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ABSTRACT

Data-driven simulation of physical systems has recently kindled significant atten-
tion, where many neural models have been developed. In particular, mesh-based
graph neural networks (GNNs) have demonstrated significant potential in pre-
dicting spatiotemporal dynamics across arbitrary geometric domains. However,
the existing node-edge message passing mechanism in GNNs limits the model’s
representation learning ability. In this paper, we proposed a cell-embedded GNN
model (aka, CeGNN) to learn spatiotemporal dynamics with lifted performance.
Specifically, we introduce a learnable cell attribution to the node-edge message
passing process, which better captures the spatial dependency of regional features.
Such a strategy essentially upgrades the local aggregation scheme from first order
(e.g., from edge to node) to a higher order (e.g., from volume and edge to node),
which takes advantage of volumetric information in message passing. Meanwhile,
a novel feature-enhanced block is designed to further improve the performance of
CeGNN and alleviate the over-smoothness problem. The extensive experiments on
various PDE systems and one real-world dataset demonstrate that CeGNN achieves
superior performance compared with other baseline models, significantly reducing
the prediction errors on several PDE systems.

1 INTRODUCTION

Solving Partial Differential Equations (PDEs) is often essential for analyzing and modeling complex
spatiotemporal dynamic processes across various scientific and engineering fields. For example,
weather prediction (Scher, 2018; Schultz et al., 2021; Grover et al., 2015), ocean current motion pre-
diction (Zheng et al., 2020), nonlinear engineering structure earthquake response prediction (Zhang
et al., 2019), material mechanical properties simulation (Wang & Sun, 2018), etc. Traditionally,
classical numerical methods (e.g., Finite Difference Method (FDM) (Godunov & Bohachevsky,
1959; Özişik et al., 2017), Finite Volume Method (FVM) (Eymard et al., 2000), and Finite Element
Method (FEM) (Hughes, 2012)) are utilized to solve these PDEs, requiring substantial analytical or
computational efforts. Although this problem has been simplified via discretizing the space, the issue
of trade-off between cost and precision intensifies when dealing with varying domain geometries
(e.g., different initial or boundary conditions or various input parameters), especially in real-world
scenarios. In the last few decades, Deep Learning (DL) (Pinkus, 1999; Tolstikhin et al., 2021; Albawi
et al., 2017; Koutnik et al., 2014; Sundermeyer et al., 2012) models have made great progress in
approximating high-dimensional PDEs benefiting from existing rich labeled or unlabeled datasets.
However, there are certain drawbacks in this simple approach of learning the non-linear mapping
between inputs and outputs from data. For example, their performance is severely limited by the
training datasets, the neural network lacks interpretability and generalizes poorly.

Embedding domain-specific expertise (e.g., Physics-informed Neural Networks (PINNs) (Raissi
et al., 2019)) has shown the potential to tackle these problems (Krishnapriyan et al., 2021; Gao et al.,
2021; He et al., 2023; Li et al., 2024b). However, the core part of PINNs, Automatic Differentiation
(AD) approach, has two major drawbacks: (1) it is necessary to formulate explicit governing equations
into the loss function, and (2) the parameters in high-dimensional feature spaces cannot be efficiently
optimized when facing highly complex networks like graph networks. As shown in Figure 1e,
there are no any predefined equations available to represent the evolution patterns of sea surface
temperature at varying depths. Neural Operators, such as DeepONet (Lu et al., 2021) and Latent
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Figure 1: Examples of datasets, including classic governing equations and more challenging real-
world dataset. a, the 2D Burgers equation. b, the 2D Fitzhugh-Nagumo equation. c, the 2D Gray-Scott
equation. d, the 3D Gray-Scott equation. e, the 2D Black-Sea dataset.

DeepONet (Kontolati et al., 2024), have emerged as another paradigm to learn these complex non-
linear behaviors. The most well-known models, Fourier Neural Operator (FNO) (Li et al., 2021a) and
its variants (Tran et al., 2021; Wen et al., 2022; Ashiqur Rahman et al., 2023; Li et al., 2024a), utilize
neural networks to learn parameters in the Fourier space for fast and effective turbulence simulation.
Likewise, they inevitably have the same shortcoming as those traditional methods: over-reliance on
data and biased towards the grid domain.

The other representative models, Transformer models (Vaswani et al., 2017; Wu et al., 2024)
and GNNs (Liu et al., 2020; Gao et al., 2022; McCardle, 2023; Horie & Mitsume, 2024), have
demonstrated significant influence in predicting spatiotemporal dynamics across arbitrary geometric
domains. In particular, mesh-based graph neural networks (GNNs) (Gilmer et al., 2017; 2020; Pfaff
et al., 2021; Brandstetter et al., 2022) learn vastly different dynamics of various physical systems,
ranging from structural mechanics and cloth to fluid simulations. However, the existing node-edge
message passing mechanism in GNNs overestimates the primary role of “message” passing function
on the neighbor “edges”, limiting the model’s representation learning ability. In general, this strategy
leads to highly homogeneous node features after multiple rounds of message passing, making the
features ineffective at representing distinct characteristics, namely, the over-smoothness problem.

To further address the above issues, we proposed an end-to-end graph-based framework, Cell-
embedded Graph Neural Network (CeGNN), to model spatiotemporal dynamics across various
domains with improved performance. Specifically, after detecting discontinuities in space, we
introduce a learnable cell attribution to the node-edge message passing process, which better captures
the spatial dependency of regional features. Such a strategy essentially upgrades the local aggregation
scheme from the first order (e.g., from edge to node) to a higher order (e.g., from volume and edge to
node), which takes advantage of volumetric information in message passing. Meanwhile, a novel
feature-enhanced (FE) block is designed to further improve the performance of CeGNN and relieve
the over-smoothness problem, via treating the latent features as basis functions and further processing
these features on this concept. In detail, it regards the node latent feature hi as basis and builds
a higher-order tensor feature via an outer-product operation, e.g., hi ⊗ hi. This process creates
abundant second-order nonlinear terms to enrich the feature map. We then use a mask operation to
randomly sample these terms, filtering the appropriate information by a learnable weight tensor to
enhance the model’s representation capacity. Figure 2 shows an outline of our proposed model. Our
extensive experiments on many PDE-centric systems and real-world datasets show that CeGNN can
significantly enhance spatiotemporal dynamic learning in various scenarios, particularly with limited
datasets. The key contributions of this paper are summarized as follows:

• We introduce cell attributions legitimately to learn second-order information from connected
nodes of any cell, allowing us to rapidly identify non-local relationships that traditional
message-passing mechanisms often fail to capture directly.

• We propose the FE block to enrich the feature representations and filter more effective
information via learnable parameters.

• Our approach stands out for its lower error, better interpretability, and robust generalizability,
making a substantial progress in the spatiotemporal dynamic field.

2 RELATED WORKS

Spatiotemporal dynamics research, as one of the important frontier research areas, is integral to fields
ranging from traditional fluid dynamics to economics and finance. In this part, we firstly give a
brief introduction to spatiotemporal PDEs. Then, the relevant progress in spatiotemporal dynamics
research is described from the perspectives of classical and neural solvers.
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Figure 2: Network architecture of CeGNN. a, an encoder encodes the physical variables to latent
features, a message passing block processes these latent features iteratively, and a decoder maps back
to the physical states. b, three components in the CellMPNN block. c, the process of FE block.

2.1 PDE FORMULATION

Without loss of generality, the time-dependent PDEs generally describe the evolution of a con-
tinuous field over certain time intervals, which can be cast into the following form: ∂u/∂t =
F
(
θ, t,x,u,∇u,∇2u, . . .

)
, where F(·) denotes an unknown linear or nonlinear function com-

prised of the spatiotemporal variable u(x, t) ∈ Rd, its corresponding partial derivatives (e.g.,
∇u,∇2u), and some related parameters θ. Here, x ∈ Rm denotes the m-dimensional spatial
coordinate, t ∈ R1 the time, ∇ the Nabla operator, ∇2 the Laplacian operator. The PDE is subjected
to specific initial and boundary conditions.

2.2 CLASSICAL SOLVERS

To solve time-dependent PDEs, a common way is the method of lines (MOL). By discretizing in
all but one dimension, it allows solutions to be computed via methods and software developed
for the numerical integration of ordinary differential equations (ODEs) and differential-algebraic
equations (DAEs). Meanwhile, the multigrid method (Wu et al., 2020) is another algorithm for
solving PDEs via a hierarchy of discretizations. Other classical numerical methods (e.g., Finite
Difference Method (FDM) (Godunov & Bohachevsky, 1959; Özişik et al., 2017), Finite Volume
Method (FVM) (Eymard et al., 2000), and Finite Element Method (FEM) (Cao et al., 1999)) have
also been utilized for practical applications (Reich, 2000; Hughes, 2012).

2.3 NEURAL SOLVERS

PINN Methods. Two main approaches, Physics-informed Neural networks (PINNs) (Raissi et al.,
2019; Krishnapriyan et al., 2021; He et al., 2023) and Physics-informed Neural Operators (Li et al.,
2021b; Hao et al., 2023; Kovachki et al., 2023), were developed to learn fluid and solid mechanisms.
With formulating the explicit governing equation as the loss function, PINNs constrain the latent
feature spaces to a certain range, effectively learning from small data or even without any labeled data.
Such a novel method immediately attracts the attention of many researchers and has been utilized in
a wide range of applications governed by differential equations, such as heat transfer problems (Cai
et al., 2021), power systems (Misyris et al., 2020), medical science (Sahli Costabal et al., 2020), and
control of dynamical systems (Antonelo et al., 2024).
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Neural Operators. Neural operators (Lu et al., 2021; Kontolati et al., 2024) combine various basis
transforms (e.g., Fourier, multipole kernel, wavelet (Gupta et al., 2021)) with neural networks to
accelerate PDE solvers in diverse applications. For example, Fourier Neural Operator (FNO) and
its variants (Tran et al., 2021; Wen et al., 2022; Ashiqur Rahman et al., 2023; Li et al., 2024b)
learn parameters in the Fourier domain for turbulence simulation. Especially, geo-FNO (Li et al.,
2024a) maps the irregular domain into an uniform mesh with a specific geometric Fourier transform
to fit irregular domains. However, they all follow the assumptions of periodicity and time-invariance
property, making them fail in complex boundaries.

Transformer Methods. As another paradigm, Transformer (Vaswani et al., 2017) and its “x-former”
family (Jiang et al., 2023; Wu et al., 2024) have also been utilized to solve complex PDEs. Since the
attention mechanism results in higher complexity, many researchers are trying to alleviate this issue
through various means. For example, linear attention mechanism (Li et al., 2023a; Hao et al., 2023)
is a well-known method to address this limitation. Although the above methods alleviate the need for
specific domain expertise, they all share the same limitations: instability in long-range prediction and
weak generalization ability.

Graph Methods. Abundant works about Graph Neural Networks (GNNs) (Liu et al., 2020; Gao
et al., 2021; 2022; Horie & Mitsume, 2024) and geometric learning (Bronstein et al., 2017; Hajij
et al., 2020; 2022; Horie & Mitsume, 2024) attempt to utilize customized substructures to generalize
message passing to more complex domains. For example, graph kernel methods (Anandkumar
et al., 2020; Li et al., 2020) try to learn the implicit or explicit embedding in Reproducing Kernel
Hilbert Spaces (RKHS) for identifying differential equations. (Belbute-Peres et al., 2020) considers
solving the problem of predicting fluid flow using GNNs. Message Passing Simplicial Networks
(MPSNs) (Bodnar et al., 2021) perform message passing on simplicial complexes (SCs). Most
notably, Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017; 2020; Janny et al., 2023;
Perera & Agrawal, 2024) are utilized to tackle these issues, which learn latent representations on
graphs via message passing mechanism. Especially, MeshGraphNets (Pfaff et al., 2021) and MP-PDE
solver (Brandstetter et al., 2022) are two representative examples. While powerful and expressive,
we still find that there are some problems with these methods: their expression ability is still not
strong enough, their prediction error is still somewhat high, and they still rely on a large amount of
data. Hence, we designed our model to address these three problems.

3 METHODOLOGY

In this section, we illustrate how our method effectively learn the solution of spatiotemporal PDEs
under various parameters (e.g., the initial or boundary conditions, constant or variable coefficients)
for a given physical system. All the source code and data would be posted after peer review.

3.1 NETWORK ARCHITECTURE

To enhance the performance of long-range prediction, we adapt the conventional “Encoder-Processor-
Decoder” framework in (Pfaff et al., 2021; Brandstetter et al., 2022) as the backbone of our method,
which is primarily designed to effectively learn the complex spatiotemporal dependencies on graphs.
As shown in Figure 2, our proposed method mainly consists of the Feature-Enhanced (FE) block
and the Cell-embedded MPNN (CellMPNN) block. These two key components update features in a
sequential process to achieve the cascaded enhancement effect, described as follows: (1) Updating
node-edge-cell features with the CellMPNN block; (2) Enriching higher-order node features with
the FE block; (3) Iteratively repeating the above two steps until the specified number of processor
layers is reached. The synergy of these two sequentially placed blocks in turn improves the model’s
representation learning capacity and generalization ability.

3.1.1 FEATURE-ENHANCED BLOCK

For the sake of brevity and clarity, this block, shown in Figure 2, is designed to enhance the latent
features from the upstream block and further alleviate the over-smoothness issue commonly seen in
GNNs due to excessive aggregation. Please see the ablation results on FE’s efficacy in Table 3. More
details are provided in Appendix Section C.3.

Outer Product as Basis Expansion. The outer product operation ⊗ on the reshaped feature map
hi ∈ RD×1 expands the original latent feature space into a higher-order tensor space. This expansion

4
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Figure 3: A scheme for reducing the number of parameters in FE block. Its quantitative experiment
of the impact of window size and number of sub-features on CeGNN is shown in Table 5.

introduces second-order terms (e.g., αβ for {α, β} ∈ hi), which can capture interactions between
individual components of the original feature hi ∈ RD. Mathematically, the second-order tensor
reads hi ⊗ hi. This operation creates a richer feature map with cross-term interactions that may not
be explicitly encoded in the original latent space.

Lemma 1 (Nonlinear Representation) The second-order terms αβ can model nonlinear dependen-
cies between features. This is particularly useful for capturing complex interactions that linear
transformations (e.g., via simple dot products) might overlook.

Definition 1 The FE block expands the latent feature hi ∈ RD×1 of node i into a higher-order
feature map Hi ∈ RD×D using an outer product: Hi = hi ⊗ hi.

Regularization via Masking. Masking introduces sparsity in Hi, reducing overfitting. If Mjk is
selected, Mjk = 1. Otherwise, Mjk = 0. Here j and k index the M ∈ RD×D components.

Learnable Filtering. The learnable weight tensor W ∈ RD×D×D acts as a filter, selecting and
emphasizing the most informative terms.

Definition 2 A mask tensor M ∈ RD×D is applied to randomly sample elements in Hi, and the
resulting masked tensor is processed using a learnable weight tensor W ∈ RD×D×D as follows:
h̃i = (M ⊙ Hi) : W, where ⊙ represents element-wise multiplication and : denotes double
contraction of tensors. The resulting feature h̃i ∈ R1×D enriches the representation of hi ∈ RD.

Corollary 1 (Representation Power) The full feature map Hi contains D2 terms for a D-
dimensional input feature vector hi. After masking, the effective representation space reduces
by the sparsity of M. The learnable filter W further narrows this down to the most critical terms.

Considering the GPU memory requirements caused by additional parameters in the FE module, we
further provide a feature splitting scheme within latent features to dramatically reduce the number of
parameters and computation cost caused by the full FE block (see Figure 3). This strategy divides
every feature into multiple sub-features with different window sizes, and then processes each part
separately. Finally, these sub-features are combined for next layer learning. Note that we utilize the
simplest window method to split the features in this article. Please see the ablation results on the
effect of the window size and number of sub-feature on the feature splitting scheme in Table 5.

3.1.2 CELL-EMBEDDED GRAPH NEURAL NETWORK

Generally, the traditional message passing (MP) mechanism can be regarded as a refinement on
a discrete space, analogous to an interpolation operation, which implies that edges are essentially
interpolated from nodes. A MP mechanism introducing the cell has potential to further enhance the
refinement of the discrete space (namely, secondary refinement), thereby reducing the magnitude of
discretization errors spatially and paving the way for its application in complex graph structures.

Definition 3 (Cell in Graph) Let G = (V,E) be a graph, where V is the set of nodes v and
E ⊆ V × V is the set of edges. A cell in G is a subset of nodes C ⊆ V , such that the nodes in C
form a complete subgraph (clique) or satisfy predefined structural relationships. In particular, a
k-cell Ck in a graph G contains k + 1 nodes, where ∀i, j ∈ Ck,, (vi,vj) ∈ E, representing various
structures, such as node (k = 0), edge (k = 1), triangle (k = 2), tetrahedron (k = 3), and so on.
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Corollary 2 (Expressive Power) Given a graph G including many k-cell (k = 0, 1, 2, . . . ), there
exists a cell-based scheme that is more expressive than Weisfeiler-Lehman (WL) tests in distinguishing
non-isomorphic graphs (see the proof in Supplementary C.2).

Therefore, we proposed a new two-level cell-embedded mechanism to process the message on graphs.
A new framework with cell-embedded features is designed as the following description.
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Figure 4: Cell on graphs. Green point
represents the centroid of cell.

Encoder. The encoder block maps the low-dimensional
variables to corresponding high-dimensional latent fea-
tures via differential functions (e.g., MLPs). The initial
node feature h0

i includes the node feature, one-hot feature
of node type, and their position information. The initial
edge feature e0ij contains the relative position vector, the
distance of neighbor nodes, and etc. The initial cell fea-
ture c0ijk involves the centroid position of cell, the area of
cell, and the relative position vector from three nodes to the corresponding centroid position. The
corresponding forms are described as follows:

h0
i = ϕen

v (ui,xi, κi, . . . ) , (1a)

e0ij = ϕen
e ((xj − xi) , dij , . . . ) , (1b)

c0ijk = ϕen
c ((xi − x△ijk) , (xj − x△ijk) , (xk − x△ijk) ,x△ijk, A△ijk, . . . ) , (1c)

where the learnable functions ϕen
v (·), ϕen

e (·), and ϕen
c (·) are applied to learn the latent features of

node, edge, and cell; (xj − xi) a relative position vector between the nodes i and j; dij the relative
physical distance; κi the type of node i; the x△ijk the centroid position of the cell △ijk; the A△ijk

the area of the cell △ijk. In addition, (·, ·) denotes the concatenation operation.

Processor. The processor iteratively processes the latent features from the upstream encoder via the
cell-embedded MPNN block. As discussed in the above part, the key contribution of cell-embedded
MPNN block lies in the introduction of the concept of cell. Figure 4 depicts the cell on graphs.
Then, we divided the original edge channel elij into two parts: itself and its adjacent cells. With this
simple process, the node can exchanges information with itself (nodal info), its immediate neighbor
edges (derivative info), and its adjacent cells (integral info). In general, the cell features cl+1

ijk and
edge features el+1

ij firstly learn the effective information from adjacent nodes features, and then are
aggregated to formulate the next node states hl+1

i . The procedure is described by the following forms:

cl+1
ijk = ϕl

c

(
hl
i,h

l
j ,h

l
k, c

l
ijk

)
, (2a)

el+1
ij = ϕl

e

(
hl
i,h

l
j , e

l
ij

)
, (2b)

hl+1
i = ϕl

v

(
hl
i︸︷︷︸

nodal info

,
∑

j∈Ni

el+1
ij︸ ︷︷ ︸

derivative info

,
∑

jk∈Ni

cl+1
ijk︸ ︷︷ ︸

integral info

)
, (2c)

where j ∈ Ni represents every neighbor edge eij at node i; jk ∈ Ni every neighbor cell △ijk at node
i. ϕl

c, ϕ
l
e, ϕ

l
v are the differential functions of cell, edge, and node. Note that we have reformulated

the message passing mechanism, where edge and cell features, without interaction, are used to
simultaneously update the node features. See the test of computational cost and scalability in Table 4.

Decoder. The decoder maps latent features back to physical variables on graphs. With a skip
connection, we acquire new states utk+1

by incremental learning, described as follows: ûi,tk+1
=

ϕde
v

(
hL
i

)
+ ui,tk , where ϕde

v (·) is a differentiable function and L the total number of layers.

4 EXPERIMENT

4.1 DATASETS AND BASELINES

To evaluate the performance of CeGNN, we experiment on the classic physical problems and more
challenging real-world scenarios, including Burgers equation, Gray-Scott Reaction-Diffusion (GS
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RD) equation, FitzHugh-Nagumo (FN) equation, and Black-Sea (BS) dataset. The first three datasets
are generated by various governing equations on the grid domain and the final one on irregular
meshes. Here, the initial input fields of three synthetic datasets are generated on Gaussian distribution
with various random seeds and the node connectivity is obtained by the Delaunay algorithm. Please
see Supplementary Table S2 for a detailed description of these datasets. More details about dataset
generation can be found in Appendix Section D.1. We compare our model with the most popular
graph-based neural network, such as MeshGraphNet (MGN) (Pfaff et al., 2021), Graph Attention
Network (GAT) (Velickovic et al., 2017), Graph Attention Network Variant (GATv2) (Brody et al.,
2022), the state-of-the-art models, message passing neural PDE solver (MP-PDE) (Brandstetter
et al., 2022) , Fourier Neural Operator (FNO) (Li et al., 2021a), Factorized FNO (FFNO) (Tran
et al., 2021), Geometry-informed FNO (Geo-FNO) (Li et al., 2023b; 2024a), Transolver (Wu et al.,
2024). As shown in Supplementary Table S3, a comparative analysis of these baselines is discussed.
Additional detailed information about these baselines is described in Appendix Section D.2.

4.2 EXPERIMENTAL SETUP

In our experiments, we mainly focus on predicting much longer time steps with lower error and
attempt to achieve better generalization ability of various initial conditions (ICs) and boundary
conditions (BCs). For fairness, we set the feature dimension to 128 and utilize the one-step training
strategy (i.e., one-step forward, one-step backward) for all tasks. All experiments are run on one
NVIDIA A100 GPU. The Adaptive Moment Estimation (Adam) optimizer is utilized for the model
training. All models are trained by injecting random Gaussian noise of varying standard deviation
to the input to improve stability during rollout and correct small errors. Meanwhile, a Root Mean
Square Error (RMSE) loss function is utilized to optimize parameters θ in networks. Given the
ground-truth values Y ∈ RN∗d and the predictions Ŷ ∈ RN∗d at time t, the loss function is defined

as follows: RMSE(Y, Ŷ ) =
√

1
N∗d

∑N
i=i

∑d
j=1 (yij − ŷij)

2
, where yij ∈ Y and ŷij ∈ Ŷ . More

details about the experimental setup are described in Appendix Section D.3. The experimental results
and parametric studies of our model are given in the following parts.

4.3 RESULTS

We consider three different types of study cases: (1) the generalization test, (2) the feature-enhanced
effect, and (3) an ablation study. All our experiments revolve around the following questions: Can
our model generalize well? Can our model achieve lower error with small data?

Generalization test. We varied the initial input field, randomly sampled from a Gaussian distribution
with various means and standard deviations, in order to test the generalization ability. According
to the results in Figures 5 and 6, we found that CeGNN generalizes to different ICs robustly on all
datasets. It is evident that the performances of CeGNN and all baselines in the multi-step long-term
prediction vary significantly. However, the experiment results of FNO show that it performs relatively
poorly on all datasets except for the Burgers equation. FFNO outperforms FNO across all datasets.
Unexpectedly, GeoFNO, which incorporates the IPHI technique, achieves the worst performance.
Similarly, Transolver also underperforms. From the experimental results of these models, we can
infer that these methods on small datasets, exhibit poor generalization ability, falling short compared
to graph-based methods. All results in Table 1 demonstrate that all graph-based models have great
generalization ability. GATv2, the advanced variant of GAT, underperforms GAT on Burgers, FN, 2D
GS RD, and BS datasets, but outperforms GAT on 3D GS RD equation, yet both methods fall short
of MGN. Surprisingly, the performance of MP-PDE is mediocre. Although MP-PDE is trained by
the multi-step prediction strategy during the training stage, its results are only slightly better than
MGN on the BS dataset. In contrast, our method performs robustly with much smaller errors in the
multi-step prediction problem on all datasets.

Feature-enhanced effect. We investigate the effectiveness of the FE block on all graph-based
network over all datasets. The results are reported in Table 2, showing that the feature-enhanced
block somewhat changes the performance of these networks. We can directly see that this module
has improved the performance of all baselines on real-world datasets. Specifically, it achieves the
best and worst promotions in the cases of “MGN + FE” on the 3D GS RD equation and “GATv2 +
FE” on the 2D Burgers equation. Intriguingly, after embedding the FE block in the processor block,
the attention-based graph networks (e.g., GAT and GATv2) perform worse on the governing equation
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Figure 5: The test results of of all model on various datasets. a-e, the error distribution of test results.
f-i, the slices of generalization test on four grid-based datasets. The results of the final irregular
mesh-based dataset are displayed in Figure 6. The symbol Abs(·) represents a function for calculating
the absolute error between ground-truth data and the prediction values.
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Figure 6: The snapshots of all models on BS Dataset, e.g., the rollout prediction at the 10th time step.

and better on the real-world dataset (even though the promotion is not large). This negative impact of
the FE block on attention-based methods is essentially due to a logical conflict of design motivation.
Consider two adjacent nodes h1 and h2 near a node h0, the attention mechanism assigns normalized
weights w1 and w2 (e.g., w1 + w2 = 1) and aggregates features by the summation operation like
w1h1 + w2h2. However, the FE block would disrupt this global normalization rule in the attention
mechanism and reduces the expression capability of attention-based methods.

Ablation study. In this part, we perform an ablation study on all datasets to assess the contributions
of the FE and CellMPNN blocks in CeGNN, as shown in Table 3. The results indicate that, without
the introduction of the cell, the assembly of the tradition node-edge message passing mechanism
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Table 1: Results of different methods. “–” represents that the model is unable or unsuitable to learn
the dynamics directly. “↓” represents that the smaller the value of the quantitative metric, the better
the model performance. The bold values and underlined values represent the optimal and sub-optimal
results on various datasets. The promotion is calculated from the above two.

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

GAT 0.11754 0.02589 0.07227 0.06396 0.62954

GATv2 0.11944 0.03827 0.07301 0.04519 0.64796

MGN 0.01174 0.02108 0.02917 0.01925 0.61475

MP-PDE 0.01784 0.02848 0.03860 0.06528 0.60761

FNO 0.05754 0.12643 0.11331 0.17163 –

FFNO 0.03341 0.11921 0.03628 0.03594 –

Geo-FNO (IPHI) 0.59363 20.514 0.18669 NaN 1.2893

Transolver 0.17422 0.13724 0.18594 0.15204 0.81991

Ours 0.00664 0.00364 0.00248 0.00138 0.55599

Promotion (%) ↑ 43.4 82.9 91.4 92.8 8.4

Table 2: Efficacy of feature-enhanced block on the performance of graph-based baselines across all
benchmarks with various methods.

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

GAT 0.11754 0.02589 0.07227 0.06396 0.62954
GAT + FE 0.15132 0.02717 0.08527 0.07058 0.61984

Promotion (%) ↑ −28.7 −4.9 −17.9 −10.3 1.5

GATv2 0.11944 0.03827 0.07301 0.04519 0.64796
GATv2 + FE 0.18496 0.04117 0.09365 0.06432 0.63363

Promotion (%) ↑ −54.8 −7.5 −28.2 −43.2 2.2

MGN 0.01174 0.02108 0.02917 0.01925 0.61475
MGN + FE 0.00817 0.01241 0.01583 0.00721 0.60593

Promotion (%) ↑ 30.4 41.1 45.7 62.5 1.4

MP-PDE 0.01784 0.02848 0.03860 0.06528 0.60761
MP-PDE + FE 0.01445 0.01957 0.02621 0.03655 0.60372

Promotion (%) ↑ 18.9 31.2 32.1 41.5 0.6

Table 3: Quantitative results of ablation study on CeGNN.

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

w/o Cell, FE 0.01174 0.02108 0.02917 0.01925 0.61475
w/o Cell 0.00828 0.00982 0.01035 0.00680 0.58236
w/o FE 0.00877 0.00788 0.00803 0.00679 0.58271

CeGNN (Full) 0.00664 0.00364 0.00248 0.00138 0.55599
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Table 4: Quantitative results of computational cost and scalability of CeGNN. Note that the symbol
”Dim.” means the the dimension of latent feature.

Model No.of
layers Dim. Parameters Training time

(s/epoch)
GPU usage

(GB) 2D Burgers ↓

CeGNN 4 128 1,482,674 17.31 45.87 0.00664
CeGNN w/o FE 4 128 971,916 14.86 45.85 0.00877
MGN 4 128 514,236 8.64 32.56 0.01174
MGN 12 128 1,438,086 20.90 74.81 0.01858
MP-PDE 4 128 528,658 7.86 33.23 0.01784
MP-PDE 12 128 1,230,533 17.44 76.63 0.10101

Table 5: Quantitative results of the impact of window size and number of sub-features of CeGNN.

Window
size

Sub-
features Parameters

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)

1 128 9,362,572 0.00665 0.00409 0.00251 0.00122
2 64 3,071,116 0.00714 0.00370 0.00232 0.00192
4 32 1,482,674 0.00664 0.00364 0.00248 0.00138
8 16 1,105,036 0.01263 0.02261 0.03481 0.04128

16 8 1,006,736 0.11753 0.12900 0.09120 0.18963

and FE block still shows good generalization ability, even with small data. Although we attempt
to make the model learn higher-order information in each round, the results demonstrate that the
cell-embedded mechanism did not achieve the desired performance, which means that the network
architecture of traditional MPNNs still has the over-smoothness problems that need a better solution.

As shown in Table 4, our model with similar parameter ranges achieves the best performance
compared with MGN and MP-PDE. We have verified that the improvement of our model performance
is due to the innovative use of cell features rather than the introduction of additional parameters. In
addition, as shown in Table 5, excessive feature segmentation can disrupt feature correlations and
degrade model performance. Thus, we use the splitting method with a proper window size. We
also have performed a data scaling test and report the results (data size vs. prediction error) in the
Appendix Table S13 to support our claim of low data requirement. The tests were conducted on
the Burgers example using 10, 20 and 30 trajectories as training data. It can be observed that our
model with a smaller amount of data has equal or superior performance compared with that of other
methods (MGN and MP-PDE) with larger amounts of data. Additionally, we have investigated
the effectiveness of the cell feature on graph-based networks over all benchmarks. The results in
Appendix Table S14 show the positive efficacy of cell features. A ablation test about the relative
cell position information also demonstrates cell’s significance, shown in Appendix Table S15. More
importantly, the comparison results between two-level and three-level message passing mechanisms
in Appendix Table S17 have verified the he rationality of model design motivation.

5 CONCLUSION

In this paper, we proposed an end-to-end graph-based framework (namely, CeGNN) to learn the
complex spatiotemporal dynamics by utilizing the local information, CeGNN predicts future long-
term unobserved states and addresses the over-smoothness problem in GNNs. Firstly, the learnable
cell attribution in CellMPNN block captures the spatial dependency of regional features, upgrading
the local aggregation scheme from the first order to a higher order. Secondly, the FE block enriches the
node features, maintaining strong representational power even after multiple rounds of aggregation.
The effectiveness of CeGNN has been proven through results on various datasets. Although CeGNN
achieves superior performance on extensive experiments, there are several directions for future work,
including that (1) pushing our model to learn on a finer mesh with more complex boundary conditions,
and (2) further exploring the potential of cell attribution to learn higher-order information in a more
refined way, rather than the rough handling in our article. We attempt to accomplish these goals in
our future research work.
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APPENDIX

A VARIABLES NOTATION

Moreover, we present a summary of the variable notations used in our paper, as detailed in Table S1.

Table S1: Variables notation used in our paper.

Field Variable Name Short Name Role
Global x-component of velocity u(x, t) Input/Predicted
Global y-component of velocity v(x, t) Input/Predicted
Global vorticity w(x, t) Input/Predicted
Global pressure p Input/Predicted
Global temperature in water depth of 12.5 meter T (x, t) Input/Predicted
Global x-direction of space coordinate x Input
Global y-direction of space coordinate y Input
Global z-direction of space coordinate z Input
Global time coordinate t Input
Global time increment ∆t Input
Global space increment ∆x Input
Global discrete timestamp at kth step tk Input

B BACKGROUND: OOD TEST IN SPATIOTEMPORAL PREDICTION

In this part, we would like to clarify the generalization tests with different random ICs in spatiotem-
poral dynamics are OOD. For a nonlinear PDE system, even if the ICs are IID, the spatiotemporal
solution can be OOD, because of the following reasons.

Nonlinearity and Emergence of Complex Patterns. Nonlinear PDEs are characterized by their
ability to produce highly complex behavior over time. This nonlinearity can amplify small differences
in ICs, leading to the emergence of patterns or behaviors that are vastly different from what was
initially expected. Even if the ICs are IID, the interactions dictated by the nonlinear terms in the PDE
can cause the solution to evolve in a way that is not reflective of the initial distribution. As a result,
the system may exhibit behaviors that are not represented in the original distribution, leading to an
OOD trajectory dataset. For example, in the Burgers and FN examples, the ICs are generated based
on Gaussian distribution with different random seeds (e.g., IID); however, the corresponding solution
trajectories remain OOD judging from the histogram plots.

Chaotic Dynamics. Nonlinear PDEs may exhibit chaotic behavior. In these systems, small perturba-
tions in ICs can lead to exponentially different solutions. Over time, this chaotic evolution can cause
the solution to become highly sensitive to ICs (e.g., the 2D FN and 2D/3D GS RD test data examples
shown in Figure 1b-d), resulting in a distribution that is very different from the IID distribution of
ICs, yielding an OOD solution space.

Long-term Evolution. In many nonlinear PDEs, solutions tend to evolve toward certain stable
structures or steady states known as attractors. These attractors can be complex structures in the
solution space. Over time, the solution might converge to or oscillate around these attractors,
regardless of the IID nature of ICs (e.g., the Burgers, FN and GS RD examples in our paper). The
distribution of solutions near these attractors can be very different from the IC IID distribution.
Essentially, the system’s long-term behavior is determined more by the attractors rather than by ICs.

Spatialtemporal Correlations. The assumption of IID ICs implies no spatial/temporal correlations
initially. However, the evolving dynamics governed by PDEs can introduce correlations over time.
These correlations can lead to a solution that has a distribution quite different from the original IID
distribution. The emergence of such correlations indicates that the evolved solution is not just a
simple extension of ICs, producing datasets with OOD.

Breaking of Statistical Assumptions. As the system evolves, the assumptions that justified the
IID nature of ICs may no longer hold. The dynamics of the PDE can induce structures, patterns,
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or dependencies that were not present in ICs. As a result, the statistical properties of the evolved
solution may diverge from those of ICs, leading to an OOD.

Hence, even though the ICs are IID, the resulting solution trajectories are OOD. This might be a
little bit different from our understanding of IID/OOD datasets in common practices of NLP, CV,
etc. In addition, we have indeed considered OOD ICs in our tests, e.g., the ICs of the 2D/3D GS
RD examples are randomly placed square cube concentrations (1 or 2 square/cube blocks) as shown
in Figure 1c-d. The resulting solution datasets are obviously OOD. Therefore, all the results of
generalizing to different ICs represent OOD tests. Given the same comparison test sets, our model
shows better generalization performance over other baselines.

C PROOFS

C.1 SUPPLEMENTARY DEFINITIONS, LEMMAS, THEOREMS, COROLLARIES, OR PROOFS

Lemma 2 (Feature Diversity) Introducing cells enhances feature diversity by encoding higher-
order relationships among nodes. Specifically, the basic features in traditional MP mech-
anism are {hi,hj , eij , eji}, and the basic features in cell-based MP mechanism are {hi,
hj ,hk, eij , ejk, eki, cijk, ckij , cjki}. The additional node hk provides a richer context, enabling
the capture of more complex patterns within one round.

Lemma 3 (Reduction in Ambiguity) Traditional MP methods rely solely on pairwise interactions,
which can lead to ambiguity in cases of structural symmetry. Cell-based MP mechanism leverages the
higher-order structure, reducing ambiguity by providing additional constraints through relationships
between three or more nodes.

Corollary 3 (Improved Performance) Cell-based MP mechanism improves prediction capability
by enhancing feature distinguishability through introducing higher-order relationships.

Corollary 4 (Suitability for Graphs) In dense or sparse graphs, cell-based methods outperform
traditional methods by capturing multi-node interactions within one round, which are critical for
preserving the graph’s topology.

Explanation of Corollary 2. 1-WL test relies on pairwise node comparisons and cannot distinguish
graphs that are symmetric under pairwise relationships. By lifting graphs to a cell-embedded pattern
and using cell-based MP mechanism, higher-order interactions are encoded, allowing discrimination
of graphs that 1-WL test cannot separate. See the detail proof in Subsection C.2.

C.2 WEISFEILER-LEHMAN (WL) TESTS

Weisfeiler-Lehman (WL) Test is an iterative graph isomorphism algorithm that updates node features
by aggregating the features of neighboring nodes. After each iteration, the updated node features are
hashed to encode structural information. Despite its effectiveness, WL test cannot distinguish certain
non-isomorphic graphs, particularly when higher-order structural information is required. In this part,
our goal is to show that cell-based message passing mechanism is more expressive than the 1-WL
test for distinguishing non-isomorphic graphs.

Task Definition. A graph G = (V,E) has a set of vertices V and edges E. The 1-WL test iteratively
computes node features hl

i at iteration l as hl+1
i = Hash

(
hl
i, {hl

j : j ∈ Ni}
)
, where Ni is the set of

neighbors of i, and h0
i is initialized with the node’s feature.

G2G1

Figure S1: Two undistinguished graphs by 1-WL
test. Different colors represent different labels.

Consider two graphs G1 and G2 (see Figure
S1), the WL test fails to distinguish G1 and G2

because it only aggregates local neighborhood
information, and both graphs have identical de-
gree distributions and neighborhood structures
for all nodes.

Given that cells (e.g., triangles) can be explic-
itly considered, we propose a simple cell-based
scheme, described as follows.
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Initialization. Initializing node features h0
i based on their labels or degrees and initializing higher-

order cell features c0ijk by aggregating node features within the triangle.

Message Passing. Updating node and cell features iteratively. For example:
hl+1
i = Hash

(
hl
i, {hl

j : j ∈ Ni}, {clijk : jk ∈ Ni}
)
, (S1a)

clijk = Aggregate
(
hl
i,h

l
j ,h

l
k

)
, ∀i, j, k ∈ ∆ijk. (S1b)

Expressiveness. In G2, no triangles exist, so all triangle-related features cijk will remain zero or
absent. (2) In G1, there are two triangles. These triangles generate non-zero features that propagate
back to nodes during message passing. Thus, the presence of higher-order structures (triangles)
allows the cell-based scheme to distinguish G1 from G2. And we proposed the following proposition
about the expressiveness of cell-based message-passing scheme.

Proposition 1 The cell-based message-passing scheme is more expressive than 1-WL test because
it captures higher-order interactions (e.g., triangles) that are invisible to 1-WL. This enhanced
capability enables it to distinguish graphs, such as G1 and G2, which cannot be differentiated by
1-WL test.

Algorithm 1 Feature-enhanced block
Input: The current node states hl ∈ RN×D

Parameter: The weight tensor Wl ∈ RD×D×D, a mask matrix Ml ∈ RD×D

Output: The updated node states ĥl ∈ RN×D

1: Reshape phase. Reshape the input states hl and obtain the h
l ∈ RN×D×1.

2: Expansion phase. Play an Outer product operation on the h
l

to get new states Hl ∈ RN×D×D.
3: Filtering phase. Filter feature with a Hadamard product operation on the new states Hl and the

mask Ml to get new states Ĥl ∈ RN×D×D.
4: Contraction phase. Contract the new states Ĥl with the weight Wl by a Double contraction

operation to construct the final states h̃l ∈ RN×D.
5: return The updated states h̃l.

C.3 INSPIRATION OF FEATURE-ENHANCED (FE) BLOCK

The process of FE block is inspired by interaction models in physics and mathematically hypothesized
to capture nonlinear dependencies, enhancing the model’s representation power.

Hypothesis. The FE block’s hypothesis could be framed as: By capturing second-order interactions
between latent features and applying selective filtering, the model can better represent complex
structures or relationships in the data.

Physical Analogy. In physics, the outer product and second-order terms are often used to model
interactions, such as stress tensors in mechanics or pairwise correlations in quantum mechanics. Here,
the module could draw an analogy to systems where interactions between individual components
(features) are crucial to the overall behavior.

Process Overview. In detail, it regards the node latent feature hi ∈ RD×1 as basis and builds a
higher-order tensor feature Hi ∈ RD×D via an outer-product operation, e.g., hi ⊗ hi. This process
in Algorithm 1 creates abundant second-order nonlinear terms to enrich the feature map. We then
use a mask operation with M ∈ RD×D to randomly sample these terms, filtering the appropriate
information by a learnable weight tensor W ∈ RD×D×D to enhance the model’s representation
capacity.

D SUPPLEMENTARY DETAILS OF EXPERIMENTS

D.1 SUPPLEMENTARY DETAILS OF DATASETS

Viscous Burgers Equation. As a simple non-linear convection–diffusion PDE, Burgers equation
generates fluid dynamics on various input parameters. For concreteness, within a given 2D field,
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Table S2: Summary Information of Datasets. Note that the trajectory number for training, validation,
and testing is described by the form like (5/2/3).

Dataset Space PDE
form

Boundary
condition

Number of
trajectories

Number of
Nodes

Trajectory
length

Force
term

Burgers 2D Eq. S2 Periodic 15 (10/2/3) 2,500 (502) 1000 No

FN 2D Eq. S3 Periodic 10 (5/2/3) 16,384 (1282) 3000 Yes

GS RD 2D Eq. S4 Periodic 10 (5/2/3) 2304 (482) 3000 No

GS RD 3D Eq. S4 Periodic 4 (1/1/2) 13,824 (243) 3000 No

BS 2D – N/A 24 (20/2/2) 1,000-20,000 365 N/A

there is a velocity u = [u, v]T at per 2D grid point. Its general formulation is expressed as following
description:

∂u

∂t
+ u · ∇u = D∇2u, (S2)

where viscosity D = [Du, Dv] is the diffusion coefficient of fluid, u(x, t) its velocity, x the 2D spatial
coordinate and t the 1D temporal coordinate. In this work, we generate the simulation trajectory
within Ω ∈ [0, 1]2 and t ∈ [0, 1](s), using a 4th-order Runge–Kutta time integration method (Ren
et al., 2022) under the periodic condition. Here, we define Du = 0.01, Dv = 0.01,∆t = 0.001(s)
and ∆x = 0.02.

Fitzhugh-Nagumo Equation. Fitzhugh-Nagumo equation consists of a non-linear diffusion equation
with different boundary conditions. We generates the training and testing data u = [u, v]T in a given
2D field with periodic boundary conditions:

∂u(x, t)

∂t
= Du∇2u+ u− u3 − v3 + α, (S3a)

∂v(x, t)

∂t
= Dv∇2v + (u− v)× β, (S3b)

where Du, Dv are the diffusion coefficients, α, β the reaction coefficients. In this work, we generate
the simulation trajectory within Ω ∈ [0, 128]2 and t ∈ [0, 6](s), using a 4th-order Runge–Kutta time
integration method (Ren et al., 2022) under the periodic condition. Here, we define Du = 1, Dv =
100, α = 0.01, β = 0.25,∆t = 0.002(s) and ∆x = 1.

Gray-Scott Equation. As a coupled reaction-diffusion PDE, Gray-Scott equation consists of a
velocity u = [u, v]T . For example, given a 3D field, the corresponding form of each component on
x = (x, y, z) ∈ R3 and t ∈ [0, T ] is as follows:

∂u(x, t)

∂t
= Du∇2u− uv2 + α(1− u), (S4a)

∂v(x, t)

∂t
= Dv∇2v + uv2 − (β + α)v, (S4b)

where Du and Dv are the variable diffusion coefficients, β the conversion rate, α the in-flow rate
of u(x, t) from the outside, and (α+ β) the removal rate of v(x, t) from the reaction field. In this
work, we generate the 2D simulation trajectory within Ω ∈ [0, 96]2 and the 3D simulation trajectory
within Ω ∈ [0, 48]3 in t ∈ [0, 750](s), using a 4th-order Runge–Kutta time integration method (Ren
et al., 2022) under the periodic condition. Here, we define Du = 0.2, Dv = 0.1, α = 0.025, β =
0.055,∆t = 0.25(s) and ∆x = 2.

Black Sea Dataset. The BS dataset 1 provides measured data of daily mean sea surface temperature
T and water flow velocities u on the Black Sea over several years. The collection of these data was
completed by Euro-Mediterranean Center on Climate Change (CMCC) in Italy starting from June 1,
1993, to June 30, 2021, with a horizontal resolution of 1/27◦ × 1/36◦.

1https://data.marine.copernicus.eu/product/BLKSEA_MULTIYEAR_PHY_007_
004/description
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Table S3: Summary analysis of Baselines.

Model Grid
Domain

Irregular
Domain

Kernel
Netwotk

Spectrum
Netwotk

Graph
Netwotk

Attention
Netwotk

Multi
Scale

FNO ✓ ✗ ✗ ✓ ✗ ✗ ✗

GAT ✓ ✓ ✗ ✗ ✓ ✓ ✗

GATv2 ✓ ✓ ✗ ✗ ✓ ✓ ✗

MGN ✓ ✓ ✗ ✗ ✓ ✗ ✗

MP-PDE ✓ ✓ ✗ ✗ ✓ ✗ ✗

FFNO ✓ ✗ ✗ ✓ ✗ ✗ ✗

Geo-FNO ✓ ✓ ✗ ✓ ✗ ✗ ✗

Transolver ✓ ✓ ✗ ✗ ✗ ✓ ✗

Ours ✓ ✓ ✗ ✗ ✓ ✗ ✗

D.2 SUPPLEMENTARY DETAILS OF BASELINE

Fourier Neural Operator (FNO). The most promising spectral approach, FNO (Li et al., 2021a)
proposed a neural operator in the Fourier domain to model dynamics. In this work, it was implemented
for 2D and 3D spatial grid domains. The hyperparameters are taken from (Li et al., 2021a).

Graph Attention Network (GAT). GAT (Velickovic et al., 2017) proposed a graph network with a
masked self-attention mechanism, aiming to address the shortcomings of graph convolutions.

Graph Attention Network Variant (GATv2). GATv2 (Brody et al., 2022) proposed a dynamic
graph attention variant to remove the limitation of static attention in complex controlled problems,
which is strictly more expressive than GAT.

MeshGraphNet (MGN). MGN (Pfaff et al., 2021) provided a type of neural network architecture
designed specifically for modeling physical systems that can be represented as meshes or graphs.
Specifically, its “ Encoder-Processor-Decoder” architecture in (Pfaff et al., 2021) has been widely
adopted in many supervised learning tasks, such as fluid and solid mechanics constrained by PDEs.
Relevant parameters are referenced from (Pfaff et al., 2021).

MP-Neural-PDE Solver (MP-PDE). MP-PDE (Brandstetter et al., 2022) proposed the temporal
bundling and push-forward techniques to encourage zero-stability in training autoregressive models.
Relevant parameters are referenced from (Brandstetter et al., 2022).

Factorized Fourier Neural Operator (FFNO).

Factorized Fourier Neural Operator (FFNO) (Tran et al., 2021) factorizes the representation into sep-
arable Fourier representation to reduce the spatial and temporal complexity, improving its scalability.
Relevant parameters are referenced from (Tran et al., 2021).

Geometry-informed FNO (Geo-FNO). Geometry-informed FNO (Geo-FNO) (Li et al., 2023b;
2024a) maps the irregular domain into a uniform grid, preserving the computation efficiency and
handling the arbitrary geometries. Relevant parameters are referenced from (Li et al., 2023b).

Transolver. Transolver (Wu et al., 2024) proposed a new Physics Attention to adaptively split the
discretized domain into a series of learnable slices of flexible shapes, effectively capture intricate
physical correlations under complex geometrics. Relevant parameters are referenced from (Wu et al.,
2024).

D.3 SUPPLEMENTARY DETAILS OF EXPERIMENT

D.3.1 SUMMARY OF PARAMETERS OF ALL MODELS

In this part, we list the parameters of all models on various datasets in Tables S4 to S12, including the
number of layers, the learning rate, the hidden dimension, etc.
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Table S4: Range of training hyperparameters for FNO

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 541,436
2D FN 4 1×10−4 1×10−4 128 100 541,436
2D GS RD 4 1×10−4 1×10−4 128 100 554,930
3D GS RD 4 1×10−4 1×10−4 128 10 515,746

Table S5: Range of training hyperparameters for GAT

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 779,014
2D FN 4 1×10−4 1×10−4 128 100 779,014
2D GS RD 4 1×10−4 1×10−4 128 100 779,014
3D GS RD 4 1×10−4 1×10−4 128 5 779,014
2D BS 4 1×10−2 1×10−4 128 20 805,350

Table S6: Range of training hyperparameters for GATv2

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 778,630
2D FN 4 1×10−4 1×10−4 128 100 778,630
2D GS RD 4 1×10−4 1×10−4 128 100 778,630
3D GS RD 4 1×10−4 1×10−4 128 5 778,630
2D BS 4 1×10−2 1×10−4 128 20 804,966

Table S7: Range of training hyperparameters for MGN

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 514,236
2D FN 4 1×10−4 1×10−4 128 100 514,236
2D GS RD 4 1×10−4 1×10−4 128 100 514,236
3D GS RD 4 1×10−4 1×10−4 128 5 514,236
2D BS 4 1×10−2 1×10−4 128 20 540,572

Table S8: Range of training hyperparameters for MP-PDE

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 528,658
2D FN 4 1×10−4 1×10−4 128 100 528,658
2D GS RD 4 1×10−4 1×10−4 128 100 528,658
3D GS RD 4 1×10−4 1×10−4 128 5 528,658
2D BS 4 1×10−2 1×10−4 128 20 554,994

D.3.2 DATA SCALING TEST

We also have performed a data scaling test and report the results (data size vs. prediction error) in the
Table S13 below to support our claim of low data requirement.
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Table S9: Range of training hyperparameters for CeGNN

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 1,482,674
2D FN 4 1×10−4 1×10−4 128 100 1,482,674
2D GS RD 4 1×10−4 1×10−4 128 100 1,482,674
3D GS RD 4 1×10−4 1×10−4 128 5 1,482,674
2D BS 4 1×10−2 1×10−4 128 20 1,509,010

Table S10: Range of training hyperparameters for FFNO

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 1,072,388
2D FN 4 1×10−4 1×10−4 128 100 1,072,388
2D GS RD 4 1×10−4 1×10−4 128 100 1,072,388
3D GS RD 4 1×10−4 1×10−4 128 10 1,334,660

Table S11: Range of training hyperparameters for Geo-FNO

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 727,396
2D FN 4 1×10−4 1×10−4 128 100 727,396
2D GS RD 4 1×10−4 1×10−4 128 100 727,396
3D GS RD 4 1×10−4 1×10−4 128 10 2,705,569
2D BS 4 1×10−2 1×10−4 128 20 727,557

Table S12: Range of training hyperparameters for Transolver

Dataset No. of
Layers

Std. of
Noise

Learning
rate

Hidden
dimension

Batch
size

No. of
Parameters

2D Burgers 4 1×10−4 1×10−4 128 100 1,516,354
2D FN 4 1×10−4 1×10−4 128 100 1,516,354
2D GS RD 4 1×10−4 1×10−4 128 100 1,516,354
3D GS RD 4 1×10−4 1×10−4 128 10 1,631,042
2D BS 4 1×10−2 1×10−4 128 20 1,516,739

Table S13: Data scaling results (prediction error, RMSE) of CeGNN, MGN and MP-PDE on 2D
Burgers equation.

Model No.of
layers Dimension RMSE ↓

Data size = 10 Data size = 20 Data size = 30

CeGNN 4 128 0.00664 0.00413 0.00226
MGN 4 128 0.01174 0.00926 0.00636
MP-PDE 4 128 0.01784 0.01442 0.00911

D.3.3 THE EFFICACY OF CELL FEATURES

In this part, we also have test the efficacy of cell features on the performance of graph-based baselines
across all benchmarks with various methods and report the results with RMSE metrics in the Table
S14 below to support our claim of introducing cells.
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Table S14: Efficacy of cell features on the performance of graph-based baselines across all benchmarks
with various methods.

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

MGN 0.01174 0.02108 0.02917 0.01925 0.61475
MGN + Cell 0.00826 0.00791 0.00832 0.00694 0.58019

Promotion (%) ↑ 29.6 62.4 71.4 63.9 5.6

MP-PDE 0.01784 0.02848 0.03860 0.06528 0.60761
MP-PDE + Cell 0.00951 0.01193 0.00947 0.00992 0.59313

Promotion (%) ↑ 46.7 58.1 75.4 84.8 2.38

Ours 0.00664 0.00364 0.00248 0.00138 0.55599

Table S15: Quantitative ablation results about the cell position information for CeGNN and other two
cases under RMSE metrics.

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

CeGNN 0.00664 0.00364 0.00248 0.00138 0.55599

w/o Cell Pos. 0.00721 0.00477 0.00439 0.00274 0.56098

w Cell (Pos. to B) 0.00720 0.00490 0.00445 0.00276 0.56040

MGN 0.01174 0.02108 0.02917 0.01925 0.61475

Table S16: Summary of CeGNN, MGN, CCNNs, and MPSNs

Model Message Level Special Complex Predefinition Simplex, Complex Type Application

CeGNN 2 No 3 Dynamics
MGN 2 No 2 Dynamics
CCNNs 3 No 3 Classification
MPSNs 2 Yes 5 Classification

D.3.4 DISCUSSION OF THE POSITION INFORMATION IN CELLS

In this part, we provide other two cases “CeGNN w/o Cell Pos.” and “ w Cell (Pos. to B)” in the
following Table S15, where “ w/o Cell Pos.” represents the cell initial feature without the position
awareness, and “ w Cell (Pos. to B)” is replacing the distance to the cell center with the distance
to the nearest PDE boundary. The results in Table S15 show that the performance improvement of
CeGNN is not only due to add position awareness into the cell initial feature, but also the second-order
refinement of the discrete space.

D.3.5 DISCUSSION WITH OTHER HIGHER-ORDER GRAPHS

In this part, we mainly focus on discussing the excellent works CCNNs in (Hajij et al., 2022) and
MPSNs in (Bodnar et al., 2021). A summary of these models is shown in the following Table S16.

Firstly, MGN achieves message passing through a two-level structure (edge → node). On this basis,
CCNNs in (Hajij et al., 2022) leverages combinatorial complexes to achieve message passing through
a three-level structure (cell → edge → node). Meanwhile, MPSNs in (Bodnar et al., 2021) performs
message passing through a two-level structure (complexes → simplex) on various simplicial com-
plexes (SCs), which primarily include one simplex (node) and four types of complexes with varying
adjacent simplices (e.g., boundary adjacencies, co-boundary adjacencies, lower-adjacencies, and
upper-adjacencies), to enhance feature distinguishability and thus improve classification performance.
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Table S17: Comparison result between two-level and three-level mechanisms

Model

RMSE ↓
2D Burgers

(∆t = 0.001s)
2D FN

(∆t = 0.002s)
2D GS RD

(∆t = 0.25s)
3D GS RD

(∆t = 0.25s)
2D BS

(∆t = 1day)

CeGNN 0.00664 0.00364 0.00248 0.00138 0.55599

MGN (2-level) 0.01174 0.02108 0.02917 0.01925 0.61475

MGN (3-level) 0.03220 0.04196 0.05884 0.08218 0.61524

In contrast, CeGNN sets apart from these works and adopts a novel two-level structure ([cell, edge] →
node) from the spatial perspective, which is more suitable to learn implicit dynamic mechanism.

Since there are only node labels for the supervised learning, the three-level message passing mecha-
nism in (Hajij et al., 2022) poses significant training challenges. However, our two-level message
passing sequence reduces the high coupling degree in (Hajij et al., 2022) and avoids the limitation for
additional predefined special complexes (e.g., some simplicial complexes in (Bodnar et al., 2021) ).
A comparison result between two-level and three-level mechanisms is shown in the following Table
S17. The results in Table S17 demonstrate that three-level mechanism underperforms than two-level
mechanism in our all cases.
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