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Abstract

Typical machine learning applications always as-
sume the data follows independent and identically
distributed (IID) assumptions. In contrast, this
assumption is frequently violated in real-world
circumstances, leading to the Out-of-Distribution
(OOD) generalization problem and a major drop
in model robustness. To mitigate this issue, the
invariance learning technique is leveraged to dis-
tinguish between spurious features and invariant
features among all input features and to train the
model purely on the basis of the invariant features.
Numerous invariance learning strategies imply
that the training data should contain domain in-
formation. Such information includes the envi-
ronment index or auxiliary information acquired
from prior knowledge. However, acquiring these
information is typically impossible in practice.
In this study, we present TIVA for environment-
independent invariance learning, which requires
no environment-specific information in training
data. We discover and prove that, in causal graph,
given mild conditions, it is possible to train an en-
vironment partitioning policy based on attributes
that are independent of the targets and then con-
duct invariant risk minimization. We examine
our method in comparison to other baseline meth-
ods, which demonstrate superior performance and
excellent robustness under OOD, using multiple
benchmarks.
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1. Introduction
Machine learning based on deep neural networks (DNN),
which has been widely used for computer vision, natural
language processing, speech recognition, and other applica-
tions, has experienced exceptional success in recent decades
(LeCun et al., 2015; Gu et al., 2018; He et al., 2016; Chowd-
hary, 2020; Vaswani et al., 2017; Devlin et al., 2018; Arulku-
maran et al., 2017). The training and testing sets of data
for machine learning models are often assumed in the same
distribution according to the empirical risk minimization
(ERM) technique and under the independent identically
distributed (IID) assumption. However, the IID assump-
tion can be easily violated in real-world applications. Re-
cent research indicates that the Out-of-Distribution (OOD)
generalization problem might lead ERM-trained models
to fail catastrophically, especially when the testing distri-
bution deviates significantly from the training distribution
(Hendrycks and Gimpel, 2016; Liang et al., 2017; Wang and
Deng, 2018). Based on recent literature (Arjovsky et al.,
2019; Ben-Tal et al., 2013; Huang et al., 2020; Duchi and
Namkoong, 2021), there are several cases to indicate this
issue. One concise example is that the ERM-trained model
may rely on background information to perform object clas-
sification. However, when the background changes (i.e.,
OOD) but the object remains unchanged, the classifier’s
performance decreases dramatically (Arjovsky et al., 2019).
A popular line of work attempts to extract invariant features
Xv which have a stable correlation with target Y and can
predict Y stably in the novel testing distribution (Ahuja
et al., 2020; Chang et al., 2020; Arjovsky et al., 2019; Lin
et al., 2021).

Recent work in invariance learning follows this idea (Lin
et al., 2022; Liu et al., 2021; Creager et al., 2021). In general,
invariance learning assumes that there are multiple (mostly
discrete) environments in the training dataset. Among the
environments, the conditional distribution P (Y |Xs) varies
but P (Y |Xv) remains the same. From the perspective of
causality, the direct causes of Y are Xv and the other fac-
tors are Xs (See Section 2 for more discussion). Invariant
learning techniques attempt to train a feature extractor Φ
that merely learns Xv without the influence of Xs. Ex-
isting research indicates that Φ can provably extract Xv

under proper conditions with a sufficient number of distinct
environments. However, it is prevalent for us to lack en-
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vironment partitions in practice (Liu et al., 2021; Creager
et al., 2021).

Can we learn invariance when there is no environment parti-
tion? Several prior literature attempts to address this issue
by making assumptions (inductive bias) on the Xs (e.g.,
Creager et al. (2021) assumes the ERM methods only learn
Xs; Liu et al. (2021) assumes that discrepancy of spurious
features among clusters are larger than that of invariant fea-
tures). Whereas it is difficult to check these assumptions
because they cannot hold generally since Xs might be any-
thing other than the direct causes of Y . The recent study ZIN
(Yong et al., 2022) highlights the challenge of identifiability
when such assumptions are unavailable. ZIN demonstrates
the sufficient (and almost necessary) conditions to learn
invariance with generated environments partitions based on
some auxliary information Xz , which is chosen by some
prior knowledge on the causal graph. The primary condition
of Xz is Y ⊥Xz|Xv . That is, in the causal graph, the path
between Y and Xz should be d-separated by Xv. Though
ZIN provides some correct examples to illustrate how to
choose Xz , it is still non-trivial to verify such condition in
practice because it explicitly requires prior knowledge (i.e.,
Y ⊥ Xz|Xv) and working condition (i.e., given potential
Xz). That means the user always require prior knowledge
on causal graph and explicitly manually determine which
feature should be used as Xz . This setting can avoid as-
sumptions on spurious features but require human expert
involvement which prevents further large-scale usage of the
method.

In this work, we propose to seek for such Xz (satisfying the
condition Y ⊥Xz|Xv) in a total data-driven way and uti-
lize Xz to perform environment partitioning. The core idea
is to find Xz that is independent of Y (i.e., Xz ⊥ Y ). This
relaxation only require the working condition (i.e., Xz exis-
tance in X) to perform domain-agnostic invariance learning.
In Section 3.3, we prove that Xz ⊥ Y can actually leads
to Y ⊥Xz|Xv under suitable conditions (the Markov and
faithfulness property of causal graph). Based on this theo-
retical observation, we design an efficient algorithm, TIVA
(learning invariance Through Independent Variables Auto-
matically) 1 that can learn invariance without any environ-
ment partition or prior knowledge. We further theoretically
show that TIVA can provably learn invariant features when
we find a sufficient number of Xz that is independent of Y
(we require that Xz should not be totally independent of
the whole causal graph, which will be elaborated in Section
3.3). We demonstrate the superiority of TIVA in a series of
synthetic and real-world datasets. Notably, we verify TIVA
works effectively in both feature selection (we observe a
concatenation of [Xv,Xs,Xz]) and feature learning tasks
(we observe a scrambled transformation of [Xv,Xs,Xz]).

1The code is released in GitHub repository TIVA.

We summarize our contributions as follows:

• We propose TIVA to learn invariant features without
domain partition. TIVA doesn’t impose inductive bias
on the spurious feature, require prior knowledge of the
invariant feature, or prerequisite additional information
in environment segmentation.

• We theoretically demonstrate that TIVA can provably
identify the invariant features under suitable condi-
tions.

• We empirically show that TIVA achieves superior per-
formance in several synthetic and real-world datasets
and demonstrates high efficiency in practice.

The rest of the paper is organized as follows. We first intro-
duce the related literature of invariant learning in Section 2.
Then, we state the preliminaries, propose the TIVA, perform
theoretical analysis, and describe the specific algorithm in
Section 3. After that, synthetic simulation and real-world
datasets evaluation with several baseline methods are per-
formed in Section 4. Finally, we conclude the work and
discuss the future direction in Section 5. In Appendix, we
provide surrogate algorithm of TIVA, detailed theoretical
proofs, synthetic simulation details, multiple ablation stud-
ies, and several real world examples.

2. Related Work
Invariant learning is a learning technique to separate the
invariant and spurious association between features and
targets. In the aforementioned object classification exam-
ple, the patterns of the object are the invariant features Xv ,
which remain stable correlation with Y across different
data distributions. In contrast, the background information
are spurious features Xs with an unstable correlation. In
general, when the IID assumption is violated, models that
rely on invariant features (e.g., patterns) will perform ro-
bust inference on OOD data due to stable correlation. In
contrast, spurious features Xs can induce dramatic perfor-
mance reduction (Arjovsky et al., 2019). Finding invariant
features can be understood from a causal perspective as
learning direct cause to ensure robustness under specific het-
erogeneity and intervention (Peters et al., 2016). Invariant
risk minimization is proposed to learn the optimal invari-
ant association across diverse environment segmentation
provided in the training data (Arjovsky et al., 2019). To
further explore the capability of IRM, several literatures
incorporate multi-objective optimization with game theory
(Ahuja et al., 2020; Chen et al., 2022) or perform invariant
representation learning through adversarial training using
deep neural networks (Chang et al., 2020; Xu and Jaakkola,
2021). However, using deep neural networks with IRM
training experience some efficiency issues (Lin et al., 2021).
This issue is alleviated by reducing over-fitting through
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Bayesian framework (Lin et al., 2022) and stabilizing the
training process by performing sample reweighting and op-
timizing under sparsity constraint (Zhou et al., 2022a;b).
In addition to invariant learning methods, distributionally
robust optimization (DRO) methods have also been devel-
oped to improve the OOD generalization (Ben-Tal et al.,
2013; Lee and Raginsky, 2018; Gao et al., 2022; Duchi
and Namkoong, 2021; Sagawa et al., 2019). Group DRO
(Sagawa et al., 2019) shares a similar problem setup to IRM
in that the data is segmented into several divergent groups.
Robust learning with OOD generalization can be achieved
by training on the worst-case loss among all data groups
(Sagawa et al., 2019).

Nevertheless, the aforementioned methods require that the
data heterogeneity is explicitly represented in a given envi-
ronment segmentation. In practice, such clear and accurate
environment indexes are always unavailable (Creager et al.,
2021; Liu et al., 2021), which motivate multiple work to
perform invariance learning when the environment partition
is not explicitly given by the input data. Sohoni et al. (2020)
leverage clustering technique to estimate subgroup labels for
the training data and then incorporates these pseudo labels
as noisy supervision in a distributionally robust optimiza-
tion objective. Environment inference for invariant learning
(EIIL) (Creager et al., 2021) is proposed to solve this issue in
two-stage training by a biased model environment inference
and subsequential invariance learning on the environment
inference. Heterogeneous risk minimization (HRM) (Liu
et al., 2021) tackles this issue by jointly learning latent het-
erogeneity and invariance with the identification module
and invariant predictor respectively. Learning from failure
(LfF) (Nam et al., 2020) proposes a failure-based debiasing
scheme that assumes the learning difficulty of the spurious
information is lower than the invariant feature and spurious
information can be captured in the early model learning
stage. Therefore, training one biased model and focusing
on data with a contradictory prediction result compared to
the true label can lead to the second model discovering an
invariant correlation (Nam et al., 2020). ZIN (Yong et al.,
2022) demonstrates that learning solely on input data with-
out any information about environment partition is theoreti-
cally impossible. Additional auxiliary variables provided by
metadata of the dataset can be used for efficient environment
inference and subsequent invariant learning.

However, in practice, it is still difficult to leverage the afore-
mentioned methods in invariant learning due to the require-
ment of additional information (Yong et al., 2022) or strong
assumption on data distribution and learning process (Crea-
ger et al., 2021; Liu et al., 2021; Nam et al., 2020) which
may not be practically held. In this paper, we propose
TIVA with theoretical guarantee to perform invariant learn-
ing, that neither explicitly requires environment partition
information, nor prerequisites strong prior knowledge of

data distribution. Our algorithm is also not violated the
impossibility results analyzed by Yong et al. (2022).

3. Method
3.1. Preliminaries
Throughout this paper, we use upper-cased letters (X ∈
Rd, Y ∈ R) to denote random variables, and lower-cased
letters to x and y denote deterministic instances. We denote
invariant and spurious features as Xv ∈ Rdv and Xs ∈
Rds ,respectively. Suppose the target Y is generated from
Xv by a non-degenerate function gv with an independent
random noise: Y = gv(Xv, ϵv), where Xv ⊥ ϵv .

We also assume there exists a third kind of feature Xz ∈
Rdz , which is not invariant or spurious. Xz is the feature
that not related with the Y prediction task (the auxiliary
information in Yong et al. (2022) is an instance of Xz). We
observe the feature X generated from Xv , Xs and Xz with
some unknown function q as

X = q(Xv,Xs,Xz). (1)

The probability of Y under the condition spurious feature
Xs: P (Y |Xs) can change in different environment (do-
main) e ∈ E ; while P (Y |Xv) remains invariant. Our
goal is to extract Xv from X . Following ZIN (Yong et al.,
2022), we consider that we normally collect the data from a
mixture of environments, and the marginal distribution can
be achieved by P (X,Y ) =

∑
e∈E α

eP (Xe, Y e) where
αe ∈ [0, 1] and

∑
e α

e = 1.

Property 1 (Invariance Property). P (Y |Xv) remains in-
variant under any intervention on any nodes of the causal
graph except for Y itself.

We aim to learn a function f to predict Y based on X .
Following Arjovsky et al. (2019), we assume f is composed
of a feature extractor Φ and label classifier w, i.e., f(X) =
w(Φ(X)). The goal of invariant learning is to learn a feature
representation Φ(X) to predict Y that is merely based on
Xv .

Yong et al. (2022) shows that invariance is unlearnable gener-
ally without environmental partition. Specifically, it demon-
strates if the environment partitions are not provided, prop-
erty 1 is insufficient for the identification of Xv . In addition,
existing work typically makes assumptions (adding induc-
tive bias) on the spurious features (Creager et al., 2021) or
requires prior knowledge on the causal graph. In Section 3.2,
we explore the sufficient condition to identify Xv without
adding inductive bias or requiring prior knowledge.

3.2. Learning Invariance Through Independent
Variables Automatically

Here, we first consider partitioning the dataset into en-
vironments by learning a function ρ(·) : Rd −→ RK
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which takes X as the input and output and segment
environment in K classes. Here K is a pre-specified
number and we denote the k-th entry of ρ(·) as ρ(k)(·).
We have ρ(X) ∈ [0, 1]K and

∑
k ρ

(k)(X) = 1. Let
R(w,Φ) = 1

n

∑n
i=1 ℓ (fw(Φ(xi)), yi) denote the ERM

loss on the total dataset with n total data points. We use
Rk

ρ(w,Φ) = 1
n

∑n
i=1 ρ

(k)(xi)ℓ(fw(Φ(xi)), yi) to denote
the loss of the k-th inferred environment. Further we as-
sume the function ρ is composed of a environmental feature
extractor u : Rd −→ Ru and environmental index classifier
v : Ru −→ RK , i.e.,

ρu,v(X) = v(u(X)). (2)

The intuition of considering such structures will be clear in
the later part.

IRM (Arjovsky et al., 2019) aims to learn invariant features
extractor Φ which elicit an classifier w that is simultane-
ously optimal in all environments. To achieve this goal, we
fit a shared classifier w on the mixture of domains and a
set of classifiers {wi}Ki=1 (one for each individual inferred
environment). Given ρu,v , the invariance penalty is

min
w,Φ

max
{wk}

L(Φ, w, w1, · · · , wK , u, v) :=

R(w,Φ) + λ
∑K

k=1

[
Rk

ρu,v
(w,Φ)−Rk

ρu,v
(wk,Φ)

]︸ ︷︷ ︸
invariance penalty

.

(3)

The penalty shown in Eqn (3) is widely adopted in IRM
literature (Chang et al., 2020; Lin et al., 2022). Following
Yong et al. (2022), we adopt the following minimax proce-
dure to automatically learn the environmental partition in
an adversarial way:

min
ω,Φ

max
u,v,{ω1,··· ,ωK}

L(Φ, ω, ω1, · · · , ωK , u, v). (4)

Eqn (4) attempts to find an environmental partition where
the spurious features elicit the maximum penalty.

Remark 1. Eqn (4) is similar to Eqn (6) of Yong et al.
(2022). The main difference is that ρu,v in Eqn (4) takes X
as input and ρ in Yong et al. (2022) takes special auxiliary
information (carefully chosen based on the prior knowledge
of causal graph). Our goal is to relax this requirement on the
prior knowledge while still achieving identifiability. Here,
we have specific requirement of u(X) and it is discussed in
the following section.

In Section 3.3, we first explore the sufficient conditions
to identify the invariant feature by Eqn (4) without prior
knowledge. Based on the theoretical insights, we propose
practical algorithms in Section 3.4.

3.3. Theoretical Analysis
3.3.1. WHAT INFORMATION DO WE NEED?
In this section, we first assume the features X are given,
i.e., q in Eqn 1 is an identity mapping. In other words, we
have X = [Xv,Xs,Xz]. In this case, the environmental
feature extractor u of ρ and the label feature extractor Φ of
f are both feature masks, i.e., u ∈ {0, 1}d and Φ ∈ {0, 1}d.
In Section 3.4, we also extend feature selection to feature
learning. It is easy to show that, similar to Yong et al.
(2022), if u(X) satisfies the following conditions, Eqn. (4)
can provably learn invariant features.

Condition 1 (Invariance Preserving Condition). Given in-
variant feature Xv and any environmental index classifier
v(·), it holds that H(Y |Xv, v(u(X))) = H(Y |Xv).

Condition 2 (Non-invariance Distinguishing Condition).
For any feature Xk

s ∈ Xs, there exists an environmen-
tal index classifier v(·) and a constant C > 0 such that
H(Y |Xk

s )−H(Y |Xk
s , v(u(X))) ≥ C.

We then present the following assumptions, which are iden-
tical to Assumption 1-3 of Yong et al. (2022).

Assumption 1. For a given feature mask Φ and any constant
ϵ > 0, there exists f ∈ F such that E[ℓ(f(Φ(X)), Y )] ≤
H(Y |Φ(X)) + ϵ.

Assumption 2. If a feature violates the invariance
constraint, adding another feature will not eliminate
the penalty, i.e., there exists a constant δ > 0 so
that for spurious feature X1 ⊂ Xs and any feature
X2 ⊂ X , H(Y |X1,X2) − H(Y |ρ(Z),X1,X2) ≥
δ (H(Y |X1)−H(Y |ρ(Z),X1)).

Assumption 3. Let X−v denote any proper subset of in-
variant features, i.e., X−v ⊊ Xv, then H(Y |Xv) ≤
H(Y |X−v)− γ with fixed γ > 0.

Now, given the aforementioned conditions and assumptions,
we have the following corollary of the Theorem 2 of Yong
et al. (2022).

Corollary 1 (Identifiability of Invariant Features). With
Assumptions 1-3 and Conditions 1-2, if ϵ < Cγδ

4γ+2CδH(Y )

and λ ∈ [H(Y )+1/2δC
δC−4ϵ − 1

2 ,
γ
4ϵ −

1
2 ], then we have L̂(Φv) <

L̂(Φ) for all Φ ̸= Φv, where H(Y ) denotes the entropy
of Y . Thus, the solution to Problem 4 identifies invariant
features.

In this section, we restate the conditions and identifiability
results of Yong et al. (2022).

Remark 2. A notable difference is that Yong et al. (2022)
requires that the input Z to the environment partition func-
tion ρ should satisfy Y ⊥ Z|Xv , which is difficult to check
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if we do not have prior knowledge on the Xv . In contrast, in
Eqn 2-4 and Condition 1, the environment partition function
ρu,v takes the raw X as input, which does not need any
prior knowledge on Xv. The key challenge in our frame-
work is how to learn an environmental feature extractor
u(·) to satisfy the Condition 1 automatically, which will be
discussed in Section 3.3.2.

3.3.2. TIVA: HOW TO LEARN INVARIANCE THROUGH
INDEPENDENT VARIABLES AUTOMATICALLY

Condition 1 is equivalent to Y ⊥ u(X)|Xv (the proof is
analogous to the proof in Appendix B.6 of Yong et al. (2022)
by replacing Z with u(X)). As is discussed in the section
before, Y ⊥ u(X)|Xv is hard to check. In this part, we try
to bypass this difficulty by designing u(·). We first provide
the following critical lemma:

Lemma 1. Consider that (X, Y ) is generated according
to a structural causal model (SCM) with some directed
acyclic causal graph G. Assume that both the Markov and
faifulness properties hold, i.e., conditional independences
wrt. the causal graph (indicated by d-separations) reflect
conditional independences wrt. the distributions, and vice
versa. Then if Y ⊥ u(X), we have Y ⊥ u(X) |Xv , which
indicates that Condition 1 holds.

Proof. Let Ynd be the set of non-descendants of Y , which
are the set of nodes that are not reachable from node Y via
directed paths. Then by local Markov property, we know
Y ⊥ X ′ | Xv for any X ′ ∈ Ynd. If u(X) ⊥ Y , then
u(X) cannot be a descendant of Y , so X ∈ Ynd and further
Y ⊥ u(X) |Xv .

If the data (X, y) are generated following an SCM, then
the Markov property will always hold (Spirtes et al., 2000;
Pearl, 2009; Peters et al., 2017). The faithfulness assump-
tion is commonly used in constraint-based causal discovery
methods that use conditional independences in the data to
estimate the underlying causal graph; a recent review can
be found in Glymour et al. (2019).

Lemma 1 shows that Y ⊥ u(X) is a sufficient condition
for Y ⊥ u(X)|Xv. An appealing property here is that
Y ⊥ u(X) is easy to check while Y ⊥ u(X)|Xv needs
prior knowledge on the causal graph. Motivated by this
result, we propose a framework to learn invariance without
domain partition in an end-to-end way. We then following
formulation by recalling that Y ⊥ u(X) is equivalent to
I(Y, u(X)) = 0, where I(·, ·) is the mutual information:

min
ω,Φ

max
u,v,{ω1,··· ,ωK}

L(Φ, ω, ω1, · · · , ωK , u, v),

s.t. I(u(X), Y ) = 0.
(5)

Theorem 1 (Identifiability of TIVA). Suppose there exists
a subset X⊥ of X that is independent of Y . Furthermore,
the spurious feature are correlated with X⊥, i.e., for any
feature Xk

s ∈ Xs, there exists an environmental index
classifier v(·) and a constant C > 0 such that H(Y |Xk

s )−
H(Y |Xk

s , v(X⊥)) ≥ C. With Assumptions 1-3, if ϵ <
Cγδ

4γ+2CδH(Y ) and λ ∈ [H(Y )+1/2δC
δC−4ϵ − 1

2 ,
γ
4ϵ −

1
2 ], then TIVA

in Eqn (5) identifies all invariant features.

The full theoretical proof is demonstrated in Appendix B.

3.3.3. WHEN WILL THE CONDITIONS OF TIVA HOLDS

A natural question to ask is when the following condition
will hold?

There exists a subset X⊥ of X that is independent of Y .
Furthermore, the spurious feature are correlated with X⊥.

Figure 1 illustrates several cases when TIVA can success-
fully identify invariant features without any domain partition
or prior knowledge on the causal graph. In the Figure 1(b),
we have X4 ⊥ Y , X4 ̸⊥ Y |X2 and X4 ̸⊥ Y |X3. Then
TIVA will find X4 and use it to infer environments for in-
variance learning. An inspiring case, Figure 1(c) shows
that even if there is a hidden confounder H and X4 is not
directly linked to spurious features, the conditions can still
hold, i.e., X4 ⊥ Y and X4 ̸⊥ Y |X2.

Connection with Constraint-based Causal Discovery As
we previously mentioned, the Markov and faithful assump-
tions are commonly used in the constraint-based causal
discovery methods. Given these two assumptions and a per-
fect conditional independence test, this class of methods can
identify only a set of directed acyclic graphs, the so-called
Markov equivalence class, in which the graphs encode the
same conditional independences. In particular, all the v-
structures can be correctly identified while other edges may
not be uniquely determined (Spirtes et al., 2000; Glymour
et al., 2019). For example, in the left graph in Figure 1,
X5 → X2 ← Y and X4 → X3 ← Y can be correctly
determined, while the direction between X1 and Y is not,
i.e., both X1 → Y and X1 ← Y are compatible with con-
ditional independences in the data. Nonetheless, it seems
that we can employ these causal discovery approaches to
identify more conditional independences than the proposed
method, which may further enhance the OOD generaliza-
tion performance. In our tasks, however, the variables in X
may not be explicitly specified; for instance, in the image
classification task, the input pixels are unlikely to constitute
the semantic causal variables. Even though X represent
causal variables, performing conditional independence tests
in the non-parametric setting is typically difficult(Shah and
Peters, 2020).
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(a) (b) (c)

Figure 1. An illustration of cases that satisfy the condition in Theorem 1. In three examples, Y is the target of interest, X1 is the invariant
feature, and X2 and X3 are spurious features. The model may use X4 as Xz . (a) X4 ⊥ Y , X5 ⊥ Y , X4 ̸⊥ Y |X3 and X5 ̸⊥ Y |X2. (b)
X4 ⊥ Y , X4 ̸⊥ Y |X2 and X4 ̸⊥ Y |X3. (c) H is a hidden confounder. We have X4 ⊥ Y , X4 ̸⊥ Y |X2 and X4 ̸⊥ Y |X3.

3.4. Algorithm
In Section 3.2 and 3.3, we present the fundamental concept
of TIVA and demonstrate that we can perform invariance
learning by Eqn. (5) without providing prior knowledge on
data or making additional assumptions. However, directly
optimize the Eqn. (5) is difficult. Instead, we propose two-
stage surrogate learning algorithm which learns u, v, ω, and
Φ by minimizing R(ω,Φ) and I(Y, u(X)) in stage one,
and minimize the invariance penalty at stage two. The full
surrogate algorithm is presented in Appendix A.

The objective is to learn the feature extractor u which sat-
isfies Y ⊥ u(X) and is equivalent to I(Y, u(X)) = 0,
followed by the invariant risk minimization outlined in Sec-
tion 3.2. In this section, we present two distinct u learning
algorithms by taking into account various input feature types
which are usually encountered in practice. We conduct abla-
tion studies in Appendix D.2 to evaluate the mutual infor-
mation during both feature learning and feature selection
training. We also investigate the average score of feature
selector on Xv , Xs, and Xz .

3.4.1. FEATURE SELECTION ALGORITHM

For normal tabular numerical feature input, we can utilize
l0-based regularization to discriminate high association fea-
tures [Xv,Xs] and Xz . However, l0 norm cannot be op-
timized directly by gradient descent methods. Several lit-
eratures (Maddison et al., 2016; Jang et al., 2016) have
advocated adopting a continuous approximation of discrete
random variables, such as the Concrete or Hard-Concrete
model. To further reduce the variance in the feature selec-
tion, Yamada et al. (2020) developes stochastic gate (stg)
by performing Gasussian-based continuous relaxation on
Bernoulli variables. We denote the gate U+ ∈ Rd and
U+ = max(0,min(1,µu + ϵu)) where ϵu is sampled
from N (0,σ2) with fixed σ. The stg can be directly opti-
mized by model hω with parameter ω:

min
ω,µ

1

n

n∑
i=1

ℓ
(
hω(xi ⊙U+), yi

)
+ β||U+||0, (6)

where ℓ represents expected ERM loss on data point i, β
is the weight parameter, and ⊙ denotes element-wise pro-
duction. Yamada et al. (2020) demonstrate that stg learning
procedure is equivalent to maximize the mutual information
subject to |U+| equals to a constant. Therefore, to select
features that have less mutual information with target Y ,
we simply inverse the stg after the optimization in Eqn. (6)
and we can acquire

u(X) = X ⊙ (1−U+). (7)

3.4.2. FEATURE LEARNING ALGORITHM

For images, long sequence input, and other multimodal input
features, feature selection may also experience high variance
issues (Yamada et al., 2020). We typically perform subse-
quent tasks on latent embeddings generated by pre-trained
large models, especially when implementing image-related
tasks or employing large language models. For such appli-
cation, we develop a feature disentanglement framework
to learn features that satisfies Y ⊥ u(X). Similar to Pan
et al. (2021), we use one model S = uwu(X) to get irrele-
vant information S with parameter wu, one separate model
T = qwq

(X,Y ) to encode the relevant information T with
parameter wq, one decoder pwp

(S,T ) to reconstruct full
input X with parameter wp, and one discriminator owo

(S)
to predict target Y with parameter wo. These models can
be constructed by typical multi-layer perceptron or other
complicated network architectures.

We acquire the disentanglement feature by training the afore-
mentioned four models in an adversarial training manner:

min
ωu,ωp,ωq

max
ωo

1

n

n∑
i=1

ℓ(pωp
(uwu

(xi), qwq
(xi, yi)),xi)

− λ

n

n∑
i=1

ℓ(owo
(uwu

(xi)), yi),

(8)

where ℓ represents the ERM loss on data point i. This
learning process can ensure the S has less information with
Y but still contain sufficient information with X . This
satisfies the condition mentioned in Section 3.3.3. After
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training, we can acquire irrelevant features through feature
encoding S = u(X).

4. Experiments
In this section, we perform method evaluation on both syn-
thetic and real-world datasets. This evaluation will also
experimentally tests our theoretical analysis discussed in
Section 3.3. For baseline methods, we choose ERM to
demonstrate the typical OOD performance under IID as-
sumption, IRM (Arjovsky et al., 2019) and group DRO
(Sagawa et al., 2019) with given ground-truth environment
segmentation to acquire the best OOD performance. We
choose HRM (Liu et al., 2021), EIIL (Creager et al., 2021),
ZIN (Yong et al., 2022), and LfF (Nam et al., 2020) to
compare with our proposed method since these algorithms
are also designed to perform invariance learning without
providing environment partition. Notice that the ZIN re-
quires further auxiliary information in the dataset (Yong
et al., 2022) and LfF is solely designed for classification
tasks (Nam et al., 2020). The full hyperparameter settings
and model details are demonstrated in Appendix E. TIVA-f
denotes the method of feature learning, while TIVA-s repre-
sents the method of feature selection.

4.1. Synthetic Dataset
We first test our proposed method in the synthetic dataset by
manually setting both invariant and spurious features under
a temporal heterogeneity setup. In this dataset, the data will
experience a distributional shift with respect to time index
t ∈ [0, 1]. We sample the Xv, Y , and Xs sequentially
to simulate both invariant and spurious correlation. The
exhaustive details of sampling process are introduced in
Appendix C.

The simulation results are shown in Table 1. Here, we
report the average test accuracy and the worst test accu-
racy among four test environments defined by ps(t) =
(0.999, 0.8, 0.2, 0.1). We mark the highest accuracy among
the methods without using environment partitions in bold.
We can observe that without any invariant learning capa-
bility, ERM method achieves low test accuracy in our syn-
thetic data setting, especially in the worst test accuracy
case. This indicates the ERM’s limited generalization ca-
pability under distributional shift. Our proposed method
with feature selection achieves almost identical performance
with IRM and ZIN without using any given prior knowl-
edge in environment segmentation in ps = (0.999, 0.7) and
ps = (0.999, 0.8). On average, our proposed method with
feature selection outperforms the baseline method by over
around 15%, 19%, and 28% on ERM, EIIL, and HRM with
mean accuracy and over 40%, 22%, and 19% with worst
accuracy, respectively, which is an significant improvement.
We can observe that the performance of the feature learning
approach is often inferior to that of the feature selection

method. This may be due to the numerical tabular features
having a strong and clear association with targets, which
might be corrupted in the learning process of the feature
disentanglement process.

4.2. Real World Datasets
In this section, we evaluate the performance of our proposed
methods on real-world datasets containing distributional
shift issues between train and test data. We select three
open-source datasets with different types of input features,
including numerical tabular features, images, and sequence
inputs. We believe these experiments can demonstrate the
versatility of our proposed method in plenty of real-world
scenarios.

4.2.1. CELEBA DATASET

We perform this experiment based on the open-source
dataset CelebA (Liu et al., 2018) which contains face im-
ages of celebrities. In this task, we classify the Smiling of
data which is manually operated to spuriously related with
the meta information Gender. Different from Yong et al.
(2022), here the model doesn’t require any auxiliary vari-
ables or metainformation as input features. Our proposed
method performs invariant learning solely on input images.
To simulate real practice in image-related tasks, we deploy
a pre-trained ResNet (He et al., 2016) model to first acquire
hidden features, and perform subsequent invariance learning
using the MLP model. We refer the reader to Appendix E
for more experiment details.

The CelebA experiment result is shown in Table 2. The best
performance is highlighted in bold. We can observe that, al-
though ERM achieves the highest train accuracy and accept-
able mean test accuracy, the worst accuracy is relatively low,
which indicates a weak OOD generalization capability. The
worst test accuracy of EIIL is slightly better than the ERM
but still remains a large gap between oracle IRM method
and ZIN by using auxiliary information. In this case, our
proposed feature learning method outperforms other meth-
ods in test mean and test worst accuracy. This may be due
to the disentanglement learning process can successively
learn Xz from hidden features and feature selection process
cannot access such features by directly filtering the hidden
features. In comparison, based on the worst test accuracy,
LfF and EIL may not capture the invariant feature in this
experiment.

4.2.2. HOUSE PRICE DATASET

In this experiment, we perform real-world house
price regression task on house price dataset
(https://www.kaggle.com/c/house-prices-advanced-
regression-techniques). This dataset contains house
price recordings from 1900 to 2000 with 17 numerical
features. We normalize the house price based on the
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Env Info
ps(t) (0.999, 0.7) (0.999, 0.8) (0.999, 0.9)
pv 0.9 0.8 0.9 0.8 0.9 0.8

Test Acc Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst
Auxiliary ZIN 87.50 85.36 77.85 75.39 86.35 82.91 76.79 72.77 83.71 75.89 73.55 64.69
Partition IRM 87.57 85.47 77.99 75.65 86.57 83.25 77.00 73.39 83.99 76.48 73.84 65.33

No

ERM 75.37 57.31 59.65 25.81 68.72 41.97 55.90 15.07 60.61 23.39 52.85 7.57
EIIL 38.41 16.80 64.89 49.15 50.77 46.67 68.36 56.35 61.99 53.81 70.10 59.36
HRM 50.00 49.99 49.98 49.93 50.00 49.98 50.01 49.99 50.00 49.98 49.99 49.97

TIVA-f 81.03 70.84 71.03 58.23 79.10 76.23 73.60 72.30 78.03 54.88 70.26 34.28
TIVA-s 84.42 79.60 77.49 74.56 85.40 82.79 73.63 71.44 78.05 68.48 66.83 34.8

Table 1. Test mean and worst accuracy (%) on six temporal heterogeneity synthetic datasets. Env Info denotes the environment information.

Method Env Info Train Test Mean Test Worst
ZIN Auxiliary 83.06 76.29 67.27
IRM Partition 81.30 78.44 75.03

group DRO Partition 89.32 74.28 58.11
ERM No 90.97 70.76 47.58
LfF No 59.89 52.97 44.38
EIIL No 90.01 71.45 50.48

TIVA-f No 78.80 72.60 60.32
TIVA-s No 79.20 72.05 45.67

Table 2. Test accuracy (%) on CelebA task (Accuracy)

same building year to address the natural value ascent
over the years. To test model OOD performance, we
perform dataset segmentation based on year to get train
data when year ∈ [1900, 1950] and test data when
year ∈ (1950, 2000]. Different from synthetic and CelebA
experiments, we cannot directly observe a well-defined
environment partition variable. Hence, the performance
of IRM here may not be oracle. In reality, most of the
real-world scenarios experience an identical situation
here, and no clear prior knowledge of environment
partitioning is provided. In the house price experiment,
we simply divide the train data into five 10-year segments
to perform invariant learning.

Method Env Info Train Test Mean Test Worst
ZIN Auxiliary 0.2275 0.3339 0.4815
IRM Partition 0.1327 0.4456 0.6821

group DRO Partition 0.1213 0.6887 1.0050
ERM No 0.1141 0.4764 0.6703
HRM No 0.3466 0.4621 0.5721
EIIL No 0.6841 0.9625 1.3909

TIVA-f No 0.2389 0.3050 0.4270
TIVA-s No 0.2376 0.3276 0.4290

Table 3. The mean squared error of house price task

The experiment result is shown in Table 3. Here we measure
the mean squared error (MSE) of the regression and mark
the best performance in bold. Our proposed method with
feature learning achieves the best performance with 0.305
in test mean MSE and 0.427 in test worst MSE. This perfor-
mance is even better than IRM and ZIN with providing build
year as auxiliary information. We can also observe that the
feature learning approach is also superior to the feature se-

lection approach. This indicates that the build year feature
itself is insufficient for performing environment inference
learning, and more information should be provided. This
information may not only be located in individual numerical
features that can be selected via feature selection, but it may
also be required to disentangle more information.

4.2.3. LANDCOVER DATASET

We perform final evaluation on Landcover dataset (Gislason
et al., 2006; Rußwurm et al., 2020; Xie et al., 2020b) to
test our proposed method with sequence input. This task
requires the model to classify the land cover types by time
series input. In this dataset, we can utilize latitude and
longitude information as prior knowledge for environment
inference since it is irrelevant to the target prediction. For
our proposed method training, we don’t specially process
this information and treat this information as normal feature
input. Here, we perform feature learning and selection on
the input data that average the time series data along the
time axis and concatenate the location data. For train and
test dataset separation, we use non-African locations as train
set and African locations as test set to validate the OOD
performance. For more experiment details, we refer the
readers to Appendix E.

Method Env Info IID Test OOD Test
ZIN Auxiliary 72.18 66.06

ERM (Xie et al., 2020a) No 75.92 58.31
EIIL No 72.61 64.79
LfF No 66.24 61.69

TIVA-f No 68.46 68.26
TIVA-s No 68.06 68.31

Table 4. Test accuracy (%) on Landcover task

The experiment result is shown in Table 4. EIIL performs
well on this challenge, and we hypothesize that its initial
stage has learned the obvious spurious features. In con-
junction with other results, it is still hard to achieve robust
results if the spurious feature learning is not guaranteed in
stage one. Our proposed technique with feature selection
achieves the best OOD performance, outperforming the ZIN
method, which specially processes the specified environ-
ment index. These results also indicate that even providing
prior knowledge information about the environment may

8



Provably Invariant Learning without Domain Information

not be sufficient. We can discover more information about
Xz for further effective environment inference.

5. Conclusion and Discussion
In this paper, we propose a new algorithm TIVA, that is
capable of learning invariance through independent vari-
ables automatically without using any predefined environ-
ment index, auxiliary information, or prior knowledge of
data. Firstly, we demonstrate the general idea of discov-
ering Xz which satisfies the condition Y ⊥ Xz|Xv can
lead to a fully data-driven way of environment inference.
Then, we theoretically prove that Xz ⊥ Y can actually lead
to Y ⊥ Xz|Xv under the mild condition of Markov and
faithfulness property of the causal graph. This removes one
of the most important requirements in previous work (Yong
et al., 2022) and dramatically decreases the difficulty of find-
ing Xz without giving prior knowledge in and causal theory.
This makes our algorithm more efficient and adaptive to
real-world scenarios and makes fully data-driven invariant
learning possible.

Based on this theoretical result, we design the novel invari-
ant learning algorithm by minimizing mutual information
and incorporating feature extractor u. To encounter var-
ious feature types in practice, we designed two learning
approaches for training u. We evaluate our method in both
synthetic and real-world datasets with various baseline meth-
ods to demonstrate the significance. In future work, we will
validate the algorithm’s robustness in domain-specific set-
tings.
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A. Surrogate Learning Algorithm
The objective function shown in Eqn. (5) is hard to optimize due to the minimax formulation. Here, we can perform the
first-order approximation on the invariance penalty term and Lagrangian transformation on mutual information constraint.
Hence, in practice, we can optimize the model with this surrogate minimax objective function:

min
ω,Φ

max
u,v
R(ω,Φ) + λ

[
K∑

k=1

||∇ωRu,v(ω,Φ)||2 − I(u(X), Y )

]
, (9)

where I(u(X), Y ) denotes the mutual information loss discussed in Section 3.4.2 and 3.4.1. This mutual information can
be minimized by Eqn. (6) or Eqn. (8) depends on the feature types. The connection between Eqn (5) and Eqn (9) had been
discussed in Appendix B. Overall, in implementation, we can follow a two-stage training manner to optimize the model.
The complete algorithm is described in Algorithm 1.

Algorithm 1 TIVA

Input: feature extractor Φ, label classifier ω, environmental feature extractor u, environmental index classifier v. Input
data X and target Y .
1. Stage-one: Annealing Iteration
for each annealing iteration on minibatch do

if X is tabular numerical concatenation feature then
Train u by minimizing the Eqn. (6) and acquiring new gate by Eqn. (7).

else
Train u, by minimizing the Eqn. (8).

end if
Train Φ, ω, and v, by minimize ERM lossR(ω,Φ) of ω and Φ, and maximize the

∑K
k=1 ||∇ωRu,v(ω,Φ)||2 over u, v

on K partitions.
end for
2. Stage-two: Invariance Learning Iteration
for each training iteration on minibatch do

Train Φ and ω by fixing the u and v, and optimizing the Eqn. (9) over the Φ and ω.
end for

B. Proofs
In this section, we provide the full proof of Theorem 1.

Proof. Given a feature mask Φ ∈ {0, 1}d, we can solve the problem in Eqn (5) and obtain a loss L̂(Φ) as

L̂(Φ) = min
ω

max
u,v,{ω1,··· ,ωK}

L(Φ, ω, ω1, · · · , ωK , u, v),

s.t. I(u(X), Y ) = 0.
(10)

Let Φv denote a feature mask that merely selects the invariant feature Xv . Our target is to show that

L̂(Φv) < L(Φ),∀Φ ̸= Φv, (11)

which is equivalent to that solving Eqn (5) can uniquely identify Xv . Our proof proceeds in two steps. First, we show that
any feature mask that selects at least one spurious feature would induce a penalty. With sufficiently large λ, the penalty
will dominate the expected risk and then exceed L̂(Φv). Second, we show that any proper subset of the invariant features
induces a loss larger than L̂(Φv).

Step 1 Suppose that the feature mask contains at least one spurious feature. Denote the selected features as X+s and the
corresponding feature mask as Φ+s. We aim to show that

L̂(Φ+s
) > L̂(Φv).
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Since I(Y, u(X)) = 0, so Y ⊥ u(X). Then by Lemma 1, we have Y ⊥ u(X)|Xv, which is equivalent to H(Y |Xv)−
H(Y |Xv, v(u(X))) = 0 for any v.

By Assumption 1 with a given ϵ > 0, we have

L̂(Φv) ≤ (1 + 2λ)ϵ+H(Y |Xv)

+ λ (H(Y |Xv)−H(Y |Xv, v(u(X)))

= (1 + 2λ)ϵ+H(Y |Xv)

≤ (1 + 2λ)ϵ+H(Y ).

Let u⊥ denote the environment feature mask that merely select X⊥, i.e., u⊥(X) = X⊥. Let us consider the loss with fixed
Φ and u as following:

L̂(Φ, u) = min
ω

max
v,{ω1,··· ,ωK}

L(Φ, ω, ω1, · · · , ωK , u, v),

s.t. I(u(X), Y ) = 0.

We first have L̂(Φ+s) ≥ L̂(Φ+s, u⊥) because L̂(Φ+s) takes maximum over all possible u. So we have

L(Φ+s) ≥ L̂(Φ+s, u⊥)

≥ −(1 + 2λ)ϵ+H(Y |X+s)+

λ (H(Y |X+s)−H(Y |X+s, v(X⊥))

≥ −(1 + 2λ)ϵ+ λ(H(Y |X+s)

−H(Y |X+s, v(X⊥))

≥ −(1 + 2λ)ϵ+ λδC,

where the last inequality is due to Assumption 2 and H(Y |Xs)−H(Y |Xs, v(X⊥)) ≥ C. Thus, if we choose ϵ < δC/4

and λ > H(Y )+2ϵ
δC−4ϵ , we can get

L(Φv) < L(Φ+s).

Step 2 Let Φ−v denote the feature mask corresponding to X−v .

In Step 1, we have shown that
L̂(Φv) ≤ (1 + 2λ)ϵ+H(Y |Xv). (12)

Similar to Eqn. (12), we have
L̂(Φ−v) ≥ −(1 + 2λ)ϵ+H(Y |X−v). (13)

Then according to Assumption 3, we have

L̂(Φ−v)− L̂(Φv) ≥− 2(1 + 2λ)ϵ+H(y|X−v)

−H(y|Xv)

≥− 2(1 + 2λ)ϵ+ γ.

(14)

Thus, if ϵ < γ
2(1+2λ) , we have

L̂(Φ−v) > L̂(Φv). (15)

In conclusion, with λ ∈ [H(Y )+1/2δC
δdC−4ϵ

− 1
2 ,

γ
4ϵ −

1
2 ], we can get

L̂(Φv) < L̂(Φ), ∀Φ ̸= Φv.

Notably, there exists a feasible λ if ϵ < Cγδ
4γ+2CδH(Y ) . The proof is complete by noticing that ϵ can be chosen arbitrarily

according to Assumption 1.
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C. Synthetic Simulation
We first sample invariant feature Xv(t) ∈ R from two normal distribution with identical probability:

Xv(t) ∼

{
N (1, 1),w.p. 0.5,

N (−1, 1),w.p. 0.5.
(16)

Then, we can sample the target by a consistent probability to induce an invariant correlation between target Y (t) ∈ R and
Xv(t):

Y (t) ∼

{
sign(xv(t)),w.p. pv,

−sign(xv(t)),w.p. 1− pv.
(17)

To model the distributional shift w.r.t. time, we set different ps(t) in separate isometric time intervals to acquire a spurious
correlation between Y (t) and Xs(t):

Xs(t) ∼

{
N (Y (t), 1),w.p. ps(t),

N (−Y (t), 1),w.p. 1− ps(t).
(18)

The ps(t) should be set differently between the train dataset and test dataset but pv should remain the same. For training,
we utilize two ps(t) on time interval set: {[0, 0.5), [0.5, 1]}. For testing, we designed four ps(t) on time interval set:
{[0, 0.25), [0.25, 0.5), {0.5, 0.75), [0.75, 1]}. That means we test our method by training the model on two heterogeneous
environment segments and evaluating on four segmentation. We denote the various ps in tuple. For example, the first
simulation is performed on (0.999, 0.7) which stands for:

ps(t) =

{
0.999, t ∈ [0, 0.5),

0.7, t ∈ [0.5, 1].
(19)

For both train and test dataset, we directly set Xz = t. This feature is also common in practice, for example, we may use
data index or user id as input features in recommendation systems (Shani and Gunawardana, 2011). The simulation setting
is identical to the synthetic setting reported in Yong et al. (2022), so the result is comparable. We refer readers to Appendix
E For full implementation details of this simulation.

D. Ablation Study
D.1. Satisfaction of Condition 2
To evaluate the satisfaction of condition 2, we conducted an ablation study in the synthetic dataset introduced in the Section
4. We approximate the H(Y |Xs) and H(Y |Xs, v(u(X))) with cross-entropy loss using neural networks, and calculated
their difference to obtain the value H(Y |Xs)−H(Y |Xs, v(u(X))). We approximate this value on the test set, and we
believe that this approach provides a rigorous and reliable evaluation of satisfaction of condition 2. The ablation study result
is shown in the Table 5.

ps(t) (0.999, 0.7) (0.999, 0.8) (0.999, 0.9)
pv 0.9 0.8 0.9 0.8 0.9 0.8

Condition 2 0.7894 0.5662 0.8393 0.8346 1.3110 1.2658
Table 5. The approximate value of condition 2

Based on our ablation study, we can observe that condition 2 is indeed satisfied.

D.2. Mutual Information
In this section, we perform ablation study on mutual information learning process to test whether the feature selection
and feature learning algorithm mentioned in Section 3.4.1 and Section 3.4.2 can learn Xz ⊥ Y or not. We perform the
ablation study in the synthetic simulation setting ps(t) = (0.999, 0.7) with pv = 0.9 and measure the mutual information
I(u(X), Y ). The mutual information is approximated by I(u(X), Y ) = H(Y )−H(Y |u(X)), where H(Y ) denotes the
entropy of labels and H(Y |u(X)) represents the conditional entropy of the labels given u(X) (Pan et al., 2021). H(Y )
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(a) (b) (c)

Figure 2. Ablation study results of both learning methods.

is fixed when the dataset is determined. We use neural networks to approximate the H(Y |u(X)) by calculating the final
cross-entropy loss after training. We follow all the settings mentioned in Section 4 and Appendix C. We report the mutual
information I(u(X), Y ) of both feature selection and feature learning method by each 100 epoch of training in Figure 2.

As shown in Figure 2(a) and Figure 2(b), both feature learning and feature selection method can gradually reduce the mutual
information between Xz candidates and Y . In this experiment, feature selection method can achieve lower and more stable
mutual information than feature learning methods, which also support the experiment results in Table 1 that feature selection
can generally achieve higher invariance learning capability in synthetic simulation. Figure 2(c) demonstrate the heat-map of
feature selection gate average score on u(Xv), u(Xs), and u(Xz), respectively. We can observe that, during the training,
feature selector u mainly select Xz for environment inference.

D.3. Influence of K
We perform an ablation analysis on the synthetic dataset to explore the impact of the K value on the efficacy of our proposed
algorithm. The result is shown in the Table 6

ps(t) (0.999, 0.7) (0.999, 0.8) (0.999, 0.9)
pv 0.9 0.8 0.9 0.8 0.9 0.8

K = 2 84.42%/79.60% 77.49% /74.56% 85.40% /82.79% 73.63% /71.44% 78.05% / 68.48% 70.26% / 34.8%
K = 4 84.86% /78.40% 77.76% /76.56% 83.40% /79.96% 72.40% /69.48% 75.08% /66.42% 69.92%/ 39.12%
K = 6 84.32% /78.94% 77.23% /75.42% 83.96% /80.12% 72.38% /70.54% 75.28% /67.58% 69.13% /40.24%
ERM 75.37% /57.31% 59.65% /25.81% 68.72% / 41.97% 55.90% /15.07% 60.61% /23.39% 52.85% /7.57%

Table 6. The ablation study results of value K on synthetic dataset. Here we report the mean and worst accuracy for each test.

The ablation results show that our algorithm is relatively resilient to the selection of the K value, which is in line with the
observations made in ZIN (Yong et al., 2022).

D.4. Illustrate the Learned Environment Partition
To better illustrate the learned the environment partition, we perform ablation study to observe the subgroup of environment
partition learning with some of the partition labels used in the ZIN (Yong et al., 2022) on CelebA dataset. In the case of the
CelebA test, we are predicting the Smile variable and constructing datasets that are spuriously correlated with Gender. To
better illustrate the different environments, we perform another ablation study to observe the Smile and Gender subgroup
distributions in the learned environments. The ablation result shown in the Table 7

subgroup P (Group|Env) in inferred environment 1 P (Group|Env) in inferred environment 2
Smile = Gender 64.62% 36.62%
Smile ̸= Gender 35.38% 63.38%

Table 7. The ablation study results on the involvement of random noise.

The ablation study results showed that the group distributions of Smile = Gender and Smile ̸= Gender are distributed
differently in the learned environments. Recall that smile is Y and gender is spurious feature Xs. This result shows that
P (Y |Xs) differs in the two inferred environments, making it possible for the invariance penalty to distinguish the spurious
feature.

15



Provably Invariant Learning without Domain Information

D.5. Random Noise as Xz

Since random noise is independent of Y , can random noise be used as Xz for TIVA learning? In order to evaluate the
influence of random noise in the features, we conduct an ablation study in our synthetic dataset introduced in Section 4
to evaluate its impact on our methodology. Specifically, we add random noise to the dataset and evaluated its utilization
by observing the feature selection gate value (i.e., selection by u which is similar to Appendix D.2) and Shapley value
(Lundberg and Lee, 2017) to measure the feature contribution of each feature in v. To further evaluate the effectiveness of
utilizing random noise as auxiliary information, we conducted an additional ablation study by replacing all t values with
random noise, and tested the final experiment value. The ablation study results are summarized in the Table 8

ps(t) (0.999, 0.7) (0.999, 0.8) (0.999, 0.9)
pv 0.9 0.8 0.9 0.8 0.9 0.8

gate value 1
Shapley value of random noise 9.6e−5 5.4e−5 7.3e−5 1.3e−5 2.3e−5 3.8e−5

Shapley value of Xz 0.4947 0.4996 0.4967 0.4972 0.4939 0.4991
mean accuracy of solely random noise 74.04% 59.28% 66.98% 55.40% 59.22% 52.94%
worst accuracy of solely random noise 55.04% 26.64% 40.08% 16.72% 22.80% 9.44%

worst accuracy of ERM 57.31% 25.81% 41.97% 15.07% 23.39% 7.57%
Table 8. The ablation study results on the involvement of random noise.

Based on the ablation study results, we can observe that although u selects random noise as a candidate for Xz as the
end of the training epoch, the model v does not choose random noise as auxiliary information, and the Shapley value on
random noise is very small. Furthermore, our ablation study demonstrated that the model is unable to utilize random noise
as auxiliary information because it does not contain any information about Xs. It is important to note that if we cannot find
any useful information in X , the model reduces to ERM.

D.6. In-distribution and Out-of-distribution Trade-off
In the general cases of implementing invariance learning, we are exploiting the trade-off between in-distribution and
out-of-distribution performance. That means, the performance drop of in-distribution performance is somehow inevitable.
Invariant learning seeks to identify the stable and consistent features Xv that directly influence the target variable Y , while
avoiding the use of spurious features Xs that may be inconsistent or unstable across different environments. In practice,
utilizing both Xs and Xv can lead to better in-distribution performance because the model has access to more information.
However, when the model is tested on out-of-distribution data, the relation between Xs and Y may experience large
distributional shift, causing the model’s performance to drop dramatically. Thus, a model with high in-distribution accuracy
that relies heavily on Xs may be dangerous and lead to poor generalization. This is common especially when Y cannot be
deterministically predicted from Xv (e.g., cannot achieve 100% accuracy by using the invariant feature) because there is
always randomness in data generation mechanisms and model misspecification. Specifically:

• Randomness in data generation: randomness in data generation mechanisms can result in a scenario where Y cannot
be fully predicted by Xv. Specifically, it is a common practice to consider the structural causal equations (SEM)
(Peters et al., 2017) as Y = g(Xv) + ϵ where ϵ is random noise (Arjovsky et al., 2019). Assuming ϵ = 0, Y can
be deterministically predicted from Xv. However, assuming ϵ = 0 is known as the degenerated setting and is not
commonly observed in theoretical or practical literature. It is also believed that there is always randomness in data
(Pearl, 1988).

• Model misspecification: even in cases where there is no randomness in data generation, Y may still not be perfectly
predicted by Xv due to model misspecification (Uppal and Wang, 2003). By “model misspecification”, the true
function g may not lie in our function class. We can also interpret it as the invariant feature being unable to be perfectly
extracted.

In both scenarios shown above, including informative spurious features Xs can improve the model’s ability to predict the label
accurately. Specifically, we have H(Y |Xv) > 0, indicating that Y cannot be fully predicted based on Xv . Consequently, we
can obtain lower prediction errors by using spurious features in in-distribution tests, resulting in H(Y |Xv,Xs) < H(Y |Xv)
(Yong et al., 2022). Therefore, in most real datasets where we cannot perfectly predict Y based on merely invariant features,
the in-distribution performance may be slightly inferior when we remove spurious features.

However, there may exist some scenarios that removing the influence of Xs would not harm the in-distribution performance
and can further improve the out-of-distribution performance. This situation may occur when Y can be fully predicted by
Xv .

16



Provably Invariant Learning without Domain Information

To better illustrate the aforementioned effect, we perform another ablation study on synthetic dataset. We set pv = 0.999 and
ps = (0.999, 0.9), and the test distribution is (0.999, 0.9, 0.2, 0.01). Under this setting, the test distribution differs slightly
from the synthetic experiment in the Section 4, and the target Y was nearly deterministically generated from Xv . We test the
randomness by setting the pv = 0.9 to simulate the randomness in generating Y from Xv . while other parameters remained
the same. The ablation results are presented in the Table 9

Methods Mean 0.01 0.2 0.9 0.999
ERM with pv = 0.999 96.44% 93.52% 94.56% 98.40% 99.28%

TIVA-s with pv = 0.999 97.50% 95.28% 96.72% 98.72% 99.28%
ERM with pv = 0.9 61.08% 22.72% 34.64% 90.24% 96.72%

TIVA-s with pv = 0.9 80.70% 69.68% 74.32% 88.40% 90.40%

Table 9. Test accuracy on each out-of-distribution envrionment partition.

The results show that if Y is almost determined by Xv, we can actually indeed improve the OOD performance without
harming the in-distribution performance. However, when there is randomness in generating Y , as is commonly observed in
practice, we may experience a ”sacrifice” in in-distribution performance to improve out-of-distribution performance.

E. Hyperparameter Setting and Experiment Details
In this section, we introduce the experiment details of Section 4. We demonstrate the hyperparameter in Table 10. We
perform all the experiments on Nvidia V100 GPU. The celebA experiment takes roughly two GPU hours and other tasks
can be completed in 10 minutes.

The part of the hyperparameter used by our proposed method in Section 4 is shown in Table 10. Here we represent the neural
network architecture as a list, for example, the v we used across all the experiments is 2 layer MLP with 32 neurons, which
is denoted as [32, 32]. Here, we use the ReLU activation function across all networks (Li and Yuan, 2017). For encoder uωu

and qωq , the output layer is activated by tanh function (Xiao et al., 2005).

These hyperparameters are finetuned by the grid search method in 5 trials.

Experiment with Method learning rate uwu qwq pwp owo β v K owo learning rate
synthetic TIVA-f 0.001 [16, 8] [16, 4] [16, 16] [16, 16] -

[32, 32]
2

0.01
synthetic TIVA-s 0.01 - - - - 0.05 -
celebA TIVA-f 0.001 [256, 256] [128, 128] [256, 32] [256, 256] - 0.01
celebA TIVA-s 0.001 - - - - 0.01 -

house price TIVA-f 0.001 [16, 8] [16, 4] [16, 16] [16, 16] - 0.02
house price TIVA-s 0.001 - - - - 0.03 -
landcover TIVA-f 0.1 [16, 8] [16, 4] [16, 16] [16, 16] -

6
0.5

landcover TIVA-s 0.1 - - - - 0.03 -

Table 10. Hyperparameter for experiments

In Synthetic simulation, here we utilize one linear layer [16] as Φ with 1024 batch size. We train the model in 5000 epochs
with 4500 epoch environment annealing. In celebA tasks, we use large vision model ResNet-18 (He et al., 2016) as the fixed
backbone to extract latent image features. We use 128 batch size in 50 total epochs of training with 45 epochs of annealing.
For house price task, we implement two layers MLP [16, 16] as Φ and perform 5500 epochs of training with 5000 epochs of
annealing. For Landcover task, we implement 1d-CNN with 8 channels as Φ with 400 epochs of training and 350 epochs of
annealing. We mainly implement Adam optimizer (Kingma and Ba, 2014), except for the uwu , qwq , pwp , and owo which
utilize the SGD optimizer (Bottou, 2012) to improve the adversarial training robustness.

F. Examples of X = [Xv,Xs,Xz]
Here, we use the annotation X to represent generalized features that may contain all the information about the sample. It is
important to note that in reality, there may exist thousands of features for just one sample, including invariant, spurious,
and other features that are not related to the prediction task of Y . To fully understand the assumption of , we can consider
several examples:
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• In DNA expression level prediction task, the regulatory process is complex, involving various transcription factors
and epigenetic modifications on millions of basic-pairs (e.g., ATGC). Only a small subset of these factors are directly
responsible for the expression level of a gene (e.g., direct cause). Hence, the direct factors can be considered as
Xv while the remaining factors can be considered as Xs. In addition, there may be other factors to link important
transcription factors, measurement noise, sequencing errors, or other irrelevant information for predicting expression
that can be considered as Xz .

• In search and recommendation scenarios, users’ behavior data may include various features such as search queries,
browsing history, demographics, and social interactions. However, not all of these features are equally important for
predicting user preferences or purchase behaviors. Some features such as the user’s age, gender, and occupation may
be more relevant than others such as the time of the day or the device used for searching. Hence, the relevant features
that direct cause changes in preference can be considered as Xv, while the other relevant features can be considered
as Xs. Moreover, some features may not be relevant at all, such as the user’s IP address or the browser type, can be
considered as Xz .

• In image recognition domains, each image may contain multiple objects, backgrounds, and visual cues. For example,
in the image of a cat sitting on a sofa, the cat is the primary object of interest, and the sofa is the background. Other
visual cues such as the texture of the floor or the pattern of the curtains may not be relevant to the recognition task.
Hence, the features related to the cat and the sofa can be considered as Xv and Xs, respectively, while the irrelevant
features, such as floor textures, can be considered as Xz . Furthermore, in real-world applications, there may be noise,
occlusions, or other irrelevant visual information that can also be considered as Xz .
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