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Abstract—Audio-visual speech separation has gained signifi-
cant traction in recent years due to its potential applications
in various fields such as speech recognition, diarization, scene
analysis and assistive technologies. Designing a lightweight audio-
visual speech separation network is important for low-latency
applications, but existing methods often require higher compu-
tational costs and more parameters to achieve better separation
performance. In this paper, we present an audio-visual speech
separation model called Top-Down-Fusion Net (TDFNet), a state-
of-the-art (SOTA) model for audio-visual speech separation,
which builds upon the architecture of TDANet, an audio-only
speech separation method. TDANet serves as the architectural
foundation for the auditory and visual networks within TDFNet,
offering an efficient model with fewer parameters. On the LRS2-
2Mix dataset, TDFNet achieves a performance increase of up to
10% across all performance metrics compared with the previous
SOTA method CTCNet. Remarkably, these results are achieved
using fewer parameters and only 28% of the multiply-accumulate
operations (MACs) of CTCNet. In essence, our method presents a
highly effective and efficient solution to the challenges of speech
separation within the audio-visual domain, making significant
strides in harnessing visual information optimally.

Index Terms—Audio-Visual, Multi-Modal, Speech-Separation

I. INTRODUCTION

Speech separation is the process of extracting distinct audio
streams from an audio recording containing one or more
speakers [2]. Consider a scenario where we have a microphone
positioned in the center of a room capturing the voices of two
individuals, A and B. These speakers may talk simultaneously
or one after the other, with varying volume levels and distances
from the microphone. It is crucial to account for all these
factors. The objective of a speech separation model is to split
the audio recording into two separate streams, each containing
the audio from a single speaker. Ideally, one output stream
would exclusively contain the voice of speaker A or B.

Speech separation is commonly referred to as the “cocktail
party problem” [3], [13]. At social gatherings, such as cocktail
parties, our natural inclination is to concentrate on a particular
individual while filtering out the surrounding conversations.
Over the past decade, High quality speech separation has
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Input Two Speaker Video

Detect Two Speaker lip motion

Separate Two Speaker Audio

Fig. 1. Audio-visual speech separation process. From top to bottom: video
frames and mixed inputs, cutting out lip regions from the video, TDFNet
speech separation results.

become increasingly crucial due to the widespread adoption of
automated systems and voice assistants such as Apple’s Siri
and home devices such as Amazon Alexa or Google Home
[12], [17], [18], [23], [31], [40].

Methods based on architectures designed for modeling
sequences, such as Recurrent Neural Networks (RNNs) [29],
or extracting local patterns such as Convolutional Neural
Networks (CNNs) [30], have proven to be adept at handling
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Fig. 2. TDFNet separation pipeline. The audio and video inputs xxx and yyy are encoded by Ea and Ev respectively to produce the feature maps aaa and vvv, which
are sent to the refinement module R to be fused and then further processed. The mask generator M then takes these refined features rrr and generates masks
mmmi, which are multiplied by the encoded audio input aaa in tern to produce a separation. Finally, the decoder decodes each of the separated encoded audios.
The figure above uses nspk = 2 speakers.

the complexities in speech signals. However, methods relying
on auditory signals alone, known as audio-only speech sepa-
ration (AOSS) methods, have become quite saturated in recent
years, with new models showing only incremental performance
increases. One notable avenue to bolster the robustness of
speech separation is to integrate multi-modal information [4],
[41]. For humans, the integration of auditory information
(speech signals) and visual stimuli (such as lip movements)
fundamentally alters our perception of language [7], [34], [35].

Audio-visual speech separation (AVSS) is similar to speaker
extraction [10], [50], [52], which uses one speaker’s voiceprint
to create a separation. However, whereas voice extraction
requires enrolling a target speaker in advance and gathering
their voiceprint, visual information can be entirely captured in
real-time, as shown in Figure 1. Visualvoice [9] and CTCNet
[24] both use an encoder-decoder structure to improve the
separation performance, but they do not fully exploit this
structure. In addition, integrating audio and visual information
can be computationally expensive, making them less practical
for real-time applications.

In order to efficiently extract and integrate features from
different modalities, we propose a novel AVSS model called
TDFNet. It uses encoded audio and visual information as in-
puts for a series of TDANet-based blocks [25], called TDFNet
Blocks. These blocks build a hierarchical structure where the
lower levels have higher temporal resolution. Information from
different temporal resolutions moves freely, and is aggregated
and fused with the visual information. We evaluated TDFNet
extensively on the LRS2 benchmark dataset to show that it
outperforms various competing baseline models and achieves
state-of-the-art performance using fewer parameters and with
a lower computational cost.

II. RELATED WORK

A. Audio-Only Speech Separation

Initially, speech separation employed the time-frequency
(TF) representation of the mixed audio, estimated from the
waveform using the short-time Fourier transform (STFT).

Pioneering methods utilized matrix factorization [39] and
heuristic techniques [6] to cluster the TF bins of each speaker.
However, the performance of these models was either poor or
speaker-dependent. With the development of deep learning and
the introduction of permutation invariant training (PIT [53]) to
solve the permutation problem, the speech separation space has
become increasingly competitive. Researchers soon migrated
from the TF representation of audio to a time domain only
representation using a convolutional encoder, resulting in high
performance methods such as DualPathRNN [29], Sepformer
[44], Wavesplit [54], etc. Recently, the multi-scale speech
separation model AFRCNN [16] was proposed as a balance
between efficiency and separation performance. TDANet [25]
adds top-down attention [32], [42] to AFRCNN’s encoder-
decoder architecture to obtain state-of-the-art performance
with a greatly reduced computational effort. Both of these
models were inspired by the brain.

Some researchers suggest that the datasets used in the
audio-only setting are often idealized, lacking reverberation,
interfering background sounds or random noise. A recent study
[25] found that many top models become average when faced
with these more challenging datasets. Furthermore, audio-only
models encounter significant challenges when confronted with
scenarios involving three or more speakers [14], or when the
number of speakers is unknown [10], [50], [52].

B. Audio-Visual Speech Separation

The audio-visual speech separation field combines audio-
only speech separation with video data to improve perfor-
mance on noisy and challenging datasets. Recent neuroscience
studies have demonstrated that the human brain effectively
addresses the cocktail party problem by leveraging additional
visual cues from the eyes [26], [43]. Building upon this notion,
some researchers [1], [8], [9], [22], [27], [33], [36], [51]
have endeavored to incorporate visual information into the
paradigm, aiming to enhance the quality of audio separa-
tion. These efforts have culminated in the current state-of-
the-art for audio-visual speech separation, namely CTCNet



[24]. However, CTCNet, due to the complexity of its multi-
scale fusion operations, introduces a substantial amount of
computation which limits its applicability in real-world sce-
narios. To address this, we utilize TDANet’s architecture for
our visual and auditory feature extraction networks, which
employ progressive multi-scale fusion, effectively reducing the
computational cost of the multi-scale fusion.

III. TDFNET

For a black and white 25 fps video containing nspk speakers,
the inputs for our AVSS pipeline are: a sequence of video
frames yyy ∈ R1×Lv×Hin×Win containing the lip movements of
the desired speaker, and the mixed audio stream xxx ∈ R1×La ,
where Lv , Hin, Win and La denote the number of video
frames, image height, width, and the length of audio, re-
spectively. We assume that the mono-aural (single channel)
audio of the video xxx consists of linearly superimposed voices
sssi ∈ R1×La for i ∈ [1, nspk] such that

xxx = ϵϵϵ+

nspk∑
i=1

sssi, (1)

where ϵϵϵ ∈ R1×La is some presence of background noise.
We propose TDFNet, which consists of five main modules:

a video encoder (Section III-A), an audio encoder (Section
III-B), a refinement module (Section III-C), a mask generator
(Section III-D) and an audio decoder (Section III-E). The
pipeline of TDFNet is briefly described below (see Figure 2).

1) The raw audio and visual signals are sent to respective
encoders to obtain rich feature maps. We denote the
audio encoder Ea(·) and the video encoder Ev(·):

aaa = Ea(xxx), aaa ∈ RCa×Ta ,

vvv = Ev(yyy), vvv ∈ RCv×Tv ,

where the Ca and Cv denote the dimensions of visual
and auditory features. Historically, large values for Ca

and Cv are used as this leads to a more detailed feature
representation. However, this increases the computa-
tional cost of the refinement module. In order to mitigate
this cost while maintaining performance, we design a
“bottleneck” by using fewer channels Ba ≤ Ca and
Bv ≤ Cv . This is achieved by using 1D convolutional
layers Fa(·) and Fv(·) with kernel size 1. This can be
written

aaa′ = Fa(aaa), vvv′ = Fv(vvv).

2) The refinement module R(·, ·), takes the audio and
visual information and uses the combined information
to generate a refined feature map:

rrr = R(aaa′, vvv′), rrr ∈ RBa×Ta

We can see that the output dimensions match the dimen-
sions of the audio input. This is because the refinement
module first fuses the visual information into the audio
information, and then further processes these combined

multimedia features. This will be explained in Section
III-C.

3) This refined feature map is used to generate masks
for each speaker. Let M(·) denote a mask generating
function.

{mmm1, . . . ,mmmnspk
} = M(rrr),

where mmmi ∈ [0, 1]Ca×Ta for all i ∈ [1, nspk] and [0, 1]
is the range of real numbers from 0 to 1. Note that each
mask has the same dimensions as the encoded audio aaa.

4) The encoded audio input is multiplied element-wise by
each mask in turn, resulting in the separated encoded
audio for each speaker,

zzzi = aaa⊙mmmi, zzzi ∈ RCa×Ta ∀i ∈ [1, nspk],

where ⊙ represents element-wise multiplication.
5) The separated audio feature map for each speaker is

given to the decoder Da(·). The decoder returns the
separated audios for each speaker as a waveform,

ŝssi = Da(zzzi), ŝssi ∈ R1×La ∀i ∈ [1, nspk].

A. Video Encoder

The video encoder tales the gray-scale video frames yyy and
uses the pre-trained lip-reading model used in CTCNet [24],
called CTCNet-Lip, to extract visual features. It consists of
a backbone network for extracting features from the image
frames and a classification sub-network for word prediction.
The backbone network includes a 3D convolutional layer and
a standard ResNet-18 network. The frames are convolved with
P 3D-kernels with size 5 × 5 × 1 and spatial stride size
2 × 2 × 1 to obtain a rich feature map. Each feature map
is passed through the ResNet-18 network, and the resulting
feature maps are passed to the classification sub-network as
words for word prediction. After lip-reading pre-training, the
backbone network of the CTCNet-Lip is fixed for extracting
visual features, and the classification sub-network is discarded.
We encourage readers to read the original paper for more
details.

B. Audio Encoder

The audio encoder Ea takes the input audio xxx and produces
a feature map using a 1D-convolution with Ca output channels
and kernel size Ka, followed by global layer normalization
(gLN) [30] and ReLU activation. Since a stride greater than
one is used, this technically changes the Ta dimension to a
smaller value, compressing the audio, but for simplicity we
do not change the notation.

C. Refinement Module

The refinement module aims to take the audio and the
video embeddings, fuse them together and then further process
and refine the resulting multi-modal features. This way, we
combine the audio and visual information in order to increase
the separation performance. As is seen several times in the
audio-only domain [16], [25], we take an iterative approach.



Fig. 3. The jth TDFNet Block. (a) The internals of a single TDFNet block. (b) The stacked TDFNet blocks with residual connection from the first iteration.

In total, we use Ra iterations with fusion occurring Rf times,
where Rf ≤ Ra.

The refinement module consists of three networks that work
together in order to produce the best possible amalgamation
of data:

• αj , the audio sub-network at iteration j.
• βj , the video sub-network at iteration j.
• γj , the cross-modal fusion sub-network at iteration j.

These three networks do not change the dimensions of their
inputs, which is key for their inter-compatibility. For the fusion
iterations, for j ∈ [1, Rf ], one iteration consists of all three
modules working together for form a TDFNet block. For
the subsequent audio-only iterations, for j ∈ [Rf , Ra], the
TDFNet block will will consist of only the audio sub-network.

Firstly, let aaaj−1 and vvvj−1 be the inputs for αj and βj , where
the “0th” iteration is simply taking the outputs of the audio and
video “bottleneck” convolutions:

aaa0 := aaa′ ∈ RBa×Ta , vvv0 := vvv′ ∈ RBv×Tv . (2)

The first iteration is the most simple. The audio features
are passed to the audio sub-network and the video features
are passed to the video sub-network. The outputs are then
passed to the fusion module which fuses the audio informa-
tion with the visual information, and the visual information
with the audio information. In the proceeding layers, residual
connections are added to improve training.

(aaa1, vvv1) = γ1 (α1(aaa0), β1(vvv0)) (3)
(aaaj , vvvj) = γj (αj(aaaj−1 + aaa0), βj(vvvj−1 + vvv0)) (4)

for j ∈ [2, Rf ]. The interactions can be seen in Figure 3.
After Rf fusion iterations, we deem the video and audio

signals to be sufficiently ‘fused’ together into the audio signal
aaaRf

∈ RBa×Ta . For subsequent iterations, the signal is
continuously refined using only the audio sub-network. This
simplifies Equation 4 to the one below.

aaaj = αj (aaaj−1 + aaa0) , (5)

for j ∈ [Rf + 1, Ra].

1) Audio and Video Sub-Networks: Both αj and βj are
defined by the same architecture inspired by TDANet [25]
and consists of three main sections:

1) Bottom-up Down-sampling
2) Recurrent Operator
3) Top-down Fusion

The details of these sections will be covered in Section IV.
We define

XXXj = αj (aaaj−1 + aaa0) ∈ RBa×Ta ,

YYY j = βj (vvvj−1 + vvv0) ∈ RBv×Tv ,

as the outputs of the audio and video sub-networks, and hence
the two inputs for the cross-modal fusion sub-network.

2) Cross-Modal-Fusion Sub-network: This module is in
charge of fusing the audio features into the video features, and
the video features into the audio features. Let κ define a 1D-
convolution with kernel size 1 followed by a gLN layer, and let
ϕ denote nearest neighbor interpolation. || is the concatenation
operation acting along the channel dimension. Wielding these
definitions, we can define the cross-modal fusion sub-network
γj that returns two outputs, and hence we can write the full
expression for the jth iteration as

γj(XXXj ,YYY j) = (aaaj , vvvj) , (6)

where

aaaj = κ (XXXj ||ϕ (YYY j)) ∈ RBa×Ta ,

vvvj = κ (YYY j ||ϕ (XXXj)) ∈ RBv×Tv .

As we can see, the video features are interpolated to match
the audio dimensions:

Bv × Tv =⇒ Bv × Ta.

The output is concatenated with the audio features and then
passed through a convolution layer to take the dimensions back
to the dimensions of the audio input:

(Ba +Bv)× Ta =⇒ Ba × Ta.

The video fusion result is similar.



Fig. 4. The core architecture of the audio and video sub-networks. The input is either the audio or the visual features, reduced to the hidden dimension D.
The bottom-up down-sampling in the green block uses consecutive convolutions with stride 2 to compress the data to increasingly small temporal resolutions.
The recurrent operator in the pink block fuses the information to formulate a global perspective. The top-down fusion in the blue block combines the global
information at different temporal resolutions, and then fuses them all together into a single feature map.

D. Mask Generator

The mask generator is tasked with taking the output of the
refinement module rrr and transforming it into a set of masks
mmmi for i ∈ [1, nspk] and multiplying each mask with the
encoded audio aaa. The mask generator is characterized by a
1D-convolution that takes the channels from Ba to nspk×Ca.
We then apply an output gate, which involves the element-
wise multiplication of the Tanh and sigmoid σ activations of
two convolutions,

XXX = ReLU (Conv (PReLU(rrr))) ,

YYY = Tanh (Conv(XXX))⊙ σ (Conv(XXX)) .
(7)

Next, we split YYY ∈ R(nspk×Ca)×Ta across the channels into
nspk parts to get the masks mmmi ∈ RCa×Ta for each speaker i.
Finally, we compute

zzzi = aaa⊙mmmi for i ∈ [1, nspk], (8)

to get the separated audios of each speaker, as a feature map.

E. Decoder

The decoder mirrors the audio encoder of TDFNet in terms
of stride, padding and kernel size, and hence we get the
equation

ŝssi = TConv(zzzi) = Da (zzzi) for i ∈ [1, nspk], (9)

where TConv is now a 1D transposed convolution that con-
verts the nspk separated feature maps into nspk waveform
audio streams.

IV. AUDIO AND VIDEO SUB-NETWORK STRUCTURE

We have described the entire pipeline of the proposed
TDFNet model without details of the audio and video sub-
networks. These modules use a TDANet-like structure [25]
and since the design for the audio and video sub-networks
is the same, we can drop the a and v subscripts from
our notation for simplicity. For more specific details of the

TDANet implementation, we refer readers to the original paper
[25]. Here we will give a brief overview, focusing on our
modifications.

The input to the audio and video sub-networks: aaaj−1 +
aaa0 or vvvj−1 + vvv0, is first bound in place using a depth-wise
convolution, and then converted to a lower “hidden” dimension
D using another 1D convolution with kernel size 1. This will
be the input for the main section of TDANet, which can be
categorized into three important phases:

1) the bottom-up down-sampling process
2) the recurrent operator
3) the top-down fusion process

as shown in Figure 4.
Bottom-up Down-sampling: For kernel size k and stride s,

we next define the normalized depth-wise convolution,

Hk,s(XXX) := Norm (DWConvk,s(XXX)) . (10)

The bottom-up down-sampling process uses stacked Hk,2

layers to obtain the multi-scale set FFF with different temporal
resolutions:

FFF =
{
FFF 0 ∈ RD×T , . . . ,FFF i ∈ RD× T

2i , . . . ,FFF q ∈ RD× T
2q

}
.

Recurrent Operator: To extract a global view from these
features, we down-sample all elements in the set FFF to the
dimensions of the smallest element using adaptive average
pooling. Next, we sum all the down-sampled features to
generate the global feature map GGGin:

GGGin =

q∑
i=0

p(FFF i), GGGin ∈ RD× T
2q . (11)

To allow the model to understand the complex relationships
between the different time steps, a recurrent operator R is
applied along the temporal dimension of GGGin:

GGGout = R
(
GGGin

)
, GGGout ∈ RD× T

2q . (12)



The recurrent operator refers to a sequence modelling structure
such as a transformer, recurrent neural network (RNN), long-
short-term-memory network (LSTM [15]) or gated recurrent
unit (GRU [5]).

For the transformer (see Figure 5), we first use multi-head
self-attention (MHSA) [48] followed by a drop block layer
[11] and a feed forward network (FFN). The FFN consists of
three stacked 1D convolutional layers with kernel sizes {1, k,
1}, and number of channels {D, 2D, D} respectively. Residual
connections are added at each stage, so for the transformer the
recurrent operator R is defined as:

GGGmid = MHSA(GGGin) +GGGin,

GGGout = FFN
(
GGGmid

)
+GGGmid.

(13)

Fig. 5. Attention mechanism. This is a diagrammatic view of Equation 13.

For the other recurrent operators (RNN, LSTM and GRU)
we remove the FFN and the Drop Block [11] layers, but keep
the residual connection. We use bidirectional RNNs with the
hidden dimension set to the input dimension D, hence we also
add dropout and a linear projection layer P from 2D channels
back to D channels such that the RNN does not change the
dimensions of GGGout. This alters Equation 13 to:

GGGout = P
(
RNN

(
GGGin

))
+GGGin. (14)

Top-Down Fusion: Let Ik define the Injection Sum [25]
with kernel size k (see Figure 6). Then top-down fusion is
defined in two steps. First, the global information GGGout is fused
with each of the multi-scale local features:

FFF ′
i = Ik(FFF i,GGG

out), FFF ′
i ∈ RD× T

2i (15)

for i ∈ [0, q]. Next, this multi-scale global-and-local-fusion
is collapsed into a single feature map that has a broad view
of the entire input. This is achieved with an iterative process
using an injection sum with kernel size 1:

FFF ′′ = I1(FFF
′
q−1,FFF

′
q) +FFF q−1,

FFF ′′ = I1(FFF
′
q−i−1,FFF

′′) +FFF q−i−1 for i ∈ [1, q − 1],
(16)

where after the last iteration, FFF ′′ ∈ RD×T . This differs from
the original TDANet, as in the original implementation I1
is replaced with a different operation. In addition, we have
added residual connections from the multi-scale down-sampled
features in order to improve training and create a UNet-like
[38] structure. Both of these changes greatly improved the
consistency and effectiveness of TDANet without increasing
the parameters significantly. Note that in Figure 4 we do not
show the residual connections as it would make the diagram
too complex.

Finally, the feature map FFF ′′ is converted from the hidden
dimension D back to the bottleneck dimension Ba or Bv using

a 1D convolution with kernel size 1, and residual connection
is added. This result is denoted XXXj for the output of the audio
sub-network, and YYY j for the output of the video sub-network,
see Section III-C1.

Fig. 6. Architecture for the Injection Sum Ik with kernel size k for two
inputs XXX and YYY with different temporal dimensions.

V. EXPERIMENTAL PROCEDURES

A. Dataset

Following similar methods [9], [22], [24] in the field,
speech separation datasets were constructed from commonly
used audio-visual datasets. The speakers in the test set of
these datasets did not overlap with those in the training and
validation datasets. The raw audio and video frames were
obtained using the FFmpeg tool1. A sampling rate of 16 kHz
was chosen, and the model was trained on two seconds of
audio and video, equating to audio vectors of length 32,000
and 50 video frames for the 25 FPS video used.

The LRS2 dataset contains a collection of BBC video
clips and three separate folders for training, validation and
testing purposes. In order to adapt this dataset to an audio-
visual dataset, different speakers were randomly selected two
speakers at a time. Their audio signals were mixed using
signal-to-noise rations between -5 and 5 dB. The test set is
the same as used in previous works [9], [24]. In total, the
training set contains 11 hours and the validation set contains
3 hours.

B. Hyperparameter Settings

Following CTCNet [24] we use 16 total layers with 3
fusion layers. The other hyperparameters are defined in Table
I. The first block shows the encoder and decoder hyperpa-
rameters. The second block shows the audio sub-network
hyperparameters. The third block shows the video sub-network
hyperparameters.

For training we used a batch size of 4 and AdamW [28]
optimization with a weight decay of 1 × 10−1. The initial
learning rate used was 1×10−3, but the learning rate value was
halved when the validation data set loss did not decrease for

1https://ffmpeg.org/



TABLE I
TDFNET HYPERPARAMETERS.

Parameter Value Description

Ca 512 The audio mixture embedding dimension
Ka 21 The kernel size of the encoder and decoder
Sa 10 The stride of the encoder and decoder
Ba 512 The audio bottleneck out channel dimension
Bv 64 The video bottleneck out channel dimension

Da 512 The audio sub-network hidden dimension
qa 5 The audio sub-network up-sampling depth
ka 5 The audio sub-network kernel size
ha 512 The GRU hidden dimension
Ra 16 The total number of audio sub-network repeats

Dv 64 The video sub-network hidden dimension
qv 4 The video sub-network up-sampling depth
kv 3 The video sub-network kernel size
hv 8 The number of attention heads
Rf 3 The total number of video sub-network repeats

5 epochs in a row. We also used gradient clipping in order to
limit the maximum L2 norm of the gradient to 5. Training was
left running for a maximum of 200 epochs, but early stopping
was also applied. Models were all trained on four servers,
three containing 8 NVIDIA 3080 GPUs, and one containing 8
NVIDIA 3090 GPUs. The model code is implemented using
PyTorch.

C. Loss Function

The loss function used for training is the scale-invariant
source-to-noise ratio (SI-SNR) [21] between the estimated and
original signals sssi and ŝssi respectively for each speaker. SI-
SNR is defined as

SI-SNR(sssi, ŝssi) = 10 log10

(
||ωωωi · sssi||2

||ŝssi −ωωωi · sssi||2

)
, (17)

where ωωωi is the result

ωωωi =
ŝssTi sssi
sssTi sssi

. (18)

D. Evaluation Metrics

Following recent literature, the scale-invariant signal-to-
noise ratio improvement (SI-SNRi) and signal-to-noise ratio
improvement (SDRi) were used to evaluate the quality of
the separated speeches. These metrics were calculated based
on the scale-invariant signal-to-noise ratio (SI-SNR) [21] and
source-to-distortion ratio (SDR) [49]:

SI-SNRi(xxx, sssi, ŝssi) = SI-SNR(sssi, ŝssi)− SI-SNR(sssi, xxx),
SDRi(xxx, sssi, ŝssi) = SDR(sssi, ŝssi)− SDR(sssi, xxx),

(19)

where

SDR(sssi, ŝssi) = 10 log10

(
||sssi||2

||sssi − ŝssi||2

)
. (20)

We also consider the number of parameters and the MACs.
These metrics are important as they determine the computa-
tional complexity and memory requirements of the models. In

both the number of parameters and MACs, a lower value is
preferable. For completeness, we also provide PESQ [37] and
STOI [45] for the main results tables. For these evaluation
metrics, a higher value indicates better performance.

VI. RESULTS

A. Ablation studies

In order to evaluate results faster, experimentation was done
using a reduced model setting with 1 fusion layer and 3 audio
only layers, totaling 4 layers (Rf = 1, Ra = 4).

1) Different Recurrent Operators: In Table II we examine
the effects of using different recurrent operators in the audio
sub-network. The transformer, denoted by MHSA, has a good
balance between the number of parameters, computational
complexity and model performance. It has the lowest number
of MAC operations, making the transformer the most efficient
choice for audio separation.

A traditional RNN outperforms CTCNet [24] by a signif-
icant margin, but lacks the huge performance gains of the
transformer. However, we can also see that the RNN model
uses significantly less parameters - only 58% of the parameters
used by CTCNet. For these experiments, the RNN, GRU and
LSTM models all use ha = Da, the hidden dimension is
equal to the input dimension. We found that increasing the
hidden dimension to 2× the input dimension barely affected
performance, and resulted in a huge increase in the number of
parameters.

Moving on to the LSTM [15] and GRU [5] structures, we
can see that both offer significant gains over the transformer
model, and completely outclass the smaller CTCNet model.
As pointed out by Max W. Y. Lam et al. [20], it seems that an
RNN based approach is better for audio, which features a high
temporal correlation, acoustic signal structure, continuities and
sequential nature. Interestingly, even though the GRU model
has fewer parameters, it outperforms the LSTM architecture
by a significant margin, while also utilizing fewer MAC
operations. It appears that for this task, the GRU architecture is
the optimal recurrent operator in terms of performance, model
size and efficiency. It is worth noting however that the GRU is
not without its downsides. The GRU structure does use slightly
more memory than the LSTM structure of similar size during
training. For readers looking to use larger configurations and
who do not care about model size, the LSTM may be the
better choice in order to train with a larger batch size.

Table III shows the effect of changing the recurrent operator
in the video sub-network, as opposed to the audio sub-network
experiments in Table II. Unlike with the audio sub-network,
the MHSA clearly outperforms the GRU operator for this
medium. These two tables combined show why it is important
we use the GRU for the audio sub-network, and MHSA in the
video sub-network.

2) Sharing Parameters: In Table IV we experiment with
sharing the parameters between the audio layers. Both TDFNet
and CTCNet achieve a smaller model size compared to Visu-
alVoice [9] by sharing parameters. Specifically, the parameters
for the audio sub-network αj are the same for all j, the



TABLE II
AUDIO SUB-NETWORK RECURRENT OPERATOR (Ra = 4, Rf = 1).

Model Av LRS2-2Mix Params MACs

Module SI-SNRi SDRi PESQ STOI (M) (G)

CTCNet [24] 11.1 11.6 2.90 0.895 6.3 43.6

TDFNet RNN 11.6 11.9 2.95 0.903 3.6 13.2
TDFNet MHSA 12.9 13.1 3.08 0.921 4.2 12.8
TDFNet LSTM 13.4 13.5 3.08 0.928 6.8 15.7
TDFNet GRU 13.6 13.7 3.10 0.931 5.8 15.0

TABLE III
VIDEO SUB-NETWORK RECURRENT OPERATOR (Ra = 16, Rf = 3).

βj LRS2-2Mix Params MACs

Module SI-SNRi SDRi PESQ STOI (M) (G)

GRU 15.3 15.4 3.19 0.942 6.6 47.2
MHSA 15.8 15.9 3.21 0.949 6.5 47.2

TABLE IV
SHARING PARAMETERS IN THE AUDIO SUB-NETWORK (Ra = 4, Rf = 1)

Audio LRS2-2Mix Params MACs

Shared SI-SNRi SDRi PESQ STOI (M) (G)

12.3 12.4 3.01 0.914 22.9 15.7
13.4 13.5 3.08 0.928 6.8 15.7

parameters for the video sub-network βj are the same for all
j and the parameters for the cross-modal fusion sub-network
γj are also the same for all j. In PyTorch, this structure is
realised by instantiating one TDFNet block, and passing the
data through this same block Ra or Rf times. In Table IV we
use Rf = 1, so there are no additional layers for the video sub-
network and fusion model to share parameters with. Hence, we
experiment with not sharing the parameters between the audio
sub-networks. When we stop sharing the parameters between
the layers of the audio sub-networks, we are instantiating a
new TDFNet block Ra times which results in a huge increase
in model size, as seen in Table IV. One might expect this to
increase the performance of the model, but we see quite the
exact opposite effect. Instantiating new layers results in a large
drop in performance. This is likely because parameter sharing
allows the TDFNet blocks themselves to act as an RNN-like
structure, and so when we stop sharing parameters we lose
this important effect.

Table V shows the effect of sharing parameters, this time
in the video and fusion layers. If the “shared” column has a
“ ” mark, then the parameters for βj are the same for all j,
and the parameters for γj are the same for all j: we instantiate
one instance of the video and fusion sub-networks, and pass
the data through these layers Rf times. We can see that unlike
in the audio sub-network, sharing parameters here decreases
performance. This is likely due to the nature of the fusion

TABLE V
SHARING PARAMETERS IN THE VIDEO AND CROSS-MODAL FUSION

SUB-NETWORKS (Ra = 16, Rf = 3).

Shared LRS2-2Mix Params MACs

SI-SNRi SDRi PESQ STOI (M) (G)

15.0 15.2 3.16 0.938 4.2 38.6
15.3 15.4 3.20 0.943 4.9 38.6

operation. In the first iteration, the video network looks at
a pure video feature map generated from the video encoder.
In subsequent iterations, there is the combined audio signal
and the skip connection. It seems that the model likes to use
the subsequent iterations to fuse the different information in
different ways, and thus benefits from instantiating separate
layers. This comes at the cost of increased parameters, but
the increase is small and the performance boost is large. It is
also worth noting that the models in Table V use MHSA as the
recurrent operator in both the audio and video sub-networks. If
model size is of most importance, we can see that we can still
achieve over 15dB SDRi and SI-SNRi using only 4.2 million
parameters - only 60% of the parameters used by CTCNet.

B. Comparison with the state-of-the-arts

In Table VI we can see how TDFNet compares to the
competition. We have chosen the three most interesting results
for comparison.

• TDFNet-small is the smaller configuration using only
one fusion layer, and three audio only layers. It comes
from the last row of Table II. This model is small with
outstanding performance and a very low computational
cost.

• TDFNet (MHSA + Shared) is the version of TDFNet
using MHSA as the recurrent operator in both the audio
and video sub-networks, and sharing the video sub-
network parameters. It comes from the first row of Table
V. This model outperforms the SOTA method CTCNet
by a significant margin while using only 60% the number
of parameters, and 25% the number of MACs.

• TDFNet-large is the final full-bodied version of TDANet
using the GRU in the audio sub-network, and using three
separate instances for the video sub-network. It comes
from the second row of Table III. This model outperforms



TABLE VI
COMPARISON WITH SOTA METHODS (Ra = 16, Rf = 3). THE “-” DENOTED RESULTS NOT REPORTED IN THE ORIGINAL PAPERS.

Model LRS2-2Mix Params MACs

SI-SNRi SDRi PESQ STOI (M) (G)

uPIT [19] 3.6 4.8 - - 92.7 -
SuDORM-RF [47] 9.1 9.5 - - 2.7 -
A-FRCNN [16] 9.4 10.1 - - 6.3 -
Conv-TasNet [30] 10.3 10.7 - - 5.6 -

CaffNet-C [22] - 10.0 0.94 0.88 - -
CaffNet-C* [22] - 12.5 1.15 0.89 - -
Thanh-Dat [46] - 11.6 3.1 - - -
VisualVoice [9] 11.5 11.8 3.00 - 77.8 -
CTCNet [24] 14.3 14.6 3.08 0.931 7.1 167.2

TDFNet-small 13.6 13.7 3.10 0.931 5.8 15.0
TDFNet (MHSA + Shared) 15.0 15.2 3.16 0.938 4.2 38.6
TDFNet-large 15.8 15.9 3.21 0.949 6.5 47.2

all other models across all metrics using only 47.2 billion
MACs for two seconds of audio sampled at 16000 Hz.
This represents approximately 30% of the MACs used
by CTCNet. At the time of writing this paper, TDFNet is
the new SOTA method in audio-visual speech separation.
The SI-SNRi score of 15.8 presents a 10% increase in
performance compared to CTCNet.

VII. CONCLUSION

Existing multimodal speech separation models are ineffi-
cient and have limitations for real-time tasks. We propose a
multi-scale and multi-stage framework for audiovisual speech
separation based on TDANet and CTCNet. This model can
significantly improve the speech separation performance by
fusing features of different modalities several times in the
fusion stage and influencing the feature extraction network
of the corresponding modalities separately. In addition, we
explore the impact of different global feature extraction struc-
tures on the performance and find that using GRU for se-
quence modeling can substantially improve the performance
and reduce the model computation. Our experiments show
that TDFNet outperforms the current state-of-the-art model
CTCNet in several audio separation quality metrics while
using only 30% the number of MACs.
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