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Abstract
We introduce a differentially private algorithm
called reveal-or-obscure (ROO) to generate a sin-
gle representative sample from a dataset of n ob-
servations drawn i.i.d. from an unknown discrete
distribution P . Unlike methods that add explicit
noise to the estimated empirical distribution, ROO
achieves ϵ-differential privacy (DP) by randomly
choosing whether to “reveal” or “obscure” the
empirical distribution. While ROO is structurally
identical to an algorithm proposed by (Cheu &
Nayak, 2025), we prove a strictly better bound
on the sampling complexity than that established
in Theorem 12 of (Cheu & Nayak, 2025). To
further improve the privacy-utility trade-off, we
propose a novel generalized sampling algorithm
called Data-Specific ROO (DS-ROO), where the
probability of obscuring the empirical distribution
of the dataset is chosen adaptively. We prove that
DS-ROO satisfies ϵ-DP, and provide empirical
evidence that DS-ROO can achieve better utility
under the same privacy budget of vanilla ROO.

1. Introduction
The widespread use of sensitive data across various do-
mains, including healthcare, finance, law enforcement, and
social sciences, has heightened the importance of privacy-
preserving data analysis. Consequently, there is a growing
need for mechanisms that allow data analysis while minimiz-
ing individual privacy risks. One promising approach is the
use of synthetic data that capture the statistical properties of
the original data.

Differential Privacy (DP) (Dwork et al., 2006; 2014) has
emerged as a sound framework for formalizing privacy guar-
antees across a range of applications, including data analysis.
In essence, DP ensures that the output of an algorithm does
not differ by much whether or not an individual’s data is
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included in the input.

The task of synthetic data generation is closely related to
the broader problem of learning probability distributions,
which has been studied under both central and local DP;
for example, see (Diakonikolas et al., 2015; Kamath et al.,
2019; Acharya et al., 2020a;b). In the non-private setting, a
learning algorithm approximates a distribution from which
one can sample new data points that are representative of
the original data. When privacy constraints are introduced,
learning a distribution becomes significantly more challeng-
ing. In many practical cases, it may be sufficient to produce
a small number of representative samples instead. The task
of privately releasing one sample—known as DP sampling—
is easier than full-fledged learning, since it requires less
information from the underlying distribution. Motivated by
this, we propose a novel DP sampling algorithm for discrete
distributions on a finite alphabet. The key idea of our ap-
proach is to “obscure” the empirical distribution of the input
dataset with a certain probability, or “reveal” it otherwise.
Hence, we call our proposed algorithm reveal-or-obscure
(ROO).

Main Contributions. Our main contributions are:

• We propose ROO—a sampling algorithm that achieves
differential privacy without explicitly perturbing the
empirical distribution of the input dataset. We incorpo-
rate uncertainty in our algorithm by sampling from the
uniform distribution with some fixed probability q.

• We prove that our proposed algorithm reduces the sam-
pling complexity while achieving better privacy-utility
trade-off than the state-of-the art (Raskhodnikova et al.,
2021), (Cheu & Nayak, 2025).

• We also propose DS-ROO (data-specific ROO) as a
technique to generalize ROO by making q, i.e., the
probability of sampling from the uniform distribution,
a function of the empirical distribution of the dataset.
We prove that it is possible to achieve the same privacy
guarantee with a lower q value relative to the vanilla
ROO algorithm for sufficiently large datasets.

• We demonstrate empirically that, for the same privacy
guarantee, DS-ROO achieves significantly better util-
ity than vanilla ROO as well as the state-of-the-art
(Raskhodnikova et al., 2021), (Cheu & Nayak, 2025).
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Related Work. The problem of differentially private
sampling from unknown distributions is first investigated
in (Raskhodnikova et al., 2021). Raskhodnikova et
al. (Raskhodnikova et al., 2021) provide the first known
bounds with (ϵ, δ)-DP guarantees on the complexity of
sampling from arbitrary distributions over a discrete alpha-
bet. DP algorithms for sampling from higher dimensional
distributions such as multivariate Gaussians are presented
in (Ghazi et al., 2024). Husain et al. (Husain et al., 2020)
considers DP sampling in the local setting, where the cen-
tral aggregator cannot be trusted and each user must pro-
duce a single data record privately. Private sampling has
also been studied in the local model; recent works propose
minimax-optimal mechanisms for all f -divergences (Park
et al., 2024), and leverage public data to improve utility
under local DP (Zamanlooy et al., 2024). A key focus of
these efforts has been to reduce the sample complexity of
DP-assured private sampling. While a recent and concur-
rent work (Cheu & Nayak, 2025) independent from ours
proposes an algorithm structurally identical to ROO, our
analysis establishes a strictly better sampling complexity
bound in the same setting. More generally, the problem
of releasing a dataset in a differentially private manner has
also been studied; for example, see (Bellovin et al., 2019;
Hardt et al., 2012; Zhu et al., 2017; Majeed & Lee, 2020;
Boedihardjo et al., 2022). Generating a single sample in a
private manner is the first step towards releasing a larger
synthetic dataset, and to this end, we focus on the former
challenge in this paper.

2. Problem Setup
We begin by briefly reviewing some relevant definitions. We
use uppercase letters, e.g., X , to denote random variables
(RVs), and lowercase letters, e.g. x, for their instantia-
tions. We assume that the dataset consists of n RVs sampled
from a finite alphabet of k letters; without loss of gener-
ality, we take this alphabet to be [k] = {1, 2, . . . , k}. Let
P be the class of probability distributions on [k]. Given a
dataset Xn = (X1, X2, . . . , Xn) of n i.i.d. observations
from some unknown P ∈ P , a randomized algorithm (pri-
vacy mechanism) A : Xn 7→ X outputs a single sample
from X . Let Y = A(Xn) be the random variable corre-
sponding to the output of algorithm A given input Xn. The
output A(Xn) is drawn from a distribution Q such that

Q(y) =
∑

xn∈Xn

Pr {A(xn) = y|xn}Pr {Xn = xn} . (1)

The accuracy of A is measured by the closeness between Q
and P . We use the total variation distance, defined as

dTV (Q,P ) =
1

2
∥Q− P∥1 =

1

2

∑
x

|Q(x)− P (x)|. (2)

We use the following definition of sampling accuracy, intro-
duced in (Axelrod et al., 2020).
Definition 2.1 (Accuracy of Sampling). An algorithm A is
α-accurate on a distribution P if the total variation distance,
dTV between Q and P is bounded by some constant α, i.e.,

dTV (Q,P ) ≤ α. (3)

An algorithm is α-accurate on a class P of distributions if it
is α-accurate on every P ∈ P .

Two datasets xn and x̃n are considered neighbors, denoted
xn ∼ x̃n, if they differ by at most one entry. DP is defined
with respect to all such neighboring datasets as follows.
Definition 2.2 (Differential Privacy (Dwork et al., 2006)).
A randomized algorithm, or mechanism A : Xn → Y is
considered ϵ-differentially private (ϵ-DP) if, for every pair
of neighboring datasets xn ∼ x̃n ∈ Xn, and for all Y ⊆ Y ,

Pr{A(xn) ∈ Y } ≤ eϵ Pr{A(x̃n) ∈ Y }. (4)

In (Raskhodnikova et al., 2021), the authors present an
achievable ϵ-DP sampler which does the following:
(i) computes, for each j ∈ [k], the empirical probability
distribution p̂j ,
(ii) adds noise drawn from Lap( 2

nϵ ) to each count,
(iii) uses an L1 projection to restrict the noisy distribution
to be a probability vector P̃ = (p̃1, . . . , p̃k), and
(iv) outputs an element of [k] sampled from P̃ .
They show that this algorithm is α-accurate with a sampling
complexity

n′ =
2k

αϵ
. (5)

Cheu and Nayak (Cheu & Nayak, 2025) propose Subsam-
pled Randomized Response (SubRR), which selects a data
point uniformly at random from the input dataset and ap-
plies k-ary randomized response (Warner, 1965; Dwork
et al., 2006). In Theorem 12 of (Cheu & Nayak, 2025),
they show that their algorithm is α-accurate with a reduced
sampling complexity

n′′ =
1

αϵ
(k − 1)(1− α). (6)

In the following section, we prove that it is possible to
achieve an ϵ-DP and α-accurate sampler with fewer sam-
ples than both n′ and n′′. Notably, for higher values of ϵ,
i.e., lower privacy, we gain an exponential reduction in the
required number of samples. Moreover, (Raskhodnikova
et al., 2021) also establishes a lower bound on the sampling
complexity as Ω

(
k
αϵ

)
for a restricted range of ϵ ∈ (0, 1].

3. Reveal-or-Obscure (ROO)
Algorithm 1 presents our proposed private sampler ROO.
We implement the idea of obscuring the empirical distribu-
tion P̂xn by sampling from the uniform distribution on [k].
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However, we wish to do so with a small probability q, so
that we do not deviate too much from the true distribution
P . With probability 1− q, we simply choose a sample from
the given dataset, i.e., we reveal P̂xn .

Algorithm 1 Reveal-or-Obscure (ROO)
Input: Dataset xn = (x1, . . . , xn), alphabet size k, privacy

budget ϵ, parameter q
Output: Sample y

With probability q, choose y ∼ Unif[1 : k]
Otherwise, pick i ∼ Unif[1 : n] and choose y = xi

return y

The privacy and utility guarantees provided by Algorithm 1
is given by the following theorem.

Theorem 3.1. Given q, Algorithm 1 is ϵ-DP and α-accurate
for

ϵ = log

(
1 +

k(1− q)

nq

)
, and (7)

α = q

(
1− 1

k

)
, (8)

from which we can solve for q to obtain the sampling com-
plexity as

n =
k(1− α)− 1

α(eϵ − 1)
. (9)

Lemma 3.2. For any k ≥ 2, ϵ > 0, and α ∈
(
0, 1− 1

k

)
,

the sampling complexity of Algorithm 1 is lower than that of
(Raskhodnikova et al., 2021) and (Cheu & Nayak, 2025).

The proofs are provided in Appendix A.

In fact, the sampling complexity of Algorithm 1 is expo-
nentially better in terms of ϵ compared to that of (Raskhod-
nikova et al., 2021) in (5), and (Cheu & Nayak, 2025) in (6).
This would appear to violate the lower bound of (Raskhod-
nikova et al., 2021) on the sampling complexity; the reason
it does not is that their lower bound only applies for ϵ < 1.

4. Data-Specific Reveal-or-Obscure (DS-ROO)
For the ROO algorithm in Section 3, we fix q in order to
achieve ϵ-DP for any possible dataset. From (19) in the
privacy analysis of Appendix A, we observe that the supre-
mum of ratio of probabilities is achieved by setting p = 0.
This corresponds to the case where one of two neighboring
datasets under consideration is entirely missing an element
of the alphabet, but this element is present in the other
dataset. Thus, ROO is inefficient on datasets where each
element of the alphabet appears reasonably often. In this
section, we show that by making q a function of the dataset—
specifically, a function of the smallest empirical probability,

Algorithm 2 Data-specific ROO (DS-ROO)
Input: Dataset xn = (x1, . . . , xn), alphabet size k, privacy

budget ϵ
Output: Sample y

Compute

u′ = −1 +
1

k
− 1

n
, v′ = eϵ

(
1

k
− 1

)
, w′ = eϵ − 1− 1

n
;

q0 =
1

1 + n
k (eϵ − 1)

; (10)

for m = 1, 2, . . . ,
⌊
n
k

⌋
do

Compute

um = −m

n
+

1

k
− 1

n
, vm = eϵ

(
1

k
− m

n

)
,

wm = − 1

n
− m

n
+

m

n
eϵ;

qm = max

{
0,

um

vm
qm−1 −

wm

vm
,
v′

u′ qm−1 +
w′

u′

}
;

(11)

end for
Compute m = n ·min

x
P̂xn(x);

With probability qm, choose y ∼ Unif[1 : k];
Otherwise, pick i ∼ Unif[1 : n] and choose y = xi;
return y;

the accuracy can be improved for the same privacy. Let
m ∈

{
0, 1, . . . ,

⌊
n
k

⌋}
denote the smallest number of times

an element of [k] appears in dataset xn. Mathematically, m
can be expressed as m = n ·minx P̂xn(x). The modified
private sampler—which we call the data-specific reveal-
or-obscure (DS-ROO)—is presented in Algorithm 2. In
DS-ROO, the probability qm is determined from the value
of m associated with the given dataset.

Notably, when m = 0, the corresponding q0 is equivalent
to that of Algorithm 1. That is, the case of a dataset that
is missing an element of the alphabet (so m = 0) is the
worst-case scenario, and so in this case DS-ROO behaves
identically to ROO. However, we will show empirically that
in other cases, DS-ROO can do much better than vanilla
ROO.

Fig. 1 shows the function qm for k = 10, n = 1000, and
several different values of the privacy parameter ϵ. We
observe that qm is non-increasing in m. As m increases,
the empirical distribution of the dataset gets closer to the
uniform distribution, and qm approaches zero. Thus, DS-
ROO is less likely to obscure the empirical distribution for
larger m. In high privacy regimes, qm tends to decrease
much slower. On the other hand, for larger ϵ, i.e., low
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Figure 1. Plot of qm as a function of m for fixed k and n, showing
changes under different privacy budgets ϵ.

privacy, qm goes to zero much faster. The privacy guarantee
provided by DS-ROO is given by the following theorem.

Theorem 4.1. Algorithm 2 is ϵ-differentially private.

The proof is provided in Appendix B.

4.1. Utility of DS-ROO

We do not have theoretical bounds on the utility of DS-ROO
at this time. However, we provide empirical evidence that
DS-ROO achieves better utility than vanilla ROO and the
state-of-the-art samplers for the same privacy guarantee.
In order to measure the utility of DS-ROO, we consider
an input distribution, estimate the corresponding output
distribution according to Algorithm 2, and compute the
total variation distance. Fig. 2 shows an example case for
a distribution on an alphabet of size k = 9, with dataset
size n = 1000, and privacy parameter ϵ = 0.1. We observe
that mixing with the uniform distribution shifts some of the
weight from the most probable central element to those with
lower probabilities, resulting in reduced skewness in the
output distribution.

Recall from Definition 2.1 that the total variation distance
is upper bounded by α. From Theorem 3.1, we have the
accuracy of ROO

α =
1

1 + n
k (e

ϵ − 1)

(
1− 1

k

)
. (12)

For fixed values of k and n, we obtain the accuracy of
DS-ROO empirically, and compare it with that of (Raskhod-
nikova et al., 2021; Cheu & Nayak, 2025) and ROO. Fig. 3
shows the α vs. ϵ curves for all three algorithms. We ob-
serve that DS-ROO achieves dramatically better accuracy
than the other methods while providing the same privacy
guarantee. Of course, the numerical results in Fig. 3 are for
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=
k}

Comparison of PMFs
True Distribution
Output Distribution

Figure 2. Comparison of true distribution and the estimated output
distribution for DS-ROO.
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Accuracy comparison for k = 9, n = 1000
Rashkhodnikova et al.
Cheu and Nayak
Reveal-or-obscure (ROO)
Data-specific ROO (DS-ROO)

Figure 3. Comparison of accuracy (α) versus privacy (ϵ) curves of
differentially private sampling algorithms.

the particular distribution shown in Fig. 2. We anticipate
that we will see similar improvements for distributions that
are not too skewed—if the distribution is more skewed (such
as if the probability of a letter is 0), then there will be no
improvement over vanilla ROO.

5. Conclusion
In this work, we build on and improve a differentially pri-
vate sampling algorithm for discrete distributions on a finite
alphabet. We establish a strictly lower sampling complex-
ity bound than prior methods. In addition, we propose
a generalization—Data-Specific Reveal-or-Obscure (DS-
ROO)—which adaptively selects the probability of obscur-
ing the empirical distribution of the dataset to improve the
privacy-utility trade-off. For future work, we aim to explore
theoretical bounds on the utility of DS-ROO, and the practi-
cality of our proposed method for more complex distribution
classes.
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A. Proof of Theorem 3.1
Privacy Analysis. Given xn, Algorithm 1 chooses output
Y = y with probability

P (Y = y|xn) =
q

k
+ (1− q)P̂xn(y), (13)

where P̂xn(x) denotes the empirical probability of each
x ∈ [k],

P̂xn(x) =
1

n

n∑
i=1

1(xi = x). (14)

For neighboring datasets xn ∼ x̃n, their corresponding
empirical probabilities of one observation differ by at most
1
n , i.e., for all x ∈ X ,

|P̂xn(x)− P̂x̃n(x)| ≤ 1

n
. (15)

By Definition 2.2, in order for ROO to satisfy ϵ-DP, the
following condition must hold for all possible xn ∼ x̃n,

P (Y = y|xn)

P (Y = y|x̃n)
≤ eϵ. (16)

We can write the left side of (16) as

P (Y = y|xn)

P (Y = y|x̃n)
=

q
k + (1− q)P̂xn(y)
q
k + (1− q)P̂x̃n(y)

(17)

≤ sup
p

q
k + (1− q)

(
p+ 1

n

)
q
k + (1− q)p

(18)

= sup
p

1 +
(1− q) 1n

q
k + (1− q)p

≤ 1 +
(1− q) 1n

q
k

. (19)

Here, in (17), we substitute (13). In (18), we use the prop-
erty of the empirical probabilities stated in (15), denoting
P̂x̃n(y) with p for notational simplicity. In (19), the supre-
mum is obtained when p = 0. Therefore, ROO satisfies
ϵ-DP guarantee if the right side of (19) is bounded by eϵ,
i.e.,

1 +
(1− q) 1n

q
k

≤ eϵ. (20)

Rearranging (20), we obtain the privacy guarantee of Theo-
rem 3.1 stated in (7).

Utility Analysis. For our proposed sampler ROO in Algo-

rithm 1, the output distribution is

Q(y) =
∑

xn∈Xn

( q

k
+ (1− q)P̂xn(y)

)
Pr {Xn = xn}

(21)

=
q

k

∑
xn∈Xn

Pr {Xn = xn}

+ (1− q)
∑

xn∈Xn

P̂xn(y) Pr {Xn = xn} (22)

=
q

k
+ (1− q)EXn [P̂xn(y)] =

q

k
+ (1− q)P (y),

(23)

where (23) follows from the fact that P̂xn is the empirical
distribution of a dataset sampled from P . The total variation
distance between the discrete distributions Q and P is thus

dTV (Q,P ) =
1

2

∑
y∈X

|Q(y)− P (y)| (24)

=
q

2

∑
y∈X

∣∣∣∣1k − P (y)

∣∣∣∣ (25)

= q × dTV

(
1

k
, P (y)

)
(26)

≤ q ×max
P (y)

dTV

(
1

k
, P (y)

)
, (27)

where we obtain (25) by rearranging and substituting (23).
Note that, for a convex objective function, the maximum
is achieved at its corner points. Hence, the distribution P
that maximizes the dTV between the uniform distribution
on [k] and the input distribution P must be one of the corner
points of the k-dimensional probability simplex P , e.g. P =
{1, 0, . . . , 0}. The maximum dTV is then computed as

max
P (y)

dTV

(
1

k
, P (y)

)
= max

P (y)

1

2

∑
y∈X

∣∣∣∣1k − P (y)

∣∣∣∣ = 1− 1

k
.

(28)

Substituting this maximum objective value into (27), we
have

dTV (Q,P ) ≤ q

(
1− 1

k

)
. (29)

Comparing this result with Definition 2.1, we obtain the util-
ity of Theorem 3.1, stated in (8). We can then express q, i.e.,
the probability of sampling from the uniform distribution,
in terms of α and k,

q =
α

1− 1
k

=
kα

k − 1
. (30)

Substituting the above into (20) and rearranging, we obtain
sample complexity

n =
k(1− α)− 1

α(eϵ − 1)
. (31)
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A.1. Proof of Lemma 3.2

We first compare the sampling complexity of ROO with that
of (Raskhodnikova et al., 2021). From (9) in Theorem 3.1,
we have the sampling complexity of ROO,

n =
k(1− α)− 1

α(eϵ − 1)
=

k
(
1− α− 1

k

)
α(eϵ − 1)

(32)

=
2k

αϵ

ϵ

2(eϵ − 1)

(
1− 1

k
− α

)
(33)

<
2k

αϵ
= n′. (34)

As ϵ increases, the term eϵ − 1 in the denominator of (9)
grows exponentially, resulting in significantly lower n com-
pared to n′. Secondly, we compare the sampling complexity
of ROO with that of (Cheu & Nayak, 2025). Subtracting
(6) from (9), we have

k(1− α)− 1

α(eϵ − 1)
− (k − 1)(1− α)

αϵ

=
k(1− α)− 1 + α− α

α(eϵ − 1)
− (k − 1)(1− α)

αϵ
(35)

=
(k − 1)(1− α)− α

α(eϵ − 1)
− (k − 1)(1− α)

αϵ
(36)

=
ϵ(k − 1)(1− α)− αϵ− (eϵ − 1)(k − 1)(1− α)

αϵ(eϵ − 1)
(37)

=
(ϵ− eϵ + 1)(k − 1)(1− α)− αϵ

αϵ(eϵ − 1)
< 0, (38)

where (38) follows from the fact that 1 + ϵ < eϵ for ϵ > 0.
Therefore, despite the similar structure of ROO and SubRR,
ROO requires fewer samples to achieve ϵ-DP.

B. Proof of Theorem 4.1
Since m denotes the smallest number of times an element
in the alphabet [k] appears in a dataset xn, it is at most

⌊
n
k

⌋
when the empirical distribution is uniform. For neighboring
datasets xn ∼ x̃n, there are three possible values of m̃:
(1) m̃ = m, when the different entry in x̃n is a different
element in [k], hence it does not affect the minimum count,
(2) m̃ = m+1, and (3) m̃ = m−1. In order to understand
how the behavior of qm changes with m, we first analyze
the likelihood ratio of the output distributions. Recall from
Definition 2.2 that, for Algorithm 2 to achieve ϵ-DP, the
following condition must hold for all possible xn ∼ x̃n

pairs,

max
x

qm̃
k + (1− qm̃)P̂x̃n(x)
qm
k + (1− qm)P̂xn(x)

≤ eϵ. (39)

Adding and subtracting P̂xn(x) from P̂x̃n(x) in the numer-
ator, the condition becomes

max
x

qm̃
k + (1− qm̃)(P̂x̃n(x)− P̂xn(x) + P̂xn(x))

qm
k + (1− qm)P̂xn(x)

≤ eϵ.

(40)

The ratio is maximized when the numerator is maximized.
Using (15), we can rewrite the condition as

qm̃
k + (1− qm̃)( 1n + P̂xn(x))

qm
k + (1− qm)P̂xn(x)

≤ eϵ (41)

⇒ P̂xn(x) (1− qm̃ − eϵ(1− qm))

≤ eϵ
qm
k

− qm̃
k

− (1− qm̃)
1

n
. (42)

If (42) is satisfied at the two endpoints of P̂xn , then the con-
dition holds for all P̂xn . Now, substituting minx P̂xn(x) =
m
n into (42), we require

m

n
(1− qm̃ − eϵ(1− qm)) ≤ eϵ

qm
k

− qm̃
k

− (1− qm̃)
1

n
.

(43)

Considering the three cases of m̃ and simplifying (43), we
have the following conditions:

(um − vm)qm ≤ wm, for all m, (44)

umqm+1 ≤ vmqm + wm, for m = 0, 1, . . . ,
⌊n
k

⌋
− 1,

(45)

umqm−1 ≤ vmqm + wm, for m = 1, 2, . . . ,
⌊n
k

⌋
. (46)

Similarly, substituting maxx P̂xn(x) = 1 into (42), we re-
quire

1− qm̃ − eϵ(1− qm) ≤ eϵ
qm
k

− qm̃
k

− (1− qm̃)
1

n
.

(47)

Considering the three cases of m̃ and simplifying (47), we
have three more conditions:

(u′ − v′)qm ≤ w′, for all m, (48)

u′qm+1 ≤ v′qm + w′, for m = 0, 1, . . . ,
⌊n
k

⌋
− 1, (49)

u′qm−1 ≤ v′qm + w′, for m = 1, 2, . . . ,
⌊n
k

⌋
. (50)

Therefore, for Algorithm 2 to achieve ϵ-DP, the function qm
must satisfy (44)–(46) and (48)–(50). Now, let qm have the
following expression:

qm = max

{
0,

um

vm
qm−1 −

wm

vm
,
v′

u′ qm−1 +
w′

u′

}
(51)

= max {0, f1(qm−1), f2(qm−1)} . (52)

7
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Here, the initial value q0 is defined as in (10). Note that,
since qm is a probability, we must have 0 ≤ qm ≤ 1 for all
m. The remainder of the proof is structured as follows:

• Lemma B.1 shows that f1(qm−1) is non-increasing.

• Lemma B.2 shows that f2(qm−1) is non-increasing.

• Lemma B.3 shows that

qm = max {0, f1(qm−1), f2(qm−1)} (53)

is monotonic and non-increasing.

• Lemma B.4 shows that (51) satisfies the condition in
(44).

• Lemma B.5 shows that (51) satisfies the condition in
(45).

• Lemma B.6 shows that (51) satisfies the condition in
(48).

• Lemma B.7 shows that (51) satisfies the condition in
(50).

Therefore, Algorithm 2 is ϵ-differentially private.

B.1. Additional Proofs

Lemma B.1. For any k ≥ 2, ϵ > 0, and datasets of size n
where n > k, the function f1(qm−1) =

um

vm
qm−1 − wm

vm
is

non-increasing in m.

Proof. Since the function f1(qm−1) :
{
0, 1, . . . ,

⌊
n
k

⌋}
7→

[0, 1] is discrete, we need to show that

f1(qm−1) ≤ f1(qm−2), (54)

for all m ∈
{
0, 1, . . . ,

⌊
n
k

⌋}
. Note that, we obtain the

recursive expression qm = f1(qm−1) by considering (46)
as an equality:

vmqm = umqm−1 − wm (55)
⇒ vmqm − vmqm−1 = umqm−1 − wm − vmqm−1 (56)

⇒ qm − qm−1 =
um − vm

vm
qm−1 −

wm

vm
(57)

⇒ qm − qm−1 =

(
um

vm
− 1

)
qm−1 −

wm

vm
. (58)

It suffices to show that the right side of (58) is negative.
Substituting the expressions for um and vm into the first

coefficient, we have

um

vm
− 1 =

−m
n + 1

k − 1
n

eϵ
(
1
k − m

n

) − 1 (59)

=

(
1
k − m

n

)
1
n − eϵ

(
1
k − m

n

)
eϵ

(
1
k − m

n

) (60)

=
− 1

n −
(
1
k − m

n

)
(eϵ − 1)

eϵ
(
1
k − m

n

) (61)

< 0. (62)

Similarly, substituting the expression for wm into the second
coefficient, we have

wm

vm
=

− 1
n − m

n + m
n eϵ

eϵ
(
1
k − m

n

) (63)

=
− 1

n + m
n (eϵ − 1)

eϵ
(
1
k − m

n

) (64)

> 0, (65)

for m >
⌊

1
eϵ−1

⌋
. Since qm has a lower bound 0 in this

range, the right side of (58) is(
um

vm
− 1

)
qm−1 −

wm

vm
< 0. (66)

It still remains to show that qm − qm−1 < 0 for m =

1, 2, . . . ,
⌊

1
eϵ−1

⌋
. We observe from Lemma B.4 (proved

independently) that in this range of m, qm has a non-zero,
positive lower bound. Substituting this bound to the right
side of (58), we have(

um

vm
− 1

)
wm−1

um−1 − vm−1
− wm

vm

=
− 1

n −
(
1
k − m

n

)
(eϵ − 1)

eϵ
(
1
k − m

n

) m−1
n (eϵ − 1)− 1

n(
m−1
n − 1

k

)
(eϵ − 1)− 1

n

− wm

vm
(67)

=
− 1

n −
(
1
k − m

n

)
(eϵ − 1)(

m−1
n − 1

k

)
(eϵ − 1)− 1

n

m−1
n (eϵ − 1)− 1

n

eϵ
(
1
k − m

n

) − wm

vm
(68)

= C
− 1

n + m
n (eϵ − 1)− 1

n (e
ϵ − 1)

eϵ
(
1
k − m

n

) − wm

vm
(69)

= C

[
− 1

n + m
n (eϵ − 1)

eϵ
(
1
k − m

n

) −
1
n (e

ϵ − 1)

eϵ
(
1
k − m

n

)]− wm

vm
(70)

= C

[
wm

vm
− eϵ − 1

eϵ
(
n
k −m

)]− wm

vm
. (71)

Here, wm

vm
< 0 for the relevant range of m. Moreover, since

n
k > m, eϵ−1

eϵ(n
k −m)

is positive and less than 1. Finally, the

8
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coefficient,

C =
− 1

n −
(
1
k − m

n

)
(eϵ − 1)(

m−1
n − 1

k

)
(eϵ − 1)− 1

n

(72)

=
− 1

n −
(
1
k − m−1+1

n

)
(eϵ − 1)(

m−1
n − 1

k

)
(eϵ − 1)− 1

n

(73)

=

(
m−1
n − 1

k

)
(eϵ − 1)− 1

n + 1
n (e

ϵ − 1)(
m−1
n − 1

k

)
(eϵ − 1)− 1

n

(74)

= 1 +
1
n (e

ϵ − 1)(
m−1
n − 1

k

)
(eϵ − 1)− 1

n

(75)

= 1− eϵ − 1

1 + n(eϵ − 1)
(
1
k − m−1

n

) (76)

< 1. (77)

Therefore, we have

C

[
wm

vm
− eϵ − 1

eϵ
(
n
k −m

)] <
wm

vm
(78)

⇒ C

[
wm

vm
− eϵ − 1

eϵ
(
n
k −m

)]− wm

vm
< 0 (79)

Thus, for all m,

qm ≤ qm−1, (80)

i.e., f1(qm−1) ≤ f1(qm−2). Therefore, f1(qm−1) is non-
increasing.

Lemma B.2. For any k ≥ 2, ϵ > 0, and datasets of size
n where n > k, the function f2(qm−1) =

v′

u′ qm−1 +
w′

u′ is
non-increasing in m.

Proof. We observe that for some n, k and ϵ, the function

f2(qm−1) =
v′

u′ qm−1 +
w′

u′ (81)

is linear in qm, with slope v′

u′ and intercept w′

u′ . We can show
that the f2(qm−1) is non-increasing by using the fixed-point
iteration method. The slope

v′

u′ =
eϵ

(
1
k − 1

)
−1 + 1

k − 1
n

=
eϵ

(
1
k − 1

)(
1
k − 1

)
− 1

n

(82)

is positive and less than 1 for 0 < ϵ < log(1 + 1
n ). For

ϵ > log(1+ 1
n ), the slope is positive and greater than 1. The

intercept

w′

u′ =
eϵ − 1− 1

n

−1 + 1
k − 1

n

(83)

is positive for ϵ < log(1 + 1
n ) and negative for ϵ > log(1 +

1
n ). Thus, we can consider two regions of ϵ values and apply
fixed-point iteration to each case.

(a)

(b)

Figure 4. Fixed-point iteration.

Case I: 0 < ϵ < log(1 + 1
n ). In this region, we have

0 < v′

u′ < 1 and a positive intercept w′

u′ . As illustrated in
Figure 4(a), the initial value q0 is greater than the intersec-
tion point of qm = v′

u′ qm−1 +
w′

u′ and qm = qm−1. In this
case, the fixed-point iteration is contractive, and as a result,
the sequence qm converges monotonically to the unique
fixed point of f(qm−1).

As the slope approaches 1, the fixed point still remains
smaller than q0. When crossover happens and the slope
becomes greater than 1, the fixed point moves to a value
larger than q0, preserving the decreasing nature of qm.

Case II: ϵ > log(1 + 1
n ). In this region, we have v′

u′ > 1

and a negative intercept w′

u′ . As illustrated in Figure 4(b),
the initial value q0 is less than the intersection point of
qm = v′

u′ qm−1 + w′

u′ and qm = qm−1. In this case, the
sequence qm decreases monotonically until it reaches 0.

Lemma B.3. qm = max {0, f1(qm−1), f2(qm−1)} is non-
increasing in m.

Proof. We need to show that

max {0, f1(qm), f2(qm)} ≤ max {0, f1(qm−1), f2(qm−1)} .
(84)

9



Reveal-or-Obscure: A Differentially Private Sampling Algorithm

By Lemmas B.1 and B.2, we have

f1(qm) ≤ f1(qm−1) (85)
f2(qm) ≤ f2(qm−1). (86)

Since f1(qm) and f2(qm) are both non-increasing in m, they
can intersect at most once in the domain of m. The mono-
tonicity of both functions is preserved at the intersection
m∗, i.e.,

f1(qm∗+1) ≤ f1(qm∗) = f2(qm∗) ≤ f2(qm∗−1) (87)

Thus, the pointwise maximum of 0, f1(qm) and f2(qm)
preserves the non-increasing property of the individual
functions. Therefore, the final expression of qm is non-
increasing.

Lemma B.4. For m ∈
{
0, 1, 2, . . . ,

⌊
1

eϵ−1

⌋}
, and um, vm,

the function qm satisfies the condition

qm ≥ wm

um − vm
. (88)

Proof. Recall the inequality condition in (44),

(um − vm)qm ≤ wm, (89)

for all m. Note that, um − vm is negative for all m. Rear-
ranging (89), we need to show that qm satisfies

qm ≥ wm

um − vm
. (90)

Now, since 0 ≤ qm ≤ 1, the inequality in (90) is automati-
cally satisfied whenever the right side is negative. Therefore,
the only case we need to consider is when the right side is
positive. Since the denominator um−vm is always negative,
this happens only when the numerator wm is also negative,
i.e.,

wm = − 1

n
− m

n
+

m

n
eϵ < 0 ⇒ m <

1

eϵ − 1
. (91)

Let,

tm =
wm

um − vm
=

wm

vm
um

vm
− 1

(92)

⇒
(
um

vm
− 1

)
tm =

wm

vm
. (93)

We observe that

t0 =
w0

u0 − v0
=

− 1
n

1
k − 1

n − eϵ

k

=
1

1 + n
k (e

ϵ − 1)
= q0.

(94)

Moreover,

tm =
m
n (eϵ − 1)− 1

n(
m
n − 1

k

)
(eϵ − 1)− 1

n

(95)

=
m
n (eϵ − 1)− 1

n − 1
k (e

ϵ − 1) + 1
k (e

ϵ − 1)(
m
n − 1

k

)
(eϵ − 1)− 1

n

(96)

=

(
m
n − 1

k

)
(eϵ − 1)− 1

n + 1
k (e

ϵ − 1)(
m
n − 1

k

)
(eϵ − 1)− 1

n

(97)

= 1 +
1
k (e

ϵ − 1)(
m
n − 1

k

)
(eϵ − 1)− 1

n

(98)

= 1−
1
k (e

ϵ − 1)(
1
k − m

n

)
(eϵ − 1) + 1

n

. (99)

As m increases, (99) becomes smaller due to a larger frac-
tion being subtracted from 1. Thus, tm is decreasing in
m. Now, we prove the lemma for the base case and apply
induction. Base case: For m = 1, we have

q1 =
u1

v1
q0 −

w1

v1
(100)

=
u1

v1
t0 −

(
u1

v1
− 1

)
t1 (101)

=
u1

v1
(t0 − t1) + t1 (102)

> t1, (103)

since u1

v1
> 0, and tm is strictly decreasing in m.

Induction step: Let us assume qm > tm for any m. We have

qm+1 =
um+1

vm+1
qm − wm+1

vm+1
(104)

=
um+1

vm+1
qm −

(
um+1

vm+1

)
tm+1 (105)

>
um+1

vm+1
tm −

(
um+1

vm+1

)
tm+1 (106)

Rearranging the right side of (106), we have

qm+1 >
um+1

vm+1
(tm − tm+1) + tm+1. (107)

Since tm is strictly decreasing in m and the coefficient of
tm − tm+1 is positive, qm+1 > tm+1. Thus, for m ∈{
0, 1, 2, . . . ,

⌊
1

eϵ−1

⌋}
, qm satisfies (88).

Lemma B.5. For m ∈
{
0, 1, . . . ,

⌊
n
k

⌋
− 1

}
, the function

qm satisfies the inequality condition

umqm+1 < vmqm + wm. (108)

Proof. Using the expressions for um, vm, and wm as de-
fined in Algorithm 2, we have, for m = 0,

u0 =
1

k
− 1

n
, v0 =

eϵ

k
,w0 = − 1

n
. (109)

10
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Then, we can write

u0q1 − v0q0 = u0q1 − u0q0 + u0q0 − v0q0

= u0(q1 − q0) +

(
1

k
− 1

n

)
q0 −

eϵ

k
q0

(110)

= u0(q1 − q0) +

(
1

k
+ w0

)
q0 −

eϵ

k
q0

(111)

= u0(q1 − q0) +
1

k
q0 + w0q0 −

eϵ

k
q0

(112)

= w0q0 −
eϵ − 1

k
q0 − u0(q0 − q1) (113)

< w0. (114)

Here, (114) follows from the fact that 0 ≤ q0 ≤ 1 and qm
is non-increasing.

For m = 1, 2, . . . ,
⌊
n
k

⌋
− 1, we can write

umqm+1−vmqm = umqm+1 − umqm−1 + wm (115)
= wm + um(qm+1 − qm−1) (116)

= wm +

(
−m

n
+

1

k
− 1

n

)
(qm+1 − qm−1)

(117)

= wm −
(
1

k
− m+ 1

n

)
(qm−1 − qm+1)

(118)

< wm. (119)

Here, (119) follows from the fact that qm is non-increasing
and 1

k − m+1
n is non-negative for m = 1, 2, . . . ,

⌊
n
k

⌋
− 1.

Finally, for qm+1 = 0, we have

−vmqm = wm −
(
1

k
− m+ 1

n

)
qm−1 (120)

< wm (121)

⇒ qm > −wm

vm
. (122)

It follows from (65) that the right side of (122) is negative.
Thus, (122) is a valid inequality, and we can conclude that
qm satisfies (108) for the relevant range of m.

Lemma B.6. For m = 0, 1, 2, . . . ,
⌊
n
k

⌋
, and u′, v′, and

w′ as defined in Algorithm 2, the function qm satisfies the
inequality condition

(u′ − v′)qm < w′. (123)

Proof.

(u′ − v′)qm =

(
−1 +

1

k
− 1

n
− eϵ

k
+ eϵ

)
qm (124)

=

(
eϵ − 1− 1

n
+

1

k
(1− eϵ)

)
qm (125)

= w′qm +
qm
k
(1− eϵ) (126)

< w′. (127)

Here, (139) follows from the fact that 0 ≤ qm ≤ 1 and
qm
k (1− eϵ) < 0.

Lemma B.7. For m = 1, 2, . . . ,
⌊
n
k

⌋
, and u′, v′, and w′ as

defined in Algorithm 2, the function qm satisfies the inequal-
ity condition

u′qm−1 < v′qm + w′. (128)

Proof.

u′qm−1 − v′qm = u′qm−1 − v′qm−1 + v′qm−1 − v′qm

(129)

= (u′ − v′)qm−1 + v′(qm−1 − qm)
(130)

= (u′ − v′)qm−1 + eϵ
(
1

k
− 1

)
(qm−1 − qm)

(131)

< (u′ − v′)qm−1 (132)
< w′. (133)

Here, (144) follows from the fact that eϵ
(
1
k − 1

)
< 0 and

qm is non-increasing, and (145) follows from Lemma B.6.
Therefore,

u′qm−1 < v′qm + w′. (134)
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