
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPATIOTEMPORAL LEARNING ON CELL-EMBEDDED
GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data-driven simulation of physical systems has recently kindled significant atten-
tion, where many neural models have been developed. In particular, mesh-based
graph neural networks (GNNs) have demonstrated significant potential in pre-
dicting spatiotemporal dynamics across arbitrary geometric domains. However,
the existing node-edge message passing mechanism in GNNs limits the model’s
representation learning ability. In this paper, we proposed a cell-embedded GNN
model (aka, CeGNN) to learn spatiotemporal dynamics with lifted performance.
Specifically, we introduce a learnable cell attribution to the node-edge message
passing process, which better captures the spatial dependency of regional features.
Such a strategy essentially upgrades the local aggregation scheme from first order
(e.g., from edge to node) to a higher order (e.g., from volume and edge to node),
which takes advantage of volumetric information in message passing. Meanwhile,
a novel feature-enhanced block is designed to further improve the performance of
CeGNN and alleviate the over-smoothness problem. The extensive experiments on
various PDE systems and one real-world dataset demonstrate that CeGNN achieves
superior performance compared with other baseline models, significantly reducing
the prediction errors on several PDE systems.

1 INTRODUCTION

Solving Partial Differential Equations (PDEs) is often essential for analyzing and modeling complex
spatiotemporal dynamic processes across various scientific and engineering fields. For example,
weather prediction (Scher, 2018; Schultz et al., 2021; Grover et al., 2015), ocean current motion pre-
diction (Zheng et al., 2020), nonlinear engineering structure earthquake response prediction (Zhang
et al., 2019), material mechanical properties simulation (Wang & Sun, 2018), etc. Traditionally,
classical numerical methods (e.g., Finite Difference Method (FDM) (Godunov & Bohachevsky,
1959; Özişik et al., 2017), Finite Volume Method (FVM) (Eymard et al., 2000), and Finite Element
Method (FEM) (Hughes, 2012)) are utilized to solve these PDEs, requiring substantial analytical or
computational efforts. Although this problem has been simplified via discretizing the space, the issue
of trade-off between cost and precision intensifies when dealing with varying domain geometries
(e.g., different initial or boundary conditions or various input parameters), especially in real-world
scenarios. In the last few decades, Deep Learning (DL) (Pinkus, 1999; Tolstikhin et al., 2021; Albawi
et al., 2017; Koutnik et al., 2014; Sundermeyer et al., 2012) models have made great progress in
approximating high-dimensional PDEs benefiting from existing rich labeled or unlabeled datasets.
However, there are certain drawbacks in this simple approach of learning the non-linear mapping
between inputs and outputs from data. For example, their performance is severely limited by the
training datasets, the neural network lacks interpretability and generalizes poorly.

Embedding domain-specific expertise (e.g., Physics-informed Neural Networks (PINNs) (Raissi
et al., 2019)) has shown the potential to tackle these problems (Krishnapriyan et al., 2021; Gao et al.,
2021; He et al., 2023; Li et al., 2024b). However, the core part of PINNs, Automatic Differentiation
(AD) approach, has two major drawbacks: (1) it is necessary to formulate explicit governing equations
into the loss function, and (2) the parameters in high-dimensional feature spaces cannot be efficiently
optimized when facing highly complex networks like graph networks. As shown in Figure 1e,
there are no any predefined equations available to represent the evolution patterns of sea surface
temperature at varying depths. Neural Operators, such as DeepONet (Lu et al., 2021) and Latent

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a b c d e velocity temperature

O
u
tp
u
t

velocity

In
p
u
t

O
u
tp
u
t

velocity

In
p
u
t

O
u
tp
u
t

velocity

In
p
u
t

O
u
tp
u
t

velocity

In
p
u
t

O
u
tp
u
t

In
p
u
t

tim
e

tim
e

tim
e

tim
e

tim
e

Figure 1: Examples of datasets, including classic governing equations and more challenging real-
world dataset. a, the 2D Burgers equation. b, the 2D Fitzhugh-Nagumo equation. c, the 2D Gray-Scott
equation. d, the 3D Gray-Scott equation. e, the 2D Black-Sea dataset.

DeepONet (Kontolati et al., 2024), have emerged as another paradigm to learn these complex non-
linear behaviors. The most well-known models, Fourier Neural Operator (FNO) (Li et al., 2021a) and
its variants (Tran et al., 2021; Wen et al., 2022; Ashiqur Rahman et al., 2023; Li et al., 2024a), utilize
neural networks to learn parameters in the Fourier space for fast and effective turbulence simulation.
Likewise, they inevitably have the same shortcoming as those traditional methods: over-reliance on
data and biased towards the grid domain.

The other representative models, Transformer models (Vaswani et al., 2017; Wu et al., 2024)
and GNNs (Liu et al., 2020; Gao et al., 2022; McCardle, 2023; Horie & Mitsume, 2024), have
demonstrated significant influence in predicting spatiotemporal dynamics across arbitrary geometric
domains. In particular, mesh-based graph neural networks (GNNs) (Gilmer et al., 2017; 2020; Pfaff
et al., 2021; Brandstetter et al., 2022) learn vastly different dynamics of various physical systems,
ranging from structural mechanics and cloth to fluid simulations. However, the existing node-edge
message passing mechanism in GNNs overestimates the primary role of “message” passing function
on the neighbor “edges”, limiting the model’s representation learning ability. In general, this strategy
leads to highly homogeneous node features after multiple rounds of message passing, making the
features ineffective at representing distinct characteristics, namely, the over-smoothness problem.

To further address the above issues, we proposed an end-to-end graph-based framework, Cell-
embedded Graph Neural Network (CeGNN), to model spatiotemporal dynamics across various
domains with improved performance. Specifically, after detecting discontinuities in space, we
introduce a learnable cell attribution to the node-edge message passing process, which better captures
the spatial dependency of regional features. Such a strategy essentially upgrades the local aggregation
scheme from the first order (e.g., from edge to node) to a higher order (e.g., from volume and edge to
node), which takes advantage of volumetric information in message passing. Meanwhile, a novel
feature-enhanced (FE) block is designed to further improve the performance of CeGNN and relieve
the over-smoothness problem, via treating the latent features as basis functions and further processing
these features on this concept. In detail, it regards the node latent feature hi as basis and builds
a higher-order tensor feature via an outer-product operation, e.g., hi ⊗ hi. This process creates
abundant second-order nonlinear terms to enrich the feature map. We then use a mask operation to
randomly sample these terms, filtering the appropriate information by a learnable weight tensor to
enhance the model’s representation capacity. Figure 2 shows an outline of our proposed model. Our
extensive experiments on many PDE-centric systems and real-world datasets show that CeGNN can
significantly enhance spatiotemporal dynamic learning in various scenarios, particularly with limited
datasets. The key contributions of this paper are summarized as follows:

• We introduce cell attributions legitimately to learn second-order information from connected
nodes of any cell, allowing us to rapidly identify non-local relationships that traditional
message-passing mechanisms often fail to capture directly.

• We propose the FE block to enrich the feature representations and filter more effective
information via learnable parameters.

• Our approach stands out for its lower error, better interpretability, and robust generalizability,
making a substantial progress in the spatiotemporal dynamic field.

2 RELATED WORKS

Spatiotemporal dynamics research, as one of the important frontier research areas, is integral to fields
ranging from traditional fluid dynamics to economics and finance. In this part, we firstly give a
brief introduction to spatiotemporal PDEs. Then, the relevant progress in spatiotemporal dynamics
research is described from the perspectives of classical and neural solvers.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Message Passing Layer (× 𝐿)𝐮𝑡𝑘 ෝ𝐮𝑡𝑘+𝑡

Encoder Decoder

CellMPNN
Block 1

a

𝐡0

FE Block 1

𝐡1
𝐡𝐿⨁

𝐡𝑙

ҧ𝐡𝑙 𝐖𝑙𝐇𝑙

Cell Update

𝐡𝑖
𝑙

𝐜𝑖𝑗𝑘
𝑙

𝜙𝑐

b

Agg.

Node Update𝐡𝑖
𝑙

𝐞𝑖𝑗
𝑙+1

𝐡𝑖
𝑙+1

𝐡𝑗
𝑙

𝐡𝑘
𝑙

Edge Update

𝜙𝑒
𝐞𝑖𝑗
𝑙

𝐡𝑖
𝑙

𝐡𝑗
𝑙

𝐜𝑖𝑗𝑘
𝑙+1Agg.

𝐜𝑖𝑗𝑘
𝑙+1 𝐞𝑖𝑗

𝑙+1

𝜙𝑣

Cell Block Edge Block Node Block

c

R
eshap

e

𝐌𝑙

…

Iterations (× 𝑡)

⊗ ⨀ ∶ ሚ𝐡𝑙

Reshape Phase

Expansion Phase

Filtering Phase

Contraction Phase

Figure 2: Network architecture of CeGNN. a, an encoder encodes the physical variables to latent
features, a message passing block processes these latent features iteratively, and a decoder maps back
to the physical states. b, three components in the CellMPNN block. c, the process of FE block.

2.1 PDE FORMULATION

Without loss of generality, the time-dependent PDEs generally describe the evolution of a con-
tinuous field over certain time intervals, which can be cast into the following form: ∂u/∂t =
F
(
θ, t,x,u,∇u,∇2u, . . .

)
, where F(·) denotes an unknown linear or nonlinear function com-

prised of the spatiotemporal variable u(x, t) ∈ Rd, its corresponding partial derivatives (e.g.,
∇u,∇2u), and some related parameters θ. Here, x ∈ Rm denotes the m-dimensional spatial
coordinate, t ∈ R1 the time, ∇ the Nabla operator, ∇2 the Laplacian operator. The PDE is subjected
to specific initial and boundary conditions.

2.2 CLASSICAL SOLVERS

To solve time-dependent PDEs, a common way is the method of lines (MOL). By discretizing in
all but one dimension, it allows solutions to be computed via methods and software developed
for the numerical integration of ordinary differential equations (ODEs) and differential-algebraic
equations (DAEs). Meanwhile, the multigrid method (Wu et al., 2020) is another algorithm for
solving PDEs via a hierarchy of discretizations. Other classical numerical methods (e.g., Finite
Difference Method (FDM) (Godunov & Bohachevsky, 1959; Özişik et al., 2017), Finite Volume
Method (FVM) (Eymard et al., 2000), and Finite Element Method (FEM) (Cao et al., 1999)) have
also been utilized for practical applications (Reich, 2000; Hughes, 2012).

2.3 NEURAL SOLVERS

PINN Methods. Two main approaches, Physics-informed Neural networks (PINNs) (Raissi et al.,
2019; Krishnapriyan et al., 2021; He et al., 2023) and Physics-informed Neural Operators (Li et al.,
2021b; Hao et al., 2023; Kovachki et al., 2023), were developed to learn fluid and solid mechanisms.
With formulating the explicit governing equation as the loss function, PINNs constrain the latent
feature spaces to a certain range, effectively learning from small data or even without any labeled data.
Such a novel method immediately attracts the attention of many researchers and has been utilized in
a wide range of applications governed by differential equations, such as heat transfer problems (Cai
et al., 2021), power systems (Misyris et al., 2020), medical science (Sahli Costabal et al., 2020), and
control of dynamical systems (Antonelo et al., 2024).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Neural Operators. Neural operators (Lu et al., 2021; Kontolati et al., 2024) combine various basis
transforms (e.g., Fourier, multipole kernel, wavelet (Gupta et al., 2021)) with neural networks to
accelerate PDE solvers in diverse applications. For example, Fourier Neural Operator (FNO) and
its variants (Tran et al., 2021; Wen et al., 2022; Ashiqur Rahman et al., 2023; Li et al., 2024b)
learn parameters in the Fourier domain for turbulence simulation. Especially, geo-FNO (Li et al.,
2024a) maps the irregular domain into an uniform mesh with a specific geometric Fourier transform
to fit irregular domains. However, they all follow the assumptions of periodicity and time-invariance
property, making them fail in complex boundaries.

Transformer Methods. As another paradigm, Transformer (Vaswani et al., 2017) and its “x-former”
family (Jiang et al., 2023; Wu et al., 2024) have also been utilized to solve complex PDEs. Since the
attention mechanism results in higher complexity, many researchers are trying to alleviate this issue
through various means. For example, linear attention mechanism (Li et al., 2023a; Hao et al., 2023)
is a well-known method to address this limitation. Although the above methods alleviate the need for
specific domain expertise, they all share the same limitations: instability in long-range prediction and
weak generalization ability.

Graph Methods. Abundant works about Graph Neural Networks (GNNs) (Liu et al., 2020; Gao
et al., 2021; 2022; Horie & Mitsume, 2024) and geometric learning (Bronstein et al., 2017; Hajij
et al., 2020; 2022; Horie & Mitsume, 2024) attempt to utilize customized substructures to generalize
message passing to more complex domains. For example, graph kernel methods (Anandkumar
et al., 2020; Li et al., 2020) try to learn the implicit or explicit embedding in Reproducing Kernel
Hilbert Spaces (RKHS) for identifying differential equations. (Belbute-Peres et al., 2020) considers
solving the problem of predicting fluid flow using GNNs. Message Passing Simplicial Networks
(MPSNs) (Bodnar et al., 2021) perform message passing on simplicial complexes (SCs). Most
notably, Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017; 2020; Janny et al., 2023;
Perera & Agrawal, 2024) are utilized to tackle these issues, which learn latent representations on
graphs via message passing mechanism. Especially, MeshGraphNets (Pfaff et al., 2021) and MP-PDE
solver (Brandstetter et al., 2022) are two representative examples. While powerful and expressive,
we still find that there are some problems with these methods: their expression ability is still not
strong enough, their prediction error is still somewhat high, and they still rely on a large amount of
data. Hence, we designed our model to address these three problems.

3 METHODOLOGY

In this section, we illustrate how our method effectively learn the solution of spatiotemporal PDEs
under various parameters (e.g., the initial or boundary conditions, constant or variable coefficients)
for a given physical system. All the source code and data would be posted after peer review.

3.1 NETWORK ARCHITECTURE

To enhance the performance of long-range prediction, we adapt the conventional “Encoder-Processor-
Decoder” framework in (Pfaff et al., 2021; Brandstetter et al., 2022) as the backbone of our method,
which is primarily designed to effectively learn the complex spatiotemporal dependencies on graphs.
As shown in Figure 2, our proposed method mainly consists of the Feature-Enhanced (FE) block
and the Cell-embedded MPNN (CellMPNN) block. These two key components update features in a
sequential process to achieve the cascaded enhancement effect, described as follows: (1) Updating
node-edge-cell features with the CellMPNN block; (2) Enriching higher-order node features with
the FE block; (3) Iteratively repeating the above two steps until the specified number of processor
layers is reached. The synergy of these two sequentially placed blocks in turn improves the model’s
representation learning capacity and generalization ability.

3.1.1 FEATURE-ENHANCED BLOCK

For the sake of brevity and clarity, this block, shown in Figure 2, is designed to enhance the latent
features from the upstream block and further alleviate the over-smoothness issue commonly seen in
GNNs due to excessive aggregation. Please see the ablation results on FE’s efficacy in Table 3. More
details are provided in Appendix Section C.3.

Outer Product as Basis Expansion. The outer product operation ⊗ on the reshaped feature map
hi ∈ RD×1 expands the original latent feature space into a higher-order tensor space. This expansion

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝐡𝑖
𝑙 ∈ 𝐑𝐷

FE Block Sub1 Sub2 Sub9Sub8Sub7Sub6Sub3 Sub4 Sub5

ሚ𝐡𝑖
𝑙 ∈ ℝ𝐷

Concatenation Concatenation Concatenation

Slicing Number = 2 Slicing Number = 3 Slicing Number = 4

ሚ𝐡𝑖
𝑙 ∈ ℝ𝐷ሚ𝐡𝑖

𝑙 ∈ ℝ𝐷ሚ𝐡𝑖
𝑙 ∈ ℝ𝐷

Figure 3: A scheme for reducing the number of parameters in FE block. Its quantitative experiment
of the impact of window size and number of sub-features on CeGNN is shown in Table 5.

introduces second-order terms (e.g., αβ for {α, β} ∈ hi), which can capture interactions between
individual components of the original feature hi ∈ RD. Mathematically, the second-order tensor
reads hi ⊗ hi. This operation creates a richer feature map with cross-term interactions that may not
be explicitly encoded in the original latent space.

Lemma 1 (Nonlinear Representation) The second-order terms αβ can model nonlinear dependen-
cies between features. This is particularly useful for capturing complex interactions that linear
transformations (e.g., via simple dot products) might overlook.

Definition 1 The FE block expands the latent feature hi ∈ RD×1 of node i into a higher-order
feature map Hi ∈ RD×D using an outer product: Hi = hi ⊗ hi.

Regularization via Masking. Masking introduces sparsity in Hi, reducing overfitting. If Mjk is
selected, Mjk = 1. Otherwise, Mjk = 0. Here j and k index the M ∈ RD×D components.

Learnable Filtering. The learnable weight tensor W ∈ RD×D×D acts as a filter, selecting and
emphasizing the most informative terms.

Definition 2 A mask tensor M ∈ RD×D is applied to randomly sample elements in Hi, and the
resulting masked tensor is processed using a learnable weight tensor W ∈ RD×D×D as follows:
h̃i = (M ⊙ Hi) : W, where ⊙ represents element-wise multiplication and : denotes double
contraction of tensors. The resulting feature h̃i ∈ R1×D enriches the representation of hi ∈ RD.

Corollary 1 (Representation Power) The full feature map Hi contains D2 terms for a D-
dimensional input feature vector hi. After masking, the effective representation space reduces
by the sparsity of M. The learnable filter W further narrows this down to the most critical terms.

Considering the GPU memory requirements caused by additional parameters in the FE module, we
further provide a feature splitting scheme within latent features to dramatically reduce the number of
parameters and computation cost caused by the full FE block (see Figure 3). This strategy divides
every feature into multiple sub-features with different window sizes, and then processes each part
separately. Finally, these sub-features are combined for next layer learning. Note that we utilize the
simplest window method to split the features in this article. Please see the ablation results on the
effect of the window size and number of sub-feature on the feature splitting scheme in Table 5.

3.1.2 CELL-EMBEDDED GRAPH NEURAL NETWORK

Generally, the traditional message passing (MP) mechanism can be regarded as a refinement on
a discrete space, analogous to an interpolation operation, which implies that edges are essentially
interpolated from nodes. A MP mechanism introducing the cell has potential to further enhance the
refinement of the discrete space (namely, secondary refinement), thereby reducing the magnitude of
discretization errors spatially and paving the way for its application in complex graph structures.

Definition 3 (Cell in Graph) Let G = (V,E) be a graph, where V is the set of nodes v and
E ⊆ V × V is the set of edges. A cell in G is a subset of nodes C ⊆ V , such that the nodes in C
form a complete subgraph (clique) or satisfy predefined structural relationships. In particular, a
k-cell Ck in a graph G contains k + 1 nodes, where ∀i, j ∈ Ck,, (vi,vj) ∈ E, representing various
structures, such as node (k = 0), edge (k = 1), triangle (k = 2), tetrahedron (k = 3), and so on.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Corollary 2 (Expressive Power) Given a graph G including many k-cell (k = 0, 1, 2, . . . ), there
exists a cell-based scheme that is more expressive than Weisfeiler-Lehman (WL) tests in distinguishing
non-isomorphic graphs (see the proof in Supplementary C.2).

Therefore, we proposed a new two-level cell-embedded mechanism to process the message on graphs.
A new framework with cell-embedded features is designed as the following description.

𝐡𝑖
𝑙

𝐞𝑖𝑗
𝑙

𝐡𝑗
𝑙

𝐡𝑘
𝑙

𝐜𝑖𝑗𝑘
𝑙

𝐡𝑖
𝑙

𝐞𝑖𝑗
𝑙

𝐡𝑗
𝑙

𝐡𝑘
𝑙

Figure 4: Cell on graphs. Green point
represents the centroid of cell.

Encoder. The encoder block maps the low-dimensional
variables to corresponding high-dimensional latent fea-
tures via differential functions (e.g., MLPs). The initial
node feature h0

i includes the node feature, one-hot feature
of node type, and their position information. The initial
edge feature e0ij contains the relative position vector, the
distance of neighbor nodes, and etc. The initial cell fea-
ture c0ijk involves the centroid position of cell, the area of
cell, and the relative position vector from three nodes to the corresponding centroid position. The
corresponding forms are described as follows:

h0
i = ϕen

v (ui,xi, κi, . . . ) , (1a)

e0ij = ϕen
e ((xj − xi) , dij , . . . ) , (1b)

c0ijk = ϕen
c ((xi − x△ijk) , (xj − x△ijk) , (xk − x△ijk) ,x△ijk, A△ijk, . . . ) , (1c)

where the learnable functions ϕen
v (·), ϕen

e (·), and ϕen
c (·) are applied to learn the latent features of

node, edge, and cell; (xj − xi) a relative position vector between the nodes i and j; dij the relative
physical distance; κi the type of node i; the x△ijk the centroid position of the cell △ijk; the A△ijk

the area of the cell △ijk. In addition, (·, ·) denotes the concatenation operation.

Processor. The processor iteratively processes the latent features from the upstream encoder via the
cell-embedded MPNN block. As discussed in the above part, the key contribution of cell-embedded
MPNN block lies in the introduction of the concept of cell. Figure 4 depicts the cell on graphs.
Then, we divided the original edge channel elij into two parts: itself and its adjacent cells. With this
simple process, the node can exchanges information with itself (nodal info), its immediate neighbor
edges (derivative info), and its adjacent cells (integral info). In general, the cell features cl+1

ijk and
edge features el+1

ij firstly learn the effective information from adjacent nodes features, and then are
aggregated to formulate the next node states hl+1

i . The procedure is described by the following forms:

cl+1
ijk = ϕl

c

(
hl
i,h

l
j ,h

l
k, c

l
ijk

)
, (2a)

el+1
ij = ϕl

e

(
hl
i,h

l
j , e

l
ij

)
, (2b)

hl+1
i = ϕl

v

(
hl
i︸︷︷︸

nodal info

,
∑

j∈Ni

el+1
ij︸ ︷︷ ︸

derivative info

,
∑

jk∈Ni

cl+1
ijk︸ ︷︷ ︸

integral info

)
, (2c)

where j ∈ Ni represents every neighbor edge eij at node i; jk ∈ Ni every neighbor cell △ijk at node
i. ϕl

c, ϕ
l
e, ϕ

l
v are the differential functions of cell, edge, and node. Note that we have reformulated

the message passing mechanism, where edge and cell features, without interaction, are used to
simultaneously update the node features. See the test of computational cost and scalability in Table 4.

Decoder. The decoder maps latent features back to physical variables on graphs. With a skip
connection, we acquire new states utk+1

by incremental learning, described as follows: ûi,tk+1
=

ϕde
v

(
hL
i

)
+ ui,tk , where ϕde

v (·) is a differentiable function and L the total number of layers.

4 EXPERIMENT

4.1 DATASETS AND BASELINES

To evaluate the performance of CeGNN, we experiment on the classic physical problems and more
challenging real-world scenarios, including Burgers equation, Gray-Scott Reaction-Diffusion (GS

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

RD) equation, FitzHugh-Nagumo (FN) equation, and Black-Sea (BS) dataset. The first three datasets
are generated by various governing equations on the grid domain and the final one on irregular
meshes. Here, the initial input fields of three synthetic datasets are generated on Gaussian distribution
with various random seeds and the node connectivity is obtained by the Delaunay algorithm. Please
see Supplementary Table S2 for a detailed description of these datasets. More details about dataset
generation can be found in Appendix Section D.1. We compare our model with the most popular
graph-based neural network, such as MeshGraphNet (MGN) (Pfaff et al., 2021), Graph Attention
Network (GAT) (Velickovic et al., 2017), Graph Attention Network Variant (GATv2) (Brody et al.,
2022), the state-of-the-art models, message passing neural PDE solver (MP-PDE) (Brandstetter
et al., 2022) , Fourier Neural Operator (FNO) (Li et al., 2021a), Factorized FNO (FFNO) (Tran
et al., 2021), Geometry-informed FNO (Geo-FNO) (Li et al., 2023b; 2024a), Transolver (Wu et al.,
2024). As shown in Supplementary Table S3, a comparative analysis of these baselines is discussed.
Additional detailed information about these baselines is described in Appendix Section D.2.

4.2 EXPERIMENTAL SETUP

In our experiments, we mainly focus on predicting much longer time steps with lower error and
attempt to achieve better generalization ability of various initial conditions (ICs) and boundary
conditions (BCs). For fairness, we set the feature dimension to 128 and utilize the one-step training
strategy (i.e., one-step forward, one-step backward) for all tasks. All experiments are run on one
NVIDIA A100 GPU. The Adaptive Moment Estimation (Adam) optimizer is utilized for the model
training. All models are trained by injecting random Gaussian noise of varying standard deviation
to the input to improve stability during rollout and correct small errors. Meanwhile, a Root Mean
Square Error (RMSE) loss function is utilized to optimize parameters θ in networks. Given the
ground-truth values Y ∈ RN∗d and the predictions Ŷ ∈ RN∗d at time t, the loss function is defined

as follows: RMSE(Y, Ŷ ) =
√

1
N∗d

∑N
i=i

∑d
j=1 (yij − ŷij)

2
, where yij ∈ Y and ŷij ∈ Ŷ . More

details about the experimental setup are described in Appendix Section D.3. The experimental results
and parametric studies of our model are given in the following parts.

4.3 RESULTS

We consider three different types of study cases: (1) the generalization test, (2) the feature-enhanced
effect, and (3) an ablation study. All our experiments revolve around the following questions: Can
our model generalize well? Can our model achieve lower error with small data?

Generalization test. We varied the initial input field, randomly sampled from a Gaussian distribution
with various means and standard deviations, in order to test the generalization ability. According
to the results in Figures 5 and 6, we found that CeGNN generalizes to different ICs robustly on all
datasets. It is evident that the performances of CeGNN and all baselines in the multi-step long-term
prediction vary significantly. However, the experiment results of FNO show that it performs relatively
poorly on all datasets except for the Burgers equation. FFNO outperforms FNO across all datasets.
Unexpectedly, GeoFNO, which incorporates the IPHI technique, achieves the worst performance.
Similarly, Transolver also underperforms. From the experimental results of these models, we can
infer that these methods on small datasets, exhibit poor generalization ability, falling short compared
to graph-based methods. All results in Table 1 demonstrate that all graph-based models have great
generalization ability. GATv2, the advanced variant of GAT, underperforms GAT on Burgers, FN, 2D
GS RD, and BS datasets, but outperforms GAT on 3D GS RD equation, yet both methods fall short
of MGN. Surprisingly, the performance of MP-PDE is mediocre. Although MP-PDE is trained by
the multi-step prediction strategy during the training stage, its results are only slightly better than
MGN on the BS dataset. In contrast, our method performs robustly with much smaller errors in the
multi-step prediction problem on all datasets.

Feature-enhanced effect. We investigate the effectiveness of the FE block on all graph-based
network over all datasets. The results are reported in Table 2, showing that the feature-enhanced
block somewhat changes the performance of these networks. We can directly see that this module
has improved the performance of all baselines on real-world datasets. Specifically, it achieves the
best and worst promotions in the cases of “MGN + FE” on the 3D GS RD equation and “GATv2 +
FE” on the 2D Burgers equation. Intriguingly, after embedding the FE block in the processor block,
the attention-based graph networks (e.g., GAT and GATv2) perform worse on the governing equation

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Truth CeGNN MP-PDE MGN GATv2 GAT FNO

Truth CeGNN MP-PDE MGN GATv2 GAT FNO

Truth CeGNN MP-PDE MGN GATv2 GAT FNO

Truth CeGNN MP-PDE MGN GATv2 GAT FNO

u

v

u

v

u

v

u

v

Abs(u)

Abs(v)

-0.7

-0.9

-0.5

M
agn

itu
d

e u
, v

0.5

1.0

0.0

M
agn

itu
d

e u
, v

a

b

c

d

Models

R
M

SE

CeGNN

MGN

MP-PDE

FNO

GATv2 GAT

Models

R
M

SE CeGNN

MGN

MP-PDE

FNO

Models

R
M

SE

CeGNN

MGN
MP-PDE

FNO

GATv2
GAT

R
M

SE CeGNN
MGN

MP-PDE

FNO

GATv2

GAT
f

g

h

i

Models

-0.0

-1.0

1.0 M
agn

itu
d

e u
, v

0.5

0.0

1.0 M
agn

itu
d

e u
, v

GATv2 GAT

Models

R
M

SE

CeGNN

MGNMP-PDE GATv2 GAT

e

Figure 5: The test results of of all model on various datasets. a-e, the error distribution of test results.
f-i, the slices of generalization test on four grid-based datasets. The results of the final irregular
mesh-based dataset are displayed in Figure 6. The symbol Abs(·) represents a function for calculating
the absolute error between ground-truth data and the prediction values.

Truth CeGNN MP-PDE MGN GATv2 GAT

U

T

0.4

0.2

0.0

8.0

4.0

0.0

M
agn

itu
d

e U

1.0

0.5

0.0

0.2

0.1

0.0

M
agn

itu
d

e T

Abs(U)

Abs(T)

Figure 6: The snapshots of all models on BS Dataset, e.g., the rollout prediction at the 10th time step.

and better on the real-world dataset (even though the promotion is not large). This negative impact of
the FE block on attention-based methods is essentially due to a logical conflict of design motivation.
Consider two adjacent nodes h1 and h2 near a node h0, the attention mechanism assigns normalized
weights w1 and w2 (e.g., w1 + w2 = 1) and aggregates features by the summation operation like
w1h1 + w2h2. However, the FE block would disrupt this global normalization rule in the attention
mechanism and reduces the expression capability of attention-based methods.

Ablation study. In this part, we perform an ablation study on all datasets to assess the contributions
of the FE and CellMPNN blocks in CeGNN, as shown in Table 3. The results indicate that, without
the introduction of the cell, the assembly of the tradition node-edge message passing mechanism

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Results of different methods. “–” represents that the model is unable or unsuitable to learn
the dynamics directly. “↓” represents that the smaller the value of the quantitative metric, the better
the model performance. The bold values and underlined values represent the optimal and sub-optimal
results on various datasets. The promotion is calculated from the above two.

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

GAT 0.11754 0.02589 0.07227 0.06396 0.62954

GATv2 0.11944 0.03827 0.07301 0.04519 0.64796

MGN 0.01174 0.02108 0.02917 0.01925 0.61475

MP-PDE 0.01784 0.02848 0.03860 0.06528 0.60761

FNO 0.05754 0.12643 0.11331 0.17163 –

FFNO 0.03341 0.11921 0.03628 0.03594 –

Geo-FNO (IPHI) 0.59363 20.514 0.18669 NaN 1.2893

Transolver 0.17422 0.13724 0.18594 0.15204 0.81991

Ours 0.00664 0.00364 0.00248 0.00138 0.55599

Promotion (%) ↑ 43.4 82.9 91.4 92.8 8.4

Table 2: Efficacy of feature-enhanced block on the performance of graph-based baselines across all
benchmarks with various methods.

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

GAT 0.11754 0.02589 0.07227 0.06396 0.62954
GAT + FE 0.15132 0.02717 0.08527 0.07058 0.61984

Promotion (%) ↑ −28.7 −4.9 −17.9 −10.3 1.5

GATv2 0.11944 0.03827 0.07301 0.04519 0.64796
GATv2 + FE 0.18496 0.04117 0.09365 0.06432 0.63363

Promotion (%) ↑ −54.8 −7.5 −28.2 −43.2 2.2

MGN 0.01174 0.02108 0.02917 0.01925 0.61475
MGN + FE 0.00817 0.01241 0.01583 0.00721 0.60593

Promotion (%) ↑ 30.4 41.1 45.7 62.5 1.4

MP-PDE 0.01784 0.02848 0.03860 0.06528 0.60761
MP-PDE + FE 0.01445 0.01957 0.02621 0.03655 0.60372

Promotion (%) ↑ 18.9 31.2 32.1 41.5 0.6

Table 3: Quantitative results of ablation study on CeGNN.

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

w/o Cell, FE 0.01174 0.02108 0.02917 0.01925 0.61475
w/o Cell 0.00828 0.00982 0.01035 0.00680 0.58236
w/o FE 0.00877 0.00788 0.00803 0.00679 0.58271

CeGNN (Full) 0.00664 0.00364 0.00248 0.00138 0.55599

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Quantitative results of computational cost and scalability of CeGNN. Note that the symbol
”Dim.” means the the dimension of latent feature.

Model No.of
layers Dim. Parameters Training time

(s/epoch)
GPU usage

(GB) 2D Burgers ↓

CeGNN 4 128 1,482,674 17.31 45.87 0.00664
CeGNN w/o FE 4 128 971,916 14.86 45.85 0.00877
MGN 4 128 514,236 8.64 32.56 0.01174
MGN 12 128 1,438,086 20.90 74.81 0.01858
MP-PDE 4 128 528,658 7.86 33.23 0.01784
MP-PDE 12 128 1,230,533 17.44 76.63 0.10101

Table 5: Quantitative results of the impact of window size and number of sub-features of CeGNN.

Window
size

Sub-
features Parameters

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)

1 128 9,362,572 0.00665 0.00409 0.00251 0.00122
2 64 3,071,116 0.00714 0.00370 0.00232 0.00192
4 32 1,482,674 0.00664 0.00364 0.00248 0.00138
8 16 1,105,036 0.01263 0.02261 0.03481 0.04128

16 8 1,006,736 0.11753 0.12900 0.09120 0.18963

and FE block still shows good generalization ability, even with small data. Although we attempt
to make the model learn higher-order information in each round, the results demonstrate that the
cell-embedded mechanism did not achieve the desired performance, which means that the network
architecture of traditional MPNNs still has the over-smoothness problems that need a better solution.

As shown in Table 4, our model with similar parameter ranges achieves the best performance
compared with MGN and MP-PDE. We have verified that the improvement of our model performance
is due to the innovative use of cell features rather than the introduction of additional parameters. In
addition, as shown in Table 5, excessive feature segmentation can disrupt feature correlations and
degrade model performance. Thus, we use the splitting method with a proper window size. We
also have performed a data scaling test and report the results (data size vs. prediction error) in the
Appendix Table S13 to support our claim of low data requirement. The tests were conducted on
the Burgers example using 10, 20 and 30 trajectories as training data. It can be observed that our
model with a smaller amount of data has equal or superior performance compared with that of other
methods (MGN and MP-PDE) with larger amounts of data. Additionally, we have investigated
the effectiveness of the cell feature on graph-based networks over all benchmarks. The results in
Appendix Table S14 show the positive efficacy of cell features. A ablation test about the relative
cell position information also demonstrates cell’s significance, shown in Appendix Table S15. More
importantly, the comparison results between two-level and three-level message passing mechanisms
in Appendix Table S17 have verified the he rationality of model design motivation.

5 CONCLUSION

In this paper, we proposed an end-to-end graph-based framework (namely, CeGNN) to learn the
complex spatiotemporal dynamics by utilizing the local information, CeGNN predicts future long-
term unobserved states and addresses the over-smoothness problem in GNNs. Firstly, the learnable
cell attribution in CellMPNN block captures the spatial dependency of regional features, upgrading
the local aggregation scheme from the first order to a higher order. Secondly, the FE block enriches the
node features, maintaining strong representational power even after multiple rounds of aggregation.
The effectiveness of CeGNN has been proven through results on various datasets. Although CeGNN
achieves superior performance on extensive experiments, there are several directions for future work,
including that (1) pushing our model to learn on a finer mesh with more complex boundary conditions,
and (2) further exploring the potential of cell attribution to learn higher-order information in a more
refined way, rather than the rough handling in our article. We attempt to accomplish these goals in
our future research work.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional neural
network. In 2017 international conference on engineering and technology (ICET), pp. 1–6. Ieee,
2017.

Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki, Zongyi Li,
Burigede Liu, and Andrew Stuart. Neural operator: Graph kernel network for partial differential
equations. In ICLR 2020 Workshop on Integration of Deep Neural Models and Differential
Equations, 2020.

Eric Aislan Antonelo, Eduardo Camponogara, Laio Oriel Seman, Jean Panaioti Jordanou, Eduardo Re-
hbein de Souza, and Jomi Fred Hübner. Physics-informed neural nets for control of dynamical
systems. Neurocomputing, pp. 127419, 2024.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
operators. IEEE Transactions on Machine Learning Research, 2023.

Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable pde
solvers and graph neural networks for fluid flow prediction. In international conference on machine
learning, pp. 2402–2411. PMLR, 2020.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
In International Conference on Machine Learning, pp. 1026–1037. PMLR, 2021.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. 2022.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? 2022.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis. Physics-
informed neural networks for heat transfer problems. Journal of Heat Transfer, 143(6):060801,
2021.

Weiming Cao, Weizhang Huang, and Robert D Russell. Anr-adaptive finite element method based
upon moving mesh pdes. Journal of Computational physics, 149(2):221–244, 1999.

Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. Finite volume methods. Handbook of
numerical analysis, 7:713–1018, 2000.

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive
convolutional neural networks for solving parameterized steady-state pdes on irregular domain.
Journal of Computational Physics, 428:110079, 2021.

Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural galerkin networks: A
unified framework for solving pde-governed forward and inverse problems. Computer Methods in
Applied Mechanics and Engineering, 390:114502, 2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Message
passing neural networks. Machine learning meets quantum physics, pp. 199–214, 2020.

Sergei K Godunov and I Bohachevsky. Finite difference method for numerical computation of
discontinuous solutions of the equations of fluid dynamics. Matematičeskij sbornik, 47(3):271–
306, 1959.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aditya Grover, Ashish Kapoor, and Eric Horvitz. A deep hybrid model for weather forecasting. In
Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 379–386, 2015.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. Advances in neural information processing systems, 34:24048–24062, 2021.

Mustafa Hajij, Kyle Istvan, and Ghada Zamzmi. Cell complex neural networks. arXiv preprint
arXiv:2010.00743, 2020.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzmán-Sáenz,
Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal K Dey, Soham Mukherjee, Shreyas N Sam-
aga, et al. Topological deep learning: Going beyond graph data. arXiv preprint arXiv:2206.00606,
2022.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng,
Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In
International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

Di He, Shanda Li, Wenlei Shi, Xiaotian Gao, Jia Zhang, Jiang Bian, Liwei Wang, and Tie-Yan Liu.
Learning physics-informed neural networks without stacked back-propagation. In International
Conference on Artificial Intelligence and Statistics, pp. 3034–3047. PMLR, 2023.

Masanobu Horie and Naoto Mitsume. Graph neural pde solvers with conservation and similarity-
equivariance. arXiv preprint arXiv:2405.16183, 2024.

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

Steeven Janny, Aurélien Beneteau, Madiha Nadri, Julie Digne, Nicolas Thome, and Christian Wolf.
Eagle: Large-scale learning of turbulent fluid dynamics with mesh transformers. arXiv preprint
arXiv:2302.10803, 2023.

Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delay-
aware dynamic long-range transformer for traffic flow prediction. In Proceedings of the AAAI
conference on artificial intelligence, volume 37, pp. 4365–4373, 2023.

Katiana Kontolati, Somdatta Goswami, George Em Karniadakis, and Michael D Shields. Learning
nonlinear operators in latent spaces for real-time predictions of complex dynamics in physical
systems. Nature Communications, 15(1):5101, 2024.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn. In
International conference on machine learning, pp. 1863–1871. PMLR, 2014.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34:26548–26560, 2021.

Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Fourier neural operator for parametric partial differential equations. In International Conference
on Learning Representations, 2021a.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. IEEE Transactions on Machine Learning Research, 2023a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 2021b.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. Journal of Machine Learning Research,
24(388):1–26, 2023b.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-informed
neural operator for large-scale 3d pdes. Advances in Neural Information Processing Systems, 36,
2024a.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024b.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
338–348, 2020.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Kaitlin McCardle. Shedding light on gnn affinity predictions. Nature Computational Science, 3(12):
1004–1004, 2023.

George S Misyris, Andreas Venzke, and Spyros Chatzivasileiadis. Physics-informed neural networks
for power systems. In 2020 IEEE power & energy society general meeting (PESGM), pp. 1–5.
IEEE, 2020.

M Necati Özişik, Helcio RB Orlande, Marcelo J Colaço, and Renato M Cotta. Finite difference
methods in heat transfer. CRC press, 2017.

Roberto Perera and Vinamra Agrawal. Multiscale graph neural networks with adaptive mesh
refinement for accelerating mesh-based simulations. Computer Methods in Applied Mechanics
and Engineering, 429:117152, 2024.

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia. Learning mesh-based simulation with
graph networks. In International Conference on Learning Representations, 2021.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica, 8:143–195,
1999.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Sebastian Reich. Finite volume methods for multi-symplectic pdes. BIT Numerical Mathematics, 40:
559–582, 2000.

Pu Ren, Chengping Rao, Yang Liu, Jian-Xun Wang, and Hao Sun. Phycrnet: Physics-informed
convolutional-recurrent network for solving spatiotemporal pdes. Computer Methods in Applied
Mechanics and Engineering, 389:114399, 2022.

Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E Hurtado, and Ellen Kuhl. Physics-
informed neural networks for cardiac activation mapping. Frontiers in Physics, 8:42, 2020.

Sebastian Scher. Toward data-driven weather and climate forecasting: Approximating a simple
general circulation model with deep learning. Geophysical Research Letters, 45(22):12–616, 2018.

Martin G Schultz, Clara Betancourt, Bing Gong, Felix Kleinert, Michael Langguth, Lukas Hubert
Leufen, Amirpasha Mozaffari, and Scarlet Stadtler. Can deep learning beat numerical weather
prediction? Philosophical Transactions of the Royal Society A, 379(2194):20200097, 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks for language modeling.
In Interspeech, volume 2012, pp. 194–197, 2012.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. International Conference on Learning Representations, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. 1050(20):10–48550, 2017.

Kun Wang and WaiChing Sun. A multiscale multi-permeability poroplasticity model linked by
recursive homogenizations and deep learning. Computer Methods in Applied Mechanics and
Engineering, 334:337–380, 2018.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Advances
in Water Resources, 163:104180, 2022.

Chao-Yuan Wu, Ross Girshick, Kaiming He, Christoph Feichtenhofer, and Philipp Krahenbuhl.
A multigrid method for efficiently training video models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 153–162, 2020.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024.

Ruiyang Zhang, Zhao Chen, Su Chen, Jingwei Zheng, Oral Büyüköztürk, and Hao Sun. Deep long
short-term memory networks for nonlinear structural seismic response prediction. Computers &
Structures, 220:55–68, 2019.

Gang Zheng, Xiaofeng Li, Rong-Hua Zhang, and Bin Liu. Purely satellite data–driven deep learning
forecast of complicated tropical instability waves. Science advances, 6(29):eaba1482, 2020.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A VARIABLES NOTATION

Moreover, we present a summary of the variable notations used in our paper, as detailed in Table S1.

Table S1: Variables notation used in our paper.

Field Variable Name Short Name Role
Global x-component of velocity u(x, t) Input/Predicted
Global y-component of velocity v(x, t) Input/Predicted
Global vorticity w(x, t) Input/Predicted
Global pressure p Input/Predicted
Global temperature in water depth of 12.5 meter T (x, t) Input/Predicted
Global x-direction of space coordinate x Input
Global y-direction of space coordinate y Input
Global z-direction of space coordinate z Input
Global time coordinate t Input
Global time increment ∆t Input
Global space increment ∆x Input
Global discrete timestamp at kth step tk Input

B BACKGROUND: OOD TEST IN SPATIOTEMPORAL PREDICTION

In this part, we would like to clarify the generalization tests with different random ICs in spatiotem-
poral dynamics are OOD. For a nonlinear PDE system, even if the ICs are IID, the spatiotemporal
solution can be OOD, because of the following reasons.

Nonlinearity and Emergence of Complex Patterns. Nonlinear PDEs are characterized by their
ability to produce highly complex behavior over time. This nonlinearity can amplify small differences
in ICs, leading to the emergence of patterns or behaviors that are vastly different from what was
initially expected. Even if the ICs are IID, the interactions dictated by the nonlinear terms in the PDE
can cause the solution to evolve in a way that is not reflective of the initial distribution. As a result,
the system may exhibit behaviors that are not represented in the original distribution, leading to an
OOD trajectory dataset. For example, in the Burgers and FN examples, the ICs are generated based
on Gaussian distribution with different random seeds (e.g., IID); however, the corresponding solution
trajectories remain OOD judging from the histogram plots.

Chaotic Dynamics. Nonlinear PDEs may exhibit chaotic behavior. In these systems, small perturba-
tions in ICs can lead to exponentially different solutions. Over time, this chaotic evolution can cause
the solution to become highly sensitive to ICs (e.g., the 2D FN and 2D/3D GS RD test data examples
shown in Figure 1b-d), resulting in a distribution that is very different from the IID distribution of
ICs, yielding an OOD solution space.

Long-term Evolution. In many nonlinear PDEs, solutions tend to evolve toward certain stable
structures or steady states known as attractors. These attractors can be complex structures in the
solution space. Over time, the solution might converge to or oscillate around these attractors,
regardless of the IID nature of ICs (e.g., the Burgers, FN and GS RD examples in our paper). The
distribution of solutions near these attractors can be very different from the IC IID distribution.
Essentially, the system’s long-term behavior is determined more by the attractors rather than by ICs.

Spatialtemporal Correlations. The assumption of IID ICs implies no spatial/temporal correlations
initially. However, the evolving dynamics governed by PDEs can introduce correlations over time.
These correlations can lead to a solution that has a distribution quite different from the original IID
distribution. The emergence of such correlations indicates that the evolved solution is not just a
simple extension of ICs, producing datasets with OOD.

Breaking of Statistical Assumptions. As the system evolves, the assumptions that justified the
IID nature of ICs may no longer hold. The dynamics of the PDE can induce structures, patterns,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

or dependencies that were not present in ICs. As a result, the statistical properties of the evolved
solution may diverge from those of ICs, leading to an OOD.

Hence, even though the ICs are IID, the resulting solution trajectories are OOD. This might be a
little bit different from our understanding of IID/OOD datasets in common practices of NLP, CV,
etc. In addition, we have indeed considered OOD ICs in our tests, e.g., the ICs of the 2D/3D GS
RD examples are randomly placed square cube concentrations (1 or 2 square/cube blocks) as shown
in Figure 1c-d. The resulting solution datasets are obviously OOD. Therefore, all the results of
generalizing to different ICs represent OOD tests. Given the same comparison test sets, our model
shows better generalization performance over other baselines.

C PROOFS

C.1 SUPPLEMENTARY DEFINITIONS, LEMMAS, THEOREMS, COROLLARIES, OR PROOFS

Lemma 2 (Feature Diversity) Introducing cells enhances feature diversity by encoding higher-
order relationships among nodes. Specifically, the basic features in traditional MP mech-
anism are {hi,hj , eij , eji}, and the basic features in cell-based MP mechanism are {hi,
hj ,hk, eij , ejk, eki, cijk, ckij , cjki}. The additional node hk provides a richer context, enabling
the capture of more complex patterns within one round.

Lemma 3 (Reduction in Ambiguity) Traditional MP methods rely solely on pairwise interactions,
which can lead to ambiguity in cases of structural symmetry. Cell-based MP mechanism leverages the
higher-order structure, reducing ambiguity by providing additional constraints through relationships
between three or more nodes.

Corollary 3 (Improved Performance) Cell-based MP mechanism improves prediction capability
by enhancing feature distinguishability through introducing higher-order relationships.

Corollary 4 (Suitability for Graphs) In dense or sparse graphs, cell-based methods outperform
traditional methods by capturing multi-node interactions within one round, which are critical for
preserving the graph’s topology.

Explanation of Corollary 2. 1-WL test relies on pairwise node comparisons and cannot distinguish
graphs that are symmetric under pairwise relationships. By lifting graphs to a cell-embedded pattern
and using cell-based MP mechanism, higher-order interactions are encoded, allowing discrimination
of graphs that 1-WL test cannot separate. See the detail proof in Subsection C.2.

C.2 WEISFEILER-LEHMAN (WL) TESTS

Weisfeiler-Lehman (WL) Test is an iterative graph isomorphism algorithm that updates node features
by aggregating the features of neighboring nodes. After each iteration, the updated node features are
hashed to encode structural information. Despite its effectiveness, WL test cannot distinguish certain
non-isomorphic graphs, particularly when higher-order structural information is required. In this part,
our goal is to show that cell-based message passing mechanism is more expressive than the 1-WL
test for distinguishing non-isomorphic graphs.

Task Definition. A graph G = (V,E) has a set of vertices V and edges E. The 1-WL test iteratively
computes node features hl

i at iteration l as hl+1
i = Hash

(
hl
i, {hl

j : j ∈ Ni}
)
, where Ni is the set of

neighbors of i, and h0
i is initialized with the node’s feature.

G2G1

Figure S1: Two undistinguished graphs by 1-WL
test. Different colors represent different labels.

Consider two graphs G1 and G2 (see Figure
S1), the WL test fails to distinguish G1 and G2

because it only aggregates local neighborhood
information, and both graphs have identical de-
gree distributions and neighborhood structures
for all nodes.

Given that cells (e.g., triangles) can be explic-
itly considered, we propose a simple cell-based
scheme, described as follows.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Initialization. Initializing node features h0
i based on their labels or degrees and initializing higher-

order cell features c0ijk by aggregating node features within the triangle.

Message Passing. Updating node and cell features iteratively. For example:
hl+1
i = Hash

(
hl
i, {hl

j : j ∈ Ni}, {clijk : jk ∈ Ni}
)
, (S1a)

clijk = Aggregate
(
hl
i,h

l
j ,h

l
k

)
, ∀i, j, k ∈ ∆ijk. (S1b)

Expressiveness. In G2, no triangles exist, so all triangle-related features cijk will remain zero or
absent. (2) In G1, there are two triangles. These triangles generate non-zero features that propagate
back to nodes during message passing. Thus, the presence of higher-order structures (triangles)
allows the cell-based scheme to distinguish G1 from G2. And we proposed the following proposition
about the expressiveness of cell-based message-passing scheme.

Proposition 1 The cell-based message-passing scheme is more expressive than 1-WL test because
it captures higher-order interactions (e.g., triangles) that are invisible to 1-WL. This enhanced
capability enables it to distinguish graphs, such as G1 and G2, which cannot be differentiated by
1-WL test.

Algorithm 1 Feature-enhanced block
Input: The current node states hl ∈ RN×D

Parameter: The weight tensor Wl ∈ RD×D×D, a mask matrix Ml ∈ RD×D

Output: The updated node states ĥl ∈ RN×D

1: Reshape phase. Reshape the input states hl and obtain the h
l ∈ RN×D×1.

2: Expansion phase. Play an Outer product operation on the h
l

to get new states Hl ∈ RN×D×D.
3: Filtering phase. Filter feature with a Hadamard product operation on the new states Hl and the

mask Ml to get new states Ĥl ∈ RN×D×D.
4: Contraction phase. Contract the new states Ĥl with the weight Wl by a Double contraction

operation to construct the final states h̃l ∈ RN×D.
5: return The updated states h̃l.

C.3 INSPIRATION OF FEATURE-ENHANCED (FE) BLOCK

The process of FE block is inspired by interaction models in physics and mathematically hypothesized
to capture nonlinear dependencies, enhancing the model’s representation power.

Hypothesis. The FE block’s hypothesis could be framed as: By capturing second-order interactions
between latent features and applying selective filtering, the model can better represent complex
structures or relationships in the data.

Physical Analogy. In physics, the outer product and second-order terms are often used to model
interactions, such as stress tensors in mechanics or pairwise correlations in quantum mechanics. Here,
the module could draw an analogy to systems where interactions between individual components
(features) are crucial to the overall behavior.

Process Overview. In detail, it regards the node latent feature hi ∈ RD×1 as basis and builds a
higher-order tensor feature Hi ∈ RD×D via an outer-product operation, e.g., hi ⊗ hi. This process
in Algorithm 1 creates abundant second-order nonlinear terms to enrich the feature map. We then
use a mask operation with M ∈ RD×D to randomly sample these terms, filtering the appropriate
information by a learnable weight tensor W ∈ RD×D×D to enhance the model’s representation
capacity.

D SUPPLEMENTARY DETAILS OF EXPERIMENTS

D.1 SUPPLEMENTARY DETAILS OF DATASETS

Viscous Burgers Equation. As a simple non-linear convection–diffusion PDE, Burgers equation
generates fluid dynamics on various input parameters. For concreteness, within a given 2D field,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table S2: Summary Information of Datasets. Note that the trajectory number for training, validation,
and testing is described by the form like (5/2/3).

Dataset Space PDE
form

Boundary
condition

Number of
trajectories

Number of
Nodes

Trajectory
length

Force
term

Burgers 2D Eq. S2 Periodic 15 (10/2/3) 2,500 (502) 1000 No

FN 2D Eq. S3 Periodic 10 (5/2/3) 16,384 (1282) 3000 Yes

GS RD 2D Eq. S4 Periodic 10 (5/2/3) 2304 (482) 3000 No

GS RD 3D Eq. S4 Periodic 4 (1/1/2) 13,824 (243) 3000 No

BS 2D – N/A 24 (20/2/2) 1,000-20,000 365 N/A

there is a velocity u = [u, v]T at per 2D grid point. Its general formulation is expressed as following
description:

∂u

∂t
+ u · ∇u = D∇2u, (S2)

where viscosity D = [Du, Dv] is the diffusion coefficient of fluid, u(x, t) its velocity, x the 2D spatial
coordinate and t the 1D temporal coordinate. In this work, we generate the simulation trajectory
within Ω ∈ [0, 1]2 and t ∈ [0, 1](s), using a 4th-order Runge–Kutta time integration method (Ren
et al., 2022) under the periodic condition. Here, we define Du = 0.01, Dv = 0.01,∆t = 0.001(s)
and ∆x = 0.02.

Fitzhugh-Nagumo Equation. Fitzhugh-Nagumo equation consists of a non-linear diffusion equation
with different boundary conditions. We generates the training and testing data u = [u, v]T in a given
2D field with periodic boundary conditions:

∂u(x, t)

∂t
= Du∇2u+ u− u3 − v3 + α, (S3a)

∂v(x, t)

∂t
= Dv∇2v + (u− v)× β, (S3b)

where Du, Dv are the diffusion coefficients, α, β the reaction coefficients. In this work, we generate
the simulation trajectory within Ω ∈ [0, 128]2 and t ∈ [0, 6](s), using a 4th-order Runge–Kutta time
integration method (Ren et al., 2022) under the periodic condition. Here, we define Du = 1, Dv =
100, α = 0.01, β = 0.25,∆t = 0.002(s) and ∆x = 1.

Gray-Scott Equation. As a coupled reaction-diffusion PDE, Gray-Scott equation consists of a
velocity u = [u, v]T . For example, given a 3D field, the corresponding form of each component on
x = (x, y, z) ∈ R3 and t ∈ [0, T ] is as follows:

∂u(x, t)

∂t
= Du∇2u− uv2 + α(1− u), (S4a)

∂v(x, t)

∂t
= Dv∇2v + uv2 − (β + α)v, (S4b)

where Du and Dv are the variable diffusion coefficients, β the conversion rate, α the in-flow rate
of u(x, t) from the outside, and (α+ β) the removal rate of v(x, t) from the reaction field. In this
work, we generate the 2D simulation trajectory within Ω ∈ [0, 96]2 and the 3D simulation trajectory
within Ω ∈ [0, 48]3 in t ∈ [0, 750](s), using a 4th-order Runge–Kutta time integration method (Ren
et al., 2022) under the periodic condition. Here, we define Du = 0.2, Dv = 0.1, α = 0.025, β =
0.055,∆t = 0.25(s) and ∆x = 2.

Black Sea Dataset. The BS dataset 1 provides measured data of daily mean sea surface temperature
T and water flow velocities u on the Black Sea over several years. The collection of these data was
completed by Euro-Mediterranean Center on Climate Change (CMCC) in Italy starting from June 1,
1993, to June 30, 2021, with a horizontal resolution of 1/27◦ × 1/36◦.

1https://data.marine.copernicus.eu/product/BLKSEA_MULTIYEAR_PHY_007_
004/description

18

 https://data.marine.copernicus.eu/product/BLKSEA_MULTIYEAR_PHY_007_004/description
 https://data.marine.copernicus.eu/product/BLKSEA_MULTIYEAR_PHY_007_004/description


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table S3: Summary analysis of Baselines.

Model Grid
Domain

Irregular
Domain

Kernel
Netwotk

Spectrum
Netwotk

Graph
Netwotk

Attention
Netwotk

Multi
Scale

FNO ✓ ✗ ✗ ✓ ✗ ✗ ✗

GAT ✓ ✓ ✗ ✗ ✓ ✓ ✗

GATv2 ✓ ✓ ✗ ✗ ✓ ✓ ✗

MGN ✓ ✓ ✗ ✗ ✓ ✗ ✗

MP-PDE ✓ ✓ ✗ ✗ ✓ ✗ ✗

FFNO ✓ ✗ ✗ ✓ ✗ ✗ ✗

Geo-FNO ✓ ✓ ✗ ✓ ✗ ✗ ✗

Transolver ✓ ✓ ✗ ✗ ✗ ✓ ✗

Ours ✓ ✓ ✗ ✗ ✓ ✗ ✗

D.2 SUPPLEMENTARY DETAILS OF BASELINE

Fourier Neural Operator (FNO). The most promising spectral approach, FNO (Li et al., 2021a)
proposed a neural operator in the Fourier domain to model dynamics. In this work, it was implemented
for 2D and 3D spatial grid domains. The hyperparameters are taken from (Li et al., 2021a).

Graph Attention Network (GAT). GAT (Velickovic et al., 2017) proposed a graph network with a
masked self-attention mechanism, aiming to address the shortcomings of graph convolutions.

Graph Attention Network Variant (GATv2). GATv2 (Brody et al., 2022) proposed a dynamic
graph attention variant to remove the limitation of static attention in complex controlled problems,
which is strictly more expressive than GAT.

MeshGraphNet (MGN). MGN (Pfaff et al., 2021) provided a type of neural network architecture
designed specifically for modeling physical systems that can be represented as meshes or graphs.
Specifically, its “ Encoder-Processor-Decoder” architecture in (Pfaff et al., 2021) has been widely
adopted in many supervised learning tasks, such as fluid and solid mechanics constrained by PDEs.
Relevant parameters are referenced from (Pfaff et al., 2021).

MP-Neural-PDE Solver (MP-PDE). MP-PDE (Brandstetter et al., 2022) proposed the temporal
bundling and push-forward techniques to encourage zero-stability in training autoregressive models.
Relevant parameters are referenced from (Brandstetter et al., 2022).

Factorized Fourier Neural Operator (FFNO).

Factorized Fourier Neural Operator (FFNO) (Tran et al., 2021) factorizes the representation into sep-
arable Fourier representation to reduce the spatial and temporal complexity, improving its scalability.
Relevant parameters are referenced from (Tran et al., 2021).

Geometry-informed FNO (Geo-FNO). Geometry-informed FNO (Geo-FNO) (Li et al., 2023b;
2024a) maps the irregular domain into a uniform grid, preserving the computation efficiency and
handling the arbitrary geometries. Relevant parameters are referenced from (Li et al., 2023b).

Transolver. Transolver (Wu et al., 2024) proposed a new Physics Attention to adaptively split the
discretized domain into a series of learnable slices of flexible shapes, effectively capture intricate
physical correlations under complex geometrics. Relevant parameters are referenced from (Wu et al.,
2024).

D.3 SUPPLEMENTARY DETAILS OF EXPERIMENT

D.3.1 SUMMARY OF PARAMETERS OF ALL MODELS

In this part, we list the parameters of all models on various datasets in Tables S4 to S12, including the
number of layers, the learning rate, the hidden dimension, etc.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table S4: Range of training hyperparameters for FNO

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 541,436
2D FN 4 1×10−4 1×10−4 128 100 541,436
2D GS RD 4 1×10−4 1×10−4 128 100 554,930
3D GS RD 4 1×10−4 1×10−4 128 10 515,746

Table S5: Range of training hyperparameters for GAT

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 779,014
2D FN 4 1×10−4 1×10−4 128 100 779,014
2D GS RD 4 1×10−4 1×10−4 128 100 779,014
3D GS RD 4 1×10−4 1×10−4 128 5 779,014
2D BS 4 1×10−2 1×10−4 128 20 805,350

Table S6: Range of training hyperparameters for GATv2

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 778,630
2D FN 4 1×10−4 1×10−4 128 100 778,630
2D GS RD 4 1×10−4 1×10−4 128 100 778,630
3D GS RD 4 1×10−4 1×10−4 128 5 778,630
2D BS 4 1×10−2 1×10−4 128 20 804,966

Table S7: Range of training hyperparameters for MGN

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 514,236
2D FN 4 1×10−4 1×10−4 128 100 514,236
2D GS RD 4 1×10−4 1×10−4 128 100 514,236
3D GS RD 4 1×10−4 1×10−4 128 5 514,236
2D BS 4 1×10−2 1×10−4 128 20 540,572

Table S8: Range of training hyperparameters for MP-PDE

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 528,658
2D FN 4 1×10−4 1×10−4 128 100 528,658
2D GS RD 4 1×10−4 1×10−4 128 100 528,658
3D GS RD 4 1×10−4 1×10−4 128 5 528,658
2D BS 4 1×10−2 1×10−4 128 20 554,994

D.3.2 DATA SCALING TEST

We also have performed a data scaling test and report the results (data size vs. prediction error) in the
Table S13 below to support our claim of low data requirement.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table S9: Range of training hyperparameters for CeGNN

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 1,482,674
2D FN 4 1×10−4 1×10−4 128 100 1,482,674
2D GS RD 4 1×10−4 1×10−4 128 100 1,482,674
3D GS RD 4 1×10−4 1×10−4 128 5 1,482,674
2D BS 4 1×10−2 1×10−4 128 20 1,509,010

Table S10: Range of training hyperparameters for FFNO

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 1,072,388
2D FN 4 1×10−4 1×10−4 128 100 1,072,388
2D GS RD 4 1×10−4 1×10−4 128 100 1,072,388
3D GS RD 4 1×10−4 1×10−4 128 10 1,334,660

Table S11: Range of training hyperparameters for Geo-FNO

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 727,396
2D FN 4 1×10−4 1×10−4 128 100 727,396
2D GS RD 4 1×10−4 1×10−4 128 100 727,396
3D GS RD 4 1×10−4 1×10−4 128 10 2,705,569
2D BS 4 1×10−2 1×10−4 128 20 727,557

Table S12: Range of training hyperparameters for Transolver

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 1,516,354
2D FN 4 1×10−4 1×10−4 128 100 1,516,354
2D GS RD 4 1×10−4 1×10−4 128 100 1,516,354
3D GS RD 4 1×10−4 1×10−4 128 10 1,631,042
2D BS 4 1×10−2 1×10−4 128 20 1,516,739

Table S13: Data scaling results (prediction error, RMSE) of CeGNN, MGN and MP-PDE on 2D
Burgers equation.

Model No.of
layers Dimension RMSE ↓

Data size = 10 Data size = 20 Data size = 30

CeGNN 4 128 0.00664 0.00413 0.00226
MGN 4 128 0.01174 0.00926 0.00636
MP-PDE 4 128 0.01784 0.01442 0.00911

D.3.3 THE EFFICACY OF CELL FEATURES

In this part, we also have test the efficacy of cell features on the performance of graph-based baselines
across all benchmarks with various methods and report the results with RMSE metrics in the Table
S14 below to support our claim of introducing cells.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table S14: Efficacy of cell features on the performance of graph-based baselines across all benchmarks
with various methods.

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

MGN 0.01174 0.02108 0.02917 0.01925 0.61475
MGN + Cell 0.00826 0.00791 0.00832 0.00694 0.58019

Promotion (%) ↑ 29.6 62.4 71.4 63.9 5.6

MP-PDE 0.01784 0.02848 0.03860 0.06528 0.60761
MP-PDE + Cell 0.00951 0.01193 0.00947 0.00992 0.59313

Promotion (%) ↑ 46.7 58.1 75.4 84.8 2.38

Ours 0.00664 0.00364 0.00248 0.00138 0.55599

Table S15: Quantitative ablation results about the cell position information for CeGNN and other two
cases under RMSE metrics.

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

CeGNN 0.00664 0.00364 0.00248 0.00138 0.55599

w/o Cell Pos. 0.00721 0.00477 0.00439 0.00274 0.56098

w Cell (Pos. to B) 0.00720 0.00490 0.00445 0.00276 0.56040

MGN 0.01174 0.02108 0.02917 0.01925 0.61475

Table S16: Summary of CeGNN, MGN, CCNNs, and MPSNs

Model Message Level Special Complex Predefinition Simplex, Complex Type Application

CeGNN 2 No 3 Dynamics
MGN 2 No 2 Dynamics
CCNNs 3 No 3 Classification
MPSNs 2 Yes 5 Classification

D.3.4 DISCUSSION OF THE POSITION INFORMATION IN CELLS

In this part, we provide other two cases “CeGNN w/o Cell Pos.” and “ w Cell (Pos. to B)” in the
following Table S15, where “ w/o Cell Pos.” represents the cell initial feature without the position
awareness, and “ w Cell (Pos. to B)” is replacing the distance to the cell center with the distance
to the nearest PDE boundary. The results in Table S15 show that the performance improvement of
CeGNN is not only due to add position awareness into the cell initial feature, but also the second-order
refinement of the discrete space.

D.3.5 DISCUSSION WITH OTHER HIGHER-ORDER GRAPHS

In this part, we mainly focus on discussing the excellent works CCNNs in (Hajij et al., 2022) and
MPSNs in (Bodnar et al., 2021). A summary of these models is shown in the following Table S16.

Firstly, MGN achieves message passing through a two-level structure (edge → node). On this basis,
CCNNs in (Hajij et al., 2022) leverages combinatorial complexes to achieve message passing through
a three-level structure (cell → edge → node). Meanwhile, MPSNs in (Bodnar et al., 2021) performs
message passing through a two-level structure (complexes → simplex) on various simplicial com-
plexes (SCs), which primarily include one simplex (node) and four types of complexes with varying
adjacent simplices (e.g., boundary adjacencies, co-boundary adjacencies, lower-adjacencies, and
upper-adjacencies), to enhance feature distinguishability and thus improve classification performance.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table S17: Comparison result between two-level and three-level mechanisms

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

CeGNN 0.00664 0.00364 0.00248 0.00138 0.55599

MGN (2-level) 0.01174 0.02108 0.02917 0.01925 0.61475

MGN (3-level) 0.03220 0.04196 0.05884 0.08218 0.61524

In contrast, CeGNN sets apart from these works and adopts a novel two-level structure ([cell, edge] →
node) from the spatial perspective, which is more suitable to learn implicit dynamic mechanism.

Since there are only node labels for the supervised learning, the three-level message passing mecha-
nism in (Hajij et al., 2022) poses significant training challenges. However, our two-level message
passing sequence reduces the high coupling degree in (Hajij et al., 2022) and avoids the limitation for
additional predefined special complexes (e.g., some simplicial complexes in (Bodnar et al., 2021) ).
A comparison result between two-level and three-level mechanisms is shown in the following Table
S17. The results in Table S17 demonstrate that three-level mechanism underperforms than two-level
mechanism in our all cases.

23


	Introduction
	Related works
	PDE formulation
	Classical solvers
	Neural solvers

	Methodology
	Network architecture
	Feature-enhanced block
	 Cell-embedded Graph Neural Network


	Experiment
	Datasets and Baselines
	Experimental setup
	Results

	Conclusion
	Variables notation
	Background: OOD test in Spatiotemporal Prediction
	Proofs
	Supplementary Definitions, Lemmas, Theorems, Corollaries, or Proofs
	Weisfeiler-Lehman (WL) Tests
	Inspiration of Feature-enhanced (FE) Block

	Supplementary details of experiments
	Supplementary details of datasets
	Supplementary details of baseline
	Supplementary details of experiment
	red Summary of parameters of all models
	red Data scaling test
	red The efficacy of cell features
	red Discussion of the position information in cells
	red Discussion with other Higher-order Graphs



