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ABSTRACT

Online grooming (OG) of children is a pervasive issue in an increasingly intercon-
nected world. We explore various complementary methods to incorporate Corpus
Linguistics (CL) knowledge into accurate and interpretable Deep Learning (DL)
models. They provide an implicit text normalisation that adapts embedding spaces
to the groomers’ usage of language, and they focus the DNN’s attention onto the
expressions of OG strategies. We apply these integrations to two architecture types
and improve on the state-of-the-art on a new OG corpus.

1 INTRODUCTION

Online grooming (OG) is a communicative process of entrapment in which an adult lures a minor
into taking part in sexual activities online and, at times, offline (Lorenzo-Dus et al., 2016; Chiang &
Grant, 2019). Our aim is to detect instances of OG. This is achieved through binary classification of
whole conversations into OG (positive class) or neutral (negative class). This classification requires
the ability to capture subtleties in the language used by groomers. Corpus Linguistic (CL) analysis
provides a detailed characterisation of language in large textual datasets (McEnery & Wilson, 2003;
Sinclair, 1991). We argue that, when integrated into ML models, the products of CL analysis may
allow a better capture of language subtleties, while simplifying and guiding the learning task. We
consider two types of CL products and explore strategies for their integration into several stages of
DNNs. Moreover, we show that CL knowledge may help law enforcement in interpreting the ML
decision process, towards the production of evidences for potential prosecution.

Our text heavily uses slang and sms-style writing, as many real-world Natural Language Processing
(NLP) tasks for chat logs. Text normalisation methods were proposed to reduce variance in word
choice and/or spelling and simplify learning, e.g. (Mansfield et al., 2019) for sms-style writing.
However, they do not account for the final analysis goal and may discard some informative variance,
e.g. the use of certain forms of slang possibly indicative of a user category. CL analysis provides with
the preferred usage of spelling variants or synonyms. We propose to use this domain knowledge to
selectively normalise chat logs while preserving the informative variance for the classification task.

As demonstrated by the CL analysis in (Lorenzo-Dus et al., 2016), the theme and immediate purpose
of groomer messages may vary throughout the conversation, in order to achieve the overarching
goal of entrapping the victims. Groomers use a series of inter-connected ”sub-goals”, referred to
as OG processes here, namely gaining the child’s trust, planning activities, building a relationship,
isolating them emotionally and physically from his/her support network, checking their level of
compliance, introducing sexual content and trying to secure a meeting off-line. The language used
within these processes is not always sexually explicit, which makes their detection more challenging.
However, CL analysis additionally flags some contexts associated to the OG processes, in the form of
word collocations (i.e. words that occur within a same window of 7 words) that tend to occur more
frequently in, and therefore can be associated with, OG processes. We propose to exploit the relations
between the OG processes and their overarching goal of OG to improve the final OG classification.
We use the CL identified context windows to guide the learning of our DNN.

Our main contributions are: 1) We explore different strategies for integrating CL knowledge into
DNNs. They are applied to two architecture types and demonstrated on OG detection, but may
generalise to other NLP applications that involve digital language and/or complex conversational
strategies. 2) The principle and several implementations of selectively normalising text through
modifying a word embedding in support to classification. 3) The decomposition of conversation
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analysis into identifying sub-goals. Our DNN implicitly models the relations between these sub-goals
and the conversation’s overarching final goal. 4) A new attention mechanism for LSTM based on the
direct stimulation of its input gates, with two proposed implementations. 5) A state-of-the-art (SoTA)
and interpretable OG detector. 6) A new corpus for OG detection, to be publicly released on demand,
and that extends PAN2012 with more conversations and with products of CL analysis.

2 RELATED WORK

Villatoro-Tello et al. (2012) detected OG chat logs using a DNN to classify binary bag-of-words.
This simple approach highlights the importance of commonly used words amongst groomers which
we exploit for selective text normalisation. This is emphasised in (Vartapetiance & Gillam, 2014;
Hidalgo & Dı́az, 2012) where a set of phrases are derived from the important features of a Naı̈ve
Bayes classifier to describe common behaviours among groomers. Liu et al. (2017) obtained the
current OG detection SoTA using a word embedding for semantic of important words and an LSTM.

Integrating domain knowledge into DNNs is often done with additional losses that assist with sparse
and low quality data. (Muralidhar et al., 2018) penalise a DNN’s output violating logical rules w.r.t.
the input features. (Hu et al., 2018) use the posterior regularisation framework of (Ganchev et al.,
2010) to encode domain constraints for generative models. A teacher-student architecture in (Hu
et al., 2016) incorporates first-order logic rules to create an additional loss for the student network.
Other works integrated prior knowledge in the design of the DNN architecture. In BrainNetCNN
(Kawahara et al., 2017), the convolutions of a convolutional neural network (CNN) are defined
based on the graph data’s locality to account for the brain’s connectivity. The training procedure
may also integrate priors without modifying the DNN’s architecture. Derakhshani et al. (2019) use
assisted excitation of CNN neurons in the images’ areas of interest, thus providing both localisation
and semantic information to the DNN. An attention mechanism was used in a supervised way to
focus a DNN on important words in (Nguyen & Nguyen, 2018). We experiment with these various
approaches and adapt them to our domain knowledge and DNN architectures.

Linguistic knowledge was integrated to learnt word embeddings in the past. Knowledge in the form
of lexicons, that carry a manual categorisation and/or ranking of words, is combined with a learnt
word embedding in (Margatina et al., 2019). Three strategies are proposed, namely concatenating the
lexicon and embedding features, and using the lexicon features to conditionally select or transform
the word embeddings. In our study, we are concerned with a different type of linguistic knowledge.
However, our modification of word embedding (Section 4.1) may also exploit this lexicon knowledge.

3 AUGMENTED PAN2012 DATASET

PAN2012 (Inches & Crestani, 2012) is a standard corpus for OG detection. It was gathered from
Omegle (one-to-one conversations, IRC (technical discussions in groups), and the Perverted Justice
(PJ) website1 (chat logs from convicted groomers interacting with trained adult decoys), with 396
groomers and 5700 / 216,121 OG / non-OG conversations. Some non-OG chat logs contain sexual
wording, making the OG classification more challenging. Conversations are truncated to 150 messages
each, which limits both CL and ML analyses. To resolve this limitation, we augment the corpus with
full OG conversations and the addition of new groomers from PJ, totalling 623 groomers in 6204 OG
conversations (same negatives which could not be augmented to fuller conversations due to no access
to the original data). Final OG / non-OG conversations total an average (std) of 215 (689) / 13 (23)
messages and 1010 (3231) / 94 (489) words, respectively. Statistics on the dataset content are in the
sup. materials. PJ data is freely available online and was largely used in previous social science and
NLP studies, thus its use does not raise any peculiar ethical concern. For a debate on its usability see
(Chiang & Grant, 2019; Schneevogt et al., 2018).

Our dataset also includes the results of a CL analysis of the new corpus using the method described
in (Lorenzo-Dus et al., 2016), which involves a heavy use of manual analysis by CL experts. As part
of data preparation for CL analysis, word variants are identified, which are either spelling variations
(mistakes or intentional e.g. ‘loool’→‘lol’), or the same semantic meaning behind two terms (e.g. ‘not
comfy’→‘uncomfortable’). These variants are not specific to OG, but rather reflect digital language,

1http://perverted-justice.com
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and are therefore valid for other real-world chat logs. The CL analysis also identified the variants
that are most used among groomers. The CL products in our dataset include: 1) the set of variants
both general and groomer-preferred, 2) a set of frequent 3-word collocates (not necessarily direct
neighbours, but located within a window of 7 words) that are used among many different users, and 3)
a manual annotation of 2100 samples of OG processes (there are 7 types of OG processes, as identified
in (Lorenzo-Dus et al., 2016) and listed in the introduction and detailed in the sup. materials) that
could be associated to 3-word collocates and the context windows that these latter define. These CL
products are sensitive data that might be used to help groomers refine their strategies, therefore they
will only be shared on request. They are used in Sections 4-5 to train a DNN model, but this model
does not require CL analysis to be performed at testing phase, as it takes raw text only as input.

4 METHODOLOGY

Overarching vision and general applicability – We integrate two CL priors into DNNs: the word
variants and the identification of OG processes. Word variants provide knowledge of same semantic
meaning, which allows reducing variance in the text. The knowledge of groomer’s preferred variants
brings an implicit and selective text normalisation that supports the classification task. It is achieved
through a reduction of distances between non-discriminative variants in a word embedding. This
selective normalisation is applicable to other classification tasks from real-world chat logs, provided
an updated selection of the preferred and discriminative variants. As highlighted in Section 3, the
variants reflect digital language and are relevant to different analyses of chat conversations. The
selection of discriminative variants is done easily and automatically following a procedure described
in Section 4.1 using empirical occurrences in positive and negative conversations. This knowledge
integration is also applicable to all DNNs that use a word embedding to capture word semantic.

The use of OG processes aides in differentiating between causal conversations involving sexual
language, and OG conversations with complex strategies and sub-goals (i.e. OG processes). The
language associated to OG processes, reflected by the 3-word collocates and context windows that
they define, may be more informative than traditionally used simple sexual wording in making this
distinction. We propose 3 strategies to integrate this knowledge, namely the definition of sub-tasks
and two stimulations of DNN attention. They all guide the learning by providing focus on contexts of
interest (a valuable complement to attention mechanisms, as demonstrated in our experiments), and
by implicitly modelling the relation between sub- and final goals. This CL knowledge integration
principle is generally applicable to the analysis of complex conversations, provided an appropriate
CL identification of the conversation’s sub-goals and of their associated language through context
windows. This identification of sub-goals has been the focus of many social science studies. For
example, a large corpus of works have identified strategies for persuasion and manipulation in extreme
ideology groups, e.g. (Brindle, 2016; Nouri & Lorenzo-Dus, 2019; Lorenzo-Dus & Nouri, 2020;
Saridakis & Mouka, 2020) for radical right hate speech and (Baker et al., 2021) for jihadi radicalisation.
This established baseline of knowledge may be integrated into DNNs in multidisciplinary works. The
identification of frequent 3-word collocates is automated, as described in (Lorenzo-Dus et al., 2016).
The association of their occurrences to the identified sub-goals is the only task that may require
additional manual work. Our stimulation of DNN attention may also be more generally used to focus
a DNN’s attention on a priori known important elements of a training set.

Base models – We demonstrate the general applicability of our CL integration strategies by applying
them to two DNN architecture types representative of the two NLP standards of recurrent and
transformer models. The recurrent DNN of Liu et al. (2017) is the current SoTA for OG classification.
It comprises a language model that builds two word and sentence embeddings, and an OG classifier
with two LSTMs and a linear projection. Our base model #1 is a modified version (Fig. 1 left) with
the word embedding provided as input to the OG classifier in place of the sentence embedding. This
word embedding will be more directly impacted by our CL integration, and it increases explainability
as will be seen next. It may be replaced by similar embeddings, and we also present results using the
pre-trained GloVe (Pennington et al., 2014). Further, to compensate for the loss of sentence structure
modelling previously provided by the sentence embedding, and to account for the longer sequences
of inputs into the classifier, we add an unsupervised attention mechanism (Luong et al., 2015) into
the classifier. Following the method in (Luong et al., 2015), the hidden states of the last LSTM for
all words of the conversation are provided to the attention mechanism that outputs a conversation
embedding of the same size as the LSTMs hidden state, namely 256.

3



Under review as a conference paper at ICLR 2021

Word
embedding

LSTM 1

LSTM 2

Softmax
over

vocabulary

LSTM 1

LSTM 2

Linear
projection

Language Model

OG Classifier
Attention

Word
embedding

Positional
embedding

LSTM 1

LSTM 2
Linear

projection

XLNet

Self
attention

Figure 1: Base models #1 (left) & #2 (right), for integration of CL priors. Orange and green indicate
where word variants and OG processes priors may be integrated, respectively.

XLNet (Yang et al., 2019) is a popular transformer model, a SoTA for many NLP tasks, and therefore
a strong baseline for this study. It iteratively refines word embeddings, starting from an initial
embedding that captures word semantic similarly to that of Liu et al. (2017), and attaining richer word
representations that account for word relationships within a sentence using a positional embedding and
self attention layers. The refined contextualised word embeddings are classified by linear projection.
In our application, this projection fails to handle our class imbalance and always outputs the same
class with F-score at 0.392. Providing the contextualised word embeddings to a two-layer LSTM,
whose last hidden state is used as a conversation embedding to be classified by the linear projection,
solves this issue2 and forms base model #2 (Fig. 1 right). The combination of a transformer model
with LSTM is not new, see for example (Ma, 2019), and has the advantage of allowing the use of our
LSTM-based knowledge integration strategies (see ‘Stimulating LSTM input gates’ in Section 4.2).

Input to the models – The analysis is performed on whole conversations, and the final OG / non-OG
classification is obtained for the whole conversation, rather than per-message. Messages are separated
by the [SEP] token, so that inter-text representations can be modelled. Messages from both users
are included with no distinction. For base model #2, the [CLS] token is added at the beginning of
conversations following the XLNet standard. Conversations longer than 2,000 words are truncated
to retain their end part (12% / 8e-5% of OG / non-OG conversations). All base and CL-augmented
DNNs take raw text as input only. The only text preparation prior to the DNN is tokenisation of
named entities. We do not apply explicit text normalisation such as (Mansfield et al., 2019) as part of
text preparation, since the methodological premise of the paper is the design of a hybrid approach
where an ML model incorporates its own text normalisation informed by CL knowledge.

4.1 IMPLICIT AND SELECTIVE TEXT NORMALISATION BASED ON WORD VARIANTS

The natural stage of DNNs to integrate knowledge on word variants is the word embedding that
captures word semantic (i.e. before any LSTM or self-attention layer in the base models). The mean
occurrence frequency of variants in the OG corpus is significantly larger, by two orders of magnitude,
than that of all words (see sup. materials). Therefore, using these common words to modify the
word embedding may have a strong impact on classification. We propose 3 strategies to modify the
embedding based on our set of N pairs of variants {(vi1, v

j
1), ..., (viN , v

j
N )} using the principle that

words with same semantic should be moved closer to each other in the embedding space.

Although variants have same intended meaning, some may be discriminative of groomers’ language.
Hence, it may be useful for OG classification to keep them apart in the word embedding space. The
significance of word w for classification is determined based on empirical occurrences in OG and
non-OG conversations within the training set: δp(w) = |p(w|ypos)−p(w|yneg)|. If δp(vik) or δp(vjk)
are high (i.e. within the last 5 percentiles for all words), we do not use the pair for modification of
the embedding. We considered increasing the separation between these variants, but we found that
this modifies too much the embedding and reduces its semantic representation power. Out of 4590
pairs of variants, we retain 2955 for modification of the word embedding. In effect, this selective
modification applies an implicit and selective text normalisation which supports the OG classification.

We experiment with 3 implementations that may apply to different usage scenarios such as training a
new language space (supervised word embedding modification), or modifying an existing one before
training a new classifier (manifold-based) or before fine-tuning an existing classifier (elastic pulling).

2The reason for this behaviour remains to be investigated.
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Supervised word embedding modification – A regularisation term is added with weight λ to the
language modelling loss LEmb to minimise the L2 distance D between the selected word variants’
embeddings: L̃Emb = (1− λ)LEmb + λ

[
1
N

∑N
k=1D(vik, v

j
k)
]
.

Manifold learning – We perform a global transformation of the existing word embedding by building
a new space through manifold learning from an edited pairwise distance matrix with D̃(vik, v

j
k) =

λD(vik, v
j
k) where λ ∈ [0, 1] modulates the strength of distance reduction between selected variants.

We use Robust Diffusion Map (Paiement et al., 2014), but other manifold learning methods could be
explored. This implementation requires re-training subsequent modules from scratch, as words’ new
embeddings may be very different from initial ones. Note that we make an unusual use of manifold
learning for word embedding modification rather than for dimensionality reduction. It is possible to
reduce dimensionality, which may help to combat overfitting for classification, as discussed in (Yin &
Shen, 2018). However, the dimensionality of the word embedding is unchanged in our experiments.

Elastic pulling – Our third implementation modifies the existing word embedding ‘in place’ through
local movements that pull together the representations of selected variants. This mostly preserves all
words’ original representations (i.e. coordinates in the embedding space), thus limiting the amount
of change needed for the classifier to simple fine-tuning. Two variants’ representations vik and vjk
of coordinates xi

k and xjk are pulled towards their centre x̂k =
xik+xjk

2 by the amount δxik
= x̂k − xik

modulated by λ ∈ [0, 1]: x̃ik = xik + λδxik
. We propagate the pull operation to neighbouring word

representations, with strength of pull decreasing with distance (i.e. modulated by a radial basis
function (RBF) φik centred on xik), so as to preserve the pairwise relationships between variants and
their neighbours: x̃ = x+λφik(x)δxik

. We use an inverse multiquadric φik(x) = (||x−xik||2 +γ2)−
β
2 ,

with global support so that all words can be considered for propagating each pulling operation without
the need for a costly identification of those word representations that are located within the pulling’s
neighbourhood. β and γ tune the RBF’s decay rate i.e. the locality of propagated pull. We found that
the method is not very sensitive to these values as long as the pull’s reach is sufficient, within a radius
of the order of magnitude of δxik

, and we set them empirically to 1.0 and 3.0 respectively.

4.2 INTEGRATING KNOWLEDGE ON OG PROCESSES

Our annotated samples of OG processes are associated to 3-word collocates, which are used to identify
contexts of interest. We define a continuous representation of the presence of the 7 OG processes
using 7 Gaussian Mixture Models (GMM) with components centred on the 3-word collocates and
their std being the span of each collocate (max. 7 words as mentioned in Section 3). We propose 3
uses to focus the attention of the DNN on parts of the conversations that implement the OG processes
and on the associated language, and to implicitly model the relations between OG processes and OG.

Auxiliary OG process detection – A second output branch is added to the DNN after the LSTMs,
with a fully-connected layer and MSE loss, to estimate the pseudo occurrence probability of the 7 OG
processes provided by their GMMs, at each word location. For base model #1, we experimented with
adding an attention block as in the main branch, but found that this didn’t help with the OG process
detection, probably because this task is more local and doesn’t need to consider as large a context
as classification of whole conversation. The new branch also serves as additional regularisation to
prevent overfitting given the class imbalance between (non-)OG chat logs. Further, it allows for an
OG process-based interpretation of what the DNN considers as relevant clues for OG classification.

Stimulating attention – Both the unsupervised attention of Luong et al. (2015) in base model #1, and
the self-attention layers of base model #2, compute an attention energy et for word at position t. It
may be stimulated during training to guide the DNN’s attention on occurrences of OG processes3. We
propose two strategies that are not mutually exclusive and may be combined: a) through supervision
by the sum G of GMMs used as ground-truth distribution of the salient locations and attention
energies: Lattention = 1

T

∑T
t=1(et − G(t))2 , with T the length of messages from both users. This

is similar to (Nguyen & Nguyen, 2018), but with G highlighting higher-level OG processes rather
than single important words. b) through direct excitation of the attention energies, inspired by

3 No annotation of OG processes (i.e. GMM) is required at testing time.
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(Derakhshani et al., 2019) that excited CNN’s activations to speed up localisation learning in images.
We propose two possible implementations: (A) ẽt = et + G(t) et, and (B) ẽt = et + G(t).

Stimulating LSTM input gates – An alternative (or complement) to stimulating an attention mech-
anism is to stimulate LSTM cells directly, during training3, in locations containing OG processes
indicated by G. This is a new way to stimulate attention and to encourage the LSTM to recognise
and focus on the contexts of OG processes. We propose two implementations that are not mutually
exclusive and may be combined: a) through supervision by minimising the loss between the average
input gates’ activations it and the combined GMMs: Lstimulation = 1

T

∑T
t=1(it − G(t))2 ; b) through

excitation of activations, following the same idea as for exciting attention. The input gate activation
idt of each LSTM cell d is augmented during OG processes, indicated by a peak of G, through:
ĩdt = idt + G(t)

D

∑D
d=1 h

d
t . We average over the hidden states hdt of the D LSTM cells in the layer, by

analogy to (Derakhshani et al., 2019) that averaged over all channels of a CNN’s activation map.

5 EXPERIMENTS

Both original and modified base model #1 (including its word embedding) are trained from random
weights on our dataset. Experiments with the GloVe embedding use GloVe’s pre-trained weights
from Common Crawl 840B (Pennington et al., 2014). The XLNet part of base model #2 is pre-trained
on BookCorpus and English Wikipedia, see (Yang et al., 2019). Detailed training procedures are
provided in the sup. materials. For base model #2, the selective text normalisation is not tested due to
lack of time in fine-tuning XLNet. The attention is stimulated in the final self-attention layer only,
and future experiments may test other locations.

We divide the corpus into 30% of users for training, 70% for testing, and 30% of training for validation,
using a similar ratio as Inches & Crestani (2012). This division based on users ensures that the model
may not recognise the specific language of a groomer, but focuses on trends in OG language. OG
classification is evaluated by: precision, recall, area under precision-recall curve (AUPR), F1 score,
and the F0.5 score used in (Inches & Crestani, 2012) to weight the precision metric higher. The
effects of selective text normalisation are further measured by their proportion of distance reduction

between selected variants ∆D = 1
N

∑
k
|D(vik,v

j
k)
new−D(vik,v

j
k)
old|

D(vik,v
j
k)
old

and average resulting distance

D = 1
N

∑
k D(vik, v

j
k). Accuracy is provided in the sup. materials.

5.1 EVALUATIONS OF THE INDIVIDUAL CL-KNOWLEDGE INTEGRATION STRATEGIES

We evaluate the individual effects of the different CL augmentations in Table 1 in comparison to
non-augmented models. We also try combining the two supervised and excitation-based methods
for stimulating attention and LSTM input gates. For a fairer comparison of the selective text
normalisations, their modulation parameters λ are approximately adjusted to provide a loosely similar
∆D, as reported in the sup. materials.

Base model #1 (before augmentations) obtains similarly good results using both word embeddings,
even though GloVe encompasses more words in a larger embedding, with resulting larger D. Base
model #1 generally responds well to all CL-integrations (with some implementations of the selective
text normalisation performing better than others, as discussed next). The selective text normalisation
is less effective on GloVe, maybe due to a more drastic reduction of its larger initial distances. A grid
search on λ may be performed in the future to investigate this behaviour. Base model #2 outperforms
base model #1, which confirms XLNet’s status as one of the NLP SoTA. It also responds well to
augmentations based on knowledge of OG processes, with all metrics consistently improved. Thus,
the selective text normalisation for XLNet’s embedding for word semantic (i.e. before self-attention
layers) remains an interesting strategy to evaluate in future experiments.

Among the 3 proposed implementations of selective text normalisation, only the pulling version
provided an improvement, while the other two hindered OG classification in spite of a smaller
reduction of distances between selected variants. For the supervised approach, this may be explained
by the new loss term conflicting with the original word embedding loss. For manifold learning,
although the algorithm preserves pairwise distances by design (as verified in sup. materials), this
does not seem enough to fully preserve the semantic representation power of the word embedding.

6



Under review as a conference paper at ICLR 2021

Table 1: Impact of each CL augmentation on OG classification. Bold are improved results with
respect to no augmentation, i.e. base models.

Model Strategy Precision Recall AUPR F1 F0.5 ∆D/D

#1

No augmentation 0.867 0.794 0.867 0.829 0.851 – / 3.72
Supervised word embed. modif. 0.834 0.765 0.824 0.798 0.819 0.75/0.91
Manifold learning 0.849 0.723 0.809 0.820 0.781 0.65/1.29
Elastic pulling 0.878 0.808 0.877 0.841 0.863 0.83/0.61
Aux. OG process detection 0.890 0.768 0.873 0.825 0.863 –

Stim. attention

supervised 0.839 0.804 0.879 0.821 0.832 –
excitation (A) 0.822 0.817 0.877 0.820 0.821 –
excitation (B) 0.870 0.808 0.906 0.838 0.857 –
superv.+excit. (A) 0.859 0.819 0.897 0.838 0.851 –
superv.+excit. (B) 0.929 0.741 0.908 0.824 0.884 –

Stim. LSTM
supervised 0.924 0.752 0.891 0.829 0.883 –
excitation 0.856 0.797 0.863 0.825 0.843 –
superv.+excit. 0.906 0.781 0.901 0.839 0.878 –

#1 w.
GloVe

No augmentation 0.879 0.789 0.861 0.832 0.860 – / 8.90
Supervised word embed. modif. 0.868 0.739 0.834 0.798 0.839 0.90/0.93
Manifold learning 0.896 0.708 0.839 0.791 0.851 0.85/1.23
Elastic pulling 0.880 0.772 0.862 0.823 0.856 0.92/0.73

#2

No augmentation 0.900 0.871 0.940 0.886 0.894 –
Aux. OG process detection 0.918 0.861 0.943 0.889 0.906 –

Stim. attention

supervised 0.919 0.862 0.994 0.890 0.907 –
excitation (A) 0.894 0.885 0.945 0.889 0.892 –
excitation (B) 0.916 0.866 0.940 0.891 0.906 –
superv.+excit. (A) 0.891 0.881 0.941 0.886 0.889 –
superv.+excit. (B) 0.918 0.862 0.941 0.889 0.906 –

Stim. LSTM
supervised 0.938 0.857 0.944 0.896 0.921 –
excitation 0.896 0.896 0.944 0.887 0.892 –
superv.+excit. 0.960 0.846 0.945 0.899 0.935 –

On the other hand, the more gentle elastic pulling could preserve the original semantic representation
of the word embedding while introducing an implicit normalisation of the selected word variants that
supports OG classification.

It is worth noting, for base model #1, that D the average distance between the representations of two
selected variants is at 3.72, higher than the average distance between all other pairs of words which is
at 2.86. Therefore, base model #1, even though fully trained on OG classification, was not able to
discover on its own the knowledge that some variants have same semantic meaning while not being
discriminative for the OG classification task, and could therefore have same or similar representations.
This, together with the improved results from modifying the word embedding, demonstrate the
usefulness of integrating this knowledge into the model.

All integrations of knowledge on OG processes improved the performance of the models. This
demonstrates that focusing the DNNs’ attention on the language associated with OG processes does
help capturing subtleties of grooming language. In addition, when exploring the attention energies
of (non-augmented) base model #1, we observe that the contexts that the model learnt to focus on
are not related to our labelled instances of OG processes: the average (std) attention energy for
these instances is 0.0009 (0.0002), lower than energy across all conversations at 0.0016 (0.0128). A
similar observation is made for base model #2, where tokens’ energies are obtained from the last
self-attention layer similarly as in (Sood et al., 2020) by retaining the max pairwise energy for each
token (row) and normalising by the sum of retained energies. This is done for each attention head,
before averaging across heads. The resulting average (std) energy for our instances of OG processes
is 0.110 (0.072), slightly lower than the energy across all conversations at 0.120 (0.088). Thus, neither
models were able to discover on their own the sub-goals that the CL analysis of Lorenzo-Dus et al.
(2016) identified, and their associated language. This knowledge is therefore an added value for the
models, as also demonstrated by the improved results. The 3 strategies seem roughly equally helpful
at focusing the DNN’s attention and capturing the subtleties of grooming language, and future work
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Table 2: Comparative evaluation of OG classification methods
Method Precision Recall AUPR F1 F0.5

Naive Bayes 0.240 0.974 0.727 0.385 0.283
SVM 0.997 0.337 0.748 0.504 0.716

Decision Tree 0.693 0.642 0.637 0.667 0.682
Random Forest 0.987 0.400 0.718 0.569 0.763
Liu et al. (2017) 0.919 0.735 0.885 0.817 0.875

BERT 0.837 0.711 0.815 0.711 0.808
Base model #1 0.867 0.794 0.867 0.829 0.851

Base model #1 + L1 Regularisation 0.880 0.759 0.857 0.815 0.853
Base model #1 + L2 Regularisation 0.896 0.783 0.890 0.835 0.871

Base model #2 0.900 0.871 0.940 0.886 0.894
Base model #2 + L1 Regularisation 0.885 0.881 0.940 0.883 0.883
Base model #2 + L2 Regularisation 0.913 0.865 0.941 0.888 0.903

Augmented model #1 0.930 0.777 0.924 0.847 0.895
Augmented model #2 0.953 0.853 0.948 0.900 0.931

will explore their combinations. Improvements are more consistent for AUPR and precision (and
consequently F0.5), thanks to fewer false positives. This reduction in false positives may be due to an
easier distinction of OG conversations from neutral but sexually-oriented ones.

For both stimulation strategies (attention mechanism and LSTM input gates) combining the supervi-
sion and excitation approaches provides better results than using them individually. This suggests
that these two processes support each other during optimisation. Indeed, improved DNN’s attention
(expressed in et and it) from excitation may assist with the supervised attention task. In addition,
improved attention from supervision may also reinforce the excitation and allow it to work at its best.

5.2 OG CLASSIFICATION PERFORMANCE

The prior integration methods are combined into fully augmented models #1 and #2. All algorithms
for selective text normalisation have the same aim, thus we only retain the best performing elastic
pulling. As suggested by the previous discussion on the supervision-excitation symbiosis, the
different strategies and their implementations for integrating knowledge on OG processes may
be complementary. Thus, we use all 3 strategies, combining supervision and excitation for both
stimulation strategies, and choosing excitation B over A due to its better results. For augmented
model #2, only the augmentations tested individually in Table 1 are used. Comparative results on OG
classification are provided in Table 2 over baselines and SoTA NLP models.

Although base model #1 does slightly worse than (Liu et al., 2017), its augmented version outperforms
it by a margin. XLNet of base model #2 is the best performing of non-CL-augmented models. Its
augmentation by the combined integration of CL knowledge on word variants and OG processes
significantly improves its performance and produces the new SoTA.

For both base models, the combined augmentations (Table 2) add up to improvements that are superior
to those of individual augmentations (Table 1). This is particularly true for augmented model #1 that
accumulates all 4 augmentations, while augmented model #2 is limited to 3. Its SoTA may be further
improved in the future through adding the selective text normalisation. In the sup. materials, we
further explore how the individual augmentations add up through their progressive additions to a
simple LSTM model. We observe that their respective benefits are complementary.

In order to verify that the improved results do come from a better understanding of language provided
by CL knowledge, rather than merely from additional regularisation, we also compare against L1 and
L2 regularised version of both base models. Although regularisation does improve the results, the
performance gains from integrating CL knowledge are significantly superior for both models.

Visualisation – Since the augmented models make use of OG processes’ recognition to capture the
language associated with grooming, their auxiliary OG process detection may be used to highlight,
at word level, those parts of the conversation that the model associates to OG processes. These are
visualised in Fig. 2, where the estimated likelihood of the Compliance testing process is indicated
in shades of red. The DNN focused on questions about personal situation and on invitations to talk
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Figure 2: Visualisation of detecting the Compliance testing OG process.

over the phone, as indicators of compliance testing happening, in line with our general understanding
of this OG process. While these elements of discussion may seem neutral enough and may not be
captured by generic OG classifiers, the DNN’s understanding of OG processes and of their relation to
OG made it increase the OG classification score at each detection of OG process. In future work,
a similar visualisation could be performed using the attention energies et and LSTM input gate
activations it, to assess the better capturing of subtle language clues provided by the two other
strategies for integrating knowledge on OG processes, and their effect on OG classification.

6 CONCLUSION

We have explored the integration of CL knowledge in a hybrid (data- and knowledge-driven) DNN.
We considered two types of CL knowledge, namely: 1) variants of semantically equivalent words
that are, or not, discriminative of OG, and which we use to perform a selective text normalisation
in support of classification. Existing normalisation methods would apply to full text with no such
distinction, thus failing to provide this support. 2) The identification of some OG processes and
their associated language, which we use to focus the attention of the DNN on subtle language clues.
We compared several integration approaches, including a new method for stimulating an LSTM’s
attention directly through its input gates, without the need for an external attention mechanism. For
our final augmented model, we selected a gentle pulling method for selective text normalisation
as well as a combination of auxiliary tasks, and supervision and excitation for stimulated attention
and stimulated LSTM, whose benefits add up to produce the SoTA. We demonstrated the general
applicability of our approaches on two architecture types of recurrent and transformer neural networks
and two word embeddings of different complexities. Our results show performance improvements
over base and SoTA models for both architectures, while allowing for a CL based interpretation of
the classification decision through visualisation of predicted OG processes and DNN’s attention.

While we have demonstrated the applicability of these methodologies for CL knowledge on OG,
we see the potential for other domains that utilise similar representations or model architectures
(see discussion in Section 4). The selective text normalisation that we propose is more generally
applicable to other classification tasks from chat conversations, and its proposed implementations are
usable on other DNNs that use a word embedding to capture word semantic. The decomposition of
conversations into sub-goals may be obtained from CL studies on other applications. Some of the
proposed strategies may also allow the integration of other (non-CL) domain knowledge. It may be
generally useful to estimate auxiliary quantities that are known to be relevant to the task and that may
usefully constrain the DNN’s attention and learnt features. Our two other methods for focusing the
DNN’s attention (i.e. stimulated attention and stimulated LSTM input gates) may be generally used
to weight more some important elements of the training data.

Perspectives for OG prevention – The proposed OG classification method has been designed based
on requirements from specialised law enforcement to assist in the investigation of large quantities of
chat logs. Its intended usage is to facilitate triage by law enforcement of digital materials that could
be seized from suspected offenders after enough evidence allowed launching the procedure. Flagged
conversations are to be investigated more thoroughly by a trained human operator following law
enforcement’s strict robustness and security protocols to ensure integrity. Within this usage scenario,
there is, therefore, no risk of innocents to be automatically prosecuted. The aim of our work is not
to address the possible biases in the human decision, which are addressed by law enforcement’s
protocols. However, the proposed visualisation that helps focusing on key aspects of the conversation,
together with the reduced workload and associated lowered time pressure, may allow a more thorough
and fairer investigation of the flagged conversations. Mitigation measures should be put in place, but
these are outside the scope of this work.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Paul Baker, Rachelle Vessey, and Tony McEnery. The language of violent jihad. Cambridge University
Press, 2021.

Andrew Brindle. The language of hate: A corpus lingusitic analysis of white supremacist language.
Routledge, 2016.

Emily Chiang and Tim Grant. Deceptive identity performance: Offender moves and multiple identities
in online child abuse conversations. Applied Linguistics, 40(4):675–698, 2019.

Mohammad Mahdi Derakhshani, Saeed Masoudnia, Amir Hossein Shaker, Omid Mersa, Moham-
mad Amin Sadeghi, Mohammad Rastegari, and Babak N. Araabi. Assisted excitation of activations:
A learning technique to improve object detectors. In Computer Vision and Pattern Recognition
(CVPR), pp. 9201–9210, 2019.

Kuzman Ganchev, Jennifer Gillenwater, and Ben Taskar. Posterior regularization for structured latent
variable models. Journal of Machine Learning Research, 11(Jul):2001–2049, 2010.

Jos Mara Gmez Hidalgo and Andrs Alfonso Dı́az, Caurcel. Combining predation heuristics and
chat-like features in sexual predator identification. CLEF, 2012.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep neural
networks with logic rules. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, pp. 2410–2420, 2016.

Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, Xiaodan Liang, Lianhui Qin, Haoye Dong, and
Eric Xing. Deep generative models with learnable knowledge constraints. In Advances in Neural
Information Processing Systems, pp. 10501–10512, 2018.

Giacomo Inches and Fabio Crestani. Overview of the International Sexual Predator Identification
Competition at PAN-2012. In CLEF, volume 30, 2012.

Jeremy Kawahara, Colin J. Brown, Steven P. Miller, Brian G. Booth, Vann Chau, Ruth E. Grunau,
Jill G. Zwicker, and Ghassan Hamarneh. BrainNetCNN: Convolutional neural networks for brain
networks; Towards predicting neurodevelopment. NeuroImage, 146:1038–1049, 2017.

Dan Liu, Ching Yee Suen, and Olga Ormandjieva. A novel way of identifying cyber predators. In
arXiv preprint arXiv:1712.03903, 2017.

Nuria Lorenzo-Dus and Lella Nouri. The discourse of the US alt-right online – A case study of the
Traditionalist Worker Party blog. Critical Discourse Studies, 2020.
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