1) in
Claim 1.

4 THEORETICAL ANALYSIS: BIAS UNDER ONE-SAMPLE CASE

Motivated by the empirical observations in Section 3, in this section, we aim to provide a theoretical
explanation for the convergence of GD under the EoS regime when the loss function is quadratic.
Moreover, we characterize its generalization error and compare it with existing results on diagonal
linear networks under the GF regime. We begin by presenting the assumptions.
Assumption 1. We make the following assumptions on (1) with Quadratic Parameterization:

(1). Suppose d = 2. Let β∗ be 1-sparse as β∗ = (µ, 0) ∈ Rd with µ ̸= 0. The data point (x, y)
satisfies x = (1, x) and y = ⟨β∗,x⟩ = µ.

(2). The loss function l(·) is quadratic, i.e. l(s) = s2/4;

(3). The initialization is set to be w0,± = α1 with α > 0.

We briefly discuss the motivation behind these assumptions. We choose the 1-sparse prior and
the scaling initialization because they are important in characterizing the implicit bias for GD for
the diagonal linear model, as mentioned in Section 3. For the choice of x, we remark that the
form x = (1, x) does not compromise the generality and recovers any input vector in R2 through
rescaling. The rest conditions are required by Claim 1 and are therefore necessary for ensuring EoS
under quadratic loss.
We present theorems to characterize the convergence of GD when the model we consider has di-
mension d = 2. It should be remarked that this is the simplest setting in which EoS occurs with
a quadratic l(·). We provide a theoretical analysis to show that GD will converge to a linear in-
terpolator under the EoS regime by discussing two cases depending on the choice of step-size η.

Theorem 1. Suppose Assumption 1 and change of sign rtrt+1 occurs for any t larger than some
integer t0. Let ηµ ∈ (0, 1) and α2 ≤ O(1), then the GD iteration in (2) converges with a linear rate
to the limit β∞ as

|⟨βwt
− β∞,x⟩| ≤ C1 · e−Θ(µη)·(t−t0) · |⟨βwt0

− β∞,x⟩|.

Moreover, ∥β∞ − β∗∥ ≤ O(αC2). C1, C2 > 0 are some constants.

Theorem 2. Suppose Assumption 1. Let ηµ ∈ (1,min{ 3
√
2−2
2 , 1 + 1/(4C)}) and α2 ≪ µη − 1,

where C is a certain universal constant. If x ∈ (− 1
µη ,

1
µη ) \ {0} holds, then there exists some t such

7
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that, the GD iteration in (2) converges with a linear rate to the limit β∞ as

|⟨βwt
− β∞,x⟩| ≤ C3 · e−Θ(µη−1)·(t−t) · |⟨βwt

− β∞,x⟩|.

Moreover, ∥β∞ − β∗∥ ≤ C · (µη − 1). C3 > 0 are some constants.

The above theorems indicate that under both µη ∈ (0, 1) and µη ∈ (1, 3
√
2−2
2 ), if EoS occurs, we

can establish linear convergence of βwt
to their respective limits β∞, which are linear interpolators

for the one-sample (x, y). Nevertheless, they are different in many perspectives, as whether ηµ
exceeds 1 decides some key distinct features of the oscillation trajectory. We will explain in the
following remarks.
First, in the first theorem we require that a change of sign occurs. This is because, when ηµ < 1,
GD could enter either EoS or GF regime depending on the exact value of η. Instead of identifying
an exact threshold between GF and EoS (which can be very hard and purely technical), we simply
employ this condition in Theorem 1 to rule out the possible choices of η that lead to the GF regime
and focus on the ones that lead to oscillating EoS regime.
Second, despite both t0 and t being markers for the beginning of linear convergence, they differ sig-
nificantly in nature. As explained in Section 3, under both conditions, GD experiences a short initial
phase, and its end is marked by t0, which consequently also marks the beginning of convergence in
µη < 1. On the contrary, in ηµ > 1, the envelope is not guaranteed to shrink after t0. And the phase
transition to the third convergence phase is marked by t if the assumption |x| ∈ (0, 1

µη ) is met.

Moreover, we discuss generalization error by bounding ∥β∞ − β∗∥. When ηµ ≤ 1, the generaliza-
tion bound at infinity ∥β∞ − β∗∥ is dominated by αΘ(1), which vanishes and recovers the sparse
prior as α approches 0, similar to the implicit-bias analysis under GF regime in Woodworth et al.
(2020). Nevertheless, when ηµ exceeds 1, Theorem 2 suggests that the error will depend on gap
µη − 1 when α is small, and therefore does not recover the sparse solution when α → 0. This
theoretical analysis thus matches the experimental observations in Section 3.

Lastly, we remark that in Theorem 2, the choice of upper bound 3
√
2−2
2 ≈ 1.12 for ηµ is purely

artificial and comes primarily from the technical reasons. As discussed in Section 3, if η is further
increased from it, the envelope of rt will reach an orbit with periodicity longer than 2. The transition
from 2-cycle to longer cycle does not occur at ηµ = 3

√
2−2
2 . We choose this value because it can

be proved that it guarantees a 2-orbit and hence simplifies the proof. We next present a result
showing the convergence when ηµ ∈ (1, 3

√
2−2
2 ) is not necessary, though it comes at the cost of

very restrictive assumptions.

Proposition 1. Suppose Assumption 1. Let ηµ > 1 and x ∈ (− 1
µη ,

1
µη ) \ {0}. If the GD iteration

is not diverging or becoming chaotic, then it converges to a linear interpolator β∞ when t goes to
infinity.

We provide an overview of our proof technique in the next section, with a toy example to better
explain our method. For the complete proof, please refer to the Appendix. We hope our analysis
can be extended to any d ≥ 2 in future works. However, we emphasize this does not diminish the
significance of our analysis, since the settings under different d share EoS patterns and asymptotic
behavior, and the technical barrier comes from linear algebra limitations.

5 PROOF OVERVIEW

In this section, we discuss the idea and technique used in our proof. In specific, we introduce a toy
model–a nonlinear system with unstable convergent dynamics, similar to the behavior of EoS.

5.1 A TOY MODEL

We consider variable rt ∈ R and the following iteration of a nonlinear system with initialization r0:

rt+1 = −(1− αt) · rt − βt · r2t , (3)

where αt, βt ∈ R are time-dependent inputs and we will assume |αt| ≤ 1 for any t ∈ N. We are
concerned about the convergence of |rt| to zero when t goes to infinity. Empirical results in Figure 7
indicate that (3) displays different regimes depending whether αt < 0 or αt > 0.

8
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Constant α. We begin with a simple setting where αt, βt are both constants, as α and β > 0.
When α > 0, rt alternates signs in each iteration and its envelope decreases, displaying damped
oscillation. The convergence is formally established in the subsequent lemma. We remark that these
lemmas are employed to explain our proof ideas, so we use proper assumptions to simplify their
proof.
Lemma 1. Let β = 1 and α ∈ (0, 1). Suppose with some proper initialization r0, rtrt+1 < 0 holds
for any t ∈ N. Then for any rt with rt < 0, it satisfies |rt+2| < (1−α)2 · |rt| and hence the iteration
admits limit limt→∞ rt = 0.

0 25 50 75 100

-1

-0.5

0

0.5

1

0 25 50 75 100

-3

-1.5

0

1.5

3

0 25 50 75 100

-3

-1.5

0

1.5

3

Figure 7: Toy model dynamics of rt in (3) under different regimes. The left and the middle plots utilize
constant α with different signs and correspond to the oscillating contracting and the expanding regimes. The
right plot uses varying αt =

1
20

· tanh( t−50
10

) , which exhibits a phase transition when αt crosses 0. In all the
plots we use β = 0.1 and r0 = −0.3.

Instead, when α < 0, the iteration does not necessarily converge to zero. Nevertheless, with a proper
initialization r0, the sequence of rt oscillates and its envelope expands until reaching a certain value,
as shown in Figure 7. The envelope-expanding behavior is very similar to the intermediate phase of
GD under step-size ηµ > 1 mentioned in Section 3. This and the limit points are characterized in
the following lemma.
Lemma 2. Let β = 1 and α = −a, with a ∈ (0, 1) and define

r+ = 1
2 (
√
a2 + 4a− a) > 0, r− = 1

2 (−
√

a2 + 4a− a) < 0.

Then for any rt in (3) with rt ∈ [r−, r+], it holds that |rt+2| > |rt| and rtrt+1 < 0. Also, consider
the subsequence of rt’s being positive and negative. Then the two subsequences admit limit as r+
and r−.

Phase transition with varying input. We have shown when αt is a constant, it demonstrates
different behavior when α admits different signs. Nevertheless, we now consider the case where a
varying αt is allowed. Especially, we initialize αt as negative in the beginning phases and gradually
increase αt to become positive. Intuitively, the iteration will display a phase transition from the
self-limiting regime to the damping oscillation regime when αt changes signs. This is confirmed by
running examples under such inputs, as illustrated in Figure 7.

5.2 PROOF OVERVIEW OF MAIN THEOREMS

We now use the idea from toy model analysis to illustrate our proving strategy for theorems in
Section 4. We first prove that GD iteration on our model is equivalent to an iteration of a quadruplet
as in the next lemma. This allows us to tackle an equivalent and much simpler iteration by avoiding
matrix-vector products.
Lemma 3 (Informal). Running GD on the model in (1) with Quadratic Parameterization corre-
sponds the following iteration of quadruplet (at, a′t, bt, b

′
t) ∈ R4:

at+1 = (1− ηrt)
2 · at, bt+1 = (1− x · ηrt)2 · bt,

a′t+1 = (1 + ηrt)
2 · a′t, b′t+1 = (1 + x · ηrt)2 · b′t,

where we have rt = (1 + w2)(at − a′t + x · (bt − b′t))− µ.

Still, dealing with four variables remains a challenging task. Aided by the empirical observation
(see Figure 8) that a′t and b′t are almost unchanged from the initial position throughout the whole

9
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Figure 8: Equivalent dynamics of quadruplet (at, a
′
t, bt, b

′
t) in Lemma 3. We compare EoS regime (η = 1.2)

and GF regime (η = 0.5) in terms of sharpness, trajectory and convergence of |rt|, where ∆at = at − a′
t and

∆bt = bt − b′t. In the first plot, we only picture the trajectory under η = 1.2 to show that a′
t, b

′
t remain almost

fixed throughout the whole period.

time range, we can further simply the dynamics by fixing the two variables. This gives an iteration
with only (at, bt).

It is not hard to observe that to establish convergence, it suffices to show that the residual term rt
converges to zero. We observe that rt admits an update similar to the toy model iteration in (3):

rt+1 = −(1− αt) · rt − βt · r2t ,
where αt and βt’s are time-dependent variables (definition see Appendix A.1). The case µη < 1 in
Theorem 1 corresponds to αt > 0 throughout the time and the convergence can be proven using an
argument similar to Lemma 1. The more difficult one is the setting ηµ > 1 considered in Theorem 2,
which implies αt < 0 and does not lead to convergence. Nevertheless, by a contradiction argument
we show that if |x| < 1

µη is true, αt will decrease in an oscillatory style until it becomes negative.
The change of signs leads to a phase transition, allowing us to establish convergence. To the best
of our knowledge, previous works including Chen et al. (2023) majorly tackled the settings similar
to µη < 1, and hence αt > 0 holds. We believe our result is innovative because we are the first to
show convergence for the case similar to µη > 1 that requires to show a phase transition does occur.

6 CONCLUSION

In this paper, we consider the task of finding interpolators for the linear regression with quadratic pa-
rameterization and study the convergence of constant step-size GD under the large step-size regime.
In particular, we focus on the non-trivial question of whether a quadratic loss can trigger the Edge
of Stability (EoS) phenomena or not, which seems unlikely from previous literature. Nevertheless,
we show through both empirical and theoretical aspects that, when some certain condition is satis-
fied, EoS indeed occurs given quadratic loss. We hope this novel result takes a step further toward
understanding the intriguing phenomena of unstable convergence.
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Appendix: Proofs and Supplementary Materials

A PROOF OF THE MAIN THEOREMS

In this section, we present the proof of our major result, i.e. Theorem 1, Theorem 2, and Propo-
sition 1. The proof is very complicated and consists of several different parts. To improve the
readability, we provide a sketch and an outline before proceeding to it.

The sketch and outline of the proof. The major point of our theorems is to prove that βwt
=

w2
t,+ − w2

t,− converges in the EoS regime to a linear interpolator for the sample (x, y), where
x = (1, x) and y = µ. This is formally stated as

lim
t→∞

⟨βwt
,x⟩ = µ.

This is equivalent to saying that the residual function rt = ⟨βwt
,x⟩−µ has a limit as limt→∞ rt =

0. Nevertheless, this remains a challenging task even if it has d = 2. The update of GD over variables
wt,± involves complicated matrix-vector computations and adds to the difficulties of analyzing the
iteration of rt and other important quantities. Therefore, the first step is to find a simple-to-tackle
iteration that is equivalent to and completely determines the GD dynamics over the original model.
This is entailed in Appendix A.1, in which by Lemma 4 and Lemma 5 we show that there exists an
iteration of quadruplet (at, a′t, b

′
t, b

′
t) that completely determines the trajectory of GD, and rt can be

expressed as a linear combination of the quadruplet.

With rt expressed via simpler variables and updates, we continue to show that, first, rt converges to
zero, and also, each variable in quadruplet can be properly bounded. To make the picture clearer,
we divide the entire trajectory of the quadruplet into two or three phases depending the the value of
µη. This corresponds to what we have discussed in the empirical observations, Section 3. The first
case ηµ ∈ (0, 1) results in two phases while the second case has ηµ > 1 and three phases.

We notice that, in both cases, there exists an initial phase. We show that in this phase a′t and b′t will
decrease to zero in fast speed. This allows us to analyze a simpler iteration by regarding a′t and b′t
as constant. The analysis of the initial phase is presented in Appendix A.2

The first case ηµ ∈ (0, 1) has only two phases and its second phase is featured by the fact that
|rt| always strictly contracts, and convergence can be easily established in a straightforward way.
Nevertheless, in the second phase of case ηµ > 1, the iteration rt does not necessarily contract. On
the opposite, the envelope of rt might increase during its oscillation, until it saturates. However, if
condition |x| ∈ (0, 1

ηµ ) is satisfied, it can be shown that a phase transition always occurs such that rt
begins to shrink. In this third phase, the convergence of rt can be proven using a similar technique for
the case ηµ ≤ 1. The proof of small step-size ηµ ∈ (0, 1) is presented in Appendix A.3, and proof
of ηµ ∈ (1, 3

√
2−2
2 ) is in Appendix A.4. For even larger step-size and the proof of Proposition 1,

please refer to Appendix A.5.

A.1 LINEAR ALGEBRA AND SIMPLIFICATION OF GD DYNAMICS

In this subsection, we start to present the proof of the main theorem by finding a simple iteration that
completely describes the behavior of GD. The major intermediate result of this subsection is summa-
rized in Lemma 5 and Lemma 6. For readers who are not interested in linear algebra computation
details, please skip the part and move directly to the aforementioned lemmas and the subsequent
discussion.

The first part of this section focuses on deriving the equivalent iteration of quadruplet (at, a′t, bt, b
′
t)

by analyzing the solution space of linear system ⟨x,β⟩ = y. Let us define the following vectors
β0,β1 ∈ R2:

β0 = (1, x), and β1 = (x,−1). (4)

Notice that the collection {β : i = 0, 1} constitutes a linear independent and orthogonal basis in
R2. Now consider the solution space of linear system ⟨x,β⟩ = y, where x := (1, x) ∈ R1×2,
y = ⟨x,β∗⟩ = µ ∈ R and β ∈ R2. Then ⟨x,β⟩ = y is an underdetermined linear system with
solution space as null(x)+β∗, where null(x) is the null space of x. Moreover, let null⊥(x) denote
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the subspace orthogonal to null(X). The dimensions of the null space and the complimentary space
are, respectively,

dimnull(x) = 2− 1 = 1, and dimnull⊥(x) = 1.

It is easy to conclude that {β1} and {β0} spans null(x) and null⊥(x), respectively.

To show the convergence of GD iteration in (2), it suffices to prove βwt
− β∗ ∈ null(x) when t

goes to infinity. To this end, we write w2
t,± ∓ 1

2β
∗ as linear combination of {β0,β1}:

w2
t,+ =

1∑
i=0

pitβi +
1

2
β∗, w2

t,− =

1∑
i=0

qitβi −
1

2
β∗. (5)

This is equivalent to saying

βwt =

1∑
i=0

(pit − qit) · βi + β∗.

It is easy to derive that rt = (1 + x2) · (p0t − q0t ). We use compact notations pt = (p0t , p
1
t ) and

qt = (q0t , q
1
t ), which allows to write the iteration using matrix-vector multiplications. In this way,

the following lemma characterizes the evolution of (pt, qt).
Lemma 4. Consider the GD dynamics in (2) and the decomposition in Eq. (5). Then (pt, qt)
formalizes the following recurrences:

pt+1 =
(
I − 2ηrtA+ η2r2tB

)
· pt − (2ηrt − η2r2t ) ·

µβ∗

2(1 + x2)
,

qt+1 =
(
I + 2ηrtA+ η2r2tB

)
· qt − (2ηrt + η2r2t ) ·

µβ∗

2(1 + x2)

(6)

where rt = (1 + x2) · (p0t − q0t ), A,B ∈ R2×2 are matrices defined as A =

1
1+x2

(
1 + x3 x(1− x)
x(1− x) x(1 + x)

)
and B = 1

1+x2

(
1 + x4 x(1− x2)

x(1− x2) 2x2

)
.

Proof. The GD iteration in (2) indicates the following update of wt,±’s:

wt+1,+ = wt,+ − ηrtx⊙wt,+, wt+1,− = wt,− + ηrtx⊙wt,−.

We tackle wt,+ first and write down the expansion of w2
t,+ using elementwise products:

w2
t+1,+ =

(
1− 2ηrtx+ η2r2tx

2
)
⊙w2

t,+

= w2
t,+ − 2ηrt

(
x⊙w2

t,+

)
+ η2r2t

(
x2 ⊙w2

t,+

)
.

Since the linear independent set {β0,β1} spans R2, we can represent x ⊙w2
t,+ as a linear combi-

nation of vectors from the basis:

x⊙w2
t,+ =

1∑
i=0

⟨x⊙w2
t,+,βi⟩

∥βi∥2
· βi

by plugging in Eq.(5)

=

1∑
i=0

1∑
j=0

pjt ⟨x⊙ βj ,βi⟩
∥βi∥2

· βi +
1

2

1∑
i=1

⟨x⊙ β∗,βi⟩
∥βi∥2

· βi.

Similarly, we can expand x2 ⊙w2
t,+ as a linear combination of β0,β1:

x2 ⊙w2
t,+ =

1∑
i=0

⟨x2 ⊙w2
t,+,βi⟩

∥βi∥2
· βi

=

1∑
i=0

1∑
j=0

pjt ⟨x2 ⊙ βj ,βi⟩
∥βi∥2

· βi +
1

2

1∑
i=1

⟨x2 ⊙ β∗,βi⟩
∥βi∥2

· βi.
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In the meanwhile, since w2
t+1,+ admits the following decomposition with coefficients pt+1:

w2
t+1,+ =

1∑
i=0

pit+1βi +
1

2
β∗, (7)

we are able to compute by comparing the coefficients in Eq.(7) for i = 0, 1

pit+1 = pit − 2ηrt

d∑
j=0

⟨x⊙ βj ,βi⟩
∥βi∥2

· pjt + η2r2t

d∑
j=0

⟨x2 ⊙ βj ,βi⟩
∥βi∥2

· pjt

− 2ηrt
⟨x⊙ β∗,βi⟩

∥βi∥2
+ η2r2t

⟨x2 ⊙ β∗,βi⟩
∥βi∥2

.

This can be expressed with compact notation via matrix-vector multiplication as

pt+1 =
(
I − 2ηrtA+ η2r2tB

)
· pt − 2ηrt

µ

2
+ η2r2t

ν

2
,

where (A)ij = Aij =
⟨x⊙βj ,βi⟩

∥βi∥2 , (B)ij = Bij =
⟨x2⊙βj ,βi⟩

∥βi∥2 , (µ)i = µi = ⟨x⊙β∗,βi⟩
∥βi∥2 , and

(ν)i = νi = ⟨x2⊙β∗,βi⟩
∥βi∥2 for i, j ∈ [d]. Noticing the symmetry between pt and qt, we obtain the

obtain the update of qt:

qt+1 =
(
I + 2ηrtA+ η2r2tB

)
· qt − 2ηrt

µ

2
− η2r2t

ν

2
.

It still remains to determine the exact value of Aij’s, Bij’s and µi’s. We calculate matrices A and
B by discussing the following cases:

1. Case i = 0, j = 1: Aij =
x(1−x)
1+x2 , Bij =

x(1−x2)
1+x2 ;

2. Case i = 0, j = 0: Aij =
1+x3

1+x2 , Bij =
1+x3

1+x2 ;

3. Case i = 1, j = 1: Aij =
x(x+1)
1+x2 , Bij =

2x2

1+x2 ;

4. Case i = 1, j = 0: Aij =
x(1−x)
1+x2 , Bij =

x(1−x2)
1+x2 .

Similarly, µ and ν are computed as

1. Case i = 0: µi = νi =
µ

1+x2 ;

2. Case i = 1: µi = νi =
µx

1+x2 .

Noticing that µ = ν = µβ0/(1 + x2), we finish the proof.

We do not stop at the iterations of (pt, qt) because it is still hard to analyze their updates via matrix-
vector multiplication. It requires further simplification. Let us define vectors

v1 = (1, x), v2 = (x,−1).

We write down the (non-standard) eigencomposition of matrices A and B define in Lemma 4:

A =λ1(A)v1v
⊤
1 + λ2(A)v2v

⊤
2

B =λ1(B)v1v
⊤
1 + λ2(B)v2v

⊤
2 ,

where we have

λ1(A) = λ1(B) = 1, λ2(A) = x, and λ2(B) = x2.

This suggests that A and B share the same eigenspace. Moreover, β0 can be written as β0 = v1.
As a result, we write pt, qt ∈ R2 as the linear combination of v1,v2:

pt =

(
at −

µ

2(1 + x2)

)
v1 + btv2, qt =

(
a′t +

µ

2(1 + x2)

)
v1 + b′tv2. (8)

The iteration of (at, bt, a′t, b
′
t) is characterized by the following lemma.
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Lemma 5. Consider the iteration of (pt, qt) defined in (6) and the decomposition in Eq. (8). Then
(at, bt, a

′
t, b

′
t) formalizes the following recurrences

at+1 =
(
1− ηrt

)2 · at
a′t+1 =

(
1 + ηrt

)2 · a′t
bt+1 =

(
1− x · ηrt

)2 · bt
b′t+1 =

(
1 + x · ηrt

)2 · b′t,
where we have

rt = (1 + x2) ·
(
(at − a′t) + x · (bt − b′t)−

µ

1 + x2

)
.

Additionally, the initialization satisfies a0 = a′0 = b0 = b′0 = α
1+x2 .

Proof. We consider the decomposition of pt as in Eq. (8) and calculate the expansion of pt+1 using
Lemma 4:

pt+1 =
(
I − 2ηrtA+ η2r2tB

)
·
(
atv1 + btv2 −

µv1

2(1 + x2)

)
− (2ηrt − η2r2t ) ·

µv1

2(1 + x2)
,

since λi(A), λi(B) are the corresponding (non-standard) eigenvalues of A and B for i = {1, 2},

=
(
1− 2ηrtλ1(A) + η2r2tλ1(B)

)
· atv1 − (1− 2ηrt + η2r2t ) ·

µv1

2(1 + x2)

+
(
1− 2ηrtλ2(A) + η2r2tλ2(B)

)
· btv2 − (2ηrt − η2r2t ) ·

µv1

2(1 + x2)

= (1− ηrt)
2 · at + (1− x · ηrt)2 · bt −

µv1

2(1 + x2)
.

By comparing the expansion with the following identity

pt+1 = at+1v1 + bt+1v2 −
µv1

2(1 + x2)
,

we obtain the following updates of coefficients

at+1 =
(
1− ηrt

)2 · at, bt+1 =
(
1− x · ηrt

)2 · bt.
Noticing the symmetry between pt and qt and their update, we also obtain the iteration of a′t and b′t
as

a′t+1 =
(
1 + ηrt

)2 · a′t, b′t+1 =
(
1 + x · ηrt

)2 · b′t.
Finally, simple calculation shows rt = (1 + x2) ·

(
(at − a′t) + x · (bt − b′t)

)
− µ.

Since our major goal is to prove the convergence of rt, we want to express the update of rt directly.
This is entailed in the next lemma.

Lemma 6. The update of rt follows the iteration below:

rt+1 =

(
1− 2η

(
µ+ rt − cx · (bt − b′t)

))
· rt + η2r2t ·

(
µ+ rt − c′x · (bt − b′t)

)
− (1 + x2) · 4ηrt ·

(
a′t + x2 · b′t

)
.

where cx = x(1− x)(1 + x2) and c′x = x(1− x2)(1 + x2).

Proof. We expand the update of rt as

rt+1 = (1 + x2) ·
(
(at+1 − a′t+1) + x · (bt+1 − b′t+1)−

µ

1 + x2

)
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by plugging the iteration in Lemma 5,

= (1 + x2) ·
(
(1− ηrt)

2 · at+1 − (1 + ηrt)
2 · a′t+1 + x · (1− xηrt)

2 · bt+1

− x · (1− xηrt)
2 · b′t+1 −

µ

1 + x2

)
by merging terms in order of rt’s,

= (1 + x2) ·
(
(at − a′t) + x · (bt − b′t)−

µ

1 + x2

)
− 2ηrt · (1 + x2) ·

(
(at + a′t) + x2 · (bt + b′t)

)
+ η2r2t · (1 + x2) ·

(
(at − a′t) + x3 · (bt − b′t)

)
= (1 + x2) ·

(
(at − a′t) + x · (bt − b′t)−

µ

1 + x2

)
− 2ηrt · (1 + x2) ·

(
(at − a′t) + x · (bt − b′t)−

µ

1 + x2

)
+ 2ηrt · (1 + x2) ·

(
− 2a′t − 2x2 · b′t + x(1− x) · (bt − b′t)−

µ

1 + x2

)
+ η2r2t · (1 + x2) ·

(
(at − a′t) + x · (bt − b′t)−

µ

1 + x2

)
− η2r2t · (1 + x2) ·

(
x(1− x2) · (bt − b′t)−

µ

1 + x2

)
.

By noticing the equality of rt as in Lemma 5, we obtain

rt+1 =

(
1− 2η

(
µ+ rt − cx · (bt − b′t)

))
· rt + η2r2t ·

(
µ+ rt − c′x · (bt − b′t)

)
− (1 + x2) · 4ηrt ·

(
a′t + x2 · b′t

)
where cx = x(1 + x2)(1− x) and c′x = x(1 + x2)(1− x2).

For future convenience, we introduce below several compact notations. First, denote ∆at = at − a′t
and ∆bt = bt − b′t. This allows us to define αt, βt and γt

αt = 2− 2η
(
µ− cx∆bt

)
, βt = 2η − η2

(
µ+ rt − c′x∆bt

)
, γt = (1 + x2) · 4η

(
a′t + x2 · b′t

)
.

The above notations allow us to rewrite the update of rt in Lemma 6 in a more compact form:

rt+1 = −(1− αt + γt) · rt − βt · r2t . (9)

A.2 INITIAL PHASE AND TRANSITION TO OSCILLATION

In Appendix A.1, we have shown that the GD iteration can be equivalently described by the iteration
of quadruplet (at, a′t, bt, b

′
t) in Lemma 5. Moreover, we express rt+1 as a function of rt and the

quadruplet in Lemma 6. In this subsection, we will analyze the behavior of (at, a′t, bt, b
′
t) and rt in

the initial phases. It can be easily derived from that the initialization w0,± = α1 corresponds to the
following initial value of the quadruplet

a0 = a′0 = b0 = b′0 =
µ

2(1 + x2)
.

As a result, we have r0 = −µ.

From the iteration in Lemma 5, it is obvious that all of at, a′t, bt, and b′t are non-negative for any
t. We will use this simple property without reference to it. When α is set to be sufficiently small,
the value of each term in the quadruplet will be negligible compared with |rt| when t is small.
As a result, rt remains negative and stable as rt ≈ −Θ(µ) holds in the initial phase, which leads

17
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Figure 9: Stable behavior of a′
t and b′t iterations in Lemma 5. Under initialization a0 = a′

0 = b0 = b′0 =
µ

2(1+x2 , both a′
t and b′t will decrease to zero in initial several iterations. We use different step-sizes in each plot,

which corresponds to EoS with ηµ > 1, with ηµ ≤ 1 and GF regime, respectively. We fix other parameters as
w = 0.3, µ = 1 and α = 0.01.

to the fast increase of at, bt and also the fast decrease of a′t, b
′
t to zero in a few iterations. This

phenomenon is empirically illustrated in Figure 9. The observation leads to two important results.
First, the fast decrease of a′t and b′t allows us to further simplify the dynamics in Lemma 5 by
regarding a′t ≡ b′t ≡ 0 for any t larger than some constant t0, where t0 marks the end of the initial
phase. In the meanwhile, since rt < 0 holds in the initial phase, we have

at+1

bt+1
=

(1− ηrt)
2

(1− x · ηrt)2
· at
bt

≈ e−Θ(ηrt) · at
bt

≈ eΘ(ηµ) · at
bt
,

which suggests the increase of at’s outrun bt’s. As a result, the update of rt is approximate as

rt+1 ≈ (1 + x2) · at+1 − µ ≈ (1− ηrt)
2 (rt + µ)− µ

= −(2µη − 1)rt − (2η − η2µ)r2t + η2r3t ,

which generates an increasing sequence (therefore decreasing in absolute value) when rt < −Θ(µ).

It can be possible that the value of rt decreases monotonically for t after t0 and hence the trajectory
falls into the GF regime. On the contrary, in the EoS regime, while rt is decreased enough, at can
increase to reach the level and surpass Θ(|rt|), which causes an oscillation to start and hence ends
the initial phase. The qualitative analysis is more formally analyzed in the following lemma.
Lemma 7. Suppose that µη ∈ (0, 2) and α ≪ O(1). There exist some τ = Ωη,µ

(
log

(
1
α2

))
such

that for any t < τ , rt < −µ
2 is true. As a result, the following facts are true:

bτ ≤ µ−Θ(1) · α2−C , a′τ ≤ Θ(α
4

µ ), b′τ ≤ µΘ(1) · α2+C .

where C is some constant between (0, 2).

Proof. Let τ be the first t such that rt < −µ
2 does not hold. Suppose such a τ does not exist and

rt < −µ
2 holds for any integer t. We observe the following inequality is true

a′t+1 = (1 + ηrt)
2 · a′t < a′t.

Repeating the steps results in a′t < a′0. Due to the same argument, it holds that b′t < b′0 = b0 < bt.
We consider the lower bound of at: since rt < −µ

2 is true for any t by assumption,

at ≥
(
1 +

ηµ

2

)2

· at−1 ≥ · · · ≥
(
1 +

ηµ

2

)2t

· α0 =
(
1 +

ηµ

2

)2t

· α2

2(1 + x2)
.

We continue and use in the identity of rt in Lemma 5:

−µ

2
> rt = (1 + x2)

(
(at − a′t) + x · (bt − b′t)

)
− µ

≥
(
1 +

ηµ

2

)2t

· α
2

2
− µ− α2

2

≥ α2

4
·
(
1 +

ηµ

2

)2t

− µ
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Rearranging yields 2µ
α2 ≥

(
1 + ηµ

2

)2t
, which should holds for t by assumption. This is im-

possible because α, η and µ are constants, and we conclude by contradiction that τ exists and
τ = O

(
1
µη log

(
µ
α2

))
.

We proceed to the lower bound of τ . We first notice the following is true for any t < τ :

rt+1 = (1 + x2) ·
(
(at+1 − a′t+1) + x · (bt+1 − b′t+1)

)
− µ ≥ −µ.

This is because rt < 0 holds for any t < τ and therefore the above conclusion a′t+1 ≤ at+1,
b′t+1 ≤ bt+1 is still true. This allows to lower bound aτ as

aτ ≤ e−2ηrτ−1 · aτ−1 ≤ e2µητ · a0.
In the meanwhile, since τ is the first t such that rt > −µ

2 no longer holds, we have the following
inequality

aτ =
rτ + µ

1 + x2
− x · (bτ − b′τ )− a′τ ≥ −µ/2 + µ

1 + x2
− x · aτ −O(α2),

by rearranging the equality of rt. We notice x2 < 1 and therefore aτ ≥ µ
4(1+x2) ≥ µ/8. Combining

the above result, we obtain a0 · e2µητ ≥ µ/8, which implies τ ≥ Ω
(

1
µη log

(
µ
α2

))
. It remains to

bound for bt, a′t and b′t. For a′t, it holds that

a′τaτ ≤ (1− ηrτ−1)
2 · (1− ηrτ−1)

2 · a′τaτ < a′τ−1aτ−1 < a′0a0 = Θ(α4),

which suggests a′τ ≤ Θ(µ/α4). For bt, it can be computed as

bτ ≤ e−2xηrτ−1 · bτ−1 ≤ e2xητ · b0 ≤ Θ(α2) · eΘ(x)·log(µ/α2) ≤ µ−Θ(1) · α2−C

where C is some constant between (0, 2). Combining with

b′τ bτ ≤ b′0b0 ≤ Θ(α4),

it holds that b′τ ≤ µΘ(1) · α2+C ≪ bτ .

In the statement of Theorem 1 and Theorem 2, we assume that change of sign starts after the
initial phase as rtrt+1 holds for any t ≥ t0. Lemma 7 suggests a lower bound of t0 ≥ τ =
Ωη,µ(log(1/α

2)) as oscillation does not start when rt < −µ/2 still holds. Moreover, when α is
sufficiently small, Lemma 7 indicates that a′t and b′t will decrease very quickly to zero before the
change of sign, and hence allows us to simplify the iteration in Lemma 5 by regarding

a′t ≡ b′t ≡ 0, for ∀t ≥ t0.

We use this approximation for any t ≥ t0. Now, we can write the iteration of rt as

rt+1 = −(1− αt + βtrt) · rt (10)

where αt = 2− 2η
(
µ− cxbt

)
and βt = 2− 2η

(
µ+ rt − c′xbt

)
. Under this setting, we establish the

convergence of rt for both setting ηµ ≤ 1 and ηµ > 1, as in the next two theorems, respectively.

A.3 PROOF OF THEOREM 1: ηµ < 1

This subsection contains the convergence proof under the EoS regime with µη < 1. We define some
notations before proceeding to its proof. Since our major focus is the convergence of |rt|, it is more
convenient to render the update of (at, bt) in 10 as an equivalent update of bivariate (rt, st) defined
as following. We first express at as a linear combination of rt and bt

rt = (1 + x2) · (at + x · bt)− µ =⇒ at =
rt + µ

1 + x2
− x · bt.

Moreover, for notational convenience, we replace bt with st where the latter is rescaled version of bt
by a constant factor, i.e. st = ηcx · bt. To obtain the update of the new sequence (rt, st), we define
the following polynomials of pair (r, s) with fixed constants η, µ and x:

gη,µ,x(r, s) = −(2µη − 1)r − (2η − µη2)r2 + η2r3 + 2rs− (1 + x)ηr2s,

hη,µ,x(r, s) = s− 2xηrs+ x2η2r2s.
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The subscript is omitted, i.e. g(r, s) = gη,µ,x(r, s) when it causes no confusion. Comparing g, h
and the iteration of (at, bt) in Lemma 5 we obtain the following identities

rt+1 = g(rt, st), st+1 = h(rt, st). (11)

Therefore, we could employ the toolbox of dynamical systems to characterize the behavior of
(rt, st). Besides, it is worth noticing the following identity holds:

αt = 2− 2ηµ+ 2ηcxbt = 2− 2ηµ+ 2st,

βt = 2η − η(µη + rtη + (1 + x) · st)
We will frequently use these equalities in the latter part.

Proof outline. By the end of the initial phase, the absolute value of negative rt has decreased
sufficiently, and the oscillation rtrt+1 < 0 starts. From our empirical observation in Section 3, the
major characteristic of EoS regime with ηµ < 1 is that the envelope of rt enters the convergence
phase immediately as the initial phase ends. This is because during the convergence phase, for any
rt < 0, it can be shown that

0 > rt+2 > (1− αt)(1− αt+1) · rt.
When the step-size is set to be smaller than 1/µ, αt ≥ 2 − 2ηµ > 0 will hold for any t, which
further implies the shrinkage of |rt|’s.

We start the proof by noticing the simple results for at and bt’s.
Lemma 8. For any t, if rt ∈ (−µ, 0] is true, then the following inequalities hold:

at+1 > at, bt+1 > bt.

Proof. Let rt ∈ [−µ, 0), then it holds that 1− ηrt > 1 and 1−x · ηrt > 1. We obtain the following
inequalities immediately from the update in Lemma 5:

at+1 = (1− ηrt)
2 · at > at, bt+1 = (1− x · ηrt)2 · bt · b′t > bt,

and finish the proof.

Lemma 9. For any rt < 0 and rt+1 > 0, it holds that rt+2 ≥ (1− αt+1)(1− αt) · rt.

Proof. Let rt < 0 and rt+1 > 0. To obtain the lower bound, we first write down the expansion of
rt+2 using Eq.(10):

rt+2 = −(1− αt+1) · rt+1 − βt+1 · r2t+1

= (1− αt+1)(1− αt) · rt + (1− αt+1) · βt · r2t − βt+1 · r2t+1

= (1− αt+1)(1− αt) · rt + βt · (r2t − r2t+1)− αt+1βt · r2t + (βt − βt+1) · r2t+1 (12)

By observing Eq. (10) again, we have

rt+1 + rt = αtrt − βtr
2
t ,

which allows the following decomposition of r2t − r2t+1

r2t − r2t+1 = (rt − rt+1) · (rt + rt+1) = (rt − rt+1) · (αtrt − βtr
2
t ).

We plug the identity back to Eq.(12) and obtain

rt+2 = (1− αt+1)(1− αt) · rt + βt · (rt − rt+1) · (αtrt − βtr
2
t )− αt+1β

′
t · r2t + (βt − βt+1) · r2t+1

= (1− αt+1)(1− αt) · rt + αtβt · rt(rt − rt+1)− β2
t · r2t (rt − rt+1)

− αtβt · r2t − (αt − αt+1)βt · r2t + (βt − βt+1) · r2t+1

= (1− αt+1)(1− αt) · rt − αtβt · rtrt+1 − β2
t · r2t (rt − rt+1)

− (αt − αt+1)βt · r2t + (βt − βt+1) · r2t+1.

We notice the following facts:

rt − rt+1 < 0, αt − αt+1 < 0, βt − βt+1 > 0.
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The first inequality is true due to rt < 0 and rt+1 > 0. For the second one, it is easy to verify

αt − αt+1 = 2ηcx ·
(
bt − bt+1

)
< 0

due to Lemma 8. For the last inequality, we expand using the definition of βt

βt − βt+1 = η2c′x ·
(
bt − bt+1

)
− η2 ·

(
rt − rt+1

)
= −η2(1 + x2) ·

(
(at − at+1) + x3 · (bt − bt+1)

)
> 0.

where the second equality comes from rt = (1 + x2) ·
(
at + x · bt

)
− µ, and the inequality is due

to Lemma 8 again. Combining the above facts and the expansion of rt+2 in Eq. (12), we attain the
following inequality

rt+2 ≥ (1− αt+1)(1− αt) · rt.

With the help of the above two lemmas, we are able to show the contraction of rt’s envelope when
t ≥ t0.
Lemma 10. Suppose that ηµ < 1 and rtrt+1 < 0 holds for any t ≥ t0. The iteration of (rt, st)
converges to (0, s∞) in a linear rate as

|rt| ≤ exp (−Θ(µη) · (t− t0)) · |rt0 |.

Moreover, it holds that limt→∞ st ≤ C · αΘ(1).

Proof. Let us assume rtrt+1 holds for any t ≥ t0. To show the convergence of rt, we only need
to consider bounding |rt| when rt is negative, because for any rt+1 > 0, we have directly |rt+1| ≤
O(|rt|).
Now consider any t ≥ t0 with rt < 0. We invoke Lemma 9 to obtain the lower bound for rt+2,
which is also negative by our assumption:

rt+2 ≥ (1− αt)(1− αt+1) · rt.
To proceed, it requires to bound αt and αt+1. We first show 1− αt > 0 and 1− αt+1 > 0 holds by
discussing two cases. In the first case, if βt ≥ 0, it holds that

0 < −rt+1

rt
= 1− αt + βtrt < 1− αt

because rt < 0. Then due to Eq. (10 and fact rt+2, rt < 0 we must also have 1 − αt+1 > 0. In
the second case, suppose βt < 0. By above argument we attain βt+1 < βt < 0. Similarly, because
rt+1rt+2 < 0 and rt+1 > 0, we attain

0 < −rt+2

rt+1
= 1− αt+1 + βt+1rt+1 < 1− αt+1.

As a result, 1 − αt > 0 is also true. We also need to lower bound αt and αt+1. Since µη < 1, by
their definition and Lemma 8 we have immediately

αt+1 ≥ αt ≥ 2(1− µη) > 0.

As a result of the above discussion, we obtain |rt+2| ≤
(
1− (2µη− 1)

)2 · |rt| because 2µη− 1 < 1
for any µη ∈ (0, 1). This suggests

|rt| ≤ exp (Θ(2µη − 1) · (t− t0)) · |rt0 |.
It remains to bound st’s. To this end, we focus on the iteration t with rt > 0 instead of rt < 0,
because from Lemma 8 st > st−1 if rt > 0. For any such t, we compute

st+2

st
= (1− x · ηrt+1)

2 · (1− x · ηrt)2 ≤ exp (−xη · (rt + rt+1))

= exp (−xη · (rt + rt+1))

= exp
(
−xηαtrt + xηβtr

2
t

)
≤ exp

(
2xη2r2t

)
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where the second equality is from rt + rt+1 = −αtrt + βtr
2
t , an equivalent form of Eq. (10), and

the last inequality come from αt > 0 and rt > 0 and

βt = 2η − η2
(
µ+ rt − c′xbt

)
= 2η − η2(1 + x2) ·

(
at + x3 · bt

)
< 2η.

Repeating the above step, we obtain for any t with rt > 0

st = exp

2xη2 ·
t−2∑
i=t0
i even

r2t

 · st0 ≤ exp

2xη2r2t0 ·
t−2∑
i=t0
i even

e−Θ(2µη−1)

 · st0

≤ exp

(
2xη2r2t0 ·

1

1− e−Θ(2µη−1)

)
· st0

≤ exp

(
2xη2r2t0

Θ(2µη − 1)

)
· st0

Since |rt0 | ≤ µ and st0 = ηcx · bt0 ≤ µ−Θ(1) · αΘ(1) (due to Lemma 7), we conclude that

lim
t→∞

st ≤ exp

(
2xη2µ2

Θ(2µη − 1)

)
· st0 = exp

(
2x

Θ(2µη − 1)

)
· st0 = O(αΘ(1)),

where we hide the dependence on η, µ, x because we want to focus on the asymptotic property on α
only.

Finally, we put every piece together and prove the result for ηµ < 1.

Proof of Theorem 1. We first show part (1) is true. From Lemma 4, Lemma 5, we can decompose
βwt as

βwt
= w2

t,+ −w2
t,− = (p0t − q0t ) · β0 + (p1t − q1t ) · β1 + β∗

where the vectors are β0 = (1, x), β1 = (x,−1) and the coefficients can be computed as

p0t − q0t = at − a′t −
µ

1 + x2
+ x · (bt − b′t),

p1t − q1t = −x ·
(
at − a′t −

µ

1 + x2

)
+ bt − b′t.

We now proceed to discuss the limits of the coefficients for β0 and β1.

We notice it suffices to consider x > 0: by observing Lemma 5, the iteration with x = −a, a > 0
can be regarded as simply exchanging bt/b

′
t of an iteration with x = a. Starting from initialization

a0 = a′0 = b0 = b′0 =
α2

2(1 + x2)

(which corresponds to wt,± = α1), Lemma 7 suggests that a′t and b′t will decrease and converge to
α2

2(1+x2) and 0 very quickly. In the meanwhile, at , although remains negative, increases to the level
of −Θ(µ). Therefore, we can simplify the analysis by discard early iterations and regarding a′t, b

′
t

as constantly 0, which leaves us a discrete dynamical system of two variables (at, bt) and it holds
that rt = (1 + x2) ·

(
at + x · bt

)
− µ for any t ≥ t0, where t0 is by our assumption the start of

change of sign.

We notice the following inner products

⟨β0,x⟩ = 1 + x2, ⟨β1,x⟩ = 1, and ⟨β∗,x⟩ = µ. (13)

This allows us to express rt as

rt = ⟨βwt
,x⟩ − µ =

(
p0t − q0t

)
· ⟨β0,x⟩+

(
p1t − q01

)
· ⟨β0,x⟩+ ⟨β∗,x⟩ − µ

=(1 + x2) ·
(
p0t − q0t

)
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We now invoke Lemma 10 and obtain

lim
t→∞

p0t − q0t ∝ lim
t→∞

rt = 0,

as well as

lim
t→∞

p1t − q1t = lim
t→∞

(
−x ·

(
at − a′t −

µ

1 + x2

)
+ bt − b′t

)
= −x · lim

t→∞
((at − a′t) + bt − b′t)

= −x · lim
t→∞

rt + x2 · lim
t→∞

(bt − b′t) = x2 · lim
t→∞

(bt − b′t) ≤ O(αC).

where C > 0 is some constant. The above results suggest that βwt converges to the following limit

β∞ := lim
t→∞

(
p0t − q0t

)
· β0 +

(
p1t − q1t

)
· β1 + β∗ = β∗ + β1 · x2 · lim

t→∞
bt − b′t.

It is easy to verify β∞ is a linear interpolator ⟨β∞,x⟩ = y due to (13). Therefore, the convergence
to β∞ can be characterized in a non-asymptotic manner using Lemma 10 again: for any t ≥ t0,

|⟨βwt
− β∞,x⟩| = |⟨βwt

− β∗,x⟩| = |rt| ≤ C · exp (−Θ(2µη − 1) · (t− t0)) |rt0 |.

Moreover, it holds that

∥β∞ − β∗∥ = lim
t→∞

(p1t − q1t ) · ∥β1∥ = O(αC).

A.4 PROOF OF THEOREM 2: REGIME ηµ ∈ (1, 3
√
2−2
2 )

This subsection contains the EoS convergence proof under the much harder case with ηµ > 1. We
continue to use the (rt, st) update in Appendix A.3.

Proof outline. Compared with the regime ηµ < 1, it poses more challenging tasks when we
attempt to provide a convergence proof under ηµ > 1. This is because, by the end of the initial
phase, the iterate of rt does not start to contract. On the contrary, the envelope of the oscillating
rt can even increase, which suggests |rt+2| > |rt| for some certain t. Therefore, in contrast to the
setting µη < 1, we can not directly apply Lemma 9.

We observe Lemma 9 again and realize that the convergence is decided by the following criterion

αt ≥ 0, or equivalently, st ≥ µη − 1 =⇒ contraction of |rt| happens.

Recall that αt = 2 − 2ηµ + 2st. From the discussion on the initial phase, it is shown that st
(or equivalently bt) starts with a small value at t0, which implies in early phases αt < 0 and the
contraction criterion is not satisfied. This is why convergence does not happen in the second phase
in the case of µη > 1. Therefore, the central task is to find under which condition bt and st increase
sufficiently during the second phase such that the phase transition from αt < 0 to αt > 0 will
eventually occur.

Through a fixed-point analysis of the discrete dynamical system, we are able to show that phase
transition will happen under x ∈ (0, 1

µη ), and subsequently we could employ Lemma 9 to establish
the convergence.

Auxiliary sequence. Before we prove the phase transition will occur when x ∈ (0, 1
µη ), it requires

characterizing some properties of the (rt, st) iterate using the tool of discrete dynamical system and
an auxiliary sequence defined as

ρt+1 = g(ρt, 0)

with initialization ρt0 = rt0 . The new sequence can be regarded as setting st ≡ 0 for any t. We start
by presenting some basic properties of ρt sequence and mapping g(·, 0).
Lemma 11. The following statements are true for the iteration of ρt:
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(1). The local minimum and maximum of g(ρ, 0) are ρ = 1
η and ρ = − 2ηµ−1

3η , respectively. As a
result, the mapping g(r, 0) is monotonically decreasing and sign-changing (ρ · g(ρ, 0) ≤ 0) in
the range of ρ ∈ [− 2ηµ−1

3η , 1
η ];

(2). The mapping g(ρ, 0) has 2-periodic points at ρ± =
1−µη±

√
µη2+2µη−3

2η .

Proof. To prove (1), we take derivative of g(ρ, 0) with respect to the first variable:

g′(ρ, 0) = 3η2ρ2 + 2(µη2 − 2η)ρ− 2µη + 1.

Because g(ρ, 0) is a degree-3 polynomial in ρ, solving equation g′(ρ, 0) = 0 suggests that 1
η and

− 2ηµ−1
3η are the only two stationary points of g(·, 0). Moreover, we compute the value and derivative

at ρ = 0 as

g(0, 0) = 0, g′ρ(0, 0) = 1− 2µη < 0,

as a result, g(ρ, 0) · ρ < 0 holds and g(ρ, 0) is monotonically decreasing when ρ ∈ [− 2ηµ−1
3η , 1

η ].

To prove (2), we solve fixed-point equation r = g(g(r, 0), 0) to obtain a pair of non-trivial solutions:

ρ± =
1− µη ±

√
µ2η2 + 2µη − 3

2η
.

When ηµ ∈ (1, 3
√
2−2
2 ), the sequence ρt can be regarded as a ”reference” of rt because its envelope

contains rt’s envelope. This means rt, ρt have the same sign and |rt| ≤ |ρt| holds for any t if they
share a proper initialization. This is stated in the next lemma.
Lemma 12. Consider the sequence (rt, st) and ρt with same initialization rt0 = ρt0 ∈ (−µ

2 , 0)

and st0 ≥ 0. If ηµ ∈
(
1, 3

√
2−2
2

)
and rtrt+1 < 0 holds for any t ≥ t0, then the following statements

are true for any t ≥ t0: (1) rt and ρt have the same sign, (2) |rt| ≤ |ρt| and (3) rt, ρt ∈ [−ρ−, ρ+].

Proof. Let ηµ ∈
(
1, 3

√
2−2
2

)
. Our first goal is to show that with initialization ρt0 ∈ [ρ−, ρ+], where

ρ± are the 2-periodic points, then for any t, ρtρt−1 < 0 and rt ∈ [ρ−, ρ+] hold. We prove this by
induction. Now suppose this holds for t. It is easy to check when ηµ ∈

(
1, 3

√
2−2
2

)
, the following

inequalities are true:

−2ηµ− 1

3η
≤ 1− µη −

√
µ2η2 + 2µη − 3

2η
< 0 <

1− µη −
√
µ2η2 + 2µη − 3

2η
<

1

η
.

Therefore, the mapping g(ρ, 0) is monotonically decreasing and sign-changing from (1) of
Lemma 11. As a result, when ρt < 0, we have

0 ≤ ρt+1 = g(ρt, 0) < g(ρ−, 0) = ρ+.

Similarly, when ρt > 0, we have

0 ≥ ρt+1 = g(ρt, 0) ≥ g(ρ+, 0) = ρ−.

Therefore (1) and ρt part in (3) are proved. It remains to prove for (2) which immediately implies
rt ∈ [ρ−, ρ+] in (3). Still, we prove this by induction on t. Suppose that |rt| ≤ |ρt| is true for t.
When rt < 0,

rt+1 = g(rt, st) = g(rt, 0) + rtst ·
(
2− (1 + x2)ηrt

)
≤ g(rt, 0) ≤ g(ρt, 0),

where the last inequality comes from the monotonicity of g(·, 0) and condition rt ∈ [ρ−, ρ+]. When
rt > 0, it holds that

rt+1 =g(rt, 0) + 2rtst − (1 + x2)ηr2t st

≥g(rt, 0) + 2rtst − (1 + x2)rtst ≥ g(rt, 0) ≥ g(ρt, 0),

where the first inequality comes from rt ≤ ρ− ≤ 1
η and the second is from x ≤ 1.
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Finally, we give the condition on when the bivariate mapping (g, h) admits periodic points.
Lemma 13 (2-periodic points). If x ∈ (0, 1

ηµ ), then the mapping (g, h) : R2 → R2 does not admit
2-periodic points, and hence also 2n-periodic points for n ≥ 1, in the domain (R\{0})×(0, µη−1).
On the contrary, if x ∈ ( 1

ηµ , 1), (g, h) admits a pair of non-trivial 2-periodic points (r±, s±)in the
same domain as

r± =
1− µηx∓

√
µ2η2x2 + 2µηx− 3

2ηx
,

s± =
(1− x)(µηx+ 1±

√
(µηx+ 1)2 − 4)

2x
.

Proof. Before proceeding to the discussion 2-periodic points, we compute the fixed point, a.k.a.
1-periodic points of (g, h). This is because every 1-periodic point is also a trivial 2-periodic point
which we need to eliminate. To obtain the fixed points, it requires to solve the following equation
system {

g(r, s) = r,

h(r, s) = s.

Clearly (r1,1, s1,1) with r1,1 = 0 and any s1,1 ∈ R is a trivial solution. We employ Mathematica

Symbolic Calculation to obtain another root (r1,2, s1,2) =
(

2
ηx ,

(1−x)(2+xµη)
x

)
.

Now we compute the non-trivial 2-periodic points by solving the following equation system{
g(g(r, s), h(r, s)) = r,

h(g(r, s), h(r, s)) = s.

The computation result is also obtained by Mathematica Symbolic Calculation. We compare with
the above fixed point, which indicates the first three real roots

(r2,1, b2,1) = (0, µη) , (r2,2, b2,2) = (0, µη − 1), and (r2,3, b2,3) =
(

2
ηx ,

(1−x)(2+xµη)
x

)
are also the 1-periodic points and hence trivial. There are four pairs of possibly real roots
(r2,i,±, s2,i,±) for i = {4, 5, 6, 7} as following:

r2,4,± =
x+ 1∓

√
x2 + 1

ηx
,

s2,4,± = (µηx+ x2 + x+ 2)

(
1

x
± 1√

1 + x2

)
,

r2,5,± =
x∓

√
x2 − 2x+ 2

ηx− η
,

w2,5,± =
(µη(x− 1) + x2 − x+ 2)(x2 − x+ 1± xη

√
x2 − 2x+ 2)

(x− 1)3
,

r2,6,± =
x− µηx2 ∓ x

√
µ2η2x2 + 2µηx− 3

2ηx2
,

s2,6,± =
(1− x)(µηx+ 1±

√
µ2η2x2 + 2µηx− 3)

2x
,

and

r2,7,± =
1±

√
2x2 − 2x+ 1

η(1− x)x
,

s2,7,± =

(
1 + 2x− 2x2 ∓ x

√
1 + 2x− 2x2

)
(x(1− x)(µη − 1) + 2)

(1− x)3x
.

It is easy to verify that for any i ∈ {4, 5, 6, 7}, it holds that

g(r2,i,±, s2,i,±) = r2,i,∓, h(r2,i,±, s2,i,±) = s2,i,∓,
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which suggests these pairs are indeed 2-periodic points if they are real number given condition
s ∈ (0, µη − 1).

Now we discuss if the points are legitimate by considering the constraint s ∈ (0, µη − 1). We first
notice that

s2,5,+ + s2,5,− = −
(x2 − x+ 1)

(
µη(x− 1) + x2 − x+ 2

)
(1− x)3

= − (x2 − x+ 1)(2− (µη − x)(1− x))

(1− x)3

≤ −
(
(x− 1

2 )
2 + 3

4

) (
2− (2− x)(1− x)

)
(1− x)3

= −
(
(x− 1

2 )
2 + 3

4

) (
3x− x2

)
(1− x)3

< 0

due to the fact that x ∈ (0, 1) and ηµ ∈ [0, 2]. This indicates at least one of s2,5,± must be negative
and this pair should also be discarded. Also, we discard the pair (r2,4,±, s2,4,±) and (r2,7,±, s2,7,±)
because

s2,4,+ >
2

x
+ x ≥ 2

√
2 > µη − 1,

and

s2,7,− >
x(1− x)(µη + 1)

x(1− x)3
=

ηµ+ 1

(1− x)2
> ηµ− 1.

It remains to investigate the last pair of (r2,6,±, s2,6,±). We notice the following identity

µ2η2x2 + 2µηx− 3 = (µηx+ 1)2 − 4.

As a result, if x ∈ (0, 1/(µη)), it holds that (µηx + 1)2 − 4 < 0 and hence the roots are complex.
On the contrary, if x ∈ (1/(µη), 1), it holds that (µηx+ 1)2 − 4 > 0 and hence it admits real roots.
Therefore we conclude that when x ∈ (0, 1/(µη)), there is no 2-periodic points for the mapping
(g, h); in the meanwhile, a pair of 2-periodic points exists when x ∈ (1/(µη), 1).

We can verify there are four additional roots that have
√

−7 + 2µηx+ µ2η2x2 in the fractional and
hence are always complex because −7 + 2µηx + µ2η2x2 < 0 for any µη ∈ [0, 2] and x ∈ [0, 1].
Therefore they do not constitute 2-periodic points in the real domain.

Phase transition and thresholding-crossing. With the above lemmas featuring the (rt, st) itera-
tions, we now prepare to prove the phase transition from αt < 0 to αt > 0 will eventually happen,
turning the envelope of rt to convergent. It should be noticed that α ≶ 0 is equivalent to st ≶ µη−1,
which we use interchangeably.

Lemma 14. Suppose that ηµ ≥ (1, 3
√
2−2
2 ] and x ∈ (0, 1

µη ). Consider rt0 ∈ (−µ
2 , 0) and 0 <

st0 ≪ µη − 1. Then it holds that limt→∞ st > µη − 1, or equivalently limt→∞ αt > 0.

Proof. We consider the behavior of the discrete system of (rt, st) described in (11). Asymptotically,
it either diverges, becomes chaotic, or converges to a fixed point or a periodic cycle. Let us suppose
that lim supt→∞αt < 0, which is equivalent to saying lim supt→∞st < µη−1. We will prove later
that under parameter choice x ∈ (0, 1

ηµ ), the iterates (rt, st) do not diverge, become chaotic, nor
converge to a periodic orbit. As a result, either αt will finally come across zero, or lim supt→∞αt >
0 still holds but limt→∞ rt = 0. Since the total measure of the latter event is negligible, we only
take the thresholding-crossing case into account.

Now we analyze the behavior of (rt, st) when the crossing of αt does not occur. We consider
the auxiliary iteration ρt+1 = g(ρt, 0) with the same initialization at rt0 and prove the following
statements are true for any t ≥ t0:

(1) rtrt+1 < 0, and (2) |rt| ∈ |ρt|.
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This is proved by induction over t ≥ t0. For the base case t = t0, it can be easily verified from

r0 ≥ µ

2
>

1− µη −
√
η2µ2 + 2ηµ− 3

2η
≥ −µη + 1

2η
.

Therefore, the assumption rt0 ∈ (−µ/2, 0) in Lemma 12 is met and allows us to use the lemma
once change of sign is proved. Now suppose they hold for any t − 1. It is immediately from the
update of rt

−rt+1

rt
= 1− αt + βtrt.

To establish (1), it suffices to show 1 − αt + βtrt ≥ 1 + βrrt > 0 due to condition αt < 0. We
discuss two separate cases: rt ≤ 0 and rt > 0. In the first case of rt ≤ 0, we write down

1 + βtrt = 1 + 2ηrt − η2rt ·
(
µ+ rt − c′xbt

)
= 1 + 2ηrt − η2rt · (1 + x2) ·

(
at + x3 · bt

)
= 1 + 2ηrt.

where in the first line we use the definition of βt, in the second line we use the identity in Lemma 5,
and in the last line we use facts at, bt ≥ 0. By our assumption, rtrt−1 < 0 is true and hence we can
invoke Lemma 12 to conclude that rt ≥ ρ−. This leads to

−rt+1

rt
≥ 1 + 2ηrt ≥ 1 + 2ηρ− ≥ 1− 2η · 2ηµ− 1

3η
=

5

3
− 4

3
µη > 0.

because ηµ ≤ 3
√
2−2
2 < 5/4. In the second case of rt ≥ 0, we have

1 + βtrt = 1 + 2ηrt − η2µrt − η2r2t + η2c′xbtrt

≥ 1 + ηrt ·
(
2− ηµ− ηrt

)
.

Similar to the above discussion, since rtrt−1 < 0, we are able to obtain rt ≤ ρ+ using Lemma 12.
As a result, we have

−rt+1

rt
≥ 1 + ηrt

(
2− ηµ− η/η

)
= 1− ηrt

(
ηµ− 1) ≥ 2− ηµ > 0,

where the second line comes from rt > 0 and bt > 0. Summarizing both cases, we reach the
conclusion rtrt+1 < 0. Since the condition is met, we can invoke Lemma 12 to conclude that
rt+1 ∈ [ρ−, ρ

+] is also true. With the above statements to be true, the rt iteration is bounded and
not diverging. Also, because x ∈ (0, 1

ηµ ), Lemma 13 indicates that (rt, st) does not converge to any
2n-periodic orbit or become chaotic by bifurcation theory. This proves the existence of t and the
final result.

The above lemma suggests that there exists a certain t such that αt < 0 should hold for any t ≥ t,
which marks the beginning of the convergence phase. We next characterize the properties and, in
particular, give an upper bound estimate for αt when the transition happens through the following
lemma for the initial gap. These results are important when we establish the convergence rate in this
phase.
Lemma 15. Suppose that ηµ ≥ 1 and x ∈ (0, 1

µη ). Then there exists a t such that 0 ≤ αt is true
for any t ≥ t. Moreover, it holds that rt > 0 and αt ≤ Θ(µη − 1).

Proof. By Lemma 14, limt→∞ αt > 0 should hold under x ∈ (0, 1
ηµ ), which suggests there exists

some t ∈ R such that αt′ > 0 holds for any t′ ≥ t. Let t be the least of such t’s. We first prove that
rt > 0. Let us suppose not, hence we have rt < 0 and rt−1 > 0. This indicates that

st−1 = (1− xηrt−1)
−2 · st > st

and therefore αt−1 > αt > 0. Hence t is not the least t such that αt > 0 holds for any t′ ≥ t.

We proceed and upper bound αt. Suppose that rt−1 ≥ −µ holds and we will postpone its proof.
Under this condition, we upper bound st as:

st = (1− xηrt−1)
2 · st−1 ≤ (µη − 1) · (1− xηrt−1)

2 ≤ (µη − 1) · (1 + xηµ) ≤ 4(µη − 1),

where the last inequality is due to x ∈ (0, 1
µη ). Therefore αt = 2st − 2(µη − 1) ≤ 2(µη − 1).

Finally, we argue that rt−1 ∈ (−µ, 0). Because at > 0, bt > 0 holds for any t, from the expression
of rt we deduce that rt = (1 + x2) · (at + x · bt)− µ > −µ.
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Lemma 16. Suppose that αt > 0, st > 0, rt < 0 and x ∈ (0, 1
µη ). Then it holds that (1−xηrt)(1−

xηrt+1) ≥ 1.

Proof. We expand the term using Eq. (10)

(1− xηrt)(1− xηrt+1) = (1− xηrt) ·
(
1− xη(1− αt + βtrt) · rt

)
= (1− xηrt) · (1− xηrt) + xηαtrt · (1− xηrt) + xηβtr

2
t · (1− xηrt)

≥ 1− x2η2r2t + xηβtr
2
t

≥ 1

where the first inequality is from rt < 0, αt > 0. For the second inequality, we calculate

βt = 2η − η2
(
µ+ rt − (1− x)st

)
= 2η − η2µ− η2rt + (1− x)η2st

)
≥ 2η − η2µ = η(2− ηµ) ≥ xη

due to rt < 0, st > 0 and xηµ ≤ 1.

Convergence phase. The above lemmas indicate if x ∈ (0, 1
ηµ ) is true, the iteration will finally

enter the third phase, where αt > 0 guarantees the convergence.

We state the result in the next Lemma, where we establish the convergence of rt using Lemma 9,
very similar to Lemma 10 in Appendix A.3.
Lemma 17. Suppose that x ∈ (0, 1

ηµ ). Then there exists a universal constant C > 0 such that for

any µη ∈ (1,min{ 3
√
2−2
2 , 1 + C−1/4}) and any t ≥ t, (a) rtrt+1 < 0 and (b) the iteration (rt, st)

converges to (0, s∞) in a linear rate as

|rt| ≤ exp
(
−Θ(µη − 1) · (t− t)

)
· |rt|.

Moreover, it holds that limt→∞ bt ≤ C(µη − 1).

Proof. Lemma 15 states that rt > 0, which suggests rt < 0 holds if t − t is an odd number.
Therefore, we prove the lemma by considering any t with t − t to be odd: suppose for any such t,
the following statements are true:

(1). rt+1 > 0, rt+2 < 0;

(2). |rt+1| ≤ O(|rt|), |rt+2| ≤ (1−Θ(µη − 1))2 · |rt|;

(3). st ≤ st+2 ≤ C(µη − 1).

Then we are able to the change of sign in (a) is true for any consecutive iteration. In the meanwhile,
we can repeatedly use (2) to establish the non-asymptotic linear convergence of |rt| as well as the
uniform upper bound of st for any t ≥ t. We will prove the correctness using induction. Suppose
the above statements are true for t′ ≤ t with t − t′ to be even, given that t − t is also even. Then
rt < 0 holds. We first show (1) is true. Similar to the proof of Lemma 14, it suffices to show
1− αt + βtrt > 0. We can expand the term by plugging the definition of βt

1− αt + βtrt = 1 + αt + 2ηrt − η2rt ·
(
µ+ rt − c′xbt

)
≥ 1 + αt + 2ηrt.

where the inequality is due to rt < 0. Moreover, we insert the definition of αt

1 + αt + 2ηrt = 1− 2 + 2ηµ− 2st + 2ηrt.

We consider the auxiliary sequence ρt+1 = g(ρt, 0) with the same initialization at rt0 . Using the
argument in the proof of Lemma 14 and our condition rt′rt′+1 < 0 for any t′ ≤ t − 1, we are able
to invoke Lemma 12 to obtain rt ≥ ρ−. This leads to a lower bound

1 + αt + 2ηrt ≥1− 2 + 2ηµ− 2st + 2ηρ−

≥1 + 2(ηµ− 1)− 2C(µη − 1)− 3(µη − 1)

=1− (2C + 1)(ηµ− 1) > 0.
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due to (3), ρ− = −µη−1+
√

(µη−1)(µη+3)

2η ≥ − 3(µη−1)
2η , and ηµ ∈ (1,min{ 3

√
2−2
2 , 1 + 1/(4C)}).

This immediately implies rtrt+1 < 0 and rt+1 > 0. For the sign of rt+2, we first notice

βt+1 = 2η − η2 ·
(
rt + µ− c′xbt

)
= 2η − η2 · (1 + x2) ·

(
at + x3 · bt

)
< 2η

due to the non-negativity of at and bt. Besides, because ρ− ≤ rt < 0, we have

(1− x · ηrt)2 ≤ (1− x · ηρ−)2 ≤
(
1 +

3(µη − 1)

2

)2

< 2

where the last inequality is due to µη ≤ 3
√
2−2
2 . As a result, we lower bound as

1− αt+1 + βt+1rt+1 ≥ 1− αt+1 = 1− 2 + 2µη − 2st+1

= 1− 2 + 2µη − (1− x · rt)2 · 2st
≥ 1− (4C − 2)(µη − 1) > 0.

This immediately yields rt+2rt+1 > 0 and hence rt+2 < 0.

For (2), since rtrt+1 < 0 is true, we invoke Lemma 9 to obtain the lower bound for rt+2, which is
also negative by our assumption:

rt+2 ≥ (1− αt)(1− αt+1) · rt.

Because rt < 0, αt > 0 and Lemma 16, it holds that

αt+1 = 2− 2ηµ+ 2st+1 ≥ 2− 2ηµ+ 2st+1 ≥ 2− 2ηµ+ 2st+1,

which suggests αt+1 ≥ αt ≥ αt+1 = Θ(µη − 1). As a result

|rt+2| ≤
(
1−Θ(µη − 1)

)2 · |rt|.
From the above discussion, we know 1− αt + βtrt > 0 and βt > 0. Then we compute

|rt+1|
|rt|

= 1− αt + βtrt ≤ 1− 2 + 2µη = 2µη − 1 ≤ 2

due to µη ≤ 2 and rt < 0. This implies |rt+1| ≤ O(|rt|). It remains to check for (3). We first
prove the first half, i.e,

st+2 = (1− xηrt)
2(1− xηrt+1)

2 · st ≥ st

where the inequality is due to rt < 0, αt ≥ 0 and Lemma 16. By repeating the above steps, we
conclude that st ≥ st+1 for any t ≥ t with rt < 0. For the upper bound of st+2, we skip some
calculations identical to the proof of Lemma 10 and obtain

st = exp

2xη2 ·
t−2∑
i=t

i−t even

r2t

 · st ≤ exp

2xη2r2t ·
t−2∑
i=t

i−t even

e−Θ(µη−1)·(t−t)

 · st

≤ exp

2xη2r2t ·
t−2∑
i=t

i−t even

1

1− e−Θ(µη−1)·(t−t)

 · st

≤ exp

(
2xη2r2t

Θ(µη − 1)

)
· st

≤ exp

(
2xη(µη − 1)

Θ(µη − 1)

)
· st = eΘ(1) ·Θ(µη − 1) = C(µη − 1),

due to 0 ≤ rt ≤ ρ+ ≤
√
µη−1
η (Lemma 16), and st ≤ Θ(µη − 1) (Lemma 15) where C > 0 is

some universal constant. Now since all of the facts are true, we obtain the upper bound of the limit
limt→∞ st ≤ Θ(µη − 1) and limt→∞(rt, st) = (0, s∞).

Finally, we put every piece together and prove Theorem 2.
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Proof. The proof is almost very similar to the Proof of Theorem 1, and we will omit the identical
steps and focus on the difference. When |x| ∈ (0, 1

ηµ ), Lemma 14 suggests that limt→∞ αt > 0.
As a result, there always exists a t such that αt > 0 is true for any t ≥ t. As a result, we can use
Lemma 17 to show that βwt

converges to a linear interpolator as

β∞ := lim
t→∞

(
p0t − q0t

)
· β0 +

(
p1t − q1t

)
· β1 + β∗ = β∗ + β1 · x2 · lim

t→∞
bt − b′t.

We first show part (1) is true. From Lemma 4, Lemma 5, we can decompose βwt as

βwt
= w2

t,+ −w2
t,− = (p0t − q0t ) · β0 + (p1t − q1t ) · β1 + β∗

The convergence speed is then: for any t ≥ t:
|⟨βwt − β∞,x⟩| = |⟨βwt − β∗,x⟩| = |rt| ≤ C · exp (−Θ(µη − 1) · (t− t)) |rt|.

Moreover, it holds that
∥β∞ − β∗∥ = lim

t→∞
(p1t − q1t ) · ∥β1∥ = (µη − 1).

A.5 PROOF OF PROPOSITION 1

This subsection contains the convergence proof when ηµ > 3
√
2−2
2 . The mechanism and the steps

are most similar to the proof of Theorem 2, whereas when ηµ > 3
√
2−2
2 , it is difficult to characterize

the rt sequence via the auxiliary ρt’s, which is necessary for the estimation of convergence speed.
Therefore we put more assumptions and only give an asymptotic result. We begin by finding the
fixed point of (g, h) and discuss their stability: intuitively, if a fixed point is (locally) stable, then
the nearby trajectory will converge to the point; otherwise, the trajectory will diverge from the point
Strogatz (2018); Robinson (2012).
Lemma 18. Suppose that ηµ ∈ (1, 2) and x ∈ (0, 1). The mapping (g, h) : R2 → R2 admits fixed

points (r1,1, s1,1) = 0×R and (r1,2, s1,2) =
(

2
ηx ,

(1−x)(2+xµη)
x

)
. Moreover, (r1,1, s1,1) is a stable

point when when s ∈ (µη − 1, µη), and an unstable point when x /∈ (µη − 1, µη). (r1,2, s1,2) is
unstable regardless of the choice of parameters.

Proof. In the proof of Lemma 13, we already show that (r1,1, s1,1) and (r1,2, s1,2) are fixed point.
It only remains to characterize their properties.

We first consider (r1,1, s1,1). The Jacobian matrix of (g, h) is defined as

J =

[
gr gs
hr hs

]
where gr, gs and hr, hs are first order partial derivatives. We plug (r1,1, s1,1) in and compute the
eigenvalues of J

λ1,1 = 0, λ1,2 = 1− 2µη + 2s.

It is easy to show that when s /∈ (µη − 1, µη), |λ1,2| > 1 and hence unstable. Instead, when
s ∈ (µη − 1, µη), both |λ1,1| < 1 and |λ1,2| < 1, hence (r1,1, s1,1) is stable.

We proceed and analyze the stability of (r1,2, s1,2). When x ∈ [0, 1], the sum of two eigenvalues
can be lower bounded as

λ2,1 + λ2,2 = Tr(J) = 5 +
4

x2
− 4

x
+ 2xµη ≥ 5.

This implies max{λ2,1, λ2,2} ≥ 5
2 . As a result, (r1,2, s1,2) is unstable.

Proof of Proposition 1. We use the same argument in the proof of Lemma 14 to show that
limt→∞ st ∈ (µη − 1, µη): by our assumption, the (rt, st) iteration does not diverge or becomes
chaotic. As a result, it will converge to a stable point or periodic stable orbit. Now due to Lemma 13,
when x ∈ (0, 1

µη ), (g, h) admits no periodic points when αt ≤ 0 (or equivalently st ≤ µη − 1).
Therefore, limα→∞ αt > 0 is true and there exists some t such that αt > 0 or (or equivalently
st > µη − 1) holds for any t ≥ t. By Lemma 18, (0, s) with s ∈ (µη − 1, µη) are the only stable
point, then it holds that limt→∞ rt = 0. This implies bt or st also converges due to its update. Using
the identical arguments in the proof of Theorem 2, we reach the conclusion
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B PROOFS OF RESULTS IN SECTION 5

Proof of Lemma 1. Using update in (3), we compute the expansion of rt+2 as

rt+2 = −(1− α) · rt+1 − r2t+1

= (1− α)2 · rt − αr2t − r2t+1 + (rt + rt+1)(rt − rt+1)

= (1− α)2 · rt − artrt+1 − r2t (rt − rt+1).

If rt, rt+1 have different signs, we obtain the following inequality for any rt < 0:

rt+2 > (1− α)2 · rt.

This implies |rt+2| < (1 − a)2 · |rt| for negative rt. Since rt’s are oscillating, we assert that the
subsequence of negative rt converges to zero. Using the update in (3), it suffices to conclude that
positive rt’s also converge to zero.

Proof of Lemma 2. We first show that rtrt+1 < 0 holds for any rt ∈ [r−, r+]. From (3) we know

rt+1/rt = −1− a− rt.

Therefore if rt > −1− a then rtrt+1 < 0. It is easy to verify that for any a ∈ [0, 1]

1 + a− a+
√
a2 − 4a

2
> 1 + a− a+

√
a2

2
> 0,

which suggests r− > −1− a. Then we prove the sign-alternating part.

We proceed and compute the expansion of rt+2 as

rt+2 = (1 + a)2 · rt + artrt+1 − r2t (rt − rt+1).

Define the following polynomial (do not confuse with g and h in Appendix A)

g(s) = −1− a− s, h(s) = −sg(s) · (1 + a+ g(s)).

To prove that |rt+2| ≥ |rt| when rt ∈ (s−, s+), it suffices to show that h(s) ≥ s when s ∈ (s−, s+).
Clearly h(s) is cubic in s with its limit to be −∞ and ∞ when t goes to ∞ and −∞. Let s0 be
the larger stationary point of h(·), it is easy to assert s0 is a local minimum. With MatLab symbolic
calculation we verify that h(s0) ≥ 1 for any a > 0. Then there exists a range such that h(·) > 1.
It is easy to verify the range is [s−, s+] where s− and s+ are defined as in the statement of lemma.
Since a ∈ (0, 1), it holds that s− < 0 < s+ and hence finishes the first part of the proof.

To determine the limit of positive and negative subsequence, we assume for simplicity that r2k < 0
and r2k+1 > 0 for any k ∈ N. Then the limits of both sequences are the solutions to equation
h(s) = s. From the above discussion we can conclude that the following limits

lim
k→∞

r2k = s−, lim
k→∞

r2k+1 = s+.

and finish the proof.
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