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Abstract

Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective
for training large language models (LLMs) on complex reasoning tasks, such
as mathematical problem solving. A prerequisite for the scalability of RLVR is
a high-quality problem set with precise and verifiable answers. However, the
scarcity of well-crafted human-labeled math problems and limited-verification
answers in existing distillation-oriented synthetic datasets limit their effectiveness
in RL. Additionally, most problem synthesis strategies indiscriminately expand the
problem set without considering the model’s capabilities, leading to low efficiency
in generating useful questions. To mitigate this issue, we introduce a Self-aware
Weakness-driven problem Synthesis framework (SwS) that systematically identifies
model deficiencies and leverages them for problem augmentation. Specifically, we
define weaknesses as questions that the model consistently fails to learn through its
iterative sampling during RL training. We then extract the core concepts from these
failure cases and synthesize new problems to strengthen the model’s weak areas in
subsequent augmented training, enabling it to focus on and gradually overcome its
weaknesses. Without relying on external knowledge distillation, our framework
enables robust generalization by empowering the model to self-identify and address
its weaknesses in RL, yielding average performance gains of 10.0% and 7.7% on
7B and 32B models across eight mainstream reasoning benchmarks. Our code is
available at https://github.com/Master Vito/SwS.
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Figure 1: 32B model performance across mainstream reasoning benchmarks and different domains.
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1 Introduction

"Give me six hours to chop down a tree and I will spend the first four sharpening the axe."

—Abraham Lincoln

Large-scale Reinforcement Learning with Verifiable Rewards (RLVR) has substantially advanced
the reasoning capabilities of large language models (LLMs)[Jaech et al.| |2024] |Guo et al., 2025,
Team et al.} 2025, where simple rule-based rewards can effectively induce complex reasoning skills.
The success of RLVR for eliciting models’ reasoning capabilities heavily depends on a well-curated
problem set with proper difficulty levels |Yu et al. [2025b], |Liu et al.|[2025b]], [ Xiong et al.| [2025]],
where each problem is paired with an precise and verifiable reference answer [Hu et al.||2025| |Luo
et al., 2025 |Yu et al.| [2025b} |Guo et al.,|2025]]. However, existing reasoning-focused datasets for
RLVR suffer from three main issues: (1) High-quality, human-labeled mathematical problems are
scarce, and collecting large-scale, well-annotated datasets with precise reference answers is cost-
intensive. (2) Most reasoning-focused synthetic datasets are created for SFT distillation, where
reference answers are rarely rigorously verified, making them suboptimal for RLVR, which relies
heavily on the correctness of the final answer as the training signal. (3) Existing problem augmentation
strategies typically involve rephrasing or generating variants of human-written questions [Yu et al.,
2023|, [Luo et al., 2023| [Pei et al. [2025] [Liu et al.l [2025a], or sampling concepts from existing
datasets [Huang et al., 2024} [Tang et al.| 2024, |Li et al., 20244l Zhao et al.,[2025b]], without explicitly
considering the model’s reasoning capabilities. Consequently, the synthetic problems may be either
too trivial or overly challenging, limiting their utility for model improvement in RL.

More specifically, in RL, it is essential to align the difficulty of training tasks with the model’s current
capabilities. When using group-level RL algorithms such as GPRO [Shao et al.| 2024]], the advantage
of each response is calculated based on its comparison with other responses in the same group. If
all responses are either entirely correct or entirely incorrect, the token-level advantages within each
rollout collapse to 0, leading to gradient vanishing and degraded training efficiency |[Liu et al.[[2025b],
Yu et al.[[2025b], and potentially harming model performance [Xiong et al., 2025]|]. Therefore, training
on problems that the model has fully mastered or consistently fails to solve does not provide useful
learning signals for improvement. However, a key advantage of the failure cases is that, unlike the
overly simple questions with little opportunity for improvement, persistently failed problems reveal
specific areas of weakness in the model and indicate directions for further enhancement. This raises
the following research question: How can we effectively utilize these consistently failed cases to
address the model’s reasoning deficiencies? Could they be systematically leveraged for data synthesis
that targets the enhancement of the model’s weakest capabilities?

To answer these questions, we propose a Self-aware Weakness-driven Problem Synthesis (SwS)
framework, which leverages the model’s self-identified weaknesses in RL to generate synthetic
problems for training augmentation. Specifically, we record problems that the model consistently
struggles to solve or learns inefficiently through iterative sampling during a preliminary RL training
phase. These failed problems, which reflect the model’s weakest areas, are grouped by categories,
leveraged to extract common concepts, and to synthesize new problems with difficulty levels tailored
to the model’s capabilities. To further improve weakness mitigation efficiency during training,
the augmentation budget for each category is allocated based on the model’s relative performance
across them. Compared with existing problem synthesis strategies for LLM reasoning [Zhao et al.
2025b}, [Tang et al.l 2024], our framework explicitly targets the model’s capabilities and self-identified
weaknesses, enabling more focused and efficient improvement in RL training.

To validate the effectiveness of SwS, we conducted experiments across model sizes ranging from
3B to 32B and comprehensively evaluated performance on eight popular mathematical reasoning
benchmarks, showing that its weakness-driven augmentation strategy benefits models across all levels
of reasoning capability. Notably, our models trained on the augmented problem set consistently
surpass both the base models and those trained on the original dataset across all benchmarks, achieving
a substantial average absolute improvement of 10.0% for the 7B model and 7.7% for the 32B model,
even surpassing their counterparts trained on carefully curated human-labeled problem sets [Hu et al.,
2025} |Cui et al., |2025]]. We also analyze the model’s performance on previously failed problems and
find that, after training on the augmented problem set, it is able to solve up to 20.0% more problems
it had consistently failed in its weak domain when trained only on the original dataset. To further
demonstrate the robustness and adaptability of the proposed SwS pipeline, we extend it to explore the



Question-1:

Tiffany is constructing a fence around a rectangular tennis court. She must use exactly 300 feet of fencing. The fence must enclose all

four sides of the court. Regulation states that the length of the fence enclosure must be at least 80 feet and the width must be at least

40 feet. Tiffany wants the area enclosed by the fence to be as large as possible in order to accommodate benches and storage space.

What is the optimal area, in square feet? -’f
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Figure 2: llustration of the self-aware weakness identification during a preliminary RL training.

potential of Weak-to-Strong Generalization, Self-evolving, and Weakness-driven Selection settings,
with detailed experimental results and analysis presented in Section 4]

Contributions. (i) We propose a Self-aware Weakness-driven Problem Synthesis (SwS) framework
that utilizes the model’s self-identified weaknesses to generate synthetic problems for enhanced
RLVR training, paving the way for utilizing high-quality and targeted synthetic data for RL training.
(ii) We comprehensively evaluate the SwS framework across diverse model sizes on eight mainstream
reasoning benchmarks, demonstrating its effectiveness and generalizability. (iii) We explore the
potential of extending our SwS framework to Weak-to-Strong Generalization, Self-evolving, and
Weakness-driven Selection settings, highlighting its adaptability through detailed analysis.

2 Method

2.1 Preliminary

Group Relative Policy Optimization (GRPQO). GRPO [Shao et al.|[2024] is an efficient optimization
algorithm tailored for RL in LLMs, where the advantages for each token are computed in a group-
relative manner without requiring an additional critic model to estimate token values. Specifically,
given an input prompt z, the policy model 7y, generates a group of G responses Y = {yi}iG:l, with
acquired rewards R = {r;}¥ ;. The advantage A; ; for each token in response y; is computed as the
normalized rewards:

A, = T — mean({n—}?:l)

T sd({r )
To improve the stability of policy optimization, GRPO clips the probability ratio k;:(0) =

We(yi,t \w7yi,<t)
T.regm(yi,tlmvyi,it) . . o . . .
tion from deviating too much from the reference model using a KL term. The optimization objective
is defined as follows:

()
within a trust region |Schulman et al.| [2017], and constrains the policy distribu-
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Inspired by DAPO|Yu et al.|[2025b], in all experiments of this work, we omit the KL term during
optimization, while incorporating the clip-higher, token-level loss and dynamic sampling strategies to
enhance the training efficiency of RLVR. Our RLVR training objective is defined as follows:

G |yl
J(0) = By, Yomg,, () [ » Z Z (mln i0(0)Ai ., clip(k; (0),1 —¢,1+ gh)Ai,t))
7, 1 i=1 t=1
s.t. acCiower < [{y; € Y | is_accurate(z,y;)}| < accypper- 3)

where " denotes the upper clipping threshold for importance sampling ratio k; ;(¢), and accjoyer and
aCCypper are thresholds used to filter target prompts for subsequent policy optimization.
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Figure 3: An overview of our proposed weakness-driven problem synthesis framework that targets at
mitigating the model’s reasoning limitations within the RLVR paradigm.

(Generated Problem) Consider the ..
Training

2.2 Overview

Figure [3] presents an overview of our SwS framework, which generates targeted training samples
to enhance the model’s reasoning capabilities in RLVR. The framework initiates with a Self-aware
Weakness Identification stage, where the model undergoes preliminary RL training on an initial
problem set covering diverse categories. During this stage, the model’s weaknesses are identified as
problems it consistently fails to solve or learns ineffectively. Based on failure cases that reflect the
model’s weakest capabilities, in the subsequent Targeted Problem Synthesis stage, we group them by
category, extract their underlying concepts, and recombine these concepts to synthesize new problems
that target the model’s learning and mitigation of its weaknesses. In the final Augmented Training with
Synthetic Problems stage, the model receives continuous training with the augmented high-quality
synthetic problems, thereby enhancing its general reasoning abilities through more targeted training.

2.3 Self-aware Weakness Identification

Utilizing the policy model itself to identify its weakest capabilities, we begin by training it in a
preliminary RL phase using an initial problem set X g, which consists of mathematical problems
from n diverse categories {D}._,, each paired with a ground-truth answer a. As illustrated in
Figure|2|, we record the average accuracy a;; of the model’s responses to each prompt x; at each
epoch t € {0,1,...,T1}, where T} is the number of training epochs in this phase. We track the
Failure Rate F' for each problem in the training set to identify those that the model consistently
struggles to learn, which are considered its weaknesses. Specifically, such problems are defined as
those the model consistently struggles to solve during RL training, which meet two criteria: (1) The
model never reaches a response accuracy of 50% at any training epoch, and (2) The accuracy trend
decreases over time, indicated by a negative slope:

F(z;) =1| max a;; < 0.5 A slope ({a;:}{—;) <0 “4)
te[1,T]
This metric captures both problems the model consistently fails to solve and those showing no
improvement during sampling-based RL training, making them appropriate targets for training
augmentation. After the weakness identification phase via the preliminary training on the initial
training set X g, we employ the collected problems X = {x; € X | F.(z;) = 1} as seed problems
for subsequent weakness-driven problem synthesis.



2.4 Targeted Problem Synthesis

Concept Extraction and Recombination. We synthesize new problems by extracting the underlying
concepts Cr from the collected seed questions X i and strategically recombining them to generate
questions that target similar capabilities. Specifically, the extracted concepts are first categorized into
their respective categories D; (e.g., mathematical topics such as Algebra or Geometry) based on the
corresponding seed problem x;, and are subsequently sampled and recombined to generate problems
within the same category. Inspired by [Huang et al.| 2024} Zhao et al.| 2025b]], we enhance the
coherence and semantic fluency of synthetic problems by computing co-occurrence probabilities and
embedding similarities among concepts within each category, enabling more appropriate sampling
and recombination of relevant concepts. This targeted sampling approach ensures that the synthesized
problems remain semantically coherent and avoids combining concepts from unrelated sub-topics or
irrelevant knowledge points, which could otherwise result in invalid or confusing questions. Further
details on the co-occurrence calculation and sampling algorithm are provided in Appendix[F

Intuitively, categories exhibiting more pronounced weaknesses demand additional learning support.
To optimize the efficiency of targeted problem synthesis and weakness mitigation in subsequent
RL training, we allocate the augmentation budget, i.e., the concept combinations used as inputs for
problem synthesis, across categories based on the model’s category-specific failure rates Fp from
the preliminary training phase. Specifically, we normalize these failure rates Fp across categories to
determine the allocation weights for problem synthesis. Given a total augmentation budget | Xr|, the
number of concept combinations allocated to domain D, is computed as:

= |X7| - Pp, = [Xr|-

I,
I Xr,p, SN &)
Zj B D;
where Fp, is the failure rate of problems in category D; within the initial training set. The sampled
and recombined concepts then serve as inputs for subsequent problem generation.

Problem Generation and Quality Verification. After extracting and recombining the concepts
associated with the model’s weakest capabilities, we employ a strong instruction model, which does
not perform deep reasoning, to generate new problems based on the category label and the recombined
concepts. We instruct the model to first generate rationales that explore how the concept combinations
can be integrated to produce a well-formed problem. To ensure the synthetic problems align with
the RLVR setting, the model is also instructed to avoid generating multiple-choice, multi-part, or
proof-based questions [Albalak et al., 2025]]. Detailed prompt used for the concept-based problem
generation please refer to the Appendix K| For quality verification of the synthetic problems, we
prompt general instruction LLMs multiple times to evaluate each problem and its rationale across
multiple dimensions, including concept coverage, factual accuracy, and solvability, assigning an
overall rating of bad, acceptable, or perfect. Only problems receiving ‘perfect’ ratings above a
predefined threshold and no ‘bad’ ratings are retained for subsequent utilization.

Reference Answer Generation. Since alignment between the model’s final answer and the reference
answer is the primary training signal in RLVR, a rigorous verification of the reference answers for
synthetic problems is essential to ensure training stability and effectiveness. To this end, we employ
a strong reasoning model (e.g., QwQ-32B [Team, [2025]]) to label reference answers for synthetic
problems through a self-consistency paradigm. Specifically, we prompt it to generate multiple
responses for each problem and use Math-Verify|to assess answer equivalence, which ensures that
consistent answers of different forms (e.g., fractions and decimals) are correctly recognized as equal.
Only problems with at least 50% consistent answers are retained, as highly inconsistent answers are
unreliable as ground truth and may indicate that the problems are excessively complex or unsolvable.

Difficulty Filtering. The most prevalently used RLVR algorithms, such as GRPO, compute the
advantage of each token in a response by comparing its reward to those of other responses for the
same prompt. When all responses yield identical accuracy—either all correct or all incorrect—the
advantages uniformly degrade to zero, leading to gradient vanishing for policy updates and resulting
in training inefficiency [Shao et al.,|2024, |Yu et al., |2025b]|. Recent study [[Wen et al.,[2025] further
shows that RLVR training can be more efficient with problems of appropriate difficulty. Considering
this, we select synthetic problems of appropriate difficulty based on the initially trained model’s
accuracy on them. Specifically, we sample multiple responses per synthetic problem using the initially
trained model and retain only those whose accuracy falls within a target range [acCioy, aCChigh| (€.g.,
[25%, 75%)]). This strategy ensures that the model engages with learnable problems, enhancing both
the stability and efficiency of RLVR training.


https://github.com/huggingface/Math-Verify

MATH Minerva Olympiad GaoKao AIME24 AIME25

Model GSMBK 300 Math  Bench 2023 AMCB \,e@1/32) @Avge1/32) | A
Qwen 2.5 3B Base
Qwen2.5-3B 69.9 46.0 18.8 19.9 34.8 27.5 0.0/2.2 0.0/1.5 27.1
Qwen2.5-3B-IT 84.2 62.2 26.5 27.9 535 325 6.7/5.0 0.0/23 36.7
BaseRL-3B 86.3 66.0 254 31.3 57.9 40.0 10.0/9.9 6.7/3.5 40.4
SwS-3B 87.0 69.6 27.9 34.8 59.7 47.5 10.0/8.4 6.7/7.1 429
A +0.7 +3.6 +2.5 +3.5 +1.8 +7.5 +0.0/-1.5 +0.0/+3.6 +2.5
LLaMA 3.1 8B Imstruct
LLaMA-3.1-8B-IT 85.6 482 24.6 18.8 39.7 22.5 6.7/3.1 33/22 31.1
Baseline RL 88.3 58.4 31.2 23.4 49.6 30.0 16.7/9.8 6.7/15.0 38.0
SwS-LLaMA-8B 90.5 60.2 335 25.8 49.1 40.0 16.7/11.2 6.7/6.8 40.3
A +2.2 +1.8 +2.3 +2.4 -0.5 +10.0 +0.0/+1.4 +0.0/+1.8 +2.3
Qwen 2.5 7B Base
Qwen2.5-7B 88.1 63.0 27.6 30.5 55.8 35.0 6.7/54 00/1.2 38.3
Qwen2.5-7B-IT 91.7 75.6 38.2 40.6 63.9 50.0 16.7/10.5 13.3/6.7 48.8
Open-Reasoner-7B 93.6 80.4 39.0 45.6 72.0 72.5 10.0/16.8 13.3/17.9 53.3
SimpleRL-Base-7B 90.8 77.2 35.7 41.0 66.2 62.5 13.3/14.8 6.7/6.7 49.2
BaseRL-7B 92.0 78.4 36.4 41.6 63.4 45.0 10.0/14.5 6.7/6.5 46.7
SwS-7B 93.9 82.6 41.9 49.6 71.7 67.5 26.7/18.3 20.0/18.5 56.7
A +1.9 +4.2 +5.5 +8.0 +8.3 +22.5 +16.7/+3.8  +13.3/+12.0 | +10.0
Qwen 2.5 7B Math
Qwen2.5-Math-7B 432 72.0 35.7 17.6 31.4 47.5 10.0/9.4 0.0/29 322
Qwen2.5-Math-7B-IT 93.3 80.6 36.8 36.6 64.9 45.0 6.7/7.2 13.3/6.2 47.2
PRIME-RL-7B 93.2 82.0 412 46.1 67.0 60.0 23.3/16.1 13.3/16.2 53.3
SimpleRL-Math-7B 89.8 78.0 279 434 64.2 62.5 233/245 20.0/15.6 51.1
Oat-Zero-7B 90.1 79.4 38.2 424 67.8 70.0 43.3/29.3 233/11.8 56.8
BaseRL-Math-7B 90.2 78.8 37.9 43.6 64.4 57.5 26.7/23.0 20.0/14.0 51.9
SwS-Math-7B 91.9 83.8 41.5 47.7 71.4 70.0 33.3/259 26.7/18.2 58.3
A +1.7 +5.0 +3.6 +4.1 +7.0 +12.5 +6.7/+2.9 +6.7/+4.2 +6.4
Qwen 2.5 32B base
Qwen2.5-32B 90.1 66.8 34.9 29.8 55.3 50.0 10.0/4.2 6.7/2.5 429
Qwen2.5-32B-IT 95.6 83.2 423 49.5 72.5 62.5 23.3/15.0 20.0/13.1 56.1
Open-Reasoner-32B 95.5 82.2 46.3 54.4 75.6 57.5 233/23.5 333/31.7 58.5
SimpleRL-Base-32B 95.2 81.0 46.0 474 69.9 82.5 33.3/26.2 20.0/15.0 59.4
BaseRL-32B 96.1 85.6 434 54.7 73.8 85.0 40.0/30.7 6.7/24.6 60.7
SwS-32B 96.3 89.4 47.1 60.5 80.3 90.0 43.3/33.0 40.0/31.8 68.4
A +0.2 +3.8 +3.7 +5.8 +6.5 +5.0 +3.3/+2.3 +33.3/+7.2 +7.7

Table 1: We report the detailed performance of our SwS implementation across various base models
and multiple benchmarks. AIME is evaluated using two metrics: Avg@1 (single-run performance)
and Avg@32 (average over 32 runs).

2.5 Augmented Training with Synthetic Problems

After the rigorous problem generation, answer generation, and verification, the allocation budget of
synthetic problems in each category is further adjusted using the weights in Eq. [5]to ensure their
comprehensive and efficient utilization, resulting in X/.. We incorporate the retained synthetic
problems X/, into the initial training set X g, forming the augmented training set X 4 = [Xg; X/].
We then continue training the initially trained model on X 4 in a second stage of augmented RLVR,
targeting to mitigate the model’s weaknesses through exploration of the synthetic problems.

3 Experiments

3.1 Experimental Setup

Models and Datasets. We employ the Qwen2.5-base series [[Yang et al., [2024a,b|] with model sizes
from 3B to 32B in our experiments. To further demonstrate the generalizability of our method,
we also adopt the LLaMA-3.1-8B-Instruct[Grattafiori et al., 2024] model for SwS data augmen-
tation. For concept extraction and problem generation, we employ the LLaMA-3.3-70B-Instruct
model [Grattafiori et al.|[2024], and for concept embedding, we use the LLaMA-3.1-8B-base/ model.
To verify the quality of the synthetic questions, we use both the LLaMA-3.3-70B-Instruct and addi-
tionally |Qwen-2.5-72B-Instruct|[[Yang et al.l 2024a] to evaluate them and filter out the low-quality
samples. For answer generation, we use Skywork-OR1-Math-7B| [He et al.,2025] for training models
with sizes up to 7B, and QwQ-32Bl|[Team), 2025] for the 32B model experiments. We employ the SwS
pipeline to generate 40k synthetic problems for each base model. All the prompts for each procedure
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Ratios of Consistently Failed Problems Across Categories in MATH-12k
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Figure 4: The ratios of consistently failed problems from different categories in the MATH-12k
training set under different training configurations. (Base model: Qwen2.5-7B).

Weakness Concepts Problem Quality Answer Difficulty Augmented
Identification Extraction Generation Verification Generation Filtering Training
GPU Hours (h) 2,075 1.6 1,940 975 4,608 768 9,543
Data Quantity 12k 1,339 1,000k 842k 302k 253k 52k
Data / Hour - 836.9 515.5 863.6 65.5 3294 -

Table 2: Stage-wise GPU Hours for SwS Experiments with Qwen2.5-7B.

in SwS can be found in Appendix [Kl We adopt GRPO [Shao et al.| 2024] as the RL algorithm, and
full implementation details are in Appendix

For the initial training set used in the preliminary RL training for weaknesses identification, we
employ the MATH-12k [Hendrycks et al.,[2021]] for models with sizes up to 7B. As the 14B and 32B
models show early saturation on MATH-12k, we instead use a combined dataset of 17.5k samples
from the DAPO [Yu et al.,[2025b]] English set and the LightR1|[Wen et al.l 2025| Stage-2 set.

Evaluation. We evaluated the models on a wide range of mathematical reasoning benchmarks, includ-
ing GSMS8K [[Cobbe et al.; 2021, MATH-500 [Lightman et al., 2023]], Minerva Math [Lewkowycz
et al.;,2022], Olympiad-Bench [He et al.,|2024]], Gaokao-2023 [Zhang et al., 2023]], AMC [MAA, a],
and AIME [MAA| b]. We report Pass@1 (Avg@1) accuracy across all benchmarks and addition-
ally include the Avg @32 metric for the competition-level AIME benchmark to enhance evaluation
robustness. For detailed descriptions of the evaluation benchmarks, see Appendix [J}

Baseline Setting. Our baselines include the base model, its post-trained Instruct version (e.g.,
Qwen?2.5-7B-Instruct), and the initial trained model further trained on the initial dataset for the same
number of steps as our augmented RL training as the baselines. To further highlight the effectiveness
of the SwS framework, we compare the model trained on the augmented problem set against recent
advanced RL-based models, including SimpleRL [Zeng et al., 2025]], Open Reasoner [Hu et al.,
2025]], PRIME |[|Cui et al.,[2025]], and Oat-Zero [Liu et al., [2025b]).

3.2 Main Results

The overall experimental results are presented in Table[I] Our SwS framework enables consistent
performance improvements across benchmarks of varying difficulty and model scales, with the
most significant gains observed in models greater than 7B parameters. Specifically, SwS-enhanced
versions of the 7B and 32B models show absolute improvements of +10.0% and +7.7%, respectively,
underscoring the effectiveness and scalability of the framework. When initialized with MATH-12k,
SwS yields strong gains on competition-level benchmarks, achieving +16.7% and +13.3% on AIME24
and AIME25 with Qwen2.5-7B. These results highlight the quality and difficulty of the synthesized
samples compared to well-crafted human-written ones, demonstrating the effectiveness of generating
synthetic data based on model capabilities to enhance training.

3.3 Weakness Mitigation from Augmented Training

The motivation behind SwS is to mitigate model weaknesses by explicitly targeting failure cases
during training. To demonstrate its effectiveness, we use (Qwen2.5-7B| to analyze the ratios of
consistently failed problems in the initial training set (MATH-12k) across three models: the initially
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Model GSMSK (gzrgg) Prealgebra Int:;;:;?;ate Algebra Precalculus er;l:)br;r (}:)::ll::blilgltiz Geometry
Strong Student | 92.0 13.8 87.7 58.7 93.8 63.2 86.4 71.2 66.8
Weak Teacher 933 7.2 838.2 64.3 95.5 71.2 93.0 81.4 63.0
Trained Student| 93.6 17.5 90.5 64.4 97.7 74.6 95.1 80.4 67.5

Table 3: Performance on two representative benchmarks and category-specific results on MATH-500
of the weak teacher model and the strong student model.

MATH Minerva Olympiad GaoKao AIME24 AIME25
Model GSMSK 500 Math  Bench 2023 AMC23 \,01/32) (Avge@ 1/32) | A%
Qwen25-14B-IT | 947 796 419 456 68.6 575 167/11.6 67/109 | 514
+ BaseRL 945 854 441 521 717 650  20.0/216 200/223 | 566
+ SwS-SE 956 850 460 535 748 675 200/198  200/178 | 578
A +1 0.4 +1.9 14 3.1 425 +00/-18 +00/-45 | +12

Table 4: Experimental results of extending the SwS framework to the Self-evolving paradigm on the
Qwen2.5-14B-Instruct model.

trained model, the model continued trained on the initial training set, and the model trained on the
augmented set with synthetic problems from the SwS pipeline. As shown in Figure ] continued
training on the augmented set enables the model to solve a greater proportion of previously failed
problems across most domains compared to training on the initial set alone, with the greatest gains
observed in Intermediate Algebra (20%), Geometry (5%), and Precalculus (5%) as its weakest areas.
Notably, these improvements are achieved even though each original problem is sampled four times
less frequently in the augmented set than in training on the original dataset alone, highlighting the
efficiency of SwS-generated synthetic problems in RL training.

3.4 GPU Hours Analysis for SwS

For the specific GPU hours at each stage, we use the Qwen2.5 7B experiment as an example and
report the GPU hours for each SwS stage in the Table 2] All time measurements are based on
NVIDIA A100 40G GPUs. Notably, the total time spent on all problem synthesis stages (8,292.6
GPU hours) is actually less than that required by the final augmented training via RL (9,543 GPU
hours). This comparison highlights the rationale and necessity for allocating computational resources
to data augmentation prior to RL. Within the problem synthesis pipeline, the most time-consuming
component is Answer Generation, as it requires a powerful reasoning model to ensure answer
correctness. In contrast, other stages mainly involve shorter inference, thus consumes less time.

4 Extensions and Analysis

4.1 Weak-to-Strong Generalization for SwS

Employing a powerful frontier model like QwQ [Team, 2025] helps ensure answer quality. However,
when training the top-performing reasoning model, no stronger model exists to produce reference an-
swers for problems identified as its weaknesses. To explore the potential of applying our SwS pipeline
to enhancing state-of-the-art models, we extend it to the Weak-to-Strong Generalization [Burns et al.,
2023 setting by using a generally weaker teacher that may outperform the stronger model in specific
domains to label reference answers for the synthetic problems.

Intuitively, using a weaker teacher may result in mislabeled answers, which could significantly impair
subsequent RL training. However, during the difficulty filtering stage, this risk is mitigated by using
the initially trained policy to assess the difficulty of synthetic problems, as it rarely reproduces
the same incorrect answers provided by the weaker teacher. As a byproduct, mislabeled cases are
naturally filtered out alongside overly complex samples through accuracy-based screening. The
experimental analysis on the validity of difficulty-level filtering in ensuring label correctness is
presented in Table[6]

We use the initially trained Qwen2.5-7B-Base as the student and Qwen2.5-Math-7B-Instruct| as the
teacher. Table[3|presents their performance on popular benchmarks and MATH- 12k categories, where
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Figure 5: Comparison of accuracy improvements using (a) Pass@1 on full benchmarks evaluated
in Table [I]and (b) Avg@32 on the competition-level benchmarks. (c) illustrates the proportion of
prompts within a batch that achieved 100% correctness across multiple rollouts during training.
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Figure 6: Comparison of incorporating synthetic problems of varying difficulty levels during the
augmented RL training. For a detailed description of accuracy trends on evaluation benchmarks and
the training set, refer to the caption in Figure E}

the student model generally outperforms the teacher. However, as shown in Table[3] the student policy
further improves after training on weak teacher-labeled problems. This improvement stems from the
difficulty filtering process, which removes problems with consistent student-teacher disagreement
and retains those where the teacher is reliable but the student struggles, enabling targeted training on
weaknesses. Detailed analysis can be found in Appendix [G]

4.2 Self-evolving Targeted Problem Synthesis

In this section, we explore the potential of utilizing the Self-evolving paradigm to address model
weaknesses by executing the full SwS pipeline using the policy itself. This self-evolving paradigm
for identifying and mitigating weaknesses leverages self-consistency to guide itself to generate
effective trajectories toward accurate answers [Zuo et al.l 2025]], while also integrating general
instruction-following capabilities from question generation and quality filtering to enhance reasoning.

We use Qwen?2.5-14B-Instruct as the base policy due to its balance between computational efficiency
and instruction-following performance. The results are shown in Table[d] where the self-evolving
SwS pipeline improves the baseline performance by 1.2% across all benchmarks, especially on the
middle-level benchmarks like Gaokao and AMC. Although performance declines on AIME, we
attribute this to the initial training data from DAPO and LightR1 already being specifically tailored to
that benchmark. For further discussion of the Self-evolve SwS framework, refer to Appendix

4.3 Weakness-driven Selection

In this section, we explore an alternative extension that augments the initial training set using
identified weaknesses and a larger mathematical reasoning dataset. Specifically, we use the Qwen2.5-
7B model, identify its weaknesses on the MATH-12k training set, and retrieve augmented problems
from Big-Math [Albalak et al., [2025]] that align with its failure cases, incorporating them into the
initial training set for augmentation. We employ a category-specific selection strategy similar to the
budget allocation in Eq.[5] using KNN [Cover and Hart, [1967] to identify the most relevant problems
within each category. The total augmentation budget is also set to 40k. We compare this approach
to a baseline where the model is trained on an augmented set incorporated with randomly selected
problems from Big-Math. Details of the selection procedure are provided in Appendix [l

As shown in Figure[5] the model trained with weakness-driven augmentation outperforms the random
augmentation strategy in terms of accuracy on both the whole evaluated benchmarks (Figure[5.a) and
the competition-level subset (Figure [5.b), demonstrating the effectiveness of the weakness-driven
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Original Problem

Synthetic Problems of Diverse Difficulty levels

Equilateral A ABC has side length 600. Points
P and Q lie outside the plane of AABC and are
on opposite sides of the plane. Furthermore,
PA = PB = PC, and QA = QB = QC, and the
planes of APAB and AQAB form a
120° dihedral angle (the angle between the
two planes). There is a point O whose distance
from each of 4, B,C, P, and Q is d. Find d.

Extracted Concepts

Geometric shapes and their properties
Properties of equilateral triangles
Understanding of points and planes in 3D space
Distance and midpoint formulas in 3D space
Properties of perpendicular lines and planes

: Two cones, A and B, are similar, with cone A being tangent to a sphere. The radius of
the sphere is 7, and the height of cone A is h. If the ratio of the height of cone B to the height of
cone A is k, find the ratio of the surface area of cone B to the surface area of cone A.

Answer: k%, Model Accuracy: 100%

Medium: In a circle with radius 7, two tangents are drawn from a point P such that the angle
between them is 60°. If the length of each tangent is 7v/3 find the distance from P to the center.
Answer: 2r, Model Accuracy: 50%

Hard: In triangle ABC, let I be the incenter and E the excenter opposite A. If AE = 5, Al =
3, and EI is tangent to the incircle at D, find the radius.
Answer: 2, Model Accuracy: 6.25%

Unsolvable: In triangle ABC, with AB = 7, AC = 9,and £A = 60°, let D be the midpoint
of BC. Given BD is 3 more than DC, find AD.
Answer: 15/2, Model Accuracy: 0%

Figure 7: Illustration of a geometry problem from the MATH-12k failed set, with extracted concepts
and conceptually linked synthetic problems across different difficulty levels.

selection strategy. In Figure it is worth noting that the model quickly fits the randomly selected
problems in training, which then cease to provide meaningful training signals in the GRPO algorithm.
In contrast, since the failure cases highlight specific weaknesses of the model’s capabilities, the
problems selected based on them remain more challenging and more aligned with its deficiencies,
providing richer learning signals and promoting continued development of reasoning skills.

4.4 TImpact of Question Difficulty

We ablate the impact of the difficulty levels of synthetic problems used in the augmented RL training.
In this section, we define the difficulty of a synthetic problem based on the accuracy of multiple
rollouts generated by the initially trained model, base from Qwen2.5-7B. We incorporate synthetic
problems of three predefined difficulty levels—simple, medium, and hard—into the augmented RL
training. These levels correspond to accuracy ranges of [5, 7], [3, 5], and [1,4] out of 8 sampled
responses, respectively. For each level, we sample 40k examples and combine them with the initial
training set for a second training stage lasting 200 steps.

The experimental results are shown in Figure[6] Similar to the findings in Section[d.3] the model
fits more quickly on the simple augmented set and initially achieves the best performance across
all evaluation benchmarks, including competition-level tasks, but then saturates with no further
improvement. In contrast, the medium and hard augmented sets lead to slower convergence on the
training set but result in more sustained performance gains on the evaluation set, with the hardest
problems providing the longest-lasting training benefits.

4.5 Case Study

Figure [/| presents an illustration of a geometry failure case from the MATH-12k training set, ac-
companied by extracted concepts and our weakness-driven synthetic questions of varying difficulty
levels, all closely aligned with the original question. The question focuses on three-dimensional
distance and triangle understanding, with key concepts such as “Properties of equilateral triangles’
and “Distance and midpoint formulas in 3D space” representing essential knowledge required to
solve the problem. Notably, the corresponding synthetic questions exhibit similar semantics—such
as “finding distance” in Medium and “understanding triangles” in Hard. Practicing on such targeted
problems helps mitigate weaknesses and enhances reasoning capabilities within the relevant domain.

5

5 Conclusion

In this work, we introduce a Self-aware Weakness-driven Problem Synthesis (SwS) framework (SwS)
in reinforcement learning for LLM reasoning, which synthesizes problems based on weaknesses
identified from the model’s failure cases during a preliminary training phase and includes them into
subsequent augmented training. We conduct a detailed analysis of incorporating such synthetic
problems into training and find that focusing on the model’s failures can enhance its reasoning gener-
alization and mitigate its weaknesses, resulting in overall performance improvements. Furthermore,
we extend the framework to the paradigms of Weak-to-Strong Generalization, Self-evolving, and
Weakness-driven Selection, demonstrating its comprehensiveness and robustness.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and instruction in the paper clearly reflect its contribution and
scope, with the key contributions summarized in the abstract’s final paragraph.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper has discussed the limitations in the "Limitations" section of the
Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper has includes the steps to implement all the experiments, with more
detailed guidance in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Since we are doing synthetic data in this paper, and the release of such data
along with the code will be under review by the affiliations. However, code is attached in
the supplemental material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper has clearly described the all the datasets, benchmarks and imple-
mention details.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Since data synthesis is expensive to reproduce for measuring error bars, we do
not include it in this paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: A discussion of computational resources is provided in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research in this paper is well aligned with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: This paper does not state the risks for the used models, since such information
is available in the technical reports of the used models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We’ve cited clearly for the assets used in this paper and followed their licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, the code and the data introduced in this paper would be open-sourced, but
they need time to be reviewed by the affiliation administrators.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We’ve declared the LLM usage in the Openreview submission.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Discussions, Limitations and Future Work

This paper presents a comprehensive Self-aware Weakness-driven Problem Synthesis (SwS) frame-
work to address the model’s reasoning deficiencies through reinforcement learning (RL) training.
Although the SwS framework is effective across a wide range of model sizes, there are still several
limitations to it: (1) Employing both a strong instruction model and an answer-labeling reasoning
model may lead to computation and time costs. (2) Our framework mainly focuses on the RL
setting, as our primary goal is to mitigate the model’s weaknesses by fully activating its inherent
reasoning abilities without distilling external knowledge. Exploring how to leverage a similar pipeline
for enhancing model capabilities through fine-tuning or distillation remains an open direction for
future research. (3) The synthetic problems generated by open-source instruction models in the
SwS framework may still lack sufficient complexity to elicit the deeper reasoning capabilities of the
model, especially on more challenging problems. This limitation is pronounced in the Self-evolving
setting in Section[4.2] which relies solely on a 14B model for problem generation, with performance
improvements limited to only moderate or simple benchmarks. This raises questions about the
actual utility of problems generated from the LLaMA-3.3-70B-Instruct in the main experiments on
top-challenging benchmarks like AIME. One potential strategy is to use Evolve-Instruct|Xu et al.
[2023]],|Luo et al.| [2023]] to further refine the generated problems to the desired level of difficulty.
However, how to effectively raise the upper bound of difficulty in synthetic problems generated by
instruction models remains an open problem and warrants further exploration.

In the future, we aim to identify model weaknesses from multiple perspectives beyond simple answer
accuracy, with the goal of synthesizing more targeted problems to improve sample efficiency. Addi-
tionally, we plan to extend the SwS framework to more general tasks beyond reasoning, incorporating
an off-the-shelf reward model to provide feedback instead of verifiable answers. Lastly, we also
seek to implement the SwS pipeline in more advanced reasoning models equipped with Long-CoT
capabilities, further pushing the boundaries of open-source large reasoning models.

B Related Work

Recent advancements have significantly enhanced the integration of reinforcement learning (RL) with
large language models (LLMs)[Ziegler et al., 2019, |Ouyang et al., [2022], particularly in the domains
of complex reasoning and code generation[Guo et al.| 2025]]. Algorithms such as Proximal Policy
Optimization (PPO)[Schulman et al.||2017] and Generalized Reinforcement Preference Optimization
(GRPO)[Shao et al., 2024]] have demonstrated strong generalization and effectiveness in these
applications. In contrast to supervised fine-tuning (SFT) via knowledge distillation|Kang et al.|[2023]],
Zhang et al.| [2024b], |Yu et al.| [2025a]], RL optimizes a model’s reason capabilities on its own
generated outputs through reward-driven feedback, thereby prompting stronger generalization. In
contrast, SFT models often depend on rote memorization of reasoning patterns and solutions [Chu
et al.| 2025], and may produce correct answers with flawed rationales [Wang et al.,|2025]]. In LLM
reasoning, RL strengthens policy exploration and improves reasoning performance by using the
verified correctness of the final answer in the responses as reward signals for training [Luong et al.,
2024, which is commonly referred to as reinforcement learning with verifiable rewards (RLVR) [Yue
et al.,[2025].

Robust RLVR for LLM Reasoning. Scaling up reinforcement learning for LLMs poses significant
challenges in terms of training stability and efficiency. Designing stable and efficient supervision
algorithms and frameworks for LLMs has attracted widespread attention from the research community.

To address the challenge of reward sparsity in reinforcement learning, recent studies have explored
not only answer-based rewards but also process-level reward modeling [Cobbe et al., 2021} [Lightman
et al.,[2023| Wang et al.| [2023| Zhang et al.| 2025]], enabling the provision of more fine-grained reward
signals throughout the entire solution process [Wu et al.| [2023]]. [Wang et al.|[2023]] successfully
incorporated a process reward model (PRM), trained on process-level labels generated via Monte
Carlo sampling at each step, into RL training and demonstrated its effectiveness. Beyond RL training,
PRM can also be used to guide inference [[Cobbe et al.,|2021]] and provide value estimates incorporated
with search algorithms [Zhang et al., [2024a, |Guan et al.,|2025]]. However, |Guo et al.|[2025] found
that the scalability of process-level RL is limited by the ambiguous definition of “step” and the high
cost of process-level labeling. How to effectively scale process-level RL remains an open question.
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Recent efforts in scaling up RLVR optimization have focused on enhancing exploration [Yu et al.|
2025b), [Yuan et al.l 2025} |Liu et al., 2025bl |Yeo et al., 2025[] and adapting RL to the Long-CoT
conditions [Jaech et al., 2024} |Guo et al., |2025| [L1 et al.l [2025¢]]. [Yu et al.| [2025b]] found that
the KL constraint may limit exploration under RLVR, while |Liu et al.|[2025b] proposed removing
variance normalization in GRPO to prevent length bias. Building on PPO, |Yuan et al.| [2025]] found
that pre-training the value function prior to RL training and employing a length-adaptive GAE can
improve training stability and efficiency in RLVR, preventing it from degrading to a constant baseline
in value estimation.

Data Construction in RLVR. Although RL training on simpler mathematical questions can partially
elicit a model’s reasoning ability [Zeng et al.,[2025]], the composition of RL training data is critical
for enhancing the model’s reasoning capabilities [Luo et al., 2025, |Yu et al.| 2025b} |Li et al., 2025a,
Hu et al.,[2025| He et al.| 2025| |Shen et al., [2025]]. Carefully designing a problem set with difficulty
levels matched to the model’s abilities and sufficient diversity can significantly improve performance.
In addition, the use of curriculum learning has been shown to improve the efficiency of reinforcement
learning [Shi et al.l [2025]]. In this work, we propose generating synthetic problems based on
the model’s weaknesses for RL training, where the synthetic problems are tailored to align with
the model’s capabilities and target its areas of weakness, fostering its exploration and improving
performance.

Data Synthesis for LLM Reasoning Existing data synthesis strategies for enhancing LLM reasoning
primarily concentrate on generating problem-response pairs [Huang et al.l 2024, Tang et al.| 2024}
Yu et al.|, [2023] [Zhao et al., [2025b| |[Liang et al.| 2024, |Luo et al.| [2023] |Liu et al.| [2025a, [Wang
et al.;2024| |Li et al.| 2024b), 'Tan et al.| 2024, |Pei et al., 2025]] or augmenting responses to existing
questions [Toshniwal et al., [2024] [Tong et al.| [2024] [He et al., 2025| |[Face, [2025, |Wen et al., 2025 |Yu
et al.,|2025c¢| [Li et al.,[2025b], typically by leveraging advanced LLMs to produce these synthetic
examples. A prominent line of work focuses on extracting and recombining key concepts from seed
problems. KP-Math [Huang et al.| |2024]] and MathScale [Tang et al.|[2024] decompose seed problems
into underlying concepts and recombine them to create new problems, leveraging advanced models to
generate corresponding solutions. PromptCoT [Zhao et al.,[2025b] also leverages underlying concepts,
but focuses on generating competition-level problems. DART-Math [[Tong et al., [2024]] introduces
a difficulty-aware framework that prioritizes the diversity and richness of synthetic responses to
challenging problems.

Recently, several studies have emerged aiming to construct distilled datasets to better elicit the
reasoning capabilities of LLM. [Guo et al.| 2025]. Several works [Face, [2025] |Ye et al., [2025|
Muennighoft et al., [2025] |Lu et al., 2025} Zhao et al.l 2025a] employ advanced Long-CoT models to
generate responses for distilling knowledge into smaller models. However, a significant disparity
in capabilities between the teacher and student models can lead to hallucinations in the student’s
outputs [Nguyen et al.,|2025]] and hinder generalization to out-of-distribution scenarios [Chu et al.,
2025]]. In contrast, our framework under the RL setting enables the model to identify and mitigate its
own weaknesses by generating targeted synthetic problems from failure cases, thereby encouraging
more effective self-improvement based on its specific weaknesses.

C Implementation Details

C.1 Training

We conduct our experiments using the verl [[Sheng et al., 2024] framework and adopt GRPO [Shao
et al.,[2024]] as the optimization algorithm. For all RL training experiments, we sample 8 rollouts
per problem and use a batch size of 1024, with the policy update batch size set to 256. We employ
a constant learning rate of 5 x 10~7 with a 20-step warm-up, and set the maximum prompt and
response lengths to 1,024 and 8,192 tokens, respectively. We do not apply a KL penalty, as recent
studies have shown it may hinder exploration and potentially cause training collapse [[Yuan et al.|
2025, [Liu et al.| 2025b| [Yu et al.l [2025b]. In the initial training stage, we train the model for 200
steps. During augmented RL training, we continually train the initially trained model for 600 steps
on the augmented dataset incorporated with synthetic problems, using only prompts with an accuracy
between acCiower = 10% and aCCypper = 90% as determined by the online policy model for updates.
The probability ratio clipping ranges in Eq. is setto e = 0.20 and " = 0.28.
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Figure 8: Demonstration of the SwS data workflow by tracing the process from initial training data to
the final selection of synthetic problems in the 32B model experiments. For better visualization, the
bar heights are scaled using the cube root of the raw data.

Since the training data for the 32B and 14B models (a combination of DAPO [Yu et al.,[2025b]] and
LightR1 [Wen et al.l 2025]] subsets) lack human-annotated category information, we leverage the
LLaMA-3.3-70B-Instruct model to label their categories. This ensures consistency with our SwS
pipeline, which combines concepts within the same category. The prompt is presented in Prompt [T}

C.2 Evaluation

For evaluation, we utilize the vVLLM framework [Kwon et al.,|2023| and allow for responses up to
8,192 tokens. For all the benchmarks, Pass@1 is computed using greedy decoding for baseline models
and sampling (temperature 1.0, top-p 0.95) for RL-trained models. For Avg@32 on competition-level
benchmarks, we sample 32 responses per model with the same sampling configuration as used in
RL training. We adopt a hybrid rule-based verifier by integrating Math-Verify and the PRIME-RL
verifier [Cui et al.| 2025]], as their complementary strengths lead to higher recall. For all the inference,
we use the default chat template and enable CoT prompting by appending the instruction: “Let’s
think step by step and output the final answer within “\boxed{}” after each question.

D Motivation for Using RL in Weakness Identification

In our SwS framework, we propose utilizing an initial RL training phase for weakness identification.
However, one might argue that there are simpler alternatives for weakness identification, such as
directly sampling training problems from the base model or applying supervised fine-tuning before
prompting the model to answer questions. In this section, we provide an in-depth discussion on
the validity of using problems with low training efficiency during the initial RL phase as model’s
weaknesses.

We first compare the performance of the Base model, SFT model, and Initial RL model by sampling
on the training set, where the SFT model is obtained by fine-tuning the Base model for 1 epoch on
human-written solutions. For each question, we prompt the model to generate 8 responses and report
the proportion of problems for which none of the responses are correct in Figure[9] For the Base
model, failures may be attributed to its insufficient alignment with reasoning-specific tasks. Results
from the initial RL model show that the Base model can quickly master such questions through
RL, indicating that they do not represent challenging weaknesses. Furthermore, the heavy reliance
on the prompt template of the Base model [Liu et al.| [2025b]] reduces its robustness of weakness
identification. For the SFT model, there are three main drawbacks regarding weakness identification:
(1) The dilemma of training epochs—too many epochs leads to memorizing labeled solutions, while
too few epochs fails to align the model with the target problem distribution; (2) SFT is prone to
hallucination [[Chu et al., 2025 Wang et al.,|2025]]; and (3) Ensuring the quality of labeled solutions
is difficult, as human-written solutions may not always be the best for models|Guo et al.| [2025]]. For
these reasons, the SFT model performs poorly on the initial training set, even yielding worse results
than the Base model, let alone in utilizing its failed problems to identify model weaknesses.

In contrast to the Base and SFT models, the Initial RL model exhibits the most robust performance on
the initial training set, indicating that the failed problems expose the model’s most critical weaknesses.
Additionally, the training efficiency on all problems during initial RL can also be recorded for further
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Figure 9: An visualization of utilizing the base model (Qwen2.5-7B), SFT model and the initial RL
model on weakness identification in the original training set (MATH-12k).

analysis of model weaknesses. Meanwhile, the initially trained model can also serve as the starting
point for augmented RL training. Therefore, in our SwS framework, we ultimately choose to employ
an initial RL phase for robust weakness identification.

E Data Analysis of the SWS Framework

E.1 Detailed Data Workflow

Taking the 32B model experiments as an example, Figure [§] shows the comprehensive data workflow
of the SwS framework, from identifying model weaknesses in the initial training data to the processing
of synthetic problems. The initial training set, consisting of the DAPO and Light-R1 subsets for the
Qwen2.5-32B| model, contains 17,545 problem-answer pairs. During the weakness identification
stage, 1,905 problems are identified as failure cases according to Eq. @] These failure cases are
subsequently used for concept extraction and targeted problem synthesis.

For problem synthesis, we set an initial budget of 1 million synthetic problems in all experiments,
with allocations for each category determined as in Eq.[5] These problems then undergo several
filtering stages: (1) removing multiple-choice, multi-part, or proof-required problems; (2) discarding
problems evaluated as low quality; (3) filtering out problems where the answer generation model
yields inconsistent answers, specifically when the most frequent answer among all generations appears
less than 50%; and (4) removing problems whose difficulty levels are unsuitable for the current model
in RL training. Among these, the quality-based filtering is the strictest, with a filtering rate of 78.35%,
indicating that the SwS pipeline maintains rigorous quality control over the generated problems. This
ensures both the stability and effectiveness of utilizing synthetic problems in subsequent training.

We present a case study of the quality-based filtering results in Table[5] As illustrated, the positive case
that passed the model-based quality evaluation features a concise and precise problem description. In
contrast, most synthetic problems identified as low-quality exhibit redundant and overly elaborate
descriptions, sometimes including lengthy hints for solving the problem, as seen in the first negative
case. Additionally, some low-quality problems incorporate excessive non-mathematical knowledge,
such as Physics, as illustrated in the second negative case. The informal LaTeX formatting also
contributes to their lower quality. Furthermore, problems with multiple question components, such as
the third negative case, are also considered as low quality for RL training.

E.2 Difficulty Distribution of Synthetic Problems

In this section, we study the difficulty distribution of the synthetic problems generated for base models
ranging from 3B to 32B, as shown in Figure[I0] The red outlines in the pie plots highlight the subset
of synthetic problems selected for subsequent augmented RL training, with accuracy falling within
the [25%, 75%] range. These samples account for nearly 35% of all generated problems across the
four models. The two largest wedges in the pie chart represent problems that the models answered
either completely correctly or completely incorrectly. These cases do not provide effective training
signals in GRPO [Shao et al., 2024} Yu et al.,2025b]], and are thus excluded from the later augmented
RL training stage. To further enhance stability and efficiency, we also exclude problems where the
model produces only one correct or one incorrect response.
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Positive Case # 1: Let 21, 23, and z3 be complex numbers such that |z1| = |z3| = |z3] = 1 and
21 + 29 + 23 = 0. Using the symmetric polynomial sy = 2123 + 2123 + 2223, find the value of |sz|?.

Negative Case # 1: In a village, there are 10 houses, each of which can be painted one of three colors:
red, blue, or green. Two houses cannot have the same color if they are directly adjacent to each other.
Using combinatorial analysis and considering the constraints, find the total number of distinct ways
to paint the houses, taking into account the possibility of having a sequence where the same color
repeats after two different colors (e.g., red, blue, red), and assuming that the color of one of the end
houses is already determined to be red, and the colors of the houses are considered different based on
their positions (i.e., the configuration red, blue, green is considered different from green, blue, red).

Negative Case # 2: A metal’s surface requires a minimum energy of 2.5 eV to remove an electron
via the photoelectric effect. If light with a wavelength of 480 nm is shone on the metal, and 1 mole of
electrons is ejected, what is the total energy, in kilojoules, transferred to the electrons, given that the
energy of a photon is related to its wavelength by the formula E = he/ ), where h = 6.626210734 J s

and ¢ = 3.002108m/s, and Avogadro’s number is 6.02210% particles per mole?

Negative Case # 3: In triangle ABC, with ZA = 60°, Z/B = 90°, AB = 4, and BC = 7, use the
Law of Sines to find ZC' and calculate the triangle’s area.

Table 5: Case study of quality filtering results in SwS, featuring one high-quality positive case and
three low-quality negative cases. The low-quality segments are marked in pink.

Since all synthetic problems are generated using the same instruction model (LLaMA-3.3-70B-
Instruct) with similar competition-level difficulty levels (as illustrated in Prompt@, and are based on
concepts derived from their respective weaknesses, the resulting difficulty distribution of the synthetic
problems exhibits only minor differences across all models. Consistent with intuition, the initially
trained 3B model achieved the lowest performance on the synthetic questions, with the highest ratio
of all-incorrect and the lowest ratio of all-correct responses, while the 32B model showed the opposite
trend, achieving the best performance.

F Co-occurrence Based Concept Sampling

Following Huang et al.| [2024]],[Zhao et al.|[2025b]], we enhance the coherence and semantic fluency
of synthetic problems by sampling concepts within the same category based on their co-occurrence
probabilities and embedding similarities. Specifically, for each candidate concept ¢ € C from
category D, we define its score based on both co-occurrence statistics and embedding similarity as:

Co(c) + Sim(c), ifcé¢ {c1,¢0,...,¢ck}
—00, otherwise.

Score(c) = {

The co-occurrence term Co(c) is computed by summing the co-occurrence counts from a sparse
matrix built over the entire corpus, generated by iterating through all available concept lists in the
pool. For each list, we increment CooccurMatrix[c, ¢'] by one for every unordered pair where
¢ # ¢, yielding a sparse, symmetric matrix in which each entry CooccurMatrix|[c, ¢’] records the
total number of times concepts c and ¢’ co-occur across all sampled lists:

k
Co(c) = Z CooccurMatrix|e, ¢;], 6)

=1

while the semantic similarity is given by the cosine similarity between the candidate’s embedding
and the mean embedding of the currently selected concepts:

k
. o1 -
Sim(c) = cos (ec, Z ;:1 eci> , @)

To efficiently support large-scale and high-dimensional concept spaces, we construct a sparse co-
occurrence matrix over all unique concepts, where each entry represents the frequency with which a
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Figure 10: Difficulty distributions of synthetic problems for models from 3B to 32B in our work.

pair of concepts co-occurs within sampled concept lists. Simultaneously, concept embeddings are
normalized and indexed via FAISS  to facilitate fast similarity computation. During sampling, an
initial seed concept is drawn in proportion to its empirical frequency. For each subsequent concept,
scores are computed by efficiently summing its co-occurrence with the current set and its embedding
similarity to the group mean, while previously selected concepts are masked out. The probability of
sampling each candidate is determined via softmax over these scores with temperature 7:

exp (Score(c)/T)
Zc’¢{c1,...,ck} exp (Score(c’)/r) .

This process iteratively constructs coherent, semantically related concept sets to serve as the inputs
for synthetic problem generation, ensuring both diversity and fluency.

Ple) = ®)

G Details for Weak-to-Strong Generalization in SwS

To understand the capabilities of the weak teacher and the strong student model, we evaluated both
of them on the MATH-500 test set by prompting them on each question for eight times. Although
the teacher model generally exhibits weaker performance, we found that in 16.4% of problems, the
weaker teacher outperforms the otherwise stronger student model. This highlights the potential for
leveraging a weak teacher to distill its strengths into the student model. A case where the weaker
teacher model outperforms the stronger student model is shown in Figure[TT]

From the analysis of the SwS framework, as well as its Weak-to-Strong Generalization extension,
we assert that the upper bound for answer labeling is a revised form of self-consistency score of the
teacher model, where (1) the consistent answer must achieve an accuracy greater than 50% across all
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Case Study for Weak-to-strong Generalization

Question: Compute 992 4+ 99 + 1 in your head. Please reason step by step, and put your final answer within

\boxed{}. Golden Answer: | 9901

>>> Teacher Response:
To compute 997 + 99 + 1, we can compute each part directly:
997 = 9801
99° 4 99 = 9801 4 99 = 9900
99% 4+ 99 + 1 = 9900 + 1 = 9901

Final answer:

>>> Student Response:
Rewrite the expression using a binomial identity:

997 + 99 +1 = (99 4 1)? = 100® = 10000
Final answer: 10000

Figure 11: Case study in which a weak teacher provides the correct solution, while a strong student
incorrectly applies a binomial identity and derives an incorrect answer.

J

Setting Size | Prealgebra Int:;;zi;ate Algebra Precalculus T;::(ﬂeyr g‘:ss:l;iéz Geometry | All
Pass@1 500 88.2 64.3 95.5 712 93.0 81.4 63.0 [80.6
+SC 500 96.9 96.0 84.4 84.1 96.2 87.5 67.8 85.4
+ SC>50% 444 96.9 97.3 93.2 94.7 98.0 94.4 89.6 944
+ SC>50% & Stu-Con | 407 96.8 97.2 97.7 100.0 100.0 96.8 949 |975

Table 6: The performance of the weak teacher model used for answer generation on the MATH-500
test set under different strategies and their corresponding revisions. "Stu-Con" refers to filtering out
problems where the student model’s accuracy falls below the defined threshold of 25%.

responses, and (2) the student model must provide the same answer as the teacher model’s consistent
answer in at least 25% of responses. These revision procedures help ensure the correctness of the
synthetic problem answers labeled by the teacher model.

In Table [6] we demonstrate the robustness of utilizing a weaker teacher for answer labeling, as-
suming that the MATH-500 test set serves as our synthetic problems. As in the second line, even
under the self-consistency setting, the teacher model only achieves an improvement of 4.8 points.
However, when we exclude problems for which self-consistency does not provide sufficient con-
fidence—specifically, those where the most consistent answer accounts for less than 50% of all
responses—the self-consistency setting yields an additional 9.0-point improvement on the remaining
questions. Furthermore, in our SwS pipeline, we retain only problems where the student model
achieves over 25% accuracy to ensure an appropriate level of difficulty. After filtering out prob-
lems where the student falls below this threshold, some mislabeled problems are also automatically
removed, resulting in the weak teacher achieving a performance of 97.5% on the final remaining
questions. The increase in labeling accuracy from 80.6% to 97.5% shows the potential of utilizing
the weaker teacher model for answer labeling as well as the robustness of the SwS framework itself.

H Details for Self-Evolving in SwS

As mentioned in Section[4.2] the Self-evolving SwS extension enables the policy to achieve better
performance on simple to medium-level mathematical reasoning benchmarks but remains suboptimal
on AIME-level competition benchmarks. In this section, we further analyze the reasons behind
this phenomenon. Figure[T2] visualizes the model’s self-quality assessment and difficulty evaluation
within the SwS framework. Notably, the model assigns a much higher proportion of “perfect” and
“acceptable” labels, and fewer “bad” labels, to its self-generated problems compared to the standard
framework shown in Figure[8] This observation is consistent with findings from LLM-as-a-Judge [LLi
et al., [2024bf|, which indicate that models tend to be more favorable toward and assign higher scores
to their own generations. Such behavior may result in overlooking low-quality problems or mis-
classifying problems that are too complex for the model’s reasoning abilities as unsolvable or of poor
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Algorithm 1 Weakness-Driven Selection Pipeline

Require: Failed Problems X g; Total Budget |7T'|; Target Set T x; Domains {D;}?_,
Ensure: Selected problems Tg

1: Embed all failed problems in X g and all questions in T x

2: for each domain D; in {D;}? , do

3: Compute selection budget |T;| for D; according to Eq. 2

4: Extract failed problems X ; belonging to D;
5 for each ¢ € Tx do > Domain-level KNN
6: Compute d;(q) = minyex , distance(€y, €)
7: end for
8: Select top |7;| questions from T x with the smallest d;(q) as S;
9: end for
10: return Selected problems Ts = J"_, S; > Final Selected Set

quality. Beyond the risk of filtering out over-complex problems, the model may also have difficulty in
accurately labeling answers through self-consistency for over-challenging problems, thereby limiting
the potential of incorporating complex problems through the Self-evolving SwS framework.

Additionally, in Figure|12] it is noteworthy that the initial RL-trained model achieves nearly 50% all-
correct responses on its generated problems, whereas only 31% of problems with appropriate difficulty
remain for augmentation after SwS difficulty filtering. This suggests that the self-generated problems
may be significantly simpler than those produced using a stronger instruction model [Grattafiori et al.|
2024]), thus it could lead to data inefficiency and limit the model’s performance on more complex
problems during RL training.

I Details for Weakness-driven Selection

As described in Section[4.3] we utilize the failed problems identified by Qwen2.5-7B|[Yang et al.,
2024al] on the MATH-12k [Hendrycks et al.l [2021]] training set, which comprises 915 problems,
to select additional data from Big-Math [Albalak et al.,|2025]] to mitigate the model’s weaknesses
through the augmented RL training. The complete Weakness-driven Selection extension of SwS is
presented in Algorithm{I} For embedding the problems, we utilize LLaMA-3.1-8B-base [Grattafiori
et al.| 2024] to encode both the collected failure cases and the problems from the target dataset. The
failure cases are then grouped by categories, following the concept sampling strategy in standard SwS.
We employ a binary K-Nearest Neighbors [Cover and Hart, [1967] algorithm to select weakness-driven
problems from the target set, where the augmented problems are chosen by their embedding distances

Self-Judgement for Qwen2.5-14B-Instruct Self-Difficulty Evaluation for Qwen2.5-14B-Instruct
0 (6.9%)

1(5.2%)

2(5.1%)

perfect (35.3%)
3(5.4%)

8 (44.8%)

4 (5.8%)

5 (6.5%)

bad (0.6%)

acceptable (64.1%)

7 (12.0%)

Figure 12: Illustration of the quality assessment and difficulty evaluation for|Qwen2.5-14B-Instruct
under the Self-evolving SwS framework.
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to the failure cases within each category. The selection budget for each category is also determined
according to Eq[5] We then aggregate the retrieved problems from all categories, forming a selected
set of 40k problems, which are then incorporated with the initial set for the subsequent RL training.

J Evaluation Benchmark Demonstrations

Dataset Size  Category Example Problem Answer

The ice cream parlor was offering a deal, buy 2 scoops of ice
cream, get 1 scoop free. Each scoop cost $1.50. If Erin had $6.00,

GSM8k 1319 Prealgebra how many scoops of ice cream should she buy? 6
For a constant ¢, in cylindrical coordinates (r, 8, z), find the shape
described by the equation

MATH-500 500 Geometry z=c. (C) Plane

(A) Line (B) Circle (C) Plane (D) Sphere (E) Cylinder (F) Cone.
Enter the letter of the correct option.

If the Bohr energy levels scale as Z2, where Z is the atomic
number of the atom (i.e., the charge on the nucleus), estimate the
wavelength of a photon that results from a transition from n = 3 9.6
to n = 2 in Fe, which has Z = 26. Assume that the Fe atom is
completely stripped of all its electrons except for one. Give your

answer in Angstroms, to two significant figures.

Minerva Math 272 Precalculus

Given a positive integer n, determine the largest real number p
satisfying the following condition: for every 4n-point configura-

Olympiad-Bench 675 Geometry tion C'in an open unit square U, there exists an open rectangle in
U, whose sides are parallel to those of U, which contains exactly
one point of C, and has an area greater than or equal to p.

There are three points A, B, C' in space such that AB = BC' =

CA = 1. If 2 distinct points are chosen in space such that they,
Gaokao2023 385 Geometry together with A, B, C, form the five vertices of a regular square 9

pyramid, how many different ways are there to choose these 2

points?

2n+2

How many complex numbers satisfy the equation 2> = %, where

AMC23 40 Algebra Z is the conjugate of the complex number z?

Let NV be the greatest four-digit positive integer with the property
Number that whenever one of its digits is changed to 1, the resulting
Theory  number is divisible by 7. Let @) and R be the quotient and
remainder, respectively, when NN is divided by 1000. Find Q + R.

On AABC points A, D, E, and B lie that order on side AB
with AD = 4, DE = 16, and EB = 8. Points A, F, G, and
C lie in that order on side AC' with AF' = 13, FG = 52, and
GC = 26. Let M be the reflection of D through F', and let N
be the reflection of G through E. Quadrilateral D EGF has area
288. Find the area of heptagon AFNBCEM.

AIME24 30 699

AIME25 30  Geometry 588

Table 7: Statistics and examples of the eight evaluation benchmarks utilized in the paper.

We present the statistics and examples of the eight evaluation benchmarks used in our work in Table[7}
Among these, GSM8K [Cobbe et al.| [2021] is the simplest, comprising grade school math word
problems. The MATH-500 [Hendrycks et al.| | 2021]], Gaokao-2023 [Zhang et al.,|[2023]], Olympiad-
Bench [He et al.l [2024]], and AMC23 [MAA| |a] benchmarks consist of high school mathematics
problems spanning a wide range of topics and difficulty levels, while Minerva Math [Lewkowycz
et al.,|2022]] may also include problems from other subjects. The AIME [MAA| b] benchmark is a
prestigious high school mathematics competition that requires deep mathematical insight and precise
problem-solving skills. An overview of all benchmarks is provided as follows.

* GSMSK: A high-quality benchmark comprising 8,500 human-written grade school math word
problems that require multi-step reasoning and basic arithmetic, each labeled with a natural language
solution and verified answer. The 1,319-question test set emphasizes sequential reasoning and is
primarily solvable by upper-grade elementary school students.
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* MATH-500: A challenging benchmark of 500 high school competition-level problems spanning
seven subjects, including Algebra, Geometry, Number Theory, and Precalculus. Each problem
is presented in natural language with LaTeX-formatted notation, offering a strong measure of
mathematical reasoning and generalization across diverse topics.

* Minerva-Math:A high-difficulty math problem dataset consisting of 272 challenging problems.
Some problems are also relevant to scientific topics in other subjects, such as physics.

* Olympiad-Bench: An Olympiad-level English and Chinese multimodal scientific benchmark
featuring 8,476 problems from mathematics and physics competitions. In this work, we use only
the pure language problems described in English, totaling 675 problems.

* Gaokao-2023: A dataset consists of 385 mathematics problems from the 2023 Chinese higher
education entrance examination, professionally translated into English.

* AMC23: The AMC dataset consists of all 83 problems from AMC12 2022 and AMC12 2023,
extracted from the AoPS wiki page. We used a subset of this data containing 40 problems.

* AIME24 & 25: Each set comprises 30 problems from the 2024 and 2025 American Invitational
Mathematics Examination (AIME), a prestigious high school mathematics competition for top-
performing students, which are the most challenging benchmarks used in our study. Each problem
is designed to require deep mathematical insight, multi-step reasoning, and problem-solving skills.
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K Prompts

K.1 Prompt for Category Labeling

Listing 1: The prompt for labeling the categories for mathematical problems, utilizing a few-shot
strategy in which each category is represented by a labeled demonstration.

# CONTEXT #
I am a teacher, and I have some high-level mathematical problems.
I want to categorize the domain of these math problems.

# OBJECTIVE #

A. Provide a concise summary of the math problem, clearly identifying
the key concepts or techniques involved.

B. Assign the problem to one and only one specific mathematical domain

The following is the list of domains to choose from:

<math domains>

["Intermediate Algebra", "Geometry", "Precalculus", "Number Theory", "
Counting & Probability", "Algebra", "Prealgebra"]

</math domains>

# STYLE #
Data report.

# TONE #
Professional, scientific.

# AUDIENCE #
Students. Enable them to better understand the domain of the problems.

# RESPONSE: MARKDOWN REPORT #

## Summarization

[Summarize the math problem in a brief paragraph.]

## Math domains

[Select one domain from the list above that best fits the problem.]

# ATTENTION #
- You must assign each problem to exactly one of the domains listed
above.
- If you are genuinely uncertain and none of the listed categories
applies, you may use "Other", but this should be a last resort.
- Be thoughtful and accurate in your classification. Default to the
listed categories whenever possible.
- Add "=== report over ===" at the end of the report.

<example math problem>

**xQuestionx*x*:

Let $ n(\ge2) $ be a positive integer. Find the minimum $ m $, so that
there exists $x_{ij}(1\le i ,j\le n)$ satisfying:

(1)For every $1\le i ,j\le n, x_{ijt=max\{x_{i1},x_{i2},...,x_{ij}\} $
or $ x_{ijr=max\{x_{1j},x_{25},...,x_{ijI\}.$

(2)For every $1\le i \le n$, there are at most $m$ indices $k$ with
$x_{ikY=max\{x_{it1},x_{i2},...,x_{ik\}.$

(3)For every $1\le j \le n$, there are at most $m$ indices $k$ with
$x_{kjr=max\{x_{1j},x_{23},...,x_{kjI\}.$

</example math problem>

## Summarization

The problem involves an \( n \times n \) matrix where each element \(
x_{ij} \) is constrained by the maximum values in its respective row
or column. The goal is to determine the minimum possible value of \( m
\) such that, for each row and column, the number of indices
attaining the maximum value is limited to at most \( m \). This
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problem requires understanding matrix properties, maximum functions,
and combinatorial constraints on structured numerical arrangements.

## Math domains
Algebra

=== report over ===

</example math problem>

**xQuestion*x*:

In an acute scalene triangle $ABC$, points $D,E,F$ lie on sides $BC,
CA, AB$, respectively, such that $AD \perp BC, BE \perp CA, CF \perp
AB$. Altitudes $AD, BE, CF$ meet at orthocenter $H$. Points $P$ and
$Q$ lie on segment $EF$ such that $AP \perp EF$ and $HQ \perp EF$.
Lines $DP$ and $QH$ intersect at point $R$. Compute $HQ/HRS$.
</example math problem>

## Summarization

The problem involves an acute scalene triangle with three
perpendicular cevians intersecting at the orthocenter. Additional
perpendicular constructions are made from specific points on segment
\( EF \), leading to an intersection at point \( R \). The goal is to
determine the ratio \( HQ/HR \), requiring knowledge of triangle
geometry, perpendicularity, segment ratios, and properties of the
orthocenter.

## Math domains
Geometry

=== report over ===

</example math problem>

**Question*x*:

Three cards are dealt at random from a standard deck of 52 cards.

What is the probability that the first card is a 4, the second card is
a $\clubsuit$, and the third card is a 27

</example math problem>

## Summarization

This problem involves calculating the probability of a specific
sequence of events when drawing three cards from a standard 52-card

deck without replacement. It requires understanding conditional

probability, the basic rules of counting, and how probabilities change
as cards are removed from the deck.

## Math domains
Counting & Probability

=== report over ===

</example math problem>

**xQuestion*x*:

Let $x$ and $y$ be real numbers such that $3x + 2y \le 7$ and $2x + 4y
\le 8.$ Find the largest possible value of $x + y.$

</example math problem>

## Summarization

This problem involves optimizing a linear expression \( x + y \)
subject to a system of linear inequalities. It requires understanding
of linear programming concepts, such as identifying feasible regions,
analyzing boundary points, and determining the maximum value of an
objective function within that region.

## Math domains
Intermediate Algebra
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=== report over ===

</example math problem>

¥k Question**:

Solve

\[\arccos 2x - \arccos x = \frac{\pil}{3}.\]Enter all the solutiomns,
separated by commas.

</example math problem>

## Summarization

This problem requires solving a trigonometric equation involving
inverse cosine functions. The equation relates two expressions with \(
\arccos (2x) \) and \( \arccos(x) \), and asks for all real solutions
satisfying the given identity. It involves knowledge of inverse
trigonometric functions, their domains, and properties, as well as
algebraic manipulation.

## Math domains
Precalculus

=== report over ===

</example math problem>

**xQuestionx*x*:

What perfect-square integer is closest to 2737
</example math problem>

## Summarization

The problem asks for the perfect square integer closest to 273. This
involves understanding the distribution and properties of perfect
squares, and comparing them with a given integer. It relies on number -
theoretic reasoning related to squares of integers and their proximity
to a target number.

## Math domains
Number Theory

=== report over ===

</example math problem>

Voldemort bought $6.\overline{6}$ ounces of ice cream at an ice cream
shop. Each ounce cost $\$0.60.$ How much money, in dollars, did he
have to pay?

</example math problem>

## Summarization

The problem involves multiplying a repeating decimal, \( 6.\overline
{6} \), by a fixed unit price, \$0.60, to find the total cost in
dollars. This requires converting a repeating decimal into a fraction
or using decimal multiplication, both of which are foundational
arithmetic skills.

## Math domains
Prealgebra

=== report over ===
<math problem>

{problem}
</math problem>
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K.2 Prompt for Concepts Extraction

Listing 2: Prompt template for extracting internal concepts from a mathematical question.

As an expert in educational assessment, analyze this problem:
<problem>

{problem}

</problem>

Break down and identify {num_concepts} foundational concepts being
tested. List these knowledge points that:

- Are core curriculum concepts typically taught in standard courses,
- Are precise and measurable (not vague like "understanding math"),
- Are essential building blocks needed to solve this problem,

- Represent fundamental principles rather than problem-specific
techniques.

Think through your analysis step by step, then format your response as
a Python code snippet containing a list of {num_concepts} strings,
where each string clearly describes one fundamental knowledge point.

K.3 Prompt for Problem Synthesis

Listing 3: Prompt template for synthesizing math problems from specified concepts, difficulty levels,
and pre-defined mathematical categories. Following [Zhao et al.,[2025b], the difficulty levels are
consistently set to the competition level to prevent the generation of overly simple questions.

### Given a set of foundational mathematical concepts, a mathematical
domain, and a specified difficulty level, generate a well-constructed
question that meaningfully integrates multiple listed concepts and
reflects the stated level of complexity.

### Foundational Concepts:
{concepts}

### Target Difficulty Level:
{levell}

### Mathematical Domain:
{domain}

### Instructions:

1. Begin by outlining which concepts you will combine and how you plan
to structure the question.

2. Ensure that the question is coherent, relevant, and appropriately
challenging for the specified level.

3. The question must be a single standalone problem, not split into

multiple sub-questions.

4. Do not generate proof -based, multiple-choice, or true/false
questions.

5. The answer to the question should be expressible using numbers and

mathematical symbols.

6. Provide a final version of the question that is polished and ready
for use.

### Output Format:

- First, provide your brief outline and planning for the question
design.

- Then, present only the final version of the question in the
following format:

[N N1

[Your developed question here]
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Do not include any placeholder, explanatory text, hints, or solutions
to the question in the output block

K.4 Prompt for Quality Evaluation

Listing 4: The quality evaluation prompt utilized to filter out low-quality math problems. Following
prior work [Zhao et al., 2025b], we assess synthetic problems based on five criteria: format, factual
accuracy, difficulty alignment, concept coverage, and solvability. Each problem is then assigned
one of three quality levels: ‘bad’, ‘acceptable’, or ‘perfect’.

As a critical expert in educational problem design, evaluate the
following problem components:

=== GIVEN MATERIALS ===

1. Problem & Design Ratiomnale:

{rationale_and_problem}

(The rationale describes the author’s thinking process and
justification in designing this problem)

2. Foundational Concepts:
{concepts}

3. Target Difficulty Level:
{level}

= EVALUATION CRITERIA ==

ate each criterion as: [Perfect | Acceptable | Bad]

. FORMAT

- Verify correct implementation of markup tags:

<!- BEGIN RATIONALE -> [design thinking process] <!- END RATIONALE ->
<!- BEGIN PROBLEM -> [problem] <!- END PROBLEM ->

R
1

2. FACTUAL ACCURACY

- Check for any incorrect or misleading information in both problem
and rationale

- Verify mathematical, scientific, or logical consistency

3. DIFFICULTY ALIGNMENT
- Assess if problem complexity matches the specified difficulty level
- Evaluate if cognitive demands align with target level

4. CONCEPT COVERAGE

- Evaluate how well the problem incorporates the given foundational
concepts

- Check for missing concept applications

5. SOLVABILITY
- Verify if the problem has at least one valid solution
- Check if all necessary information for solving is provided

=== RESPONSE FORMAT
For each criterion, provide:

1. Rating: [Perfect | Acceptable | Badl]

2. Justification: Clear explanation for the rating

== FINAL VERDICT ===
After providing all criterion evaluations, conclude your response with

‘Final Judgement: [verdict]’
where verdict must be one of:
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- ‘perfect’ (if both FACTUAL ACCURACY and SOLVABILITY are Perfect, at

least two other
criteria are Perfect, and no Bad ratings)
- ‘acceptable’ (if no Bad ratings and doesn’t qualify for perfect)

- ‘bad’ (if ANY Bad ratings)

Note: The ‘Final Judgement: [verdict]’ line must be the final line of
your response.
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