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ABSTRACT

Given an input image and set of class names, panoptic segmentation aims to label
each pixel in an image with class labels and instance labels. In comparison, Open
Vocabulary Panoptic Segmentation aims to facilitate the segmentation of arbitrary
classes according to user input. The challenge is that a panoptic segmentation
system trained on a particular dataset typically does not generalize well to unseen
classes beyond the training data. In this work, we propose a retrieval-augmented
panoptic segmentation method that improves the performance of unseen classes.
In particular, we construct a masked segment feature database using paired image-
text data. At inference time, we use masked segment features from the input
image as query keys to retrieve similar features and associated class labels from
the database. Classification scores for the masked segment are assigned based on
the similarity between query features and retrieved features. The retrieval-based
classification scores are combined with CLIP-based scores to produce the final
output. We incorporate our solution with a previous SOTA method (FC-CLIP).
When trained on COCO, the proposed method demonstrates 30.9 PQ, 19.3 mAP,
44.0 mIoU on the ADE20k dataset, achieving +4.5 PQ, +2.5 mAP, +10.0 mIoU
absolute improvement over the baseline.

1 INTRODUCTION

Panoptic segmentation (Kirillov et al., 2019) is a computer vision task that combines semantic seg-
mentation and instance segmentation. Semantic segmentation (Long et al., 2015) labels every pixel
in an image with a class category, such as ”tree” or ”car.” Instance segmentation (Bolya et al., 2019)
differentiates between individual objects of the same class (1st car, 2nd car). Panoptic segmentation
unifies these tasks to label every pixel with a class label and identify distinct objects within the same
category with an instance label. This method is valuable in fields like autonomous driving (Feng
et al., 2020) and robotics (Milioto & Stachniss, 2019), where detailed scene understanding is cru-
cial. A key challenge for traditional panoptic segmentation is the need for highly granular pixel-level
data annotation. Lack of data limits the number of possible classes for panoptic segmentation, mak-
ing the system closed-vocabulary (Ding et al., 2023).

Open vocabulary panoptic segmentation (Ding et al., 2023; Xu et al., 2023c; Yu et al., 2024) is
an advanced version of the traditional panoptic segmentation task that extends its capabilities to
identify and label objects from a potentially unlimited set of classes. Unlike standard panoptic
segmentation which relies on a fixed set of known classes, open vocabulary segmentation allows
the system to recognize and categorize objects even if they haven’t been specifically included in the
training dataset.

Recent methods for open vocabulary segmentation (Ding et al., 2023; Xu et al., 2022b; Liang et al.,
2023; Xu et al., 2023c; Yu et al., 2024) involves a two-stage framework. The first step is to generate a
class-agnostic mask proposal and the second step is to leverage pre-trained vision language models
(e.g., CLIP (Radford et al., 2021)) to classify masked regions. In this approach, the input class
descriptions are encoded with a CLIP text encoder and the masked image region is encoded with a
CLIP vision encoder. The masked region is classified based on the cosine similarity of masked image
features and class-related text features. CLIP has shown the ability to improve open vocabulary
performance because it is pre-trained to learn joint image-text feature representation from large-
scale internet data. However, the performance of the CLIP vision encoder suffers from a limitation
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when we encode a masked image instead of a natural image. This poor quality of encoded features
hurts open vocabulary segmentation performance (Liang et al., 2023).

In this work, we address the bottleneck mentioned above in the context of open vocabulary panop-
tic segmentation. In order to mitigate the domain shift between the natural image feature and
the masked image feature, we propose a retrieval-augmented approach for panoptic segmentation.
Specifically, we first use large-scale image-text pairs to construct a feature database with associated
text labels for the masked regions. Then during inference time, the masked region feature extracted
from the input image is used as a retrieval key to retrieve similar features and associated class labels
from the database. The masked region is classified based on the similarity between the retrieval key
and retrieval targets. Since both the retrieval key and retrieval target use a CLIP vision encoder on
masked regions, the proposed approach does not suffer from the domain shift between the natural
image feature and the masked image feature. We combine this retrieval-based classification mod-
ule with the CLIP-based classification module to improve open vocabulary panoptic segmentation
performance. Our contributions are as follows:

• We proposed a retrieval-augmented panoptic segmentation approach that tackles the do-
main shift between the natural image feature and masked image feature with respect to the
CLIP vision encoder. The proposed approach can incorporate new classes in the panoptic
segmentation system simply by updating the feature database in a fully training-free man-
ner. Moreover, the feature database can be constructed from paired image-text data which
is widely available for thousands of classes.

• We demonstrate that the proposed system can improve open vocabulary panoptic segmen-
tation performance in both training-free setup (+5.2 PQ) and cross-dataset fine-tuning setup
(+ 4.5 PQ, COCO→ADE20k).

2 RELATED WORK

Fully Supervised Fully supervised methods typically involve training or fine-tuning the system
on a dataset with pixel-level annotations (Li et al., 2022; Ghiasi et al., 2022; Xu et al., 2022c; Luo
et al., 2023a). Ding et al. (2023) use a trainable relative mask attention module to produce robust
masked segment features from a frozen CLIP backbone. Xu et al. (2023a) proposes combining the
internal representation of pretrained text-to-image diffusion models and discriminative image-text
models for open vocabulary panoptic segmentation. Liang et al. (2023) fine-tune a CLIP backbone to
improve alignment between text representation and masked image representation. Xu et al. (2023c)
use a student-teacher self-training to improve mask generation for unseen classes and fine-tune CLIP
to improve query feature representation. Yu et al. (2024) use a frozen CNN-based CLIP backbone
for both mask proposal generation as well as classification.

Weakly Supervised Weakly supervised methods are trained on image-level annotations (Xu et al.,
2022a; Liu et al., 2022; Zhou et al., 2022; Xu et al., 2023b). Luo et al. (2023b) train the system on
image-text pairs using a semantic group module to aggregate patches with learnable image regions.
He et al. (2023) use self-supervised pixel representation learning guided by CLIP image-text align-
ment for semantic segmentation. Mukhoti et al. (2023) propose patch-level contrastive learning that
learns alignment between visual patch tokens and text tokens. This approach generalizes to the open
vocabulary setting without any training on pixel-level annotations. Wang et al. (2024b) combine
the spatial understanding of Segment Anything Model (SAM) (Kirillov et al., 2023) and semantic
understanding of CLIP for open vocabulary semantic segmentation. They use continual learning and
knowledge distillation methods to ensure the resulting model retains the capabilities of the original
models.

Training Free Training-free methods typically exploit pretrained models (e.g. CLIP) for open
vocabulary segmentation without any fine-tuning on pixel-level or image-level annotations (Wang
et al., 2024c; Tang et al., 2024; Wang et al., 2024a). Shin et al. (2022) construct a database of ref-
erence image segments using CLIP. During inference, the reference images are used for segmenting
relevant segments from the input image. Karazija et al. (2024) generate synthetic reference images
using a text-to-image diffusion model and perform segmentation by comparing input images with
synthetic references. Wysoczańska et al. (2024) encodes small image patches separately to the vi-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the open vocabulary panoptic segmentation method (cross-dataset)

sion encoder and computes class-specific similarity for an arbitrary number of classes. Then they
perform patch aggregation, up-sampling, and foreground-background segmentation to produce seg-
mentation for unseen classes. Gui et al. (2024) construct a feature database of masked segment
features and use retrieval to perform panoptic segmentation on unseen categories. There are two
key differences between their approach and our proposed method. Firstly, Gui et al. (2024) uses
one visual encoder for mask proposal generation and masked segment classification and a separate
visual encoder to construct retrieval key features. We demonstrate that a single CLIP backbone
with mask pooling can be used for all three tasks: mask proposal generation, retrieval key genera-
tion, and masked segment classification. Secondly, Gui et al. (2024) rely on ground truth masks for
constructing the feature database so their proposed approach cannot be extended to a new dataset
where pixel-level annotation is unavailable. We use open vocabulary object detection combined with
SAM for constructing the feature database and demonstrate that our approach achieves performance
improvement by exploiting a completely different dataset with only image-level annotations.

3 METHODOLOGY

3.1 CROSS DATASET PANOPTIC SEGMENTATION

In the cross-dataset variant of open vocabulary panoptic segmentation, the system is fine-tuned on
one dataset (e.g. COCO) and evaluated on another dataset (ADE20k) with some unseen classes. Our
cross-dataset method is based on FC-CLIP (Yu et al., 2024) where a mask proposal generator and
mask decoder are fine-tuned on COCO (Lin et al., 2015). The overview of the system is shown in
Figure 1.

Shared Backbone Similar to FC-CLIP, we use a frozen CNN-based CLIP backbone. The back-
bone is shared between the mask generation and segment classification. Yu et al. (2024) have demon-
strated that CNN-based CLIP backbone is a more robust variation in image resolution. We use the
ConvNeXt-Large variant of CLIP backbones from OpenCLIP (Cherti et al., 2023). The model is
trained on the LAION-2B dataset (Schuhmann et al., 2022). The CLIP backbone converts the input
image to patch-specific dense features which is used for mask generation and segment classification.

Mask Proposal Generation The mask proposal generator is based on Mask2former (Cheng et al.,
2022). A pixel decoder is used for enhancing dense features from the CLIP backbone. The en-
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hanced features and class-related queries are fed to a series of mask decoders. The mask decoders
are equipped with self-attention, masked cross-attention, and a feed-forward network. Finally, the
segmentation logits are produced via matrix multiplication between class queries and transformed
pixel features.

In Vocabulary Classification The in-vocabulary classification path is shown in green in Figure 1.
The dense features are computed from the input image feature and mask proposals using mask
pooling. Dense features for masked regions and class name embeddings are projected to the same
embedding space using linear projection. The linear projection parameters for in-vocabulary clas-
sifiers are fine-tuned on COCO. The classification scores are obtained based on cosine similarity
between class embeddings and masked segment features.

Out-of-vocabulary Classification Via Retrieval The retrieval-based classification path is shown
in violet in Figure 1. The retrieval module uses masked segment features as retrieval keys to perform
approximate nearest neighbor search in the feature database. The output is a set of distance scores
between the retrieval key and retrieval targets and associated class labels. The distance scores are
normalized using min-max normalization and subtracted from one. This step produces retrieval-
based classification scores. In case any of the user-provided class names are missing in the feature
database, we retrieve image samples for those input classes from a secondary image dataset. The
label matching between datasets is performed with CLIP text embedding of class names with simi-
larity score > 0.95.

Out-of-vocabulary Classification Via CLIP Similar to FC-CLIP, we have a CLIP-only segment
classifier. This is helpful in case the feature database does not have similar features compared to the
segment features. The classification is performed using cosine similarity between segment features
and class name embeddings. Unlike in-vocabulary classifiers, the features do not go through fine-
tuned linear projection layers.

Ensemble Let’s assume C is the set of classes for prediction and Ctrain is the set of classes in the
fine-tuning dataset. Let siclip, s

i
ret, s

i
iv be classification scores for class i using CLIP, retrieval and

in-vocabulary classifier. The scores from the three classification pipelines are combined as follows,
where α, β, γ are hyper-parameters.

sioov = siret × γ + siclip × (1− γ)

si = sioov × α+ siiv × (1− α) if i ∈ Ctrain

si = sioov × β + siiv × (1− β) if i /∈ Ctrain

3.2 TRAINING FREE PANOPTIC SEGMENTATION

In training free variant of open vocabulary panoptic segmentation, none of the system components
are fine-tuned on pixel-level panoptic annotations. We use an open vocabulary objection detection
model and SAM for mask proposal generation. The segment classification was performed with CLIP
and retrieval. The overview of the system is shown in Figure 2.

Mask Proposal Generation Given an input image and a list of classes, we use Grounding
DINO (Liu et al., 2024) to detect bounding boxes associated with each class. All bounding boxes
detected with a minimum confidence threshold are retained. The bounding boxes are passed to
SAM for generating class-aware masks. The outputs of SAM are used as class-agnostic mask pro-
posals. All potential classes for panoptic segmentation are passed to the object detection method
and confidence-based filtering is performed to prune absent classes.

Dense Feature for Masked Regions A CLIP backbone is used to extract dense features from the
input image. The mask proposals from the previous step are used to extract masked image regions
from the image-level dense features. We use mask pooling to convert image-level dense features to
region-level dense features.
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Figure 2: Overview of the open vocabulary panoptic segmentation method (training free)

Classification with CLIP The input class names are encoder with CLIP text encoders. The cosine
similarity between CLIP text embeddings and dense features for each mask region is used to classify
each masked region.

Retrieval-based Classification For each dense feature associated with a masked region, we per-
form an approximate nearest neighbor search in the feature database to retrieve the most similar
features and associated class labels. The retrieval distances are normalized with min-max normal-
ization and subtracted from one to produce classification scores.

Ensemble Let’s assume C is the set of classes for prediction. Let siclip, s
i
ret be classification scores

for class i using CLIP and retrieval. The scores from the two classification pipelines are combined
as follows, where γ is a hyper-parameter.

si = siret × γ + siclip × (1− γ)

3.3 FEATURE DATABASE CONSTRUCTION

The objective of the database construction step is to take a paired image-text dataset as input and
convert it into a database of masked segment features and associated class labels. The database
construction has four steps, namely object detection, mask generation, dense feature generation, and
mask pooling. The overview of the process is shown in Figure 3.

Object Detection In this step, an image and class labels present in the image are fed to an open
vocabulary object detection method. The output is a bounding box associated with each class present
in the image. We use the SOTA open vocabulary object detection method Grounding DINO (Liu
et al., 2024).

Mask Generation In this step, the input image and associated bounding box prompts are fed to
SAM (Kirillov et al., 2023) for mask generation. Even though SAM can generate masks without
class-aware bounding boxes, the resulting masks often break up a single class (e.g. car) into multiple
masks (e.g. wheel, car body, window). An example of this phenomenon is shown in Figure 4. The
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Figure 3: Overview of feature database construction

Figure 4: a) Left: mask generation with SAM point prompt sampling b) Right: class aware mask
generation with Grounding DINO + SAM

class-aware masks generated in the previous step ensure that the SAM can generate high-quality
masks for each class present in the image.

Dense Feature Generation We use CLIP to extract dense features from an image. Let’s assume
that the input image has shape 3 × H × W , the patch size of CLIP is p, and the dimension of the
dense feature is d. The shape of the output dense feature is H

p × W
p × d.

Mask Pooling Mask pooling operation involves taking dense features associated with the whole
image and generating mask-specific dense features based on generated masks in the second step.
This way we don’t have to encode each masked segment using CLIP separately which can be com-
putationally expensive (Yu et al., 2024). The mask pooling operation generates a d dimensional
feature vector for each masked segment. These features and associated class labels are added to the
database.

4 EVALUATION

Setup The training-free setup does not use any panoptic segmentation annotations. The cross-
dataset setup is fine-tuned on COCO panoptic annotations. For constructing the retrieval fea-
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Table 1: Open vocabulary panoptic segmentation performance in training free setup
Mask Proposal Region Classification Image Encoder Database PQ mAP mIoU

Grounding DINO + SAM CLIP Baseline CLIP-ViT-large ADE20k 0.109 0.069 0.138
Grounding DINO + SAM Retrieval Baseline CLIP-ViT-large ADE20k 0.158 0.098 0.215
Grounding DINO + SAM Retrieval + CLIP CLIP-ViT-large ADE20k 0.161 0.103 0.222

Table 2: Open vocabulary panoptic segmentation performance in cross-dataset setup
Method Image Encoder Database Fine-tuning PQ mAP mIoU

FC-CLIP CLIP-ConvNeXt-large ADE20k COCO 0.264 0.168 0.340
FC-CLIP + retrieval CLIP-ConvNeXt-large ADE20k COCO 0.309 0.193 0.440
FC-CLIP + retrieval CLIP-ConvNeXt-large Google Open Image COCO 0.283 0.177 0.383

ture database, we use the ADE20k (Zhou et al., 2019) train set and Google Open Image
dataset (Kuznetsova et al., 2020) in separate settings. The evaluations are reported on the ADE20k
validation set. Out of 150 classes in the ADE20k validation set, 70 are present in COCO. These
classes serve as in-vocabulary classes and the rest of the classes are out-of-vocabulary. We exper-
iment with different CLIP backbones such as CLIP-ViT-base, CLIP-ViT-large, CLIP-ConvNeXt-
large. We use Grounding-DINO-base for object detection and SAM-ViT-base for segmentation. We
experiment with three different mask proposal methods such as ground truth mask, point prompt
grid sampling with SAM, and Grounding DINO with SAM.

Baseline and Metrics We use CLIP baseline for the training-free setup and FC-CLIP baseline in
the cross-dataset setup. For hyper-parameters in the FC-CLIP baseline, we the the same configu-
ration used by Yu et al. (2024), setting α = 0.4, β = 0.8. We use panoptic quality (PQ), mean
intersection over union (mIoU), and mean average precision (mAP) as evaluation metrics.

Results Retrieval-augmented classification improves performance in both training-free setup and
cross-dataset fine-tuning setup. In the training-free setup, the proposed method (retrieval + CLIP)
achieves 47% relative improvement in PQ (+5.2 absolute) and 60% relative improvement (+8.4
absolute) in mIoU (shown in Table 1). In the cross-dataset setup, the proposed method achieves
17% relative improvement in PQ (+4.5 absolute) and 29% relative improvement (+10.0 absolute) in
mIoU. The proposed method also improves performance when the retrieval features are constructed
from a completely different dataset such as Google Open image, as shown in Table 2.

We demonstrate the impact of the mask proposal generator in Table 3. The system achieves a PQ of
27.2 with a ground truth mask with a CLIP-ViT-large backbone. Automatic mask generation with
SAM performs poorly with a PQ of 7.8. The reason is that SAM is trained for interactive input with
humans in the loop. Without human input, SAM masks are not class-aware. SAM may break up a
single object into multiple fine masks as shown in Figure 4. We mitigate this issue by using open
vocabulary object detection to construct class-aware bounding boxes and feeding them to SAM. This
approach improves PQ to 16.1 in the training-free setup. The hyper-parameter tuning for ensemble
coefficients is shown in Table 4. We find best performance with α = 0.4, β = 0.7, γ = 0.3.

5 CONCLUSIONS

In this work, we exploit a retrieval-based method for improving open vocabulary panoptic segmen-
tation. We construct a visual feature database using paired image-text data. During inference, we
use masked segment features from the input image as query keys to retrieve similar features and
associated class labels from the database. Classification scores for the masked segment are assigned
based on the similarity between query features and retrieved features. The retrieval-based classifi-
cation scores are combined with CLIP-based scores to produce the final prediction. The proposed
approach improves PQ from 26.4 to 30.9 on ADE20k when fine-tuned on COCO. Even though the
proposed method achieves reasonable performance in an open vocabulary setting, it remains vulner-
able to the quality of mask proposal generation. Future work may focus on improving the quality of
mask proposal generation for unknown classes.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Impact of mask proposal quality. The results are shown for the training-free setup.
Mask Proposal Region Classification Image Encoder Database PQ mAP mIoU

Ground Truth CLIP Baseline CLIP-ViT-base ADE20k 0.160 0.092 0.224
Ground Truth Retrieval Baseline CLIP-ViT-base ADE20k 0.210 0.130 0.254
Ground Truth Retrieval + CLIP CLIP-ViT-base ADE20k 0.211 0.133 0.276
Grid Sampling + SAM CLIP Baseline CLIP-ViT-base ADE20k 0.042 0.025 0.059
Grid Sampling + SAM Retrieval Baseline CLIP-ViT-base ADE20k 0.048 0.032 0.065
Grid Sampling + SAM Retrieval + CLIP CLIP-ViT-base ADE20k 0.052 0.034 0.069
Grounding DINO + SAM CLIP Baseline CLIP-ViT-base ADE20k 0.090 0.055 0.123
Grounding DINO + SAM Retrieval Baseline CLIP-ViT-base ADE20k 0.117 0.071 0.150
Grounding DINO + SAM Retrieval + CLIP CLIP-ViT-base ADE20k 0.127 0.075 0.173
Ground Truth CLIP Baseline CLIP-ViT-large ADE20k 0.217 0.139 0.291
Ground Truth Retrieval Baseline CLIP-ViT-large ADE20k 0.272 0.165 0.346
Ground Truth Retrieval + CLIP CLIP-ViT-large ADE20k 0.284 0.173 0.394
Grid Sampling + SAM CLIP Baseline CLIP-ViT-large ADE20k 0.056 0.035 0.074
Grid Sampling + SAM Retrieval Baseline CLIP-ViT-large ADE20k 0.066 0.039 0.086
Grid Sampling + SAM Retrieval + CLIP CLIP-ViT-large ADE20k 0.078 0.042 0.112
Grounding DINO + SAM CLIP Baseline CLIP-ViT-large ADE20k 0.109 0.069 0.138
Grounding DINO + SAM Retrieval Baseline CLIP-ViT-large ADE20k 0.158 0.098 0.215
Grounding DINO + SAM Retrieval + CLIP CLIP-ViT-large ADE20k 0.161 0.103 0.222

Table 4: Hyper-parameter tuning, cross dataset setup
α β γ PQ α β γ PQ

1.0 1.0 0.3 0.248 0.4 0.7 0.5 0.278
0.5 0.7 0.3 0.303 0.4 0.7 0.4 0.297
0.4 0.9 0.3 0.299 0.4 0.7 0.3 0.309
0.4 0.8 0.3 0.303 0.4 0.7 0.2 0.309
0.4 0.7 1.0 0.254 0.4 0.7 0.1 0.299
0.4 0.7 0.7 0.278 0.4 0.7 0.0 0.264
0.4 0.7 0.6 0.288 0.3 0.7 0.3 0.305

Figure 5: Case Study 1. Out-of-vocabulary class: computer, chest of drawers.
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Figure 6: Case Study 2. Out-of-vocabulary class: lamp, window screen

Figure 7: Case Study 3. Out-of-vocabulary class: chandelier, coffee table.

Figure 8: Case Study 4. Out-of-vocabulary class: window screen
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