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ABSTRACT

Variational autoencoders (VAEs) offer a theoretically sound and popular framework for deep gen-
erative models. However, learning a VAE from data presents unresolved theoretical questions and
significant practical challenges. (i) It has been observed that the learned decoder distribution tends
to be the same for all points in the latent space, implying that the latent space is not dependent on
data space. This results in a poor latent representation of data. (ii) Additionally, due to the stochastic
nature of VAE’s decoder, it tends to produce blurry images that do not align well with the real data
distribution, resulting in high FID scores. In this work, we propose a deterministic approach that ad-
dresses the limitations of traditional VAEs by learning a more informative latent space. Our method
leverages a von-Mises Fisher (vMF) family-based kernel to regularize hyperspherical latent spaces
in simple deterministic autoencoders. This regularization can be interpreted as maximizing the mu-
tual information between the data and the latent space, leading to a more informative representation.
We investigate how this regularization can create a better and more meaningful latent space than tra-
ditional VAE. In a rigorous empirical study, we show that our proposed model can generate samples
that are comparable to, or better than, those of VAEs and other state-of-the-art autoencoders when
applied to images as well as other challenging data such as equations.

1 INTRODUCTION

Generative models are essential in machine learning, enabling us to understand how data is generated, reason prob-
abilistically, explore the low-dimensional manifolds of data, and create new data. As a result, these models are in-
creasingly applied in fields like computer vision (CV) (Sohn et al., 2015; Brock et al., 2018) and natural language
processing (NLP) (Bowman et al., 2015; Semeniuta et al., 2017).

VAEs (Kingma & Welling, 2013; Rezende et al., 2014) reformulate the task of learning representations for high-
dimensional data as a variational inference problem. This involves optimizing an objective (ELBO objective) that
balances the quality of autoencoded samples using a stochastic encoder-decoder pair while encouraging the latent
space to adhere to a fixed prior distribution. Since their introduction, VAEs have become a widely used framework
for generative modelling, often outperforming generative adversarial networks (GANs) (Goodfellow et al., 2014) and
providing more efficient sampling than autoregressive models (Larochelle & Murray, 2011; Germain et al., 2015).
There are many popular approaches to enhance the performance of VAEs for particular settings. Adversarial autoen-
coders (AAE) (Makhzani et al., 2015), and adversarial regularized autoencoders (ARAE) (Zhao et al., 2018) are
VAE-based methods proposed to leverage adversarial learning (Goodfellow et al., 2014). Indeed, both VAE and AAE
have similar goals but utilize different approaches to match the posterior with the prior. β-VAE (Higgins et al., 2017)
is another variant for VAE, where the regularizer (the KL divergence between the amortized inference distribution and
prior) is amplified by β. Using this, inferred high-level abstractions become more disentangled where the effect of
varying each latent code is transparent.

However, VAE and its variants face both practical and theoretical challenges, including a trade-off between sample
quality and reconstruction accuracy. This is often due to the use of overly simplistic prior distributions (Tomczak &
Welling, 2018; Dai & Wipf, 2019) or the over-regularization from the KL divergence term in the VAE objective (Tol-
stikhin et al., 2017). This issue of over-regularization leads VAE to generate blurry images.

A significant issue is the risk of posterior collapse, where the latent space becomes decoupled from the input data. It
generally happens when the conditional distribution of the VAE’s decoder is highly expressive (Chen et al., 2020; Zhao

∗Work done as an intern at IISc Bengaluru, India.

1



Published at the ICLR 2025 DeLTa workshop

et al., 2017; Van Den Oord et al., 2017). In such scenarios, the model predominantly relies on a single component
of the conditional distribution to represent the data, thereby neglecting the latent variables and missing out on the
benefits of mixture modelling offered by the VAE. This undermines one of the main goals of unsupervised learning,
which is to develop meaningful latent representations. Chen et al. (2016) have suggested some remedies for this issue
by restricting the capacity of the conditional distribution, but this approach involves manual adjustments and is often
tailored to specific problems and desired feature extraction. Later to tackle this issue, Zhao et al. (2019) propose a
reformulation of the ELBO objective of VAE which maximizes the mutual information between data and latent space.
Thus, Info-VAE effectively becomes a mixture of AAE and β-VAE. Using Info-VAE, the best results are achieved
once the adversarial learning in AAE is replaced by the maximum-mean discrepancy. Also, Info-VAE is limited in
the choice of information preference; see Appendix A.5 for more details. Another approach to optimize the mutual
information is by adversarially training a critique network, which minimises a lower bound of mutual information by
formulating a dual of the KL-divergence. This framework, called InfoMax VAE (Rezaabad & Vishwanath, 2020), has
a limitation: the tightness of the bound cannot be guaranteed. Additionally, training the critique network alongside the
encoder-decoder pair is complex and requires extra caution.

In this paper, we propose a novel solution to tackle over-regularization (problem of generating blurry images) and
posterior collapse (problem of uninformative latent space). We introduce a vMF family-based regularizer in a simple
deterministic autoencoder, which explicitly maximizes the mutual information between the data and the latent space.
Our model, being fully deterministic, avoids generating blurry images. To sample from a deterministic decoder, we
use ex-posterior density sampling (Ghosh et al., 2019b). The regularizer theoretically ensures that mutual information
is preserved between the data and the latent space, effectively mitigating posterior collapse and enabling the generation
of higher-quality data compared to traditional VAEs

Our model resembles InfoVAE (Zhao et al., 2019) and InfoMax VAE (Rezaabad & Vishwanath, 2020) but takes a
different approach to maximizing mutual information between data and latent space. Instead of a variational frame-
work, we use a simple regularizer that maximizes mutual information via kernel density estimation (KDE) with a vMF
kernel, avoiding the KL-based bounds in prior methods. This streamlined formulation simplifies training. Extensive
experiments show our model outperforms or matches existing methods on tasks like image generation, interpolation,
and classification. Additionally, we propose a variant effective for structured data, extending its applicability beyond
image datasets.

Our contributions are as follows:

• We introduce a novel regularized deterministic autoencoder for generative modelling, named Deterministic
Information Maximizing Autoencoder (DIME).

• We theoretically show that our regularizer explicitly maximizes the mutual information between the data and
latent space, resulting in a more informative latent space than VAEs.

• We theoretically prove that our regularizer provides an upper bound on the logarithm of the maximum mean
discrepancy (MMD) between the hyperspherical uniform distribution and the encoder’s output distribution,
connecting it conceptually with WAE.

• We conduct a rigorous empirical evaluation, comparing DIME with VAEs and several baselines on standard
image datasets and challenging structured datasets.

2 VARIATIONAL AUTOENCODERS

To be formal, let X = {x1,x2, · · · ,xN} denote the i.i.d set of observable data points drawn from a distribution P and
Z = {z1, z2, · · · , zN} the set of desired latent vectors, where xi ∈ Rd and zi ∈ Rl(l ≤ d). Let pθ(x|z) denote the
likelihood of generated sample conditioned on latent variable z and p(z) the prior, where θ denotes the parameter set
of the decoder fθ : Z → X ⊂ Rd. In classical VAEs, the prior is usually a standard Gaussian N (0, Il). The encoder
gϕ : X → Z ⊂ Rl in VAE parameterizes the variational posterior qϕ(z|x) in light of the lower bound of the marginal
log-likelihood

log pθ(x) = log

∫
pθ(x|z)p(z)dz

= log

∫
qϕ(z|x)
qϕ(z|x)

pθ(x|z)p(z)dz

≥ −D[qϕ(z|x)||p(z)] + Eqϕ [pθ(x|z)] (1)

The first term, D[qϕ(z|x)||p(z)], ensures that the encoded latent codes adhere to the prior distribution through the
KL divergence. The second term, Eqϕ [pθ(x|z)], guarantees the reconstruction accuracy of the inputs. For a Gaussian
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pθ(x|z) with a diagonal covariance matrix, log pθ(x|z) simplifies to the variance-weighted squared error. From now
onwards, same symbols and notations will be used in consecutive sections.

The lower-bound approximation of the log-likelihood offers a practical solution for VAEs but introduces new chal-
lenges. For instance, generated samples x ∼ pθ(x|z) can diverge from the true distribution X when sampling from the
prior because the learned qϕ(z|x) struggles to match the prior distribution accurately. Additionally, the reconstruction
quality may be unsatisfactory, often resulting in blurry images due to the probabilistic nature of VAEs.

3 MOTIVATION

Although VAEs remain very popular for numerous applications ranging from image processing to language modelling,
they typically suffer from challenges in enabling meaningful and useful representations z. Indeed, under appropriate
situations (where the sets θ and ϕ are defined appropriately) both inference and generative models collaborate in
producing an acceptable pθ(x|z) and an accurate amortized inference. However, finding suitable models for inference
and generative networks across different tasks and datasets is challenging - when the generative model is expressive,
a vanilla VAE sacrifices log-likelihood in favour of amortized inference (Chen et al., 2016). As a consequence, we
obtain poor latent space which is independent from the observed data, in fact, qϕ(z|x) = qϕ(z). This is undesirable
because a major goal of unsupervised learning is to learn meaningful latent features that should depend on the inputs.

To understand the origin of this discrepancy, we must return to the original problem. Particularly, a maximum like-
lihood technique is leveraged to minimize the bound on the KL divergence between the true data distribution q(x)
and the model’s marginal distribution pθ(x), D[qϕ(x)||pθ(x)]. In contrast, the quality of the latent variables only
depends on qϕ(z|x). Thus, maximum likelihood without additional constraints on the posterior is insufficient to
uncover relevant and information-rich latent variables. In addition, ELBO imposes a regularizer over latent codes,
D[qϕ(z|x)||p(z)], where it seeks in the family set of ϕ for those solutions that minimize this KL divergence. As a
result, it also reduces the usefulness of latent codes by encouraging qϕ(z|x) to be matched to p(z), which bears no
relationship with observed data. Such an approach minimizes the upper bound of the mutual information between the
representations and input data. To observe this:

Eqϕ
[
D(qϕ(z|x)∥p(z))

]
=

∫
qϕ(z,x) log

qϕ(z|x)
p(z)

dx dz

≥
∫

qϕ(z,x) log
qϕ(z|x)
p(z)

dx dz−D
[
qϕ(z)∥p(z)

]
=

∫
qϕ(z,x)

{
log

qϕ(z|x)
p(z)

− log
qϕ(z)

p(z)

}
dx dz

=

∫
qϕ(z,x) log

qϕ(z|x)
qϕ(z)

dx dz

= Iqϕ(x; z).

The inequity arises from the fact that the KL divergence does not take negative values. Hence, as vanilla VAEs push
the model to minimize the KL divergence between the variational posterior qϕ(z|x) and prior p(z), they also force
the representations to carry less information from input data. This may potentially result in inferior learned latent
representations. In practice, by employing expressive generative networks, the problem is exacerbated as the model
sacrifices the inference in favour of the likelihood. Indeed, the model becomes capable of recovering data from noise,
regardless of latent codes. Therefore, a vanilla VAE may not be enough to discover accurate high-level abstractions of
input data.

4 DETERMINISTIC INFORMATION MAXIMIZING AUTOENCODERS

As discussed earlier, VAEs without additional constraints can be unreliable for representation learning. One reason
is that their objective does not appropriately consider mutual information between latent and data space. Addition-
ally, their stochastic nature often results in the generation of blurry images. To address these issues, we propose a
new deterministic autoencoder that not only maximizes mutual information but also produces sharp images compared
to VAEs due to its deterministic nature. We call this model the Deterministic Information Maximizing Autoencoder
(DIME). DIME effectively mitigates the aforementioned issues by explicitly maximizing the mutual information be-
tween representations and data within a simple deterministic framework.

Let gϕ : X → Z ⊂ Rl and fθ : Z → X ⊂ Rd denote the encoder and decoder of a simple deterministic autoencoder
respectively. Let z = gϕ(x) ∈ Sl−1 be the normalized latent vector (i.e, ∥z∥ = 1) which is fed into the decoder
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fθ. A vanilla deterministic autoencoder optimizes the mean square error (MSE) based reconstruction loss Lvanilla =
Ex∼P∥x−fθ(gϕ(x))∥2 without any constrain over its latent space. We propose a regularizer that explicitly maximizes
mutual information between data and latent space via a vMF kernel density estimate (KDE). The following theorem
inspires our proposed regularizer:

Theorem 1. (Ahmad & Lin, 1976) Let pdata be uniform over finite samples {x1,x2, · · · ,xN} (e.g., a collected
dataset). The redistribution entropy estimator of gϕ(x), where x follows the underlying distribution P that generates
{xi}Ni=1 via a vMF kernel density estimate (KDE):

Ex∼pdata

[
logEx′∼pdata

[
e−gϕ(x′)⊺gϕ(x)/σ2

]]
(2)

=
1

N

N∑
i=1

log

(
1

N

N∑
j=1

e−gϕ(xi)
⊺gϕ(xj)/σ

2

)
(3)

=
1

N

N∑
i=1

log p̂vMF(gϕ(xi)) + logZvMF (4)

≜ −Ĥ(gϕ(x)) + logZvMF, x ∼ P,

≜ −Î(x; gϕ(x)) + logZvMF, x ∼ P,

where

• p̂vMF is the KDE based on samples {gϕ(xi)}Ni=1, using a vMF kernel,

• ZvMF is the normalization constant for vMF distribution with variance σ2,

• Ĥ denotes the redistribution entropy estimator,

• Î denotes the mutual information estimator based on Ĥ , since gϕ(.) is a deterministic function.

Proof. Kindly refer to the original paper by Ahmad & Lin (1976) for detailed proof.

We proposed regularizing the latent space to ensure that the mutual information is maximizes between data and latent
space. To achieve this, we use Eq. (4) as a regularizer along with the reconstruction loss. We define the regularized
loss as the logarithm of the average pairwise Gaussian potential:

LDIME(ϕ, θ) = Ex∼P∥x− fθ(gϕ(x))∥2︸ ︷︷ ︸
Lvanilla

DIME

+λ logEx,y∼P

[
e−γ∥gϕ(x)−gϕ(y)∥2

]
︸ ︷︷ ︸

Linfo
DIME

, γ > 0 (5)

We will now minimize the regularized loss given by Eq. (5) using stocahstic gradient descent (SGD) (Gower et al.,
2019) optimizer in batch form. Let B denote a mini-batch of the training data. At each SGD iteration, a mini-batch of
|B| points are sampled from the training set {xi}|B|

i=1, and the regularizer loss of LDIME is computed as follows:

• LinfoDIME : The mini-batch regularizer loss (KDE-based mutual information) is computed by:

log

 1

|B|(|B| − 1)

|B|∑
i=1

∑
j ̸=i

e−γ∥gϕ(xi)−gϕ(xj)∥2

 (6)

The average pairwise Gaussian potential is closely associated with the redistribution entropy estimator and KDE-based
mutual information estimator.

Our regularizer, as defined in Eq. (6), is not exactly the same as the mutual information estimator defined in Eq. (3),
as the position of the log term differs1. Next, demonstrate that the minimizer of both are identical.

1Our regularizer in Eq. (6) applies MSE on exponentiated terms, but since ∥gϕ(.)∥ = 1, it simplifies to an inner product, akin
to Eq. (3), with an extra e2 factor and a shifted log term.
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Analysis of LinfoDIME: Before starting with the analysis, for simplicity, we define the following notations:

Definition 1. Let M(Sl−1) be the set of Borel probability measures on Sl−1.

Definition 2. ∀µ ∈ M(Sl−1), µ ∈ Sl−1, we define the continuous and Borel measurable function

Uµ(u) ≜
∫
Sl−1

eu
⊺v/τdµ(v). (7)

with its range bounded in [e−1/τ , e1/τ ].

Eq.(2) can be equivalently written as

Ex∼pdata

[
logEx′∼pdata

[
e−gϕ(x′)⊺gϕ(x)/σ2

]]
= Ex∼pdata

[
logU

pdata◦g
−1
ϕ

gϕ(x)
]

where pdata ◦ g−1
phi ∈ M(Sl−1) is the probability measure of features, i.e, the pushforward measure of pdata via gϕ.

We now present the theorem that establishes the equivalence of the minimizers for Eq. (6) and Eq. (3). This result is
based on the derivation by Wang & Isola (2020).

Theorem 2. Consider the following relaxed problem, where the minimization is taken over M(Sl−1), all possible
Borel probability measures on the hypersphere Sl−1:

min
µ∈M(Sl−1)

∫
Sl−1

logUµ(v)dµ(u). (8)

The minimizer of Eq.(8) is unique and is identical to the minimizer of the following problem.

min
µ∈M(Sl−1)

log

∫
Sl−1

Uµ(v)dµ(u)

Proof. Kindly refer to Theorem 1 of the paper by Wang & Isola (2020).

Theorem 2 demonstrates that Eq. (6) and Eq. (3) share the same minimizer. Hence, pulling out the log from the outer
integral2 does not alter the solution. However, if we push the log all the way inside the inner integral, the problem
becomes equivalent to minimizing the norm of the mean, i.e.,

min
µ∈M(Sl−1)

EU∼µ[U ]⊤EU∼µ[U ],

which is minimized for any distribution with the mean being the all-zeros vector 0, e.g.,

1

2
δu +

1

2
δ−u, ∀u ∈ Sl−1,

(where δu is the Dirac delta distribution at u such that δu(S) = 1S(u), ∀S). Therefore, the location of the log is
important.

5 THEORITICAL ANALYSIS

This section offers a comprehensive theoretical analysis of our proposed regularizer. We investigate the dynamics of
the latent space with our proposed regularizer and establish connections with the famous Wasserestein autoencoder
(WAE) (Tolstikhin et al., 2017). We demonstrate that our proposed regularizer serves as a lower bound on the loga-
rithm of the maximum mean discrepancy (MMD) between the hyperspherical uniform distribution and the unknown
distribution of the latent space under vMF kernel, thereby establishing a connection with WAE (Theorem 3).

Connections with WAE: The maximum mean discrepancy is a divergence measure between two distributions P
and Q. In the context of WAEs, applying the encoder to the distribution of the input data (e.g. images) yields the
aggregate distribution Q of the latent variables. One of the goals of WAE training is to make Q (which depends on
the neural net parameters) as close as possible to some fixed target distribution P . This is achieved by incorporating
MMD between P and Q as a regularizer into the WAE objective.

2Uµ inherently has an integral, which is the inner integral. See Eq. (7)
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The computation of the MMD requires specifying a positive-definite kernel k : Rd × Rd → R, as per Theorem 1,
we assume it to be a Gaussian RBF kernel with bandwidth σ. The population MMD can be most straight-forwardly
computed via the formula (Gretton et al., 2012):

MMD2(P,Q) = Ew,w′∼P [k(w,w′)]− 2Ew∼P,z∼Q[k(w, z)] + Ez,z′∼Q[k(z, z′)] (9)

We start with the expression Eq.(9) and using the samples from QN = {zi}Ni=1, we replace the last two terms by the
sample average and the U-statistic respectively to obtain the unbiased estimator (Gretton et al., 2012):

MMD2
N (P,Q) = Ew,w′∼P [k(w,w′)]− 2

N

N∑
i=1

Ew∼P [k(w, zi)] +
1

N(N − 1)

N∑
i=1

N∑
j ̸=i

k(zi, zj). (10)

Here w, z ∈ Sl−1 are unit length latent vectors. We assume the distribution P to be a uniform distribution over (l−1) dimensional
sphere with density p(w) = Γ(l/2)

2πl/2 . In practical situations, we only have access to Q through a sample. For example, during each
step of the WAE training, the encoder will compute {zi}Ni=1 corresponding to the input data and the current values of neural network
parameters.

Theorem 3. The closed form of MMD2
N (P,Q), where P is a uniform distribution on Sl−1 can be computed analytically (with

N samples) to yield the following:

MMD2
N (PN ,QN ) = −a(σ, l) +

1

N(N − 1)

N∑
i=1

N∑
j ̸=i

e
−

∥zi−zj∥
2

2σ2 (11)

and, our proposed regularizer is related with MMD2
N as follows:

logMMD2
N (PN ,QN ) ≤ LinfoDIME .

Here, a(σ, l) = e−σ
−2

Γ(l/2)
(
2σ2
) l−2

2 I l−2
2

(
σ−2

)
and Iν(.) is the modified Bessel function of the first kind.

Proof. See Appendix A.4.

Our regularizer serves as the upper bound of the closed-form solution of the log of MMD when reference distribution P is uniform
over (l − 1) dimensional sphere. When the latent vectors are un-normalized, one can choose P as a standard normal distribution
over the l dimensional space (classic WAE); in this case, the inequality will be flipped.

In this work, our primary focus is on developing a novel autoencoder model that maximizes the mutual information between the
data and the latent space. Hence, we refrain from delving into a detailed analysis of the tightness of the bound, leaving it as a
direction for future research.

6 RELATED WORK

Deferred to Appendix A.1 due to space constraint.

7 EXPERIMENTS

Our experiments are designed to answer whether sample quality and latent space structure in DIME is comparable to VAEs and
other autoencoders? The quality and effectiveness of a learned latent space can be evaluated by the success of downstream tasks,
such as generating images, downstream classification and observing the smooth transition between different points in the data space.

7.1 IMAGE GENERATION

High-quality image generation signifies successful learning in the latent space. Since the DIME operates as a deterministic model,
it lacks a latent distribution from which images can directly be sampled. To overcome this limitation during the inference phase,
we apply ex-post density estimation (Ghosh et al., 2019b; Jing et al., 2020; Mazumder et al., 2024) on z. We achieve this by fitting
a density estimator, qψ(z), to the discrete set C := {z = gϕ∗(x)|x ∈ X}. This technique not only integrates seamlessly with the
DIME framework but also offers a viable solution for other deterministic AEs like the WAE and RAE, effectively addressing the
aggregated posterior mismatch without imposing additional computational demands during the training phase.
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Interpolation Random Samples Reconstruction

Original

VAE

INFO-
VAE

AE

WAE

RAE-
L2

RAE-
GP

DIME

Table 1: Qualitative evaluation of sample quality for VAE, AE, state-of-the-art deterministic autoencoders (WAE and
RAE) and DIME on CelebA reveals that DIME stands out by generating cleaner samples and interpolating smoothly
in the latent space. DIMEE also reconstructs sharper images despite incorporating a regularization term. Interestingly,
the reconstruction quality does not suffer due to the presence of regularizer. In contrast, VAE, being probabilistic,
produces blurry images. More qualitative results on different datasets are given in Appendix A.6.

Selecting qψ(z): The selection of qψ(z) balances between being expressive enough to accurately model the diverse latent space
of z and being simple enough to ensure generalization. For example, adopting a Dirac distribution at each latent point z might result
in high-fidelity reconstructions of training samples but would fail to generalize well. In our experiments, we opted for simplicity
by employing a 10-component Gaussian mixture model (GMM) and multivariate Gaussian (MVG or N ) noise to model the latent
space in deterministic autoencoders, facilitating the generation of images. This is a widely known technique that is extensively used
for generating images from deterministic encoder-decoder pairs (Ghosh et al., 2019b; Jing et al., 2020; Mazumder et al., 2024).

MNIST CIFAR-10 CelebA

N GMM N GMM N GMM

VAE 34.75 42.30 281.42 283.86 61.69 65.14
β-VAE 19.34 12.65 113.18 90.3 53.89 50.65
InfoVAE 36.71 29.44 251.59 238.43 66.65 63.90
S-VAE 53.89 – – – – –
HVAE 26.96 27.76 274.16 261.14 59.48 51.48
VAE-LinNF 29.31 28.46 240.32 247.09 56.54 53.36
VAE-IAF 27.53 27.00 236.08 235.43 55.43 53.61
CV-VAE 33.79 17.87 94.75 86.64 48.87 49.30
2s-VAE 18.81 – 109.77 – 49.70 –
AE 29.79 16.78 91.67 85.65 69.43 62.35
WAE 22.86 12.22 111.44 84.77 50.59 43.12
RAE-GP 24.61 13.01 92.90 84.97 48.45 38.70
RAE-L2 25.92 12.45 92.03 84.79 51.84 45.10
IRAME 26.58 22.31 – – 58.98 48.96
LoRAE 19.50 11.69 – – 56.29 46.43
DIME (Ours) 17.97 10.32 89.01 83.16 45.30 39.36

Table 2: Evaluation of all models by FID (↓, best models in bold, second best in underline). We evaluate each model
by (i) N : random samples generated according to the prior distribution p(z) (isotropic Gaussian for VAE, β-VAE,
HVAE, VAE-LinNF, VAE-IAF, CV-VAE, 2s-VAE, and WAE; spherical uniform distribution for S-VAE) or by fitting
a Gaussian to qψ(z) (ex-post density estimation for the remaining models); (ii) GMM: random samples generated by
fitting a mixture of 10 Gaussians in the latent space.

We trained our model using the MNIST (Deng, 2012), CIFAR-10 (Krizhevsky et al., 2009) and CelebA (Liu et al., 2015) datasets
and conducted a comparison with a vast family of generative as well as deterministic autoencoders. The generative family includes
VAE (Kingma & Welling, 2013), β-VAE (Higgins et al., 2017), Info-VAE (Zhao et al., 2019), S-VAE (Davidson et al., 2018),
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HVAE (Caterini et al., 2018), VAE-LinNF (Rezende & Mohamed, 2015), VAE-IAF (Kingma et al., 2016), CV-VAE (Ballé et al.,
2016; Ghosh et al., 2019a) and 2s-VAE (Dai & Wipf, 2019). The deterministic family includes a simple AE, WAE (Tolstikhin
et al., 2017), RAE (Ghosh et al., 2019b), IRMAE (Jing et al., 2020) and LoRAE (Mazumder et al., 2024). We set the latent space
dimensions to 16, 128 and 64 for MNIST, CIFAR-10 and CelebA, respectively, across all models3, training for 100 epochs each.
We demonstrate the capability of DIME to generate high-quality images via sampling from Gaussian noise. In particular, we
accomplish this by fitting (i) a 10-component GMM (to avoid overfitting) and (ii) an MVG (which we denote as N in Table 2)
distribution to its latent space. After fitting the noise distribution, we proceed to sample from it and feed these samples through
the decoder to generate images. We quantitatively evaluate the generating capacity of each model using the Frechet inception
distance (FID) (Heusel et al., 2017; Parmar et al., 2022) score. Analyzing the outcomes presented in Table 1, a clear trend emerges:
our model excels in generating images with higher visual quality when compared to the simple AE and VAE. Furthermore, its
image generation quality stands on par with that of state-of-the-art autoecoders like WAE and RAE. Differing from VAE, which
often produces images with blurred backgrounds due to its probabilistic nature, our model, being deterministic, avoids generating
images with such blurriness. This distinction results in clearer and more defined images produced by DIME. These findings are
supported by the data showcased in Table 2 where our model achieves the best FID score among the 14 benchmarked autoencoders
(standing second for one category), highlighting the pivotal role of hyperspherical and uniform latent space achieved through
explicit regularization.

7.2 IMAGE CLASSIFICATION

Deferred to Appendix A.2 due to space constraint.

8 GRAMMAR-DIME: MODELLING STRUCTURED INPUTS

We evaluate DIME for generating complex structured objects, such as arithmetic expressions, with two primary goals: (i) to ex-
plore how well DIME learns latent spaces for more challenging inputs that adhere to specific structural constraints, and (ii) to
assess the benefits of replacing VAE with DIME in a state-of-the-art generative model. When experimenting with structured data
like equations, we refer to our model as GrammarDIME (GDIME). We replicate the architectures and experimental settings of
GrammarVAE (GVAE) (Kusner et al., 2017), which has demonstrated superiority over other generative models such as Charac-
terVAE (CVAE) (Gómez-Bombarelli et al., 2018). As in Kusner et al. (2017), our focus is on exploring the latent space learned by
our models to generate mathematical expressions that optimize a specific downstream metric. This is achieved through Bayesian
optimization (BO) using the log(1 +MSE) metric (lower is better) for the generated expressions compared to some ground truth
points. A well-structured latent space will not only generate expressions with better scores during the BO process but will also
produce syntactically valid ones, adhering to the grammar rules of the problem.

Objective Method Expressions

LL GVAE -1.320 ± 0.001
CVAE -1.397 ± 0.003
GDIME -1.261 ± 0.001

RMSE GVAE 0.884 ± 0.002
CVAE 0.875 ± 0.004
GDIME 0.830 ± 0.001

Table 3: Average test root mean square error (RMSE)
and test log-likelihood (LL) for the DIME, CVAE, and
GVAE across 10 different splits of the data for the ex-
pressions.

Problem Method Frac. Valid Avg. Score

Expression GVAE 0.99 ± 0.01 3.47 ± 0.24
CVAE 0.86 ± 0.06 3.75 ± 0.25
GDIME 1.00 ± 0.00 3.16 ± 0.21

Table 4: Percentage of valid samples of equations gen-
erated by GVAE, CVAE, and GDIME and their average
mean score.

Table 3 presents the results from 5 trials of Bayesian optimization (BO). Our GDIME outperforms CVAE and GVAE in generating
mathematical expressions, achieving superior LL and RMSE scores. Additionally, as shown in Table 4, GDIME produces a higher
number of valid samples compared to GVAE and CVAE and achieves a better average score. These findings suggest that DIME
not only excels in generating image data but also demonstrates strong performance in structured data generation, highlighting its
versatility and effectiveness across various datasets.

9 CONCLUSION

In this paper, we address the issue of representation collapse in VAEs. Our findings reveal that the conventional objective of
VAEs is inadequate for learning general and useful representations. We also observe that complex generative networks tend to
inhibit the model from acquiring constructive representations. To tackle these challenges, we propose a novel information-based,
simple, and deterministic autoencoder that maximizes the information retained in the latent representations from the observations.

3Details about model architecture and hyperparameters are deferred to Appendix A.3 due to space constraint.
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Through extensive experiments, we demonstrate that our model outperforms or matches the performance of other state-of-the-art
autoencoders on both image datasets and challenging structured datasets.
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A APPENDIX

A.1 RELATED WORK

Autoencoder literature: Numerous studies have explored diagnosing the VAE framework by analyzing its objective function
components (Hoffman & Johnson, 2016; Zhao et al., 2017; Alemi et al., 2018) and suggesting enhancements to overcome opti-
mization challenges (Rezende et al., 2014; Dai & Wipf, 2019). While spherical inference (Zhao et al.) has been proposed as an
alternative to variational inference, it typically performs well only in low-dimensional latent spaces. In contrast, we suggest that a
simpler deterministic approach, such as DIME, can be just as effective for generative modelling. Deterministic denoising (Vincent
et al., 2008) and contractive autoencoders (CAEs) (Rifai et al., 2011) have been investigated for their ability to capture smooth data
manifolds. Various heuristic methods have attempted to imbue these models with generative abilities, including through MCMC
schemes (Rifai et al., 2012; Bengio et al., 2013). However, these methods present challenges related to convergence diagnosis, re-
quire extensive tuning (Cowles & Carlin, 1996), and have not been effectively scaled beyond MNIST, which led to their replacement
by VAEs.

Addressing the mismatch between the aggregated posterior and the prior p(z) often involves making the prior more expressive
(Kingma & Welling, 2013; Bauer & Mnih, 2019), which alters the VAE objective and demands significant additional computational
resources. Using another VAE to estimate the latent space of the original VAE (Dai & Wipf, 2019) reintroduces many optimization
challenges and it is much more resource-intensive compared to simply fitting a straightforward qψ(z) post-training. Adversarial
autoencoders (AAEs) (Makhzani et al., 2015) add a discriminator to the deterministic encoder-decoder pair, producing sharper
samples but at the cost of increased computational complexity and potential instability due to adversarial training. Wasserstein
autoencoders (WAEs) (Tolstikhin et al., 2017) generalize AAEs by framing autoencoding as an optimal transport (OT) problem.
Both stochastic and deterministic models can be trained by minimizing a relaxed OT cost function, using either an adversarial
loss term or the maximum mean discrepancy score between p(z) and qϕ(x) as a regularizer instead of KL-divergence. The most
effective VAE architectures for images and audio to date are variations of the vector quantized variational autoencoders (VQ-VAE)
(Van Den Oord et al., 2017; Razavi et al., 2019). Despite the name, VQ-VAEs are neither stochastic nor variational; rather, they are
deterministic autoencoders. However, VQ-VAEs require complex discrete autoregressive density estimators and a training loss that
is non-differentiable due to the quantization of z.

Bridging the gap between stochastic and deterministic encoders: A recent shift in the field has seen a growing prefer-
ence for deterministic autoencoders over generative ones for data generation. These deterministic models are easier to train, do not
have variational inference, and avoid producing blurry images. Previous works have employed regularization techniques such as
imposing low-rank constraints in the latent space (Jing et al., 2020; Mazumder et al., 2024) and adding Gaussian noise to the input
of deterministic autoencoders (Ghosh et al., 2019b). Although these models have demonstrated significant success in generating
high-quality images, they fail to ensure that the mutual information between the latent space and the data space is preserved.

Information theoretic literature: Recent research has focused on enhancing VAE by maximizing mutual information. For
instance, Dieng et al. (2019) introduced skip connections from the latent variables to the VAE output, implicitly reinforcing the
dependency between latent representations and observations. Similarly, Hoffman & Johnson (2016) proposes directly optimizing
the mutual information between latent representations and input data by incorporating a mutual information term into the VAE
objective. This approach relies on Monte Carlo estimation of qψ(z), but the computational burden can hinder performance im-
provements (Kim & Mnih, 2018). To address this challenge, InfoVAE (Zhao et al., 2019) circumvents explicit mutual information
estimation by reformulating the objective function. Instead of direct computation, it minimizes the MMD or KL divergence be-
tween the marginal distribution of the inference network and the prior, thereby increasing the mutual information implicitly. This
formulation aligns InfoVAE with elements of both AAE and β-VAEs. The best results with InfoVAE are obtained when adversarial
learning in AAE is substituted with MMD. However, InfoVAE has limitations in controlling the degree of information preservation
(see Appendix A.5 for more details). Similar to InfoVAE, Rezaabad & Vishwanath (2020) explicitly maximizes mutual infor-
mation in a VAE framework using the dual form of KL divergence. This requires training an additional critic network, leading to
unstable training. Moreover, as an extension of the VAE framework, it inherits the common issue of generating blurry images. In
contrast, our approach explicitly estimates and maximizes mutual information using a KDE-based classical method. This approach
enables capturing richer latent representations than InfoVAE, which is evident from Table 1. Furthermore, due to its deterministic
nature, DIME produces sharper images than traditional VAE variants, resulting in consistently superior performance across a range
of models and datasets.

A.2 EXPERIMENTS: IMAGE CLASSIFICATION

To evaluate the quality of learned latent representations, we perform a classification task using a single-layer classifier, as well-
disentangled representations enable strong linear separability (Berthelot et al., 2018). Classifiers are trained on MNIST and
CIFAR-10 embeddings with the same train/val/test splits as the autoencoder training. Each model is evaluated over 20 runs, with
test performance reported in Table 5. Deterministic AEs outperform variational methods, as the latter enforce continuity, bringing
class representations closer. Notably, DIME achieves the highest accuracy, highlighting its ability to learn discriminative latent
spaces. Models with flexible priors generally perform better.
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VAMP VAE-LinAF VAE-IAF S-VAE Info-VAE HVAE β-VAE RAE-L2 RAE-GP WAE-MMD VAE AE DIME

MNIST 93.77 85.95 90.59 86.97 73.63 90.70 87.44 92.35 90.55 88.21 90.41 91.48 94.50

CIFAR-10 48.97 – 48.75 – 32.49 51.02 49.14 54.02 54.05 53.84 51.34 53.41 55.83

Table 5: Classification accuracy for MNIST and CIFAR-10 using different autoencoders.

A.3 MODEL ARCHITECTURE AND HYPERPARAMETER DETAILS

Datasets MNIST Cifar-10 CelebA

Encoder

x ∈ R32×32×1

→ Conv32 → ReLU
→ Conv64 → ReLU
→ Conv128 → ReLU
→ Conv256 → ReLU

Flatten 1024
→ FC128 → z ∈ R16

x ∈ R64×64×3

→ Conv128 → BN +ReLU
→ Conv256 → BN +ReLU
→ Conv512 → BN +ReLU
→ Conv1024 → BN +ReLU

Flatten 16,384
→ FC4096 → z ∈ R128

x ∈ R64×64×3

→ Conv128 → BN +ReLU
→ Conv256 → BN +ReLU
→ Conv512 → BN +ReLU
→ Conv1024 → BN +ReLU

Flatten 16,384
→ FC4096 → z ∈ R64

Decoder

z ∈ R16

FC8096

Reshape to 8× 8× 128
→ ConvT64 → ReLU
→ ConvT32 → ReLU
→ ConvT3 → Tanh

x̂ ∈ R32×32×1

z ∈ R128

FC65536 → ReLU
Reshape to 8× 8× 1024

→ ConvT1024 → BN +ReLU
→ ConvT512 → BN +ReLU
→ ConvT256 → BN +ReLU

→ ConvT3 → Sigmoid
x̂ ∈ R64×64×3

z ∈ R64

FC65536 → ReLU
Reshape to 8× 8× 1024

→ ConvT1024 → BN +ReLU
→ ConvT512 → BN +ReLU
→ ConvT256 → BN +ReLU
→ ConvT128 → BN +ReLU

→ ConvT3 → Sigmoid
x̂ ∈ R64×64×3

Table 6: Architecture of encoder and decoder for MNIST, Cifar and CelebA dataset. In our model (EIMAE), the latent
vectors are normalized before feeding into the decoder.

Dataset MNIST Cifar-10 CelebA

Batch Size 100 100 100

Epochs 100 100 100

Training Examples 60,000 50,000 16,2079

Test Examples 10,000 10,000 20,000

Learning Rate 5× 10−3 5× 10−3 5× 10−3

t 5× 10−3 5× 10−3 5× 10−3

λ 5× 10−4 10−2 10−2

Table 7: The hyperparameters for each experiment are elaborated in the following table. The determination of the
number of epochs was guided by the aim of attaining a stage of converged reconstruction error.

A.4 PROOFS

Before proving Theorem 3, we first introduce the following lemma.

Lemma 1. Let x and z be independent random vectors uniformly distributed on the unit sphere Sl−1. Then the inner product

u = x⊺z

has probability density function

p(u) =
Γ
(
l
2

)
√
π Γ
(
l−1
2

) (1− u2)
l−3
2 , u ∈ [−1, 1].

Proof. Since the joint distribution of x and z is invariant under rotations, the distribution of the scalar u = x⊺z depends only on
the angle between x and z. (In a rigorous argument one does not fix z, but by rotational invariance one may show that the marginal
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distribution of u is identical to that obtained by first rotating the coordinate system so that z = (1, 0, . . . , 0); the final result is
independent of this choice.)

In that coordinate system we have
u = x⊺z = x1,

where x = (x1, x2, . . . , xl) is uniformly distributed on Sl−1. It is a standard fact given by Mardia & Jupp (2009) that the marginal
density of the first coordinate x1 is given by

p(x1) = Cl(1− x2
1)

l−3
2 , x1 ∈ [−1, 1],

where the normalization constant Cl is determined by∫ 1

−1

Cl(1− x2
1)

l−3
2 dx1 = 1.

Using the standard Beta integral, one can show that

Cl =
Γ
(
l
2

)
√
π Γ
(
l−1
2

) .
Thus, the density of u is

p(u) =
Γ
(
l
2

)
√
π Γ
(
l−1
2

) (1− u2)
l−3
2 , u ∈ [−1, 1].

This completes the proof.

Theorem 4. The closed form of MMD2
N (P,Q), where P is a uniform distribution on Sl−1 can be computed analytically (with

N samples) to yield the following:

MMD2
N (PN ,QN ) = −a(σ, l) +

1

N(N − 1)

N∑
i=1

N∑
j ̸=i

e
−

∥zi−zj∥
2

2σ2 (12)

and, our proposed regularizer is related with MMD2
N as follows:

logMMD2
N (PN ,QN ) ≤ LinfoDIME .

Here, a(σ, l) = e−σ
−2

Γ(l/2)
(
2σ2
) l−2

2 I l−2
2

(
σ−2

)
.

Proof. The population MMD can be most straight-forwardly computed via the formula (Gretton et al., 2012):

MMD2(P,Q) = Ew,w′∼P [k(w,w′)]− 2Ew∼P,z∼Q[k(w, z)] + Ez,z′∼Q[k(z, z′)] (13)

The target distribution P is a uniform distribution over sphere Sl−1. Now, given the samples from Q, the goal is to derive a closed
form estimate of MMD2(P,Q).

Unbiased Estimator: We start with the expression Eq.(13) and using the sample QN = {zi}Ni=1 of size N , we replace the last
two terms by the sample average and the U-statistic respectively to obtain the unbiased estimator (Gretton et al., 2012):

MMD2
N (P,Q) = Ew,w′∼P [k(w,w′)]− 2

N

N∑
i=1

Ew∼P [k(w, zi)] +
1

N(N − 1)

N∑
i=1

N∑
j ̸=i

k(zi, zj). (14)

From Eq.(14), we will now show that the first two expectations can be computed in closed form. Let us start with the first term and
rewrite it as an integral:

Ew,w′∼P [k(w,w′)] = Ew,w′∼P

[
e
− 1

2σ2 ∥w−w′∥
]

= e
− 1

σ2 Ew,w′∼P

[
ew

⊺w′/σ2
]

(∥w −w′∥ = 2− 2w⊺w′)

When w and w′ are independent and uniformly distributed on Sl−1, the inner product

u = w⊺w′, u ∈ [−1, 1],
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has the probability density

p(u) =
Γ(l/2)

√
πΓ
(
l−1
2

) (1− u2)
l−3
2 , u ∈ [−1, 1].

This result is derived from Lemma 1. Thus, we can write

Ew,w′∼P

[
ew

⊺w′/σ2
]
=

∫ 1

−1

eu/σ
2

p(u)du

A standard integral formula (related to the Funk–Hecke theorem) states that for α > 0 and for parameters such that the integral
converges, ∫ 1

−1

eαu(1− u2)
l−3
2 du =

√
πΓ

(
l − 1

2

)
(2/α)

l−2
2 I l−2

2
(α),

where Iν(.) is the modified Bessel function of the first kind. Here, we set

α =
1

σ2
.

Then the integral becomes ∫ 1

−1

eu/σ
2

(1− u2)
l−3
2 du =

√
πΓ

(
l − 1

2

)
(2σ2)

l−2
2 I l−2

2
(1/σ2).

Multiplying by the constant in the density p(u), we have

Ew,w′∼P

[
ew

⊺w′/σ2
]
=

Γ(l/2)
√
πΓ
(
l−1
2

) [√πΓ

(
l − 1

2

)
(2σ2)

l−2
2 I l−2

2
(1/σ2)

]
= Γ(l/2)(2σ2)

l−2
2 I l−2

2
(1/σ2).

Finally, the first expectation can be written as

Ew,w′∼P [k(w,w′)] = e
− 1

σ2 Γ(l/2)(2σ2)
l−2
2 I l−2

2
(1/σ2)

Now, interestingly, because of rotation–invariance of the spherical uniform distribution, the distribution of the inner product ui =
w⊺zi is is unchanged from the previous case—even if zi is fixed and w is uniformly distributed over Sl−1. Thus, the same
calculation applies and we obtain the same closed-form formulae for the second expectation also:

Ew∼P [k(w, zi)] = e
− 1

σ2 Γ(l/2)(2σ2)
l−2
2 I l−2

2
(1/σ2) ∀i ∈ [N ]

Hence, the final closed form formulae for MMD2
N (P,Q), where P is a uniform distribution over l − 1 dimensional hypersphere

is:

MMD2
N (P,Q) = − e

− 1
σ2 Γ(l/2)(2σ2)

l−2
2 I l−2

2
(1/σ2)︸ ︷︷ ︸

a(σ,l)

+
1

N(N − 1)

N∑
i=1

N∑
j ̸=i

k(zi, zj)︸ ︷︷ ︸
e
Linfo
DIME

(15)

As, l, d > 0, implies e
− 1

σ2 Γ(l/2)(2σ2)
l−2
2 I l−2

2
(1/σ2) > 0. Hence, LinfoDIME ≥ logMMD2

N (P,Q). This completes the
proof.

A.5 DRAWBACKS OF INFOVAE

Info-VAEs proposed to optimize the following objective

max
ϕ,θ

Eq(x)
[
Eqϕ(z|x)

[
log pθ(x|z)

]]
+ (α− β)KL(qϕ(z|x)∥p(z))− αKL(qϕ(z)∥p(z)).

to circumvent calculating the mutual information. This paper proposes an approach that directly optimizes a KDE-based mutual
information using a VMF kernel. Specifically, DIME estimates mutual information by incorporating an explicit regularizer to
maximize the dependency between the data and the latent space of a simple and deterministic autoencoder. This ensures a strong
relationship between the input and latent codes, enhancing the quality of learned representations, which is clearly observed in
Table 1 and Table 2 of our main manuscript.

More important than the objectives, InfoVAE is limited to α ≤ 1 since they circumvent the mutual information; otherwise, the term
KL(qϕ(z|x)||p(z)) blows up in the first iteration since the encoder immediately learns with σz|x = 0. The InfoVAE’s objective
becomes infinity (as KL(qϕ(z|x)||p(z)) → ∞). Note that the InfoVAE’s objective is:

max
ϕ,λ

Eq(x)Eqϕ(z|x)
[
log pθ(x|z)

]
− (1− α)KL(qϕ(z|x)||p(z))− (α+ λ)KL(qϕ(z)||p(z)).

Therefore, the amount of useful information in latent variables for InfoVAE is limited because of the restrictions imposed by
(1 − α)KL(qϕ(z|x)||p(z)). However, our proposed InfoMax does not require α ≤ 1. Note that α plays a critical role as it
determines the information preference in VAEs.
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A.6 MORE QUALITATIVE RESULTS

Model Distribution Generated Images

VAE N (0, I)

INFO-VAE N (0, I)

AE GMM

MVG

WAE GMM

N (0, I)

RAE-L2
GMM

MVG

RAE-GP GMM

MVG

DIME GMM

MVG

Table 8: A qualitative comparison of various autoencoder models for image generation on the CelebA dataset, high-
lighting their performance and characteristics.
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Model Dataset Interpolation

VAE
MNIST

CIFAR-10

CelebA

InfoVAE
MNIST

CIFAR-10

CelebA

AE
MNIST

CIFAR-10

CelebA

WAE
MNIST

CIFAR-10

CelebA

RAE-L2

MNIST

CIFAR-10

CelebA

RAE-GP
MNIST

CIFAR-10

CelebA

DIME
MNIST

CIFAR-10

CelebA

Table 9: Interpolation results for different models across datasets
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Model CelebA MNIST CIFAR10

Original

VAE

INFO-VAE

AE

WAE

RAE-L2

RAE-GP

DIME

Table 10: A qualitative comparison of the reconstruction quality achieved by different autoencoder models across the
CelebA, MNIST, and CIFAR10 datasets.

A.7 EFFECT OF TUNING HYPERPARAMETERS ON FID SCORE

In this section, we investigate three crucial hyperparameters: (i) penalty parameter (λ), (ii) encoder output dimension (latent
dimension), and (iii) the precision parameter of Gaussian kernel (t). We seek insights into their impact on DIME’s generative
capacity. All experiments are conducted on the CelebA dataset, where two parameters are fixed while the third is varied. The fixed
parameters are set to their default values as specified in Table 7.

A.7.1 EFFECT OF PENALTY PARAMETER λ ON FID SCORE

Elevating the penalty term results in a more pronounced regularization effect, whereas reducing it lessens this impact. We investigate
the effect of the regularization penalty parameter on FID scores.

λ 1 0.5 0.1 5× 10−2 10−2 5× 10−3 10−3 5× 10−4

MVG 47.08 43.7 46.93 49.55 45.30 47.79 54.72 55.47

GMM 41.84 38.48 41.54 44.57 39.36 42.75 48.66 49.89

Table 11: Generative performance of DIME on CelebA dataset across different values of λ, where t = 5× 10−3 and
l = 64.

A.7.2 EFFECT OF LATENT DIMENSION ON FID SCORE

Latent Dimension (l) 16 32 64 128 256

MVG 70.55 53.03 45.30 50.19 53.52

GMM 65.23 48.16 39.36 44.73 47.08

Table 12: Generative performance of DIME on CelebA dataset across different values of l, where t = 5 × 10−3 and
λ = 10−2.

A.7.3 EFFECT OF PRECISION PARAMETER (t) ON FID SCORE
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t 0.1 5× 10−2 10−2 5× 10−3 10−3 5× 10−4 10−4

MVG 46.89 49.07 49.38 45.30 46.58 46.92 48.54

GMM 41.67 46.55 44.78 39.36 41.11 41.70 43.01

Table 13: Generative performance of DIME on CelebA dataset across different values of t, where λ = 10−2 and
l = 64.
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