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ABSTRACT

Recent progress in Graph Neural Networks (GNNs) for modeling atomic simu-
lations has the potential to revolutionize catalyst discovery, which is a key step
in making progress towards the energy breakthroughs needed to combat climate
change. However, the GNNs that have proven most effective for this task are mem-
ory intensive as they model higher-order interactions in the graphs such as those
between triplets or quadruplets of atoms, making it challenging to scale these mod-
els. In this paper, we introduce Graph Parallelism, a method to distribute input
graphs across multiple GPUs, enabling us to train very large GNNs with hun-
dreds of millions or billions of parameters. We empirically evaluate our method
by scaling up the number of parameters of the recently proposed DimeNet++ and
GemNet models by over an order of magnitude. On the large-scale Open Catalyst
2020 (OC20) dataset, these graph-parallelized models lead to relative improve-
ments of 1) 15% on the force MAE metric for the S2EF task and 2) 21% on the
AFbT metric for the IS2RS task, establishing new state-of-the-art results.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Gori et al., 2005; Zhou et al., 2020) have emerged as the standard
architecture of choice for modeling atomic systems, with a wide range of applications from protein
structure prediction to catalyst discovery and drug design (Schütt et al., 2017b; Gilmer et al., 2017;
Jørgensen et al., 2018; Zitnick et al., 2020; Schütt et al., 2017a; Xie & Grossman, 2018). These
models operate on graph-structured inputs, where nodes of the graph represent atoms, and edges
represent bonds or atomic neighbors. Despite their widespread success and the availability of large
molecular datasets, training massive GNNs (with up to billions of parameters) is an important but
under-explored area. Success of similarly large models in computer vision, natural language pro-
cessing, and speech recognition (Shoeybi et al., 2020; Huang et al., 2019; Brown et al., 2020; Zhai
et al., 2021) suggests that scaling up GNNs could yield significant performance gains.

Most previous approaches to scaling GNNs have focused on scaling small models (with up to a few
million parameters) to massive graphs. These methods generally assume that we are working with a
large, fixed graph, leading to the development of methods like neighborhood sampling (Jangda et al.,
2021; Zheng et al., 2021) (Jia et al., 2020; Ma et al., 2019; Tripathy et al., 2020). These methods do
not apply to atomic simulation datasets that contain millions of smaller graphs where it is necessary
to consider the entire graph for prediction. Our focus is on the complementary problem of scaling
to very large models for a dataset of many moderately-sized graphs (∼ 1k nodes, 500k edges).

Another limitation of existing methods is that they focus on scaling simple GNN architectures such
as Graph Convolutional Networks (GCNs) that only represent lower-order interactions i.e., repre-
sentations for nodes and edges, that are then updated by passing messages between neighboring
nodes. In practice, the most successful GNNs used for atomic systems also model higher-order in-
teractions between atoms, such as the interactions between triplets or quadruplets of atoms (Klicpera
et al., 2020a; 2021; Liu et al., 2022). These interactions are necessary to capture the geometry of
the underlying system, critical in making accurate predictions. Scaling such GNN architectures is
challenging because even moderately-sized graphs can contain a large number of higher-order inter-
actions. For example, a single graph with 1k nodes could contain several million triplets of atoms.
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In this paper, we introduce Graph Parallelism, an approach to scale up such GNNs with higher-order
interactions to billions of parameters, by splitting up the input graph across multiple GPUs.

We benchmark our approach by scaling up two recent GNN architectures – DimeNet++ (Klicpera
et al., 2020a) and GemNet-T (Klicpera et al., 2021) – on the Open Catalyst (OC20) dataset (Chanus-
sot* et al., 2021). The OC20 dataset, aimed at discovering new catalyst materials for renewable
energy storage, consists of 134M training examples spanning a wide range of adsorbates and cat-
alyst materials. A GNN that can accurately predict per-atom forces and system energies on OC20
has the potential to replace the computationally expensive quantum chemistry calculations based
on Density Functional Theory (DFT) that are currently the bottleneck in computational catalysis.
Our large-scale, graph-parallelized models lead to relative improvements of 1) 15% for predicting
forces on the force MAE metric (S2EF task), and 2) 21% on the AFbT metric for predicting relaxed
structures (IS2RS task), establishing new state-of-the-art results on this dataset.

2 GRAPH PARALLELISM

2.1 EXTENDED GRAPH NETS

Battaglia et al. (2018) introduced a framework called Graph Network (GN) that provides a general
abstraction for many popular Graph Neural Networks (GNNs) operating on edge and node represen-
tations of graphs. We build on their work and define the Extended Graph Network (EGN) framework
to include GNNs that also operate on higher order terms like triplets or quadruplets of nodes.

In the Graph Network (GN) framework, a graph is defined as a 3-tuple G = (u, V, E), where u
represents global attributes about the entire graph; V = {vi}i=1:Nv is the set of all nodes, with vi

representing the attributes of node i; and E = {(ek, rk, sk)}k=1:Ne is the set of all edges where
ek represents the attributes for the edge from node sk to rk. A GNN then contains a series of GN
blocks that iteratively operate on the input graph, updating the various representations.

In our Extended Graph Network (EGN) framework, a graph is defined as a 4-tuple G = (u, V, E, T ),
where u, V, and E are defined as in the Graph Network, and T = {(tm, em1

, em2
, . . .)} is the set of

higher-order interaction terms involving edges indexed by m1,m2, . . ..

As a concrete example, consider an atomic system represented as a graph in this framework with
the nodes representing the atoms and the edges representing atomic neighbors. The node attributes
vi and edge attributes ek could represent the atom’s atomic numbers and distances between atoms
respectively. The higher order interactions could represent triplets of atoms, i.e., pairs of neighboring
edges with tm representing the bond angle, which is the angle between edges that share a common
node. Finally, the global attribute u can represent the energy of the system. For clarity of exposition,
we will limit our discussion to triplets in the rest of the paper, but higher order interactions can be
handled in a similar manner. We denote these triplets as (tm, em1 , em2).

In the EGN framework, GNNs then contain a series of EGN blocks that iteratively update the graph.
Each EGN block consists of several update and aggregation functions that are applied to transform
an input graph (u, V, E, T ) into an output graph (u′, V ′, E′, T ′). Each EGN block starts by updating
the highest order interactions, which are then aggregated before updating the next highest order
interaction. For instance, the triplet representations are first updated (using TripletUpdate function)
and then aggregated (TripletAggr) at each edge. These aggregated representations are then used to
update the edge representation (EdgeUpdate). Next, the edges going into a node are aggregated
and used to update the node representations, and so on. This is illustrated in figure 1a.

Many GNNs can be cast in the EGN framework using appropriate update and aggregation functions.

2.2 GRAPH PARALLELISM FOR EXTENDED GRAPH NETS

Training large EGNs can be challenging even on moderately sized graphs because of the large mem-
ory footprint required in storing and updating the representation for each triplet, edge, and node. In
many applications, the number of edges is one or two orders of magnitude larger than the number
of nodes, while the number of triplets is one or two orders of magnitude larger than the number of
edges. Thus, storing and updating the triplet representations is often the bottleneck in terms of GPU
memory and compute. Many recent methods such as (Klicpera et al., 2020a; 2021) overcome this
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(a) Forward computation of an EGN block. First, each triplet representation is up-
dated (TripletUpdate function), followed by aggregation of these updated representations
(TripletAggr). Next, these aggregated values are used to update edge representations
(EdgeUpdate), followed by edge aggregation (EdgeAggr), and finally node and global updates.
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(b) Distributed computation of an EGN block. The graph is split up among the different GPUs such
that processing unit p contains its subset of triplets T (p) in memory, along with all edges E and
nodes V . The triplet attributes are updated in parallel, followed by a triplet aggregation to locally
update the edge attributes. Next, an allreduce operation is performed to update all edge attributes
globally. We continue this process to update the node and global attributes.

problem by using a very low-dimensional representation for the triplets. However, we found this to
significantly reduce model capacity leading to underfitting for some applications with large training
datasets. It is necessary to overcome these memory limitations for better generalization.

One way to avoid the memory limits is to distribute the computation across multiple GPUs. For a
graph neural network, a natural choice to distribute the computation is by splitting the graph. The
update functions in an EGN are easy to apply in parallel since they are applied independently for
each triplet, edge, or node. It is substantially more challenging to apply the aggregations in parallel.
To simplify parallel aggregation, we restrict ourselves to aggregation functions that are commutative
and associative. This is not limiting in practice since most popular GNN architectures use sum or
mean aggregations which can be implemented in this manner.

We will now describe the implementation of the distributed EGN block. Suppose we have access
to P processing units that we wish to split the graph computation over. Each unit p is responsible
for computing the updates to a subset of triplets, edges and nodes, that we denote by T (p), E(p),
and V (p), respectively. At the beginning of computation, we split the graph so that the processing
unit p contains its subset of triplets T (p) in memory, along with the entire set of edges E and
nodes V . During the forward pass, we first update each set of triplets T (p) in parallel to obtain
T ′(p), followed by a local triplet aggregation. Next, an all-reduce operation is performed on these
locally aggregated triplet representations to obtain globally aggregated triplet representations. These
globally aggregated representations are then used to update edges in parallel, and the process is
repeated for nodes and ultimately for the global graph level representation. Figure 1b shows this.
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In this framework, the highest order interaction attributes are never communicated across processors.
Therefore, the communication time is bound by the number of lower order node interactions. In our
example, the triplet representations are not communicated, while the edge and node representations
are communicated once per EGN block, making the total communication cost equal to O(NvDv +
NeDe), where Dv and De are the dimensions of node and edge representations. This makes it
possible to work with a large number of triplets and large triplet representations. In section 3, we
show concrete instantiations of this framework for two contemporary GNNs.

3 GRAPH PARALLELISM FOR ATOMIC SIMULATIONS

In this section, we present two concrete examples of using GNNs for the problem of predicting the
energy and the forces for an atomic system, modeled as a graph whose nodes represent the atoms
and whose edges represent the atoms’ neighbors. The GNN takes such a graph as input and predicts
the energy of the entire system as well as a 3D force vector on each atom. Two paradigms have
been proposed in the literature, that we call energy-centric and force-centric approaches. These
approaches differ in how they estimate forces and whether they are energy conserving, which is an
important physical property. We begin by describing the components shared by both approaches,
followed by one recent model in each paradigm.

3.1 INPUTS AND OUTPUTS

The inputs to the network are 3D positions xi ∈ R3 and atomic number zi for each atom i ∈
{1 . . . n}. The outputs are the per-atom forces fi ∈ R3 and the energy E ∈ R of the entire structure.
The distance between atoms i and j is denoted as dij = ||xi − xj ||. If edges (i, j) and (j, k) exist,
then (i, j, k) defines a triplet in the graph and we denote the angle between the edges as αkj,ji.

The input graph is constructed with each atom t (target) as a node and the edges representing the
atom’s neighbors s ∈ Nt where Nt contains all atoms s (source) within a distance δ, which is
treated as a hyperparameter. Each edge has a corresponding message mst that passes information
from source atom s to target atom t.

3.2 ESTIMATING FORCES AND ENERGY

As previously stated, there are two paradigms for estimating the energy and forces for an atomic
system: energy-centric and force-centric. In energy-centric models, the model first computes the
energy E by applying a forward pass of the GNN: E = GNN(x, z), where x, and z represent the
atomic positions and atomic numbers respectively. The forces are then computed as the negative
gradient of the energy with respect to atomic positions by using backpropagation: f = −∇xE.

In force-centric models, the energy and forces are both computed directly during the forward prop-
agation: E,F = GNN(x, z) where F represents the matrix of all atomic forces. Force-centric
models tend to be more efficient in terms of computation time and memory usage compared to
the energy-centric models. However, energy-centric models guarantee that the forces are energy
conserving which is an important physical property satisfied by atomic systems. In this work, we
demonstrate the benefits of scaling up GNNs in both paradigms.

3.3 ENERGY-CENTRIC MODEL: DIMENET++

DimeNet++ (Klicpera et al., 2020a) is a recently proposed energy-centric model for atomic sys-
tems. In this model, the edges are represented by a feature representation mji, which are iteratively
updated using both directional information (via bond angles) as well as the interatomic distances.
The edges are initially represented using a radial basis function (RBF) representation e

(ji)
RBF of their

lengths dji. The triplets are represented using a spherical basis function (SBF) expansion a
(kj,ji)
SBF of

the distances dkj as well as bond angles α(kj,ji). In each block, the messages are updated as:

m′ji = fupdate(mji,
∑

k∈Nj\{i}
fint(mkj , e

(ji)
RBF ,a

(kj,ji)
SBF )) (1)
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where the interaction function fint corresponds to the TripletUpdate function, the summation cor-
responds to the TripletAggr function, and the update function fupdate to the EdgeUpdate function
respectively. The interaction function consists of a Hadamard product of the embeddings, followed
by a multi-layer perceptron. To speed up these computations, the embeddings are projected down to
a smaller dimension before computing interactions, and later projected back up.

The updated messages are then fed as input to an output block that sums them up per atom i to
obtain a per-atom representation: hi =

∑
j m
′
ji (EdgeAggr function). These are then transformed

by another MLP to obtain the node representation v′i (NodeUpdate function).

Thus, DimeNet++ is a case of EGN, and we closely follow the recipe from Sec. 2.2 to parallelize it.

3.4 FORCE-CENTRIC MODEL: GEMNET

GemNet (Klicpera et al., 2021) extends DimeNet++ in a number of ways, including the addition of
quadruplets as well as a force-centric version. Here, we focus only on the force-centric GemNet-T
model since it was recently shown to obtain state-of-the-art results on the OC20 dataset1. GemNet-T
largely follows the structure of the DimeNet++ model, but includes some modifications.

First, GemNet-T uses a bilinear layer instead of the Hadamard product for the interaction function.
This is made efficient by optimally choosing the order of operations in the bilinear function to
minimize computation. Second, GemNet-T maintains an explicit embedding for each atom that is
first updated by aggregating the directional embeddings involving that atom, similar to DimeNet++.
Next, the updated atom embedding is used to update each of the edge embeddings. This creates
a second edge update function, EdgeUpdate′, that is run after the node embeddings are updated.
Third, GemNet makes use of symmetric message passing, that is the messages mji and mij that
are on the same edge, but in different directions, are coupled. In a parallel implementation, this step
requires an additional all-reduce step since messages mji and mij could be on different processors.

Thus, GemNet-T largely follows the EGN framework, with a few minor deviations from the standard
formulation. The distributed EGN implementation described in section 2.2 can be used for the
GemNet-T as well, but with additional communication steps to account for the second edge update
function and symmetric message passing.

4 EXPERIMENTS

In this section, we present the results of our scaling experiments on the Open Catalyst 2020 (OC20)
dataset (Chanussot* et al., 2021). The OC20 dataset contains over 130 million atomic structures used
to train models for predicting forces and energies during structure relaxations. We report results for
three tasks: 1) Structure to Energy and Forces (S2EF) that involves predicting energy and forces for
a given structure; 2) Initial Structure to Relaxed Energy (IS2RE) that involves predicting the relaxed
energy for a given initial structure; and 3) Initial Structure to Relaxed Structure (IS2RS) which
involves performing a structure relaxation using the predicted forces. DimeNet++ and GemNet-T
are the current state-of-the-art energy-centric and force-centric models respectively.

4.1 EXPERIMENTAL SETUP

DimeNet++-XL. Our DimeNet++ model consists ofB = 4 interaction blocks, with a hidden dimen-
sion of H = 2048, an output block dimension of D = 1536, and intermediate triplet dimension of
T = 256. This model has about 240M parameters, which is over 20× larger than the DimeNet++-
large model used in (Chanussot* et al., 2021). We call this model DimeNet++-XL. The model was
trained with the AdamW optimizer (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) starting with
an initial learning rate of 10−4, that was multiplied by 0.8 whenever the validation error plateaus.
The model was trained with an effective batch size of 128 on 256 Volta 32GB GPUs with a com-
bination of data parallel and graph parallel training: each graph was split over 4 GPUs with data
parallel training across groups of 4 GPUs.

1opencatalystproject.org/leaderboard.html
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Model #Params Training GPU-days S2EF Test
Energy MAE (eV)↓ Force MAE (eV/A)↓ Force Cos↑ EFwT↑

ForceNet-Large (Hu et al., 2021) 34.8M 194 2.2628 0.03115 0.5195 0.01%
DimeNet++-Large (Klicpera et al., 2020a) 10.8M 1600 31.5409 0.03132 0.5440 0.00%
SpinConv (Shuaibi et al., 2021) 8.9M 76 0.3363 0.02966 0.5391 0.45%
GemNet-T (Klicpera et al., 2021) 31M 47 0.2924 0.02422 0.6162 1.20%

GemNet-XL 300M 1962 0.2701 0.02040 0.6603 1.81%

Table 1: Experimental results on the S2EF task comparing our GemNet-XL to the top entries on the
Open Catalyst leaderboard, showing metrics averaged across the 4 test datasets.

Model #Params Training IS2RS Test
Dataset AFbT↑ ADwT↑ FbT↑

SpinConv (Shuaibi et al., 2021) 8.9M S2EF-All 16.67% 53.62% 0.05%
DimeNet++ (Klicpera et al., 2020a) 1.8M S2EF 20M + MD 17.15% 47.72% 0.15%
DimeNet++-large (Klicpera et al., 2020a) 10.8M S2EF-All 21.82% 51.68% 0.40%
GemNet-T (Klicpera et al., 2021) 31M S2EF-All 27.60% 58.68% 0.70%

DimeNet++-XL 240M S2EF 20M + MD 33.44% 59.21% 1.25%
GemNet-XL 300M S2EF-All 30.82% 62.65% 0.90%

Table 2: Results on the IS2RS task comparing our models to the top entries on the Open Catalyst
leaderboard, showing metrics averaged across the 4 test datasets. The DimeNet++ and DimeNet++-
XL models were trained on the S2EF 20M + MD dataset, that contains additional molecular dynam-
ics data and has been shown to be helpful for the IS2RS task (Chanussot* et al., 2021).

GemNet-XL. Our GemNet model consists of B = 6 interaction blocks, with an edge embedding
size of E = 1536, triplet embedding size of T = 384 and embedding dimension of the bilinear
layer of B = 192. We found that it was beneficial to use a small atom embedding size of A = 128,
much smaller than the previous SOTA GemNet model2. This model has roughly 300M parameters,
which is about 10× larger than the previous SOTA model. However, since we reduced the atom
embedding dimension and increased the edge and triplet dimensions, the total amount of compute
and memory usage is significantly larger. We call this model GemNet-XL. We followed the same
training procedure as with DimeNet++, except for a starting learning rate of 2× 10−4.

4.2 STRUCTURE TO ENERGY AND FORCES (S2EF)

The Structure to Energy and Forces task takes an atomic structure as input and predicts the energy of
the entire structure and per-atom forces. The S2EF task has four metrics: the energy and force Mean
Absolute Error (MAE), the Force Cosine Similarity, and the Energy and Forces within a Threshold
(EFwT). EFwT indicates the percentage of energy and force predictions below a preset threshold.

Table 1 compares the top models on the Open Catalyst Project leaderboard1 with the GemNet-
XL model. GemNet-XL obtains a roughly 16% lower force MAE and an 8% lower energy MAE
relative to the previous state-of-the-art. Further, GemNet-XL improves the EFwT metric more than
50% relative to the previous best, although the value is still very small. These results indicate that
model scaling is beneficial for the S2EF task.

4.3 INITIAL STRUCTURE TO RELAXED STRUCTURE (IS2RS)

The Initial Structure to Relaxed Structure (IS2RS) task involves taking an initial atomic structure and
predicting the atomic structure that minimizes the energy. This is performed by iteratively predicting
the forces on each atom and then using these forces to update the atomic positions. This process is
repeated until convergence or 200 iterations. There are three metrics for this task: Average Distance
within Threshold (ADwT), that measures the fraction of final atomic positions within a distance
threshold of the ground truth; Forces below Threshold (FbT), which measures whether a true energy
minimum was found (i.e., forces are smaller than a preset threshold); and, the Average Forces below
Threshold (AFbt), which averages the FbT over several thresholds.

Table 2 shows the results on the IS2RS task, comparing our models with the top few models on
the Open Catalyst leaderboard. Both the DimeNet++-XL and GemNet-XL models outperform all

2discuss.opencatalystproject.org/t/new-gemnet-dt-code-results-model-weights/102
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Model Approach IS2RE Test
Energy MAE (EV)↓ EwT↑

SpinConv (Shuaibi et al., 2021) Relaxation 0.4343 7.90%
GemNet-T (Klicpera et al., 2021) Relaxation 0.3997 9.86%
Noisy Nodes (Godwin et al., 2022) Direct 0.4728 6.50%
3D-Graphormer (Ying et al., 2021) Direct 0.4722 6.10%

GemNet-XL Relaxation 0.3712 11.13%
GemNet-XL-FT Direct 0.4623 5.60%

Table 3: Results on the IS2RE task comparing our GemNet-XL to the top entries on the Open
Catalyst leaderboard, showing metrics averaged across the 4 test datasets.

#Blocks Node Dim Edge Dim Trip Dim Bil Dim Params #GP GPUs #GP+DP GPUs
3 1280 768 128 64 125M 1 32
4 1536 1024 192 96 245M 2 64
6 1792 1184 288 160 480M 4 128
8 2320 1302 512 288 960M 8 256

Table 4: Model hyperparameters for the scaling analysis. “#GP GPUs” denotes the number of GPUs
over which the graph is distributed over for pure graph parallel training on a single node. “#GP+DP
GPUs” denotes the total number of GPUs used to train with graph parallel training together with
32-way data parallel training.

existing models. The DimeNet++-XL model obtains a relative improvement of 53% on the AFbT
metric, and more than triples the FbT metric compared to the DimeNet-large model. The GemNet-
XL model obtains similar improvements compared to the smaller GemNet-T model. These results
underscore the importance of model scaling for this task.

4.4 INITIAL STRUCTURE TO RELAXED ENERGY (IS2RE)

The Initial Structure to Relaxed Energy (IS2RE) task takes an initial atomic structure and attempts
to predict the energy of the structure after it has been relaxed. Two approaches can be taken to
address this problem, the direct and the relaxation approaches (Chanussot* et al., 2021). In the direct
approach, we treat this task as a regression problem, and train a model to directly estimate the relaxed
energy for a given atomic structure. The relaxation approach first estimates the relaxed structure
(IS2RS task) after which the energy is estimated using the relaxed structure as input. Relaxation
approaches typically outperform the direct approaches, though they are generally two orders of
magnitude slower during inference time due to the need to estimate the relaxed structure.

Table 3 compares our GemNet-XL model to the top three models from the Open Catalyst Project
leaderboard. There are two metrics for the IS2RE task: energy Mean Absolute Error (MAE) and
the Energy within Threshold (EwT) which measures the percentage of time the predicted energy is
within a threshold of the true energy. Table 3 shows that the GemNet-XL model obtains a roughly
8% lower energy MAE and a 12% higher EwT compared to the previous best, which is the smaller
GemNet-T model, demonstrating the benefits of scaling up IS2RE models.

Since direct IS2RE models are very fast at inference time, there are applications where they are more
useful than relaxation based approaches. It is possible to convert a trained S2EF model into a direct
IS2RE model by fine-tuning it on the IS2RE training data. We finetune our GemNet-XL model in
this manner for 5 epochs, starting with an initial learning rate of 3 × 10−5 that is exponentially
decayed by multiplying with 0.95 at the end of each epoch. The resuting model – GemNet-XL-FT –
obtains a relative improvement of ∼2% on energy MAE compared to 3D-Graphormer (Ying et al.,
2021), the current state-of-the-art direct approach (Table 3).

4.5 SCALING ANALYSIS

Weak scaling studies the effect on the throughput when computation is scaled proportional to the
number of processors. We study weak scaling efficiency in terms of scaling the model size propor-
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Figure 2: Left: Weak scaling efficiency measured by scaling the model size proportional to the
number of GPUs. Right: Comparing graph parallelism with pipeline parallelism. Solid blue, green
and red curves show the scaling performance of graph, pipeline, and graph+pipeline parallel training.
Dashed lines show the same with 32-way data parallel training. We do not show the results of
training the largest models with pipeline parallelism as those runs ran out of GPU memory.

tional to the number of GPUs. For these experiments, we use 4 different GemNet-T models, ranging
from 120M parameters to nearly 1B parameters (see Table 4).

We train increasingly larger models on multiple GPUs that do not fit on a single GPU. Figure 2a
shows that we are able to obtain a scaling efficiency of roughly 79% with 8 GPUs for our largest
model with nearly a billion parameters. This shows that our graph parallel training can be scaled up
to billion parameter GemNet-T models while obtaining reasonably good scaling performance.

Figure 2a further shows the scaling efficiency for each model combining graph parallelism with
32-way data parallelism. Pure data parallel training with 32 GPUs obtains a scaling efficiency of
75% for the smallest model, showing the effect of network communication and load imbalance
between the GPUs. Combining graph and data parallel training with 256 GPUs only reduces the
scaling efficiency to 47% for the largest model compared to the 1 GPU case, suggesting the graph
parallelism is promising for training extremely large models on hundreds of GPUs.

Finally, figure 2b shows the raw performance of running these models on V100 GPUs in terms of
TeraFLOPs per second as a function of the number of GPUs. On a single GPU, the 120M parameter
GemNet-T sustains 32 TeraFLOPs or roughly 25% of the theoretical peak FLOPS for a single GPU,
and is thus a strong baseline. With 256 GPUs, the largest model sustains 3.5 PetaFLOPs.

Figure 2b compares graph and pipeline parallelism (Huang et al., 2019) showing that graph paral-
lelism outperforms pipeline parallelism for the models that we consider. Since each graph in the
training data contains different numbers of nodes, edges and triplets, load balancing across GPUs
is difficult for pipeline parallelism. Graph parallelism is able to overcome this problem since the
nodes, edges and triplets of a given batch are always distributed evenly across the GPUs, helping it
outperform pipeline parallelism. It is possible, however, that pipeline parallelism might outperform
graph parallelism for very deep GNNs since inter-GPU communication overhead for pipeline paral-
lelism is independent of the number of blocks. Figure 2b also shows results with graph and pipeline
parallelism combined, indicating that these methods are complementary to each other.

5 RELATED WORK

GNNs for simluating atomic systems Many GNN based approaches have been proposed for the
task of estimating atomic properties such as (Schütt et al., 2017b; Gilmer et al., 2017; Jørgensen
et al., 2018; Schütt et al., 2017a; 2018; Xie & Grossman, 2018; Qiao et al., 2020; Klicpera et al.,
2020b), where the atoms are represented by nodes and neighboring atoms are connected by edges.
An early approach for force estimation was the SchNet model Schütt et al. (2017a), which computed
forces using only the distance between atoms without the use of angular information. SchNet pro-
posed the use of differentiable edge filters which enabled constructing energy-conserving models by
estimating forces as the gradient of the energy. Subsequent work (Klicpera et al., 2020a;b; 2021;
Liu et al., 2022) has extended on the SchNet model by adding bond angles and dihedral angles,
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which has resulted in improved performance. These models make use of higher order interactions
among nodes which make them highly compute and memory intensive. An alternate approach for
estimating forces is to directly regress the forces as an output of the network. While this approach
does not enforce energy conservation or rotational equivariance, recent work (Hu et al., 2021) has
shown that such models can still accurately predict forces.

Distributed GNN Training. Research on distributed GNN training has focused on the regime of
training small models on a single, large graph, for instance by sampling local neighborhoods around
nodes to create mini-batches (Jangda et al., 2021; Zhang et al., 2020; Zhu et al., 2019). While these
approaches can scale to very large graphs, they are not suitable for the task of modeling atomic
systems where it is important to consider the entire graph for predicting the energy and forces.

An alternate line of work, that is more similar to ours, keeps the entire graph in memory by efficiently
partitioning the graph among multiple nodes (Jia et al., 2020; Ma et al., 2019; Tripathy et al., 2020).
These methods still operate in a single graph regime that is partitioned ahead of time. Thus the focus
of that work is on finding efficient partitions of the graph, which is not applicable to our problem
since we operate on millions of graphs. Further, these works do not train very large GNNs, or GNNs
that operate on higher-order interactions (e.g. triplets), that are important for atomic systems.

Model Parallelism. methods focus on training large models that do not fit entirely on one GPU
(even with a batch size of 1). GPipe (Huang et al., 2019) splits different sequences of layers into
different processors, and splits each training mini-batch into micro-batches to avoid idle time per
GPU. Megatron-LM (Shoeybi et al., 2020) splits the model breadth-wise, where Transformer layer
weights are partitioned across multiple GPUs to distribute computation. We see model and graph
parallelism as complementary approaches that can be combined to train even larger models.

6 DISCUSSION

We presented Graph Parallelism, a new method for training large GNNs for modeling atomic simu-
lations, where modeling higher-order interactions between atoms (triplets / quadruplets) is critical.
We showed that training larger DimeNet++ and GemNet-T models can yield significant improve-
ments on the OC20 dataset. Although we demonstrated graph parallelism for just two GNNs, it is
broadly applicable to a host of message-passing GNNs, including equivariant networks, that can be
cast in the GN / EGN framework (Sec. 2.1) by appropriately picking update and aggregate functions.

Further, it is possible to combine graph parallelism with model parallel methods such as
GPipe (Huang et al., 2019) to train even larger models, which could yield further improvements, as
briefly explored in Sec 4.5. For force-centric GNNs, it should be possible to use graph parallel for
‘breadth-wise’ scaling i.e., to split higher-order computations (e.g. triplets) across GPUs, and GPipe
for ‘depth-wise’ scaling i.e., to scale to larger number of message-passing blocks, sequentially split
across GPUs. For energy-centric GNNs e.g., DimeNet++, this combination is less obvious since
these models require an additional backward pass through the network to compute forces as gra-
dients of energy with respect to atomic positions. Energy-centric GNNs are common for atomic
systems because they enforce the physical constraint of energy conservation. As we demonstrate
with our DimeNet++-XL experiments, graph parallelism is applicable to energy-centric GNNs.

We see scaling to large model sizes as a necessary (but not sufficient) step to effectively model
atomic simulations from large, diverse datasets of adsorbates and catalysts. Further progress may
require marrying large scale with ways to better capture 3D geometry and physical priors.

The carbon emissions from training large deep learning models are non-trivial and the work we have
presented here is no exception (Strubell et al., 2019; Schwartz et al., 2019). We estimate that training
our GemNet-XL model with Tesla v100 32 GB GPUs on cloud resources in the US ranges from 3490
- 8052 kg of CO2 eq. (Lacoste et al., 2019). In the worst case, the emissions are roughly equivalent
to 16 round trip flights from Los Angeles to New York. Assuming that the training time is fixed,
emissions largely depend on the carbon intensity of the energy generation in a given region and
the percentage of emissions offset with other investments by the resource provider. When choosing
compute resources we recommend evaluating the stated carbon offset commitments and if possible,
consider running experiments in regions that have more sustainable energy generation. The compute
resources we utilized for this paper were committed to be 100% offset.
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A APPENDIX

A.1 ADDITIONAL RESULTS

Tables 5, 6 and 7 show results from each of the four test sets for the S2EF, IS2RE and IS2RS tasks
respectively. DimeNet++-XL and GemNet-XL achieve the best results for each test set along each
metric.

Model S2EF Test
Energy MAE (EV)↓ Force Cos↑ Force MAE (EV/A)↓ EFwT↑

ID
GemNet-T 0.2257 0.637 0.02099 2.4%
SpinConv 0.2612 0.5479 0.02689 0.82%
ForceNet-Large 2.0674 0.533 0.02782 0.02%
DimeNet++-large 29.3333 0.5633 0.02807 0%
GemNet-XL 0.2120 0.6759 0.0181 3.30%

OOD Ads
GemNet-T 0.2099 0.6242 0.02186 1.15%
SpinConv 0.2752 0.5345 0.02769 0.38%
ForceNet-Large 2.4188 0.5212 0.02834 0.01%
DimeNet++-large 30.0338 0.5503 0.02896 0%
GemNet-XL 0.1980 0.6642 0.0186 1.62%

OOD Cat
GemNet-T 0.3403 0.5813 0.02445 0.93%
SpinConv 0.3501 0.5187 0.02849 0.46%
ForceNet-Large 2.0203 0.4936 0.03089 0.01%
DimeNet++-Large 30.0437 0.5109 0.0312 0%
GemNet-XL 0.3083 0.6306 0.0206 1.72%

OOD Both
GemNet-T 0.3937 0.6221 0.02956 0.3%
SpinConv 0.4585 0.5554 0.03556 0.14%
Forcenet-Large 2.5447 0.5302 0.03754 0%
DimeNet++-Large 36.7529 0.5517 0.03705 0%
GemNet-XL 0.362 0.6704 0.0245 0.61%

Table 5: Full set of results on the S2EF task comparing our GemNet-XL to the top three entries on
the Open Catalyst leaderboard, showing metrics from each test set.
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Model Approach IS2RE Test
Energy MAE (EV)↓ EwT↑

ID
GemNet-T Relaxation 0.3901 12.37%
SpinConv Relaxation 0.4207 9.4%
Noisy Nodes Direct 0.4776 5.71%
GemNet-XL Relaxation 0.3764 13.25%
GemNet-XL-FT Direct 0.4194 7.52%

OOD Ads
GemNet-T Relaxation 0.3907 9.11%
SpinConv Relaxation 0.4381 7.47%
Noisy Nodes Direct 0.5646 3.49%
GemNet-XL Relaxation 0.3677 10.00%
GemNet-XL-FT Direct 0.5258 3.95%

OOD Cat
GemNet-T Relaxation 0.4339 10.09%
SpinConv Relaxation 0.4579 8.16%
Noisy Nodes Direct 0.4932 5.02%
GemNet-XL Relaxation 0.4022 11.61%
GemNet-XL-FT Direct 0.4373 6.76%

OOD Both
GemNet-T Relaxation 0.3843 7.87%
SpinConv Relaxation 0.4203 6.56%
Noisy Nodes Direct 0.5042 3.82%
GemNet-XL Relaxation 0.3383 9.65%
GemNet-XL-FT Direct 0.4665 4.19%

Table 6: Experimental results on the IS2RE task comparing our GemNet-XL to the top three entries
on the Open Catalyst leaderboard, showing metrics from each test set.
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Model Training IS2RS Test
Dataset AFbT↑ ADwT↑ FbT↑

ID
GemNet-T S2EF-ALL 33.75% 59.18% 2.0%
DimeNet++-large S2EF-ALL 25.65% 52.45% 1.0%
SpinConv S2EF-ALL 21.10% 53.68% 0.2%
DimeNet++ S2EF 20M + MD 21.08% 48.6% 0.2%
DimeNet++-XL S2EF 20M + MD 40.00% 59.90% 2.4%
GemNet-XL S2EF-ALL 34.61 62.73% 2.4%

OOD Ads
GemNet-T S2EF-ALL 26.84% 54.59% 0.2%
DimeNet++-large S2EF-ALL 20.73% 48.47% 0.4%
SpinConv S2EF-ALL 15.70% 48.87% 0.0%
DimeNet++- S2EF 20M + MD 17.05% 42.98% 0.0%
DimeNet++-XL S2EF 20M + MD 36.01% 55.68% 1.6%
GemNet-XL S2EF-ALL 30.32% 58.57% 0.6%

OOD Cat
GemNet-T S2EF-ALL 24.69% 58.71% 0.4%
DimeNet++-large S2EF-ALL 20.24% 50.99% 0%
SpinConv S2EF-ALL 15.86% 53.92% 0%
DimeNet++- S2EF 20M + MD 16.43% 48.19% 0%
DimeNet++-XL S2EF 20M + MD 29.62% 58.43% 0.6%
GemNet-XL S2EF-ALL 29.33% 62.60% 0.2%

OOD Both
GemNet-T S2EF-ALL 25.11% 62.23% 0.2%
DimeNet++-large S2EF-ALL 20.67% 54.82% 0.2%
SpinConv S2EF-ALL 14.01% 58.03% 0%
DimeNet++- S2EF 20M + MD 14.02% 51.09% 0.4%
DimeNet++-XL S2EF 20M + MD 28.14% 62.85% 0.4%
GemNet-XL S2EF-ALL 29.02% 66.72% 0.4%

Table 7: Experimental results on the IS2RS task comparing our models to the top four entries on the
Open Catalyst leaderboard, showing metrics for each test dataset. The DimeNet++ and DimeNet++-
XL models were trained on the S2EF 20M + MD dataset, that contains additional molecular dynam-
ics data, which has been shown to be helpful for the IS2RS task.
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