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Abstract

Deep neural networks (DNNs) exhibit a surprising structure in their final layer
known as neural collapse (NC), and a growing body of works has currently investi-
gated the propagation of neural collapse to earlier layers of DNNs – a phenomenon
called deep neural collapse (DNC). However, existing theoretical results are re-
stricted to special cases: linear models, only two layers or binary classification.
In contrast, we focus on non-linear models of arbitrary depth in multi-class clas-
sification and reveal a surprising qualitative shift. As soon as we go beyond two
layers or two classes, DNC stops being optimal for the deep unconstrained features
model (DUFM) – the standard theoretical framework for the analysis of collapse.
The main culprit is a low-rank bias of multi-layer regularization schemes: this bias
leads to optimal solutions of even lower rank than the neural collapse. We support
our theoretical findings with experiments on both DUFM and real data, which show
the emergence of the low-rank structure in the solution found by gradient descent.

1 Introduction

What is the geometric structure of layers and learned representations in deep neural networks (DNNs)?
To address this question, Papyan et al. [39] focused on the very last layer of DNNs at convergence
and experimentally measured what is now widely known as Neural Collapse (NC). This phenomenon
refers to four properties that simultaneously emerge during the terminal phase of training: feature
vectors of training samples from the same class collapse to the common class-mean (NC1); the class
means form a simplex equiangular tight frame or an orthogonal frame (NC2); the class means are
aligned with the rows of the last layer’s weight matrix (NC3); and, finally, the classifier in the last
layer is a nearest class center classifier (NC4). Since the influential paper [39], a line of research has
aimed at explaining the emergence of NC theoretically, mostly focusing on the unconstrained features
model (UFM) [36]. In this model, motivated by the network’s perfect expressivity, one treats the last
layer’s feature vectors as a free variable and explicitly optimizes them together with the last layer’s
weight matrix, “peeling off” the rest of the network [9, 23]. With UFM, the NC was demonstrated in
a variety of settings, both as the global optimum and as the convergence point of gradient flow.

The emergence of the NC in the last layer led to a natural research question – does some form of
collapse propagate beyond the last layer to earlier layers of DNNs? A number of empirical works
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[20, 17, 43, 40, 35] gave evidence that this is indeed the case, and we will refer to this phenomenon
as Deep Neural Collapse (DNC). On the theoretical side, the optimality of the DNC was obtained
(i) for the UFM with two layers connected by a non-linearity in [51], (ii) for the UFM with several
linear layers in [7], and (iii) for the deep UFM (DUFM) with non-linear activations in the context
of binary classification [48]. No existing work handles the general case in which there are multiple
classes and the UFM is deep and non-linear.

In this work, we close the gap and reveal a surprising behavior not occurring in the simpler settings
above: for multiple classes and layers, the DNC as formulated in previous works is not an optimal
solution of DUFM. In particular, the class means at the optimum do not form an orthogonal frame
(nor an equiangular tight frame), thus violating the second property of DNC.

Let L and K denote the number of layers and classes, respectively. Then, if either L ≥ 3 and K ≥ 10
or L ≥ 4 and K ≥ 6, we provide an explicit combinatorial construction of a class of solutions
that outperforms DNC. Specifically, the loss achieved by our construction is a factor K(L−3)/(2L+2)

lower than the loss of the DNC solution. Our result holds as long as all matrices are regularized.

We also identify the reason behind the sub-optimality of DNC: a low-rank bias. Intuitively, this bias
arises from the representation cost of a DNN with l2 regularization, which equals the Schatten-p
quasi norm [37] in the deep linear case. The quasi norm is well approximated by the rank, and this
intuition carries over to the non-linear case as well. In fact, the rank of our construction is Θ(

√
K),

while the rank of the DNC solution is K. We note that after the application of the ReLU, the rank of
the final layer is again equal to K, in order to fit the training data. We also show that the first property
of neural collapse (convergence to class means) continues to be strictly optimal even in this general
setting and its deep counterpart is approximately optimal with smoothed ReLU activations.

We support our theoretical results with empirical findings in three regimes: (i) DUFM training,
(ii) training on standard datasets (MNIST [31], CIFAR-10 [28]) with DUFM-like regularization,
and (iii) training on standard datasets with standard regularization. In all cases, gradient descent
retrieves solutions with very low rank, which can exhibit symmetric structures in agreement with our
combinatorial construction, see e.g. the lower-right plot of Figure 4. We also investigate the effect of
three common hyperparameters – weight decay, learning rate and width – on the rank of the solution
at convergence. On the one hand, high weight decay, high learning rate and small width lead to a
strong low-rank bias. On the other hand, small (yet still non-zero!) weight decay, small learning
rate or large width (and more complex datasets as well) lead to a higher-rank solution, even if that
is not the global optimum, and this solution often coincides with DNC, which is in agreement with
earlier experimental evidence. Altogether, our findings show that if a DNC solution is found, it is not
because of its global optimality, but just because of an implicit bias of the optimization procedure.

The implications of our results go beyond deep neural collapse. In fact, our theory suggests that
even the NC2 in the last layer is not optimal, and this is corroborated by our experiments, where the
singular value structure of the last layer’s class-mean matrices is imbalanced, ruling out orthogonality.
This means that standard single-layer UFM, as well as its deep-linear or two-layer extensions, are not
sufficient to describe the full picture, as they display a qualitatively different phenomenology.

2 Related work

Neural Collapse. Several papers (a non-exhaustive list includes [12, 15, 5, 32, 33, 58]) use neural
collapse as a practical tool in applications, among which OOD detection and transfer learning are the
most prevalent. On the theoretical side, the emergence of NC has been investigated, with the majority
of works considering some form of UFM [36, 9]. [55, 34] show global optimality of NC under the
cross-entropy (CE) loss, and [59] under the MSE loss. Similar results are obtained by [9, 49, 18, 8]
for the class-imbalanced setting. [61, 23, 59] refine the analysis by showing that the loss landscape of
the UFM model is benign – all stationary points are either local minima or strict saddle points which
can be escaped by conventional optimizers. A more loss-agnostic approach connecting CE and MSE
loss is considered in [60]. NC has also been analyzed for a large number of classes [25], in an NTK
regime [45], or in graph neural networks [27]. We refer the reader to [26] for a survey.

The emergence of NC has also been studied through the lens of the gradient flow dynamics. [36]
considers MSE loss and small initialization, and [16] a renormalized gradient flow of the last layer’s
features after fixing the last layer’s weights to be conditionally optimal. [23] studies the CE loss
dynamics and shows convergence in direction of the gradient flow to a KKT point of the max-margin
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problem of the UFM, extending a similar analysis for the last layer’s weights in [47]. The convergence
speed under both losses is described in [53]. Going beyond UFM, [57, 41, 42, 29] study the emergence
of NC in homogeneous networks under gradient flow; [38] provides sufficient conditions for neural
collapse; and [52] perturbs the unconstrained features to account for the limitations of the model.

More recently, [20] mentions a possible propagation of the NC to earlier layers of DNNs, giving
preliminary measurements. These are then significantly extended in [17, 43, 11, 40], which measure
the emergence of some form of DNC in DNNs. On the theoretical front, an extension to a two-layer
non-linear model is provided in [51], to a deep linear model in [7, 14] and to a deep non-linear model
for binary classification in [48]. Alternatively to DUFM, [4] studies DNC in an end-to-end setting
with a special layer-wise training procedure.

Low-rank bias. The low-rank bias is a well-known phenomenon, especially in the context of
matrix/tensor factorization and deep linear networks (see e.g. [2, 6, 44, 24, 54]). For non-linear
DNNs, [50] studies the gradient flow optimization of ReLU networks, giving lower and upper bounds
on the average soft rank. [13] studies SGD training on deep ReLU networks, showing upper bounds
on the rank of the weight matrices as a function of batch size, weight decay and learning rate. [30]
proves several training invariances that may lead to low-rank, but the results require the norm of
at least one weight matrix to diverge and the architecture to end with a couple of linear layers. [3]
presents bounds on the singular values of non-linear layers in a rather generic setting, not necessarily
at convergence. More closely related to our work is [37], which considers a deep linear network
followed by a single non-linearity and then by a single layer. Their arguments to study the low-rank
bias are similar to the intuitive explanation of Section 4. [19] shows that increasing the depth results in
lower effective rank of the penultimate layer’s Gram matrix both at initialization and at convergence.
The true rank is also measured, but on rather shallow networks and it is far above the DNC rank. [1]
shows a strong low-rank bias of sharpness-aware minimization, although only in layers where DNC
does not yet occur and the rank is high. [10, 22] study special functional ranks (Jacobi and bottleneck)
of DNNs, providing asymptotic results and empirical measurements. These results are refined in
[21, 56], which show a bottleneck structure of the rank both experimentally and theoretically. The
measurements of the singular values at convergence in [56] are in agreement with those of Section 6.3.
We highlight that none of the results above allows to reason about DNC optimality, as they focus on
infinite width/depth, effective or functional ranks, orthogonal settings, or are not quantitative enough.

3 Preliminaries
We study the class balanced setting with N = Kn samples from K classes, n per class. Let
f(x) = WLσ(WL−1σ(. . .W1B(x) . . . )) be a DNN with backbone B(·). The backbone represents
the majority of the deep network before the last L layers, e.g. the convolutional part of a ResNet20. Let
X ∈ Rd×N be the training data, and H1 = B(X) ∈ Rd1×N , H2 = σ(W1H1) ∈ Rd2×N , . . . ,HL =

σ(WL−1HL−1) ∈ RdL×N its feature vector representations in the last L layers, with H̃l denoting
their counterparts before applying the ReLU σ. We refer to hl

ci and h̃l
ci as to the i-th sample of c-th

class of Hl and H̃l, respectively. Let µl
c =

1
n

∑n
i=1 h

l
ci and µ̃l

c =
1
n

∑n
i=1 h̃

l
ci be the class means at

layer l after and before applying σ, and Ml, M̃l the matrices of the respective class means stacked
into columns. We organize the training samples so that the labels Y ∈ RK×N equal IK ⊗ 1T

n , where
IK is a K ×K identity matrix, ⊗ is the Kronecker product and 1n the all-one vector of size n.

Deep neural collapse (DNC). As there are no biases in our network model, the second property of
DNC requires the class mean matrices to be orthogonal (instead of forming an ETF) [43, 48].
Definition 1. We say that layer l exhibits DNC 1, 2 or 3 if the corresponding conditions are satisfied
(the properties can be stated for both after and before the application of ReLU):

DNC1: The within-class variability of either Hl or H̃l is 0. Formally, hl
ci = hl

cj , h̃
l
ci = h̃l

cj for all
i, j ∈ [n] or, in matrix notation, Hl = Ml ⊗ 1T

n , H̃l = M̃l ⊗ 1T
n .

DNC2: The class-mean matrices Ml, M̃l are orthogonal, i.e., MT
l Ml ∝ IK , M̃T

l M̃l ∝ IK .

DNC3: The rows of the weight matrix Wl are either 0 or collinear with one of the columns of the
class-means matrix Ml.

Deep unconstrained features model. To define DUFM, we generalize the model in [48] to an
arbitrary number of classes K.
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Definition 2. The L-layer deep unconstrained features model (L-DUFM) denotes the following
optimization problem:

min
H1,W1,...,WL

1

2N
∥WLσ(WL−1σ(. . .W2σ(W1H1) . . . ))− Y ∥2F +

L∑
l=1

λWl

2
∥Wl∥2F +

λH1

2
∥H1∥2F ,

(1)

where ∥·∥F denotes the Frobenius norm and λH1
, λW1

, . . . , λWL
> 0 are regularization parameters.

4 Low-rank solutions outperform deep neural collapse
Intuitive explanation of the low-rank bias. Consider a simplified version of L−DUFM:

min
H1,W1,...,WL

1

2N
∥WLσ(WL−1 . . .W2W1H1)− Y ∥2F +

L∑
l=1

λWl

2
∥Wl∥2F +

λH1

2
∥H1∥2F . (2)

Compared to (1), (2) removes all non-linearities except in the last layer, making the remaining part
of the network a deep linear model, a construction similar to the one in [37]. Now, we leverage the
variational form of the Schatten-p quasi-norm [46], which gives

c
∥∥∥H̃L

∥∥∥2/L
S2/L

= min
H1,W1,...,WL−1:H1W1...WL−1=H̃L

L−1∑
l=1

λWl

2
∥Wl∥2F +

λH1

2
∥H1∥2F ,

where c can be computed explicitly. Thus, after solving for H1,W1, . . . ,WL−1, the simplified
L-DUFM problem (2) can be reduced to

min
H̃LWL

1

2N

∥∥∥WLσ(H̃L)− Y
∥∥∥2
F
+

λWL

2
∥WL∥2F +

λH̃L

2

∥∥∥H̃L

∥∥∥2/L
S2/L

.

For large values of L,
∥∥∥H̃L

∥∥∥2/L
S2/L

is well approximated by the rank of H̃L. Hence, the objective

value is low when the output WLHL fits Y closely, while keeping H̃L low-rank, which justifies
the low-rank bias. Crucially, the presence of additional non-linearities in the L-DUFM model (1)
does not change this effect much, as long as one is able to define solutions for which most of the
intermediate feature matrices H̃l are non-negative (so that ReLU does not have an effect).

Low-rank solution outperforming DNC. We define the combinatorial solution that outperforms
DNC, starting from the graph structure on which the construction is based.
Definition 3. A triangular graph Tn of order n is a line graph of a complete graph Kn of order n.
Tn has

(
n
2

)
vertices, each representing an edge of the complete graph, and there is an edge between a

pair of vertices if and only if the corresponding edges in the complete graph share a vertex. Moreover,
let Tn be the normalized incidence matrix of Kn, i.e., (Tn)i,j =

1√
n−1

if vertex i belongs to edge j

and 0 otherwise. Let Gn denote the adjacency matrix of Tn.

We recall that Tn is a strongly regular graph with parameters (n(n− 1)/2, 2(n− 2), n− 2, 4) and
spectrum 2(n − 2) with multiplicity 1, n − 4 with multiplicity n − 1 and −2 with multiplicity
n(n− 3)/2. Next, we construct an explicit solution (H1,W1, . . . ,WL) based on the triangular graph.
For ease of exposition, we focus on the case where the number of classes K equals

(
r
2

)
for some

r ≥ 4, deferring the general definition to Appendix A.1.
Definition 4. Let K =

(
r
2

)
for r ≥ 4. Then, a strongly regular graph (SRG) solution of the L-DUFM

problem (1) is obtained by setting the matrices (H1,W1, . . . ,WL) as follows:

• For all l, the feature matrices Hl, H̃l are DNC1 collapsed, i.e., Hl = Ml ⊗ 1T
n , H̃l =

M̃l ⊗ 1T
n .

• For 2 ≤ l ≤ L− 1, Ml = M̃l, each row of M̃l is a non-negative multiple of a row of Tr (as
in Definition 3), and the sum of squared norms of the rows of M̃l corresponding to a row of
Tr is the same for each row of Tr. Since M̃l is entry-wise non-negative, Ml = M̃l.

• For l = 1, W1,M1 are any pair of matrices minimizing the objective conditionally on M2

defined above.
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Figure 1: Strongly regular graph (SRG) solution with L = 4, K = 10 and r = 5. Left: Class-mean
matrix of the third layer M3. The non-zero entries of each row have the same value and their number
is r − 1, which corresponds to the degree of the complete graph Kr. Middle: Class-mean matrix of
the fourth layer before ReLU M̃4 (middle left), and its Gram matrix M̃T

4 M̃4 (middle right). The
SRG construction has very low rank before ReLU: rank(M̃4) = r and rank(σ(M̃4)) = K. Right:
M̃T

4 M̃4 for DNC. The DNC solution has rank K in all layers before and after ReLU.

• For l ≥ 2, Wl minimizes the objective conditional to input and output to that layer.

• As for the last layer L, let AL be a K × r matrix where the set of rows equals the set of
vectors with two (−1) entries and r− 2 (+1) entries. Then, ML = σ(M̃L), the rows of M̃L

are a non-negative multiple of ALTr, and the sum of their squared norms corresponding to
either row of ALTr is equal.

• Finally, the Frobenius norms (i.e. scales) of M1,W1, . . . ,WL are chosen so as to mini-
mize (1) while satisfying the construction above.

In this construction, columns and rows of class-mean matrices are associated to edges and vertices
of the complete graph Kr. Each row (corresponding to a vertex) has non-zero entries at columns
that correspond to edges containing the vertex. In the final layer, each row of M̃L corresponds to
a weighting of vertices in Kr s.t. exactly two vertices get −1 weight and the rest +1, and the value
at a column is the sum of the values of the vertices of the edge. The class-mean matrices of the
SRG solution are illustrated in Figure 1 for L = 4 and K = 10 (which gives r = 5): we display
M3, M̃4, M̃

T
4 M̃4 and, for comparison, also M̃T

4 M̃4 of a DNC solution. Very similar solutions to
SRG are shown for K = 6 and K = 15 in Figures 7 and 8 of Appendix B.1.

Let us highlight the properties of the SRG solution, which are crucial to outperform DNC. First, the
rank of the intermediate feature and weight matrices is very low, only of order Θ(K1/2), since by
construction there are only r = Θ(K1/2) linearly independent rows. This is contrasted with the DNC
solution that has rank K in all intermediate feature and weight matrices. The low rank of the SRG
solution is due to the specific structure of the triangular graph, which has many eigenvalues equal to
−2 that become 0 after adding twice a diagonal matrix. Second, the definition of M̃L ensures that
ML = σ(M̃L) has full rank K. This allows the output WLML to also have full rank and, therefore,
fit the identity matrix IK , thus reducing the first term in the loss (1). Finally, the highly symmetric
nature of the SRG solution balances the feature and weight matrices so as to minimize large entries
and, therefore, the Frobenius norms, thus reducing the other terms in the loss (1).

Main result. For any L-DUFM problem (specified by K,n and all the regularization parameters),
let LSRG,LDNC be the losses incurred by the SRG and DNC solutions, see Definitions 4 and 1,
respectively. At this point we are ready to state our key result.

Theorem 5. If K ≥ 6, L ≥ 4 or K ≥ 10, L = 3 and dl ≥ K for all l, then LSRG < LDNC .
Moreover, consider any sequence of L-DUFM problems for which K −→ ∞ so that 0.499 > LDNC

for each problem. In that case,
LSRG

LDNC
= O(K

3−L
2(L+1) ). (3)

In words, as long as the number of classes and layers is not too small, the SRG solution always
outperforms the collapsed one and the gap grows with the number of classes K.
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The proof first computes the conditionally optimal values of ∥Wl∥2F for both the SRG and DNC
solutions. The specific structure of these solutions enables to calculate pseudoinverses of the
intermediate features, thus enabling the explicit computation of the weight norms. All these values
depend only on the singular values of the feature matrices, which are explicitly given by their scale. As
a result, both LSRG and LDNC are expressed via an optimization problem in a single scalar variable
and, by comparing these problems, the statement follows. The details are deferred to Appendix A.1.

Although the argument requires L = 3,K ≥ 10 or L ≥ 4,K ≥ 6, the experiments in Appendix B.1
show that the DNC solution is not optimal when L ≥ 4,K ≥ 3 or L = 3,K ≥ 7. Furthermore, for
L = 3 and large K, there is a large gap between LSRG and LDNC (even if (3) trivializes). For either
K = 2 or L = 2, the DNC is optimal, as shown in [51, 48].

5 Within-class variability collapse is still optimal

While the DNC2 property conflicts with the low-rank bias, the same is not true for DNC1, as the
within-class variability collapse supports a low rank. We show below that the last-layer NC1 property
remains optimal for any L-DUFM problem. A proof sketch follows, with the complete argument
deferred to Appendix A.2.
Theorem 6. The optimal solutions of the L-DUFM (1) exhibit DNC1 at layer L, i.e.,

H∗
L = M∗

L ⊗ 1T
n

holds for any optimal solution (H∗
1 ,W

∗
1 , . . . ,W

∗
L) of the L-DUFM problem.

Proof sketch: Assume by contradiction that there exists an optimal solution of (1) with regularization
parameters (λH1

, λW1
, . . . , λWL

), denoted as (H∗
1 ,W

∗
1 , . . . ,W

∗
L), which does not exhibit neural

collapse at layer L. Then, we can construct two different optimal solutions of the L-DUFM problem
with n = 1 and regularization parameters (nλH1

, λW1
, . . . , λWL

) of the form (H
(1)
1 ,W ∗

1 , . . . ,W
∗
L)

and (H
(2)
1 ,W ∗

1 , . . . ,W
∗
L). These two solutions share the weight matrices, and H1 (and, therefore,

HL) only differs in a single column (w.l.o.g., the first column). The optimality of these solutions can
be proved using separability and symmetry of the loss function w.r.t. the columns of H1.

Denote the first (differing) columns of H(1)
L and H

(2)
L as x and y, respectively. By exploiting the

linearity of the loss function on a ray {th1
11, t ≥ 0} for any h1

11, a direct computation gives that x and
y are not aligned. Let L be the loss in (1). By optimality of both solutions, we get

∂L
∂WL

∣∣∣∣
(H1,W1,...,WL)=(H

(1)
1 ,W∗

1 ,...,W∗
L)

= 0 =
∂L
∂WL

∣∣∣∣
(H1,W1,...,WL)=(H

(2)
1 ,W∗

1 ,...,W∗
L)

. (4)

An application of the chain rule gives

∂L
∂WL

=
∂LF

∂H̃L+1

∂H̃L+1

∂WL
+ λWL

WL =
∂LF

∂H̃L+1

HT
L + λWL

WL,

where H̃L+1 is the model output and LF the first term of L, corresponding to the label fit. Plugging
this back into (4) and using that W ∗

L is the same in both expressions, we get A(H
(1)
L )T = B(H

(2)
L )T ,

where we have denoted by A and B the partial derivatives ∂LF

∂H̃L+1
evaluated at (H(1)

1 ,W ∗
1 , . . . ,W

∗
L)

and (H
(2)
1 ,W ∗

1 , . . . ,W
∗
L), respectively. As LF is separable with respect to the columns of Hl, H̃l for

all l, the matrices A,B can only differ in their first columns (denoted by a, b), and they are identical
otherwise. This implies that axT = byT . After some simple considerations and using that x and y
are not aligned, we reach a contradiction, as we conclude that x ̸= y is impossible.

The difficulty in extending Theorem 6 to a result on the unique optimality of DNC1 for all layers
stems from the special role of WL as the loss is differentiable w.r.t. it. By considering a differentiable
relaxation of ReLU, we show below an approximate result for a relaxed L-DUFM model.
Definition 7. We denote by ReLUϵ (or σϵ) a function satisfying the following conditions: (i) σϵ(x) =
σ(x), for x ∈ (−∞, 0] ∪ [ϵ,∞), (ii) 0 < σϵ(x) < σ(x) for x ∈ (0, ϵ), and (iii) σϵ is continuously
differentiable with derivative bounded by a universal constant and strictly positive on (0, ϵ).
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Theorem 8. Denote by L-DUFMϵ the equivalent of (1), with σ replaced by σϵ. Let D =
max{d2, d3, . . . , dL} and λ̄ = λH1λW1 . . . λWL

, with the regularization parameters upper bounded
by 1/(L+1). Then, for any globally optimal solution of the L-DUFMϵ problem, the distance between
any two feature vectors of the same class in any layer is at most

6ϵ
√
D(L+ 1)

(L+ 1)L+1λ̄
√
n
. (5)

In words, as the activation function approaches ReLU (i.e., ϵ → 0), the within-class variability tends
to 0. The proof starts with a similar strategy as the argument of Theorem 6 and then explicitly tracks
the error due to replacing σ with σϵ through the layers. The full argument is in Appendix A.2.

6 Numerical results

We employ the standard DNC1 metric tr(ΣW )/tr(ΣB), where ΣW ,ΣB are the within and between
class variabilities. This is widely used in the literature [52, 43, 4] and considered more stable than
other metrics [43]. We measure the DNC2 metric as the condition number of Ml for l ≥ 1 [48].
We do not measure DNC3 here, as it is not well-defined for solutions that do not satisfy DNC2.
For end-to-end DNN experiments, we employ a model from [48] where an MLP with a few layers
is attached to a ResNet20 backbone. The output of the backbone is then treated as unconstrained
features, and DNC metrics are measured for the MLP layers.

6.1 DUFM training

We start with the L-DUFM model (1), training both features and weights. In the top row of Figure 2,
we consider a 4-DUFM, with K = 10 and n = 50, presenting the training progression of the losses
(left plot), the DNC1 metrics (center plot) and the singular values at convergence (right plot).

The results are in excellent agreement with our theory. First, the training loss outperforms that of
the DNC solution, and it is rather close to that of the SRG solution. Second, DNC1 holds in a clear
way in all layers, especially in the last ones. Third, the solution at convergence exhibits a strong
low rank bias: the ranks of intermediate layers range from 5 to 8, and they are always the same in
all intermediate layers within one run. For comparison, we recall that the intermediate layers of the
DNC solution have full rank K = 10. Third, for a few runs, the Gram matrices of the intermediate
class means resulting from gradient descent training coincide with those of an SRG solution. Finally
we highlight that, similarly to our theory, the solutions found in all our experiments in the entire
Section 6 have non-negative pre-activations in all intermediate layers of the MLP head except the last
one.

Impact of number of classes and depth. For K = 2 or L = 2, we recover the results of [48, 51]
irrespective of other hyperparameters. The higher the number of classes, the more prevalent are low-
rank solutions, while finding DNC solutions becomes challenging. The same holds for increasing the
number of layers. For L = 3 and low number of classes (K ≤ 6), we weren’t able to experimentally
find solutions that would outperform DNC, which aligns nicely with the fact that SRG outperforms
DNC only from K = 10 for L = 3. For large number of classes, the difference between the loss of
low-rank solutions and the DNC loss is considerable already for L = 3 and becomes even larger for
higher L. This is illustrated in the left plot of Figure 3.

For L ≤ 5 and moderate number of classes (K ≤ 30), gradient descent solutions are as follows:
until layer L− 1, feature matrices share the same rank and have similar Gram matrices; intermediate
activations are typically non-negative, and the ReLU has no effect; then, the rank jumps to K after
the final ReLU, as pre-activations are also negative. For large L or large K, the rank of the first few
layers is low, growing gradually in the last couple of layers (see Figure 6 in Appendix B.1); the ReLU
is active only in the final layers. This means that not only very low-rank solutions outperform DNC
(as shown by our theory), but such solutions are routinely reached by gradient descent.

Impact of weight decay and width. While neither weight decay nor width influence Theorem 5 –
which shows that DNC is not optimal – both quantities influence the nature of the solutions found by
gradient descent. In particular, the stronger the weight decay, the lower the rank, see the middle plot
in Figure 3. For very small weight decay, DNC is sometimes recovered; for very high weight decay,
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Figure 2: Training loss compared against DNC and SRG losses (left), DNC1 metric training progres-
sion (middle) and singular value distribution at convergence (right). Top row: 4-DUFM training
with K = 10, λ = 0.004 for all regularization parameters, learning rate of 0.5 and width 30. Results
are averaged over 10 runs, and we show the confidence intervals at 1 standard deviation. Bottom row:
Training of a ResNet20 with a 4-layer MLP head on CIFAR10, using a DUFM-like regularization. We
use weight decay 0.005 except λH1

= 0.000005 (to compensate for n = 5000, which significantly
influences the total regularization strength), learning rate 0.05 and width 64 for all the MLP layers.
Results are averaged over 5 runs, and we show the confidence intervals at 1 standard deviation.

Figure 3: All experiments refer to the training of an L-DUFM model. Results are averaged over 5
runs, and we show the confidence intervals at 1 standard deviation. Left: Ratio between SRG and
DNC loss (LSRG/LDNC), as a function of r, where the number of classes is K =

(
r
2

)
. Different

curves correspond to different values of L ∈ {3, 4, 5}. Middle: Average rank at convergence, as a
function of the weight decay in log2-scale, when L = 4 and K = 15. Right: Empirical probability
of finding a DNC solution as a function of the width, when L = 4 and K = 10.

it is never recovered. The width has an opposite effect, see the right plot of Figure 3. For small width,
low-rank solutions are much more likely to be found; large width has a strong implicit bias towards
DNC and, thus, rank K solutions. This means that, surprisingly, a larger width leads to a larger loss,
since low-rank solutions exhibit a smaller loss than DNC. Thus, at least in DUFM, the infinite-width
limit prevents gradient descent from finding a globally optimal solution, and sub-optimal solutions
are reached with increasingly high probability.

6.2 End-to-end experiments with DUFM-like regularization

Next, we train a DNN backbone with an MLP head, regularizing only the output of the backbone and
the layers of the MLP head (and not the layers of the backbone). This regularization is closer to our
theory than the standard one, since we explicitly regularize the Frobenius norm of the unconstrained
features. We also note that training with such a regularization scheme is easier than training with the
standard regularization scheme. In the bottom row of Figure 2, we consider a ResNet20 backbone
with a 4-layer MLP head trained on CIFAR10.
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Figure 4: Training of a ResNet20 with a 5-layer MLP head on CIFAR-10 (top row) and MNIST
(bottom row), using the standard regularization. We pick a large weight decay (0.08 for CIFAR-10
and 0.04 for MNIST) and a large learning rate (0.005 for CIFAR-10 and 0.01 for MNIST). Results
are averaged over 5 runs, and we show the confidence intervals at 1 standard deviation. Left: DNC1
metric training progression. Middle: Singular value distributions at convergence for all the layers.
Right: Gram matrices of M3 (CIFAR-10) and M̃5 (MNIST).

The results agree well with our theory, and they are qualitatively similar to those of Section 6.1 for
DUFM training. The DNNs consistently outperform the DNC loss, but still achieve DNC1. The ranks
of class-mean matrices range from 5 to 6, and they are always the same in all intermediate layers
within one run. Remarkably, the SRG solution was found by gradient descent also in this setting.

Both weight decay and learning rate affect the average rank of the solutions found by gradient descent.
Varying the width can lead to unexpected results, as it changes the ratio between the number of
parameters in the MLP and that in the backbone, so the effect of the width is harder to interpret.
Similar results can be seen on MNIST.

6.3 End-to-end experiments

Finally, we perform experiments with standard regularization and the same architecture (i.e., DNN
backbone plus MLP head) as in Section 6.2. In particular, in Figure 4 we consider a ResNet20 back-
bone with a 5-layer MLP head trained on CIFAR10 and MNIST with standard weight regularization.

Overall, the results remain qualitatively similar to those discussed above. This demonstrates that, in
spite of a different loss landscape compared to previous settings, the low-rank bias is still responsible
for DNC2 not being attained. Specifically, for CIFAR10, the rank in the third layer ranges between
8 and 9, and for MNIST ranges between 5 and 7; in contrast, the DNC solution has rank K = 10.
All DNNs display DNC1 across all layers. Remarkably, for the MNIST experiment the solution
displayed in Figure 4 found by gradient descent is the SRG solution (compare the gram matrices in
bottom right plot of Figure 4 with the right-most plot of Figure 1).

The difficulty of the learning task plays a significant role in this setting: when training on MNIST, it
is rather easy to reach low-rank solutions and rather difficult to reach DNC solutions and the rank
depends heavily on the regularization strength as shown in Figure 10 of Appendix B.3; when training
on CIFAR-10, the weight decay needs to be high for the class mean matrices to be rank deficient.
Moreover, the learning rate no longer exhibits a clear relation with the rank, since gradient descent
diverges when the learning is too large. We also observe that the rank deficiency is the strongest in
the mid-layer of the MLP head, creating a “rank bottleneck”. This can be seen by a closer look at the
tails of the singular values, which better match zero at intermediate layers (the green and red curves
corresponding to layers 3 and 4 have tails slightly lower than the other curves). In a more precise
manner, we further measured effective ranks of all the layers in Figure 4. For instance, the effective
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ranks of CIFAR10 experiment layers are 8.96, 7.46, 6.88, 7.04, 7.73), which shows the middle layer
is closest to a low hard rank matrix. The rank bottleneck is also mentioned in [22, 21, 56]. In fact,
these works also measure extremely low ranks, but [22, 21] do it on synthetic data with very low
inner dimension, while [56] focuses on fully convolutional architectures trained with CE loss and
including biases.

In summary, Figure 4 shows that both the low-rank bias and the optimality of DNC1 carry over to the
standard training regime. This means that there are hyperparameter settings for which deep neural
collapse, including in the very last layer, is not reached (and likely not even optimal). Although
the sub-optimality of DNC in the last layer is not proved formally, this phenomenon is supported
by evidence across all experimental settings and further corroborated by our theory where our SRG
construction is far from being DNC2-collapsed in the last layer.

7 Conclusion

In this work, we reveal that the deep neural collapse is not an optimal solution of the deep uncon-
strained features model – the extension of the widely used unconstrained features model. This finding
considerably changes our overall understanding of DNC, as all the previous models in simplified
settings showed the global optimality of neural collapse and of its deep counterpart. The main culprit –
the low-rank bias – makes the orthogonal frame property of DNC, and thus DNC as a whole, too high
rank to be optimal. We demonstrate this low-rank bias across a variety of experimental settings, from
DUFM training to end-to-end training with the standard weight regularization. While the structure
of the Gram matrices of class means is not captured by orthogonal matrices (or by the ETF), the
within-class variability collapse remains optimal. Our theoretical analysis proves this for the DUFM
problem, and our numerical results showcase the phenomenon across various settings.

Our analysis focuses on the MSE loss, but we expect similar results to hold for the cross-entropy loss
and, in particular, that the same SRG construction proposed here would still refute the optimality
of DNC. We leave as an open question whether DNC1 is strictly optimal across all layers. While
proving this would likely require new ideas, we note that none of our experiments converged to a
solution that would not be DNC1-collapsed.

Acknowledgments and Disclosure of Funding

Marco Mondelli is partially supported by the 2019 Lopez-Loreta prize. This research was supported
by the Scientific Service Units (SSU) of ISTA through resources provided by Scientific Computing
(SciComp).

References
[1] Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion. Sharpness-

aware minimization leads to low-rank features. In Conference on Neural Information Processing
Systems (NeurIPS), volume 36, 2023.

[2] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. In Conference on Neural Information Processing Systems (NeurIPS), 2019.

[3] Bradley T Baker, Barak A Pearlmutter, Robyn Miller, Vince D Calhoun, and Sergey M Plis.
Low-rank learning by design: the role of network architecture and activation linearity in gradient
rank collapse. arXiv preprint arXiv:2402.06751, 2024.

[4] Daniel Beaglehole, Peter Súkeník, Marco Mondelli, and Mikhail Belkin. Average gradient outer
product as a mechanism for deep neural collapse. arXiv preprint arXiv:2402.13728, 2024.

[5] Ido Ben-Shaul and Shai Dekel. Nearest class-center simplification through intermediate layers.
In Topological, Algebraic and Geometric Learning Workshops, 2022.

[6] Hung-Hsu Chou, Carsten Gieshoff, Johannes Maly, and Holger Rauhut. Gradient descent
for deep matrix factorization: Dynamics and implicit bias towards low rank. Applied and
Computational Harmonic Analysis, 68, 2024.

10



[7] Hien Dang, Tan Nguyen, Tho Tran, Hung Tran, and Nhat Ho. Neural collapse in deep linear
network: From balanced to imbalanced data. In International Conference on Machine Learning
(ICML), 2023.

[8] Hien Dang, Tho Tran, Tan Nguyen, and Nhat Ho. Neural collapse for cross-entropy class-
imbalanced learning with unconstrained ReLU feature model. arXiv preprint arXiv:2401.02058,
2024.

[9] Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via
layer-peeled model: Minority collapse in imbalanced training. In Proceedings of the National
Academy of Sciences (PNAS), volume 118, 2021.

[10] Ruili Feng, Kecheng Zheng, Yukun Huang, Deli Zhao, Michael Jordan, and Zheng-Jun Zha.
Rank diminishing in deep neural networks. In Conference on Neural Information Processing
Systems (NeurIPS), 2022.

[11] Tomer Galanti, Liane Galanti, and Ido Ben-Shaul. On the implicit bias towards minimal depth
of deep neural networks. arXiv preprint arXiv:2202.09028, 2022.

[12] Tomer Galanti, András György, and Marcus Hutter. Improved generalization bounds for transfer
learning via neural collapse. In First Workshop on Pre-training: Perspectives, Pitfalls, and
Paths Forward at ICML, 2022.

[13] Tomer Galanti, Zachary S Siegel, Aparna Gupte, and Tomaso Poggio. SGD and weight decay
provably induce a low-rank bias in neural networks. arXiv preprint arXiv:2206.05794, 2022.

[14] Connall Garrod and Jonathan P Keating. Unifying low dimensional observations in deep
learning through the deep linear unconstrained feature model. arXiv preprint arXiv:2404.06106,
2024.

[15] Jarrod Haas, William Yolland, and Bernhard T Rabus. Linking neural collapse and l2 normal-
ization with improved out-of-distribution detection in deep neural networks. Transactions on
Machine Learning Research (TMLR), 2022.

[16] X. Y. Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity to
and dynamics on the central path. In International Conference on Learning Representations
(ICLR), 2022.

[17] Hangfeng He and Weijie J Su. A law of data separation in deep learning. Proceedings of the
National Academy of Sciences, 120(36), 2023.

[18] Wanli Hong and Shuyang Ling. Neural collapse for unconstrained feature model under cross-
entropy loss with imbalanced data. arXiv preprint arXiv:2309.09725, 2023.

[19] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip
Isola. The low-rank simplicity bias in deep networks. Transactions on Machine Learning
Research, 2022.

[20] Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural collapse for understand-
ing generalization in deep learning. arXiv preprint arXiv:2202.08384, 2022.

[21] Arthur Jacot. Bottleneck structure in learned features: Low-dimension vs regularity tradeoff. In
Conference on Neural Information Processing Systems (NeurIPS), 2023.

[22] Arthur Jacot. Implicit bias of large depth networks: a notion of rank for nonlinear functions. In
International Conference on Learning Representations (ICLR), 2023.

[23] Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, and Weijie J Su. An unconstrained layer-
peeled perspective on neural collapse. In International Conference on Learning Representations
(ICLR), 2022.

[24] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
International Conference on Learning Representations (ICLR), 2018.

11



[25] Jiachen Jiang, Jinxin Zhou, Peng Wang, Qing Qu, Dustin G Mixon, Chong You, and Zhihui
Zhu. Generalized neural collapse for a large number of classes. In Conference on Parsimony
and Learning (Recent Spotlight Track), 2023.

[26] Vignesh Kothapalli. Neural collapse: A review on modelling principles and generalization. In
Transactions on Machine Learning Research (TMLR), 2023.

[27] Vignesh Kothapalli, Tom Tirer, and Joan Bruna. A neural collapse perspective on feature
evolution in graph neural networks. In Conference on Neural Information Processing Systems
(NeurIPS), volume 36, 2023.

[28] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

[29] Daniel Kunin, Atsushi Yamamura, Chao Ma, and Surya Ganguli. The asymmetric maximum
margin bias of quasi-homogeneous neural networks. In International Conference on Learning
Representations (ICLR), 2022.

[30] Thien Le and Stefanie Jegelka. Training invariances and the low-rank phenomenon: beyond
linear networks. In International Conference on Learning Representations (ICLR), 2022.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 1998.

[32] Xiao Li, Sheng Liu, Jinxin Zhou, Xinyu Lu, Carlos Fernandez-Granda, Zhihui Zhu, and Qing
Qu. Principled and efficient transfer learning of deep models via neural collapse. In Conference
on Parsimony and Learning (Recent Spotlight Track), 2023.

[33] Zexi Li, Xinyi Shang, Rui He, Tao Lin, and Chao Wu. No fear of classifier biases: Neural
collapse inspired federated learning with synthetic and fixed classifier. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[34] Jianfeng Lu and Stefan Steinerberger. Neural collapse under cross-entropy loss. Applied and
Computational Harmonic Analysis, 59, 2022.

[35] Wojciech Masarczyk, Mateusz Ostaszewski, Ehsan Imani, Razvan Pascanu, Piotr Miłoś, and
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A Proofs

A.1 Low-rank solutions outperform deep neural collapse

We start by providing more detailed definitions of SRG and DNC solutions.
Definition 9. Let K =

(
r
2

)
for r ≥ 4. Then, a strongly regular graph (SRG) solution of the L-DUFM

problem (1) is obtained by setting the matrices (H1,W1, . . . ,WL) as follows. For all l, the feature
matrices Hl, H̃l are DNC1 collapsed, i.e., Hl = Ml ⊗ 1T

n , H̃l = M̃l ⊗ 1T
n . For 2 ≤ l ≤ L − 1,

Ml = M̃l and Ml = AlTr, where each row of Al is a multiple of the standard basis vector of
dimension r and the sum of squared multiples corresponding to one basis vector equals the same
parameter αl. In other words, each row of Ml is a multiple of a row of Tr and the sum of squared
norms of the rows of Ml corresponding to a row of Tr is the same for each row of Tr. For l = 1,
W1,M1 are any pair of matrices that minimize the objective conditionally on M2 being defined as
above. For l ≥ 2, Wl minimizes the objective conditional to the input and output to that layer. Let
A

(1)
L be a K × r matrix where each row has exactly two (−1) entries and exactly r − 2 (+1) entries.

Then, normalize the matrix A
(1)
L Tr so that each row is unit norm and multiply from the left with A

(2)
L

of dimension dL × K, where each of the rows of A(2)
l is a multiple of a standard basis vector of

dimension K and the total sum of squared multiples corresponding to each basis vector is αL. Then,
M̃L is obtained via this procedure, and ML = σ(M̃L). Finally, the parameters {αl}Ll=2 satisfy

αl =

(√
nλH1

λW1

(√
2 +

√
(r − 1)(r − 2)

))l−2

rl−2
∏l−1

i=2 λWi

ql, 2 ≤ l ≤ L− 1,

αL =

(√
nλH1λW1

(√
2 +

√
(r − 1)(r − 2)

))L−2

4((r − 2)(r − 3) + 2)

rL−1(r − 1)2
∏L−1

i=2 λWi

qL,

(6)

and the parameter q ≥ 0 is chosen to minimize the objective function in (1).
Definition 10. A deep neural collapse (DNC) solution for any number of classes K of the L-DUFM
problem (1) is obtained by setting the matrices (H1,W1, . . . ,WL) as follows. For all l, the feature
matrices Hl, H̃l are DNC1 collapsed, i.e., Hl = Ml⊗1T

n , H̃l = M̃l⊗1T
n . For 2 ≤ l ≤ L, Ml = M̃l

and MT
l Ml = αlIK . For l = 1, W1,M1 are any pair of matrices that minimize the objective

conditionally on M2 being defined as above. For l ≥ 2, Wl minimizes the objective conditional to
the input and output to that layer. Finally, the parameters {αl}Ll=2 satisfy

αl−1 =
λl−1
WL−1

λH1n
∏l−1

i=1 λWi

ql−1, 2 ≤ l ≤ L− 1,

αL =
λL−1
WL−1

λH1n
∏L−2

i=1 λWi

qL,

and the parameter q ≥ 0 is chosen to minimize the objective function in (1).

Next, we define the SRG solution when K ̸=
(
r
2

)
for any r, and provide two constructions, each

useful for different parts of the proof of Theorem 5.
Definition 11. A strongly regular graph (SRG) solution for K ≥ 6 of the L-DUFM problem (1), is
obtained in one of the two following ways.

1. First, we take the largest r s.t. K ≥
(
r
2

)
and construct the SRG solution (H̄1, W̄1, . . . , W̄L)

as in Definition 9 setting the number of classes to
(
r
2

)
. Next, we construct a DNC solution

(H̃1, W̃1, . . . , W̃L) as in Definition 10 setting the number of classes to K −
(
r
2

)
. Then, to

construct H1 of the SRG solution, we create it as a diagonal block matrix with number of
columns equal to K and number of rows equal to d̄1 + d̃1, where these are the numbers
of rows of the respective H matrices; the first block is H̄1, the second block is H̃1

2, and
2The order is not important, both the rows and the columns can afterward be permuted if we accordingly

permute also the weight matrices.
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the off-diagonal blocks are zero matrices. Similarly, we extend the weight matrices such
that, for any l, Wl is a block diagonal matrix where the number of rows is d̃l+1 + d̄l+1 and
the number of columns is d̃l + d̄l; the first block is W̄l, the second block is W̃l, and the
off-diagonal blocks are zero matrices.

2. First, we take the smallest r s.t. K ≤
(
r
2

)
and construct the SRG solution as in Definition 9

setting the number of classes to
(
r
2

)
. Then, we just remove the

(
r
2

)
−K columns of H1 that

achieve the highest individual fit losses (in case of a tie choose arbitrarily), and define the
SRG solution as the original solution without these columns.

We recall our main result and give the proof.
Theorem 5. If K ≥ 6, L ≥ 4 or K ≥ 10, L = 3 and dl ≥ K for all l, then LSRG < LDNC .
Moreover, consider any sequence of L-DUFM problems for which K −→ ∞ so that 0.499 > LDNC

for each problem. In that case,
LSRG

LDNC
= O(K

3−L
2(L+1) ). (3)

Proof. We start by considering the case K =
(
r
2

)
for some r. Without loss of generality we can

assume n = 1, because all comparisons are between solutions that are by definition DNC1 collapsed,
and the ratio LSRG/LDNC in the theorem statement does not depend on n.

We first compute the loss of the SRG solution as in Definition 9 up to only one degree of freedom.
Let us go term-by-term. The simplest to evaluate is λWl

2 ∥Wl∥2F for 2 ≤ l ≤ L− 2. Using Lemma 13
(which relies on Lemma 12), we get

λWl

2
∥Wl∥2F =

rλWl

2

αl+1

αl
.

Similarly, for layer L− 1, we use Lemma 14 (again relying on Lemma 12) to compute:
λWL−1

2
∥WL−1∥2F =

r2(r − 1)2λWL−1

8((r − 2)(r − 3) + 2)

αL

αL−1
.

Combining Lemma 15 with Lemma 18 we get:
λW1

2
∥W1∥2F +

λH1

2
∥H1∥2F =

√
λW1

λH−1

(√
2 +

√
(r − 1)(r − 2)

)
α

1
2
2 .

Finally, combining Lemma 17 with Lemma 16 we get:
1

2K
∥WLML − IK∥2F +

λWL

2
∥WL∥2F =

λWL

2

1
(r−2)(5r−19)
(r−2)(r−3)+2αL + r(r−1)

2 λWL

+
λWL

2

r − 1
2(r−3)2

(r−2)(r−3)+2αL + r(r−1)
2 λWL

+
λWL

2

r(r−3)
2

2
(r−2)(r−3)+2αL + r(r−1)

2 λWL

.

The total loss of the SRG solution is just the sum of all these terms, which is expressed in terms of
α2, α3, . . . , αL. We now verify that the choice in (6) minimizes the loss, having set q ≡ α

1/2
2 . To do

so, we compute the partial derivatives of L w.r.t. the αl’s and set them to 0:

0 =
∂L
∂α2

= −rλW2

α3

α2
2

+
√

λW1
λH−1

(√
2 +

√
(r − 1)(r − 2)

)
α
− 1

2
2 ⇐⇒

α3

α2
=

√
λW1λH−1

(√
2 +

√
(r − 1)(r − 2)

)
rλW2

q.

For 3 ≤ l ≤ L− 2, we have

0 =
∂L
∂αl

= −rλWl

2

αl+1

α2
l

+
rλWl−1

2

1

αl−1
⇐⇒

αl+1

αl
=

λWl−1

λWl

αl

αl−1
.
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And finally, for layer L− 1, we have

0 =
∂L

∂αL−1
= −

λWL−1

2

r2(r − 1)2

4((r − 2)(r − 3) + 2)

αL

α2
L−1

+
rλWL−2

2

1

αL−2
⇐⇒

αL

αL−1
=

λWL−2

λWL−1

4((r − 2)(r − 3) + 2)

r(r − 1)2
αL−1

αL−2
.

Denoting by p =
√
λW1

λH1

(√
2 +

√
(r − 1)(r − 2)

)
, we can express these fractions as

αl+1

αl
=

p

rλWl

q, 2 ≤ l ≤ L− 2,

αL

αL−1
=

4((r − 2)(r − 3) + 2)p

r2(r − 1)2λWL−1

q,

which gives the expressions in (6). Finally, plugging this back into the loss function we get a
univariate q-dependent function of the following form:

LSRG(q) =
λWL

2

1

4(r−2)(5r−19)
(√

λW1
λH1

(√
2+

√
(r−1)(r−2)

))L−2

rL−1(r−1)2
∏L−1

i=2 λWi

qL + r(r−1)
2 λWL

+
λWL

2

r − 1

8(r−3)2
(√

λW1
λH1

(√
2+

√
(r−1)(r−2)

))L−2

rL−1(r−1)2
∏L−1

i=2 λWi

qL + r(r−1)
2 λWL

+
λWL

2

r(r−3)
2

8
(√

λW1
λH1

(√
2+

√
(r−1)(r−2)

))L−2

rL−1(r−1)2
∏L−1

i=2 λWi

qL + r(r−1)
2 λWL

+
L

2

√
λW1λH1

(√
2 +

√
(r − 1)(r − 2)

)
q.

The loss of the DNC solution can be computed by a simple extension of the expression (17) from
[48]:

LDNC(q) =
λWL

2

r(r−1)
2

λL−1
WL−1

λH1

∏L−2
i=1 λWi

qL + r(r−1)
2 λWL

+
L

2

r(r − 1)

2
λWL−1

q.

At this point, we split our analysis for L = 3 and for L > 3. We start with L > 3, which is simpler.

Analysis for L > 3. As K ≥ 6, the following upper bound holds:

LSRG(q) ≤ L̄SRG(q) :=
λWL

2

r(r−1)
2

8
(√

λW1
λH1

(√
2+

√
(r−1)(r−2)

))L−2

rL−1(r−1)2
∏L−1

i=2 λWi

qL + r(r−1)
2 λWL

+
L

2

√
λW1

λH1

(√
2 +

√
(r − 1)(r − 2)

)
q.

Now we reparametrize LDNC(q) and the upper bound on LSRG(q), so that they look as similar as
possible. By replacing λWL−1

q with q, we get

min
q≥0

LDNC(q) = min
q≥0

λWL

2

r(r−1)
2

1
λH1

∏L−1
i=1 λWi

qL + r(r−1)
2 λWL

+
L

2
r
(r − 1)

2
q. (7)

Similarly, by replacing
√

λW1
λH1

(√
2+

√
(r−1)(r−2)

)
r q with q, we get:

min
q≥0

L̄SRG(q) = min
q≥0

λWL

2

r(r−1)
2

8r(√
2+

√
(r−1)(r−2)

)2
(r−1)2λH1

∏L−1
i=1 λWi

qL + r(r−1)
2 λWL

+
L

2
rq.
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Next, by replacing

(
8r(√

2+
√

(r−1)(r−2)
)2

(r−1)2

) 1
L

q with q, we get:

min
q≥0

L̄SRG(q) = min
q≥0

λWL

2

r(r−1)
2

1
λH1

∏L−1
i=1 λWi

qL + r(r−1)
2 λWL

(8)

+
L

2
r


(√

2 +
√

(r − 1)(r − 2)
)2

(r − 1)2

8r


1
L

q.

After the reparameterization, LDNC(q) and L̄SRG(q) have almost the same form except for the
multiplier r−1

2 in the DNC case and
(√

2 +
√
(r − 1)(r − 2)

)2
(r − 1)2

8r


1
L

in the SRG case. Therefore, the inequality between LDNC and L̄SRG is fully determined by the
inequality between these two terms. We can write:

r − 1

2
>


(√

2 +
√
(r − 1)(r − 2)

)2
(r − 1)2

8r


1
L

⇐⇒

r(r − 1)L−2 > 2L−3
(√

2 +
√

(r − 1)(r − 2)
)2

We first solve it for L = 4 and any r ≥ 4 (which is guaranteed by K ≥ 6). We get the inequality
r(r− 1)2 > 2(r− 1)(r− 2)+4+4

√
2(r − 1)(r − 2). This inequality is equivalent to (r− 1)(r2−

3r + 4) > 4 + 4
√

2(r − 1)(r − 2), which holds for all r ≥ 4.

Compared to the case L = 4, for general L the LHS gets multiplied by (r − 1)L−4 and the RHS gets
multiplied by 2L−4, which is smaller for r ≥ 4. Hence, the inequality holds as well.

Analysis for L = 3. Here, we need a tighter upper bound than L̄SRG(q). Thus, we write

LSRG(q) ≤
λW3

2

r

8(r−3)2
√

λW1
λH1

(√
2+

√
(r−1)(r−2)

)
r2(r−1)2λW2

q3 + r(r−1)
2 λW3

+
λW3

2

r(r−3)
2

8
√

λW1
λH1

(√
2+

√
(r−1)(r−2)

)
rL−1(r−1)2λW2

q3 + r(r−1)
2 λW3

+
3

2

√
λW1

λH1

(√
2 +

√
(r − 1)(r − 2)

)
q.

We equivalently re-write this by extending both of the ratios by r−2
r−2

r−1
r−1 and then moving r−2

r−1 to
denominator. Thus,

LSRG(q) ≤ L̃SRG(q) :=
λW3

2

r(r−1)
r−2

8(r−3)2
√

λW1
λH1

(√
2+

√
(r−1)(r−2)

)
r2(r−1)(r−2)λW2

q3 + r(r−1)
2 λW3

+
λW3

2

r(r−3)(r−1)
2(r−2)

8
√

λW1
λH1

(√
2+

√
(r−1)(r−2)

)
r2(r−1)(r−2)λW2

q3 + r(r−1)
2 λW3

+
3

2

√
λW1

λH1

(√
2 +

√
(r − 1)(r − 2)

)
q.
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Now, we perform the same reparametrizations as for L > 4, with the only exception of treating
(r− 1)(r− 2) in the denominator of the denominator of the current ratios as (r− 1)2 in the previous
case. Then, we have

min
q≥0

L̃SRG(q) = min
q≥0

λW3

2

r(r−1)
r−2

(r−3)2

λH1
λW1

λW2
q3 + r(r−1)

2 λW3

+
λW3

2

r(r−3)(r−1)
2(r−2)

1
λH1

λW1
λW2

q3 + r(r−1)
2 λW3

+
3

2
r


(√

2 +
√

(r − 1)(r − 2)
)2

(r − 1)(r − 2)

8r


1
3

q.

Assume that the following inequality holds:

1
(r−3)2

λH1
λW1

λW2
q3 + r(r−1)

2 λW3

≤ 1

2

1
1

λH1
λW1

λW2
q3 + r(r−1)

2 λW3

. (9)

Then,

min
q≥0

L̃SRG(q) ≤ min
q≥0

L̄SRG(q) := min
q≥0

λW3

2

r(r−1)
2

1
λH1

λW1
λW2

q3 + r(r−1)
2 λW3

+
3

2
r


(√

2 +
√
(r − 1)(r − 2)

)2
(r − 1)(r − 2)

8r


1
3

q.

The only difference between the expression considered here and the one considered in the L > 3 case
is that here we have (r − 1)(r − 2) instead of (r − 1)2 within the expression. By comparing against

LDNC again, we get that L̄SRG < LDNC if and only if r(r−1)2 >
(√

2 +
√
(r − 1)(r − 2)

)2
(r−

2). This is equivalent to (r − 1)(3r − 4) > 2(r − 2) + 2(r − 2)
√
2(r − 1)(r − 2), which holds for

all r ≥ 4.

It remains to show that (9) holds, and it suffices to do so for the minimizer q∗ of LDNC , as
minq≥0 L̃SRG(q) ≤ L̃SRG(q

∗) ≤ L̄SRG(q
∗) < LDNC(q

∗) = minq≥0 LDNC(q). Note that this is
equivalent to

r(r − 1)

2
λW3

<
(r − 3)2 − 2

λW1λW2λH1

(q∗)3.

Note that the minimum of the function in (7) (having the same reparametrization as L̄SRG) – if it
is not at q∗ = 0, in which case the statement of the theorem is trivial – must come after the unique
inflection point of the function. A direct computation yields that this inflection point satisfies

r(r − 1)

2
λW3

=
2

λW1
λW2

λH1

q3.

Therefore, the minimum of (7) is attained at q∗ for which

r(r − 1)

2
λW3 <

2

λW2λW1λH1

(q∗)3.

For r ≥ 5, this implies that such a q∗ satisfies (9), which concludes the argument for K =
(
r
2

)
.

For a general K, the extension is rather simple. Note that the first type of SRG solution in Definition 11
is constructed in a way so that the losses attained by the SRG and DNC parts sum up. Therefore, we
can split the analysis for the SRG and DNC parts. The DNC part obviously attains equal loss to the
DNC solution. For the SRG part, the analysis done above applies, and the argument is complete.
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It remains to show the statement on the asymptotic relationship between LSRG and LDNC for
K −→ ∞ when L ≥ 4. Formally, we should consider sequences of the problems and label everything
with an extra index corresponding to the order within the sequence. However, with an abuse of
notation, we drop this indexing and switch to the O,Θ notations whenever convenient.

As before, we start by considering K of the form
(
r
2

)
for some r. Let Λ = λH1

∏L
i=1 λWi

and

Ψ(K) =

(
2L−3

(√
2+

√
(r−1)(r−2)

)2

r(r−1)L−2

) 1
L

, where r corresponds to the value s.t.
(
r
2

)
= K. We note

that Ψ(K) = Θ(K
3−L
2L ). Since we are interested in the ratio LSRG

LDNC
, we do a few changes and

reparametrizations to the expressions in (7) and (8): we multiply both by 2, divide all terms in the left
summands by λWL

, rewrite r(r−1)
2 as K, plug in the defined quantities, divide all the terms in the

left summands by K and finally replace Λ− 1
LK− 1

L q with q to obtain the following expression
1

qL + 1
+ LK

L+1
L Λ

1
L q (10)

for the DNC loss, and the following expression
1

qL + 1
+ LK

L+1
L Λ

1
LΨ(K)q (11)

for the SRG loss. Using a similar trick as in the previous analysis for L = 3, we have that the
minimum of the function in (10) is achieved when q > 1. Hence, we can lower bound (10) by

1

3
q−L + LK

L+1
L Λ

1
L q.

For this convex expression, we can find the optimal solution by setting to zero the derivative, which
gives that the optimal solution is (1 + L)3−

1
L+1KΛ

1
L+1 . Similarly, we can upper bound (11) by

q−L + LK
L+1
L Λ

1
LΨ(K)q

and after finding the optimal solution we get that it equals (1 + L)KΛ
1

L+1Ψ(K)
L

L+1 . This allows us
to conclude that

LSRG

LDNC
= O(K

3−L
2(L+1) ).

To get the same formula when the number of classes is not of the form
(
r
2

)
, we only need simple

adjustments. For this part, we will employ the upper-index notation to denote the number of classes
K to which the solution corresponds. First, note that the optimal value of (10) is continuous in the
coefficient in front of the linear term q. Therefore, if LK

DNC < 0.499, then, choosing the smallest r
for which K ≤

(
r
2

)
:= K̄, we see that LK̄

DNC < 0.5 for the same set of regularization parameters,

as K̄
K

K−→∞−−−−→ 1. Since the argument above does not need LDNC < 0.499 but only LDNC < 0.5,

we can now use that LK̄
SRG with the same regularization parameters is still O(K

3−L
2(L+1) ). Finally,

choosing the second construction in Definition 11, we construct the SRG solution for K classes
from the SRG solution for K̄ classes with the same regularization parameters (thus also the same
regularization as for the DNC solution with K classes). To conclude, it just suffices to see that
LK̄
SRG ≥ LK

SRG because we removed columns from H1, decreasing its norm and the fit loss is at
most as big because the columns with the worst fit loss were removed and the fit loss is an average
over the columns. This concludes the proof also for general K.

We conclude the section by stating and proving a few auxiliary lemmas that were used in the proof of
Theorem 5.
Lemma 12. Consider the following optimization problem:

min
w

∥w∥2 (12)

s.t. zT = wTAlTr. (13)
Then, the value of the optimal solution is

(r − 1)2

αl(r − 2)2
zTTT

r

(
Ir −

3r − 4

4(r − 1)2
1r1

T
r

)
Trz.
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Proof. Multiplying the constraint with TT
r (TrT

T
r )−1 from the right we get zTTT

r (TrT
T
r )−1 =

wTAl. Now, we can use that the minimum l2 norm solution of such a system can be computed by
multiplying with the right pseudoinverse of Al. Thus, we get w = Al(A

T
l Al)

−1(TrT
T
r )−1Trz =

1/αlAl(TrT
T
r )−1Trz. Then the squared norm of this is simply:

wTw =
1

α2
l

zTTT
r (TrT

T
r )−1AT

l Al(TrT
T
r )−1Trz =

1

αl
zTTT

r (TrT
T
r )−2Trz.

Now, we know that

TrT
T
r =

r − 2

r − 1
Ir +

1

r − 1
11T =

r − 2

r − 1

(
I +

1

r − 2
11T

)
.

This can be seen by looking at the structure of Kn where two vertices have exactly one edge between
them. Now we can compute the the inverse of this matrix using the Sherman-Morrison formula(

I +
1

r − 2
11T

)−1

= I − 1

2(r − 1)
11T

and the square is: (
I +

1

r − 2
11T

)−2

= I − 3r − 4

4(r − 1)2
11T .

Putting this all together, the proof is complete.

Lemma 13. Let 2 ≤ l ≤ L− 2. Consider M̃l+1,Ml as in Definition 9 of the SRG solution. Then,
the following optimization problem:

min
W

∥W∥2F (14)

s.t. M̃l+1 = WMl (15)

achieves optimal value of rαl+1

αl
.

Proof. This is a direct consequence of Lemma 12. Denote γz0 a row from M̃l+1 which corresponds
to the first row of Tr and such that ∥z0∥ = 1. Then, Trγz0 = γ(1, 1/(r − 1), . . . , 1/(r − 1))T .
Directly evaluating the expression in Lemma 12 will yield γ2α−1

l for a single row and thus for all
rows we get the value from the lemma statement.

Lemma 14. Consider M̃L,ML−1 as in Definition 9 of the SRG solution. Then, the following
optimization problem:

min
W

∥W∥2F (16)

s.t. M̃L = WML−1 (17)

achieves optimal value of
αL

αL−1

r2(r − 1)2

4((r − 2)(r − 3) + 2)
.

Proof. We first need to characterize the rows of M̃L. Note that M̃L comes from the multiplication of
Tr and A

(1)
L , see Definition 9. This operation can be seen as weighting vertices of Kr (rows of Tr)

and then looking at what the sum of the weights of adjacent vertices of each edge (column of Tr) is.
We can easily see that the resulting vector has exactly one “−1” entry (for the edge corresponding to
the two vertices given negative weight) and exactly

(
r−2
2

)
entries with “+1”. Therefore, it must be

scaled with the inverse of s :=
√

(r−2)(r−3)
2 + 1 to be unit norm. Now, let z1 be one of these vectors

with the negative edge between first two vertices. Then,

Trz1 =

(
− 1

s
√
r − 1

,− 1

s
√
r − 1

,
r − 3

s
√
r − 1

,
r − 3

s
√
r − 1

, . . .

)T

,
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which can be easily derived if we imagine doing edge-wise dot-product between two vertex weightings,
one with two “−1s” for z1 and the other type with one “+1” representing the rows of Tr. For the
other vectors in H̃L, the resulting vectors would be similar, except they would have the negative
entries for different pairs of vertices of Kr. Note that

zT1 T
T
r Trz =

2

s2(r − 1)
+

(r − 3)2(r − 2)

s2(r − 1)
,

zT1 T
T
r 1r1

T
r Trz =

((r − 3)(r − 2)− 2)
2

s2(r − 1)
.

Therefore, if we are optimizing for γz1, then an application of Lemma 12 gives

wTw = γ2α−1
L−1

(r − 1)2

(r − 2)2

(
2

s2(r − 1)
+

(r − 3)2(r − 2)

s2(r − 1)
− 3r − 4

4(r − 1)2
((r − 3)(r − 2)− 2)2

s2(r − 1)

)
,

where w denotes a row of W . Simplifying this expression, we get

wTw = γ2α−1
L−1

r(r − 1)

2((r − 2)(r − 3) + 2)
.

To conclude, it suffices to sum up r(r−1)
2 such rows having total l2 norm squared αL (and, hence,

γ2 = αL), which gives

∥W∥2F =
αL

αL−1

r2(r − 1)2

4((r − 2)(r − 3) + 2)
,

and concludes the proof.

Lemma 15. For 2 ≤ l ≤ L − 1, consider Ml, M̃l as in Definition 9 of the SRG solution. Then,
Ml = M̃l and the eigenvalues of MT

l Ml are:

µ1 = 2αl with multiplicity 1,

µ2 =
r − 2

r − 1
αl with multiplicity r − 1,

µ3 = 0 with multiplicity
r(r − 3)

2
.

Proof. From the definition, it readily follows that Ml = M̃l, so let us compute MT
l Ml. Looking

at any row of Ml, we see that it has non-negative equal entries of value √
αij/

√
r − 1, where∑

j αij = αl on all the r−1 edges of Kr that contain the vertex corresponding to that row. Therefore,
by definition of αl, the sum of squares of all entries corresponding to one row type within any column
is αl/(r−1). Each edge (and, thus, column) contains exactly two vertices, thus the diagonal elements
of MT

l Ml, which are the l2 norms squared of the columns of Ml, are simply equal to 2αl

r−1 . There
are two possible off-diagonal values. One is for the pairs of columns that correspond to edges that
share a vertex and one is for those pairs that do not share a vertex. The pairs of columns whose
edges do not share a vertex do not have any entries which would both be jointly positive, because
either a vertex does not belong to one edge or to the other. Therefore, the value of off-diagonal
entries corresponding to such pairs is simply 0. On the other hand, there is exactly one vertex that has
non-zero values for both edges corresponding to columns whose edges do share a vertex – it is the
shared vertex. Therefore the value of off-diagonal entries of this type is αL

r−1 . Crucially, the structure
of the off-diagonal entries is fully determined by the graph Tr, because two edges in Kr share a vertex
if and only if they are connected in the graph Tr. Therefore, MT

l Ml can be written as a weighted
sum of IK and the adjacency matrix Gr of Tr, where the weight of IK simply corresponds to the size
of the diagonal term and the weight of Gr to the positive off-diagonal term. In conclusion, we get

MT
l Ml =

2αl

r − 1
IK +

αl

r − 1
Gr.

As Tr is a strongly regular graph with parameters (r(r − 1)/2, 2(r − 2), r − 2, 4), Gr has a single
eigenvalue equal to 2(r − 2), r − 1 eigenvalues equal to r − 4 and r(r − 3)/2 eigenvalues equal to
−2, which concludes the proof.
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Lemma 16. Consider ML as in Definition 9 of the SRG solution. Then, the eigenvalues of MT
LML

are:

µ1 =
(r − 2)(5r − 19)αL

(r − 2)(r − 3) + 2
with multiplicity 1,

µ2 =
2(r − 3)2αL

(r − 2)(r − 3) + 2
with multiplicity r − 1,

µ3 =
2αL

(r − 2)(r − 3) + 2
with multiplicity

r(r − 3)

2
.

Proof. Let us compute MT
LML. Looking at any row of ML, we see that it has non-negative equal

entries of value √
αij/s, where s =

√
(r−2)(r−3)

2 + 1 and
∑

j αij = αL on all edges in a subgraph
of Kr of size r − 2. Therefore, by definition of αL, the sum of squares of all entries corresponding to
one row type within any column is αL/s

2. However, not all row types have non-zero value on any
particular column. Namely, a row type will only have non-zero value on a column, if the row-type
corresponds to such a subgraph of Kr, which is disjoint with the edge corresponding to the column.
This is because all edges outside the complete subgraph of r − 2 vertices corresponding to the row
type are assigned 0 in ML. Therefore, the number of row types that assign non-zero value in a
particular column is equal to the number of r − 2 vertex sets. This corresponds to the number of
edges in Kr, which is equal to

(
r−2
2

)
= s2 − 1. Thus, the diagonal elements of MT

LML, which are

the l2 norms squared of the columns of ML, are simply equal to (s2−1)αL

s2 . There are two possible
off-diagonal values. One is for the pairs of columns that correspond to edges that share a vertex, and
one is for those pairs that don’t share a vertex. Let us compute the number of row types assigning
positive value to both of these columns jointly. Using the same interpretation, the columns correspond
to edges and only row types that correspond to r− 2 vertex subsets disjoint with them assign positive
value to the column of that edge. If we want this to be satisfied for both rows jointly, we need to
take the intersection of those r − 2 vertex subsets, which in this case will result in an r − 3 vertex
subset. Thus, exactly

(
r−3
2

)
row types will jointly assign a positive value. Therefore, we have value

(r−3)(r−4)αL

2s2 on these off-diagonal entries. For the pairs of columns that correspond to edges with
disjoint vertices, the same intersection will now yield a set of vertices of size only r − 4. Therefore,
the value of this off-diagonal entry is (r−4)(r−5)αL

2s2 . Crucially, the structure of the off-diagonal entries
is fully determined by the graph Tr, because two edges in Kr share a vertex if and only if they are
connected in the graph Tr. Therefore, MT

LML can be written as a weighted sum of 1K1T
K , IK and

the adjacency matrix Gr of Tr. The weights can be determined as follows: we first subtract a multiple
of 1K1T

K to make the smaller off-diagonal entry of MT
LML zero, then we subtract what is left of the

diagonal and we take the rest to be a multiple of Gr. In conclusion, we get

MT
LML =

(r − 4)(r − 5)αL

2s2
1K1T

K

+

(
(s2 − 1)αL

s2
− (r − 4)(r − 5)αL

2s2

)
IK

+

(
(r − 3)(r − 4)αL

2s2
− (r − 4)(r − 5)αL

2s2

)
Gr.

As Tr is a strongly regular graph with parameters (r(r − 1)/2, 2(r − 2), r − 2, 4), Gr has a single
eigenvalue equal to 2(r − 2), r − 1 eigenvalues equal to r − 4 and r(r − 3)/2 eigenvalues equal to
−2. The summation with IK only shifts all the eigenvalues. The term 1K1T

K has only one non-zero
eigenvalue, and the eigenvector is identical to that of the eigenvector corresponding to the dominant
eigenvalue of Gr. This concludes the proof.

Lemma 17. Assuming DNC1, let ML be the mean matrix of the last layer. Let ML = UΣV T be the
full SVD of ML and let σi, i ∈ [K], be the singular values of ML. Then, the following optimization
problem:

min
WL

1

2K
∥WLML − IK∥2F +

λWL

2
∥WL∥2F
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attains the minimum of
λWL

2

K∑
i=1

1

σ2
i +KλWL

.

Proof. The proof consists in a direct computation. Let W ∗
L denote the minimizer. Computing the

gradient and setting it to 0 gives that

W ∗
L = MT

L (MLM
T
L + λWL

KIdL
)−1 = V ΣT (ΣΣT + λWL

KIdL
)−1UT ,

which readily implies that

∥W ∗
L∥

2
F =

K∑
i=1

σ2
i

(σ2
i + λWL

K)2
,

∥WLML − IK∥2F =
∥∥V ΣT (ΣΣT + λWL

KIdL
)−1ΣV T − V V T

∥∥2
F

=

K∑
i=1

(
σ2
i

σ2
i + λWL

K
− 1

)2

=

K∑
i=1

K2λ2
WL

(σ2
i + λWL

K)2
,

thus concluding the argument.

Lemma 18. The optimization problem

min
A,B;C=AB

λA

2
∥A∥2F +

λB

2
∥B∥2F (18)

attains the minimum of
√
λAλB ∥C∥∗, and the minimizers are of the form A∗ = γAUΣ1/2RT , B∗ =

γBRΣ1/2V T . Here, the constants γA, γB only depend on λA, λB; UΣV T is the SVD of C; and R
is an orthogonal matrix.

Proof. See Lemma C.1 of [51].

A.2 No within-class variability is still optimal

Theorem 6. The optimal solutions of the L-DUFM (1) exhibit DNC1 at layer L, i.e.,

H∗
L = M∗

L ⊗ 1T
n

holds for any optimal solution (H∗
1 ,W

∗
1 , . . . ,W

∗
L) of the L-DUFM problem.

Proof. Step 1: Reduction to n = 1. In the first step, assume by contradiction that there ex-
ists an optimal solution of (1) with regularization parameters (λH1

, λW1
, . . . , λWL

) denoted as
(H∗

1 ,W
∗
1 , . . . ,W

∗
L) which does not exhibit deep neural collapse at layer L. This means that there

exist indices c, i, j s.t. hL
ci ̸= hL

cj . Let us construct two solutions of the n = 1 L-DUFM. They will
share the weight matrices which will equal (W ∗

1 , . . . ,W
∗
L) – the weight matrices of the original

solution. To construct the features, for every class except the c-th, pick any sample and share it
between both solutions. For the class c, take the samples hL

ci, h
L
cj and put one in one solution and

the other one in the other solution. Denote H
(1)
1 , H

(2)
1 the two n = 1 sample matrices. It is not

hard to see that both (H
(1)
1 ,W ∗

1 , . . . ,W
∗
L) and (H

(2)
1 ,W ∗

1 , . . . ,W
∗
L) are optimal solutions of (1)

with regularization parameters (nλH1
, λW1

, . . . , λWL
). To prove it, assume by contradiction that,

without loss of generality, (H(2)
1 ,W ∗

1 , . . . ,W
∗
L) is not an optimal solution of the corresponding

problem. Then, there exists an alternative (H
(0)
1 , Ŵ ∗

1 , . . . , Ŵ
∗
L) that achieves smaller loss for this

problem. Let us duplicate all the samples of Ĥ(0)
1 for n times, thus constructing Ĥ∗

1 = H
(0)
1 ⊗ 1T

n .

The solution (Ĥ∗
1 , Ŵ

∗
1 , . . . , Ŵ

∗
L) has the same loss under the L-DUFM problem with regulariza-

tion parameters (λH1
, λW1

, . . . , λWL
) as the solution (H

(0)
1 , Ŵ ∗

1 , . . . , Ŵ
∗
L) for the L-DUFM with

n = 1 and parameters (nλH1
, λW1

, . . . , λWL
). This is easy to see from the separability of both

∥H1∥2F and the fit part of the loss in (1) w.r.t. the columns of H1. For the same reasons, the loss
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functions for (H∗
1 ,W

∗
1 , . . . ,W

∗
L) in the original problem equals the loss function of the solutions

(H
(1)
1 ,W ∗

1 , . . . ,W
∗
L) or (H(2)

1 ,W ∗
1 , . . . ,W

∗
L) in the reduced problem. In fact, if this was not the

case, there would need to be an inequality between the losses exhibited by two different columns
of H1 belonging to the same class, from which we could arrive at a contradiction by taking the
better column and multiplying it to all columns within that class, thereby obtaining a better solution.
This means that the loss of (Ĥ∗

1 , Ŵ
∗
1 , . . . , Ŵ

∗
L) in the original problem is smaller than the loss of

(H∗
1 ,W

∗
1 , . . . ,W

∗
L), which is a contradiction.

Step 2: Excluding an aligned case. By assumption we know that not only H
(1)
1 and H

(2)
1 differ

in the c-th column (from now on we assume without loss of generality that it is the first column)
but also H

(1)
L and H

(2)
L do. Denote for simplicity the first (differing) columns of H(1)

L and H
(2)
L as

x, y respectively. We now show that it is not possible that y = αx. First, α has to be non-negative
since x, y are entry-wise non-negative given that they come after the application of σ. Assume w.l.o.g.
α > 1 (otherwise, we can just exchange the roles of x and y). Consider a reduced problem where
we only optimize for the size of the first column of either H(1)

L or H(2)
L , focusing on that part of the

problem (1) which is relevant for this column, being:

min
t≥0

1

2N

∥∥∥tWLh
L(i)
11 − e1

∥∥∥2
2
+

nλH1

2

∥∥∥th1(i)
11

∥∥∥2
2
.

This problem is strongly convex, quadratic and simple enough to give the following: if α > 1, then∥∥∥h1(1)
11

∥∥∥2
2
>
∥∥∥h1(2)

11

∥∥∥2
2

and simultaneously ∥WLx− e1∥22 > ∥WLy − e1∥22 . This means that H(2)
1 is

a strictly better solution than H
(1)
1 – a contradiction.

Step 3: Contradiction by zero gradient condition. By optimality of both solutions we get

∂L
∂WL

∣∣∣∣
(H1,W1,...,WL)=(H

(1)
1 ,W∗

1 ,...,W∗
L)

= 0 =
∂L
∂WL

∣∣∣∣
(H1,W1,...,WL)=(H

(2)
1 ,W∗

1 ,...,W∗
L)

.

An application of the chain rule gives

∂L
∂WL

=
∂LF

∂H̃L+1

∂H̃L+1

∂WL
+ λWL

WL =
∂LF

∂H̃L+1

HT
L + λWL

WL,

where H̃L+1 is the output of our model. Plugging this back to the previous equation and using that
W ∗

L is the same in both expressions, we get

∂LF

∂H̃L+1

∣∣∣∣
(H1,W1,...,WL)=(H

(1)
1 ,W∗

1 ,...,W∗
L)

(H
(1)
L )T =

∂LF

∂H̃L+1

∣∣∣∣
(H1,W1,...,WL)=(H

(2)
1 ,W∗

1 ,...,W∗
L)

(H
(2)
L )T .

Let us denote

A =
∂LF

∂H̃L+1

∣∣∣∣
(H1,W1,...,WL)=(H

(1)
1 ,W∗

1 ,...,W∗
L)

, B =
∂LF

∂H̃L+1

∣∣∣∣
(H1,W1,...,WL)=(H

(2)
1 ,W∗

1 ,...,W∗
L)

.

Due to the separability of LF with respect to the columns of H1 (and, thus, also of Hl, H̃l for all
l ≤ L + 1), we get that the matrices A,B can only differ in their first columns and are identical
otherwise. We denote these columns a, b for A,B, respectively. This implies that axT = byT .

Now we exclude a few cases. First, neither a nor b can be zero, because by the exact formula
that exists for them, this would mean that exact fit was achieved for either of the columns. This is
impossible with non-zero weight-decay, because decreasing the norm of the column of H(1)

1 or H(2)
1

that achieves the exact fit by a sufficiently small value would necessarily lead to an improvement on
the objective value. Moreover, if x = y = 0, then this is a contradiction with the assumption that
x ̸= y. Finally, the case x ̸= y = 0 or 0 = x ̸= y is excluded already in the step 2.

Thus we get x, y, a, b are all non-zero. Looking at any fixed row (column) of axT and byT we see
that necessarily x, y (a, b) are aligned. However, this case is already solved in step 2 and leads to
x = y, which is the contradiction. This concludes the proof.
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Theorem 8. Denote by L-DUFMϵ the equivalent of (1), with σ replaced by σϵ. Let D =
max{d2, d3, . . . , dL} and λ̄ = λH1λW1 . . . λWL

, with the regularization parameters upper bounded
by 1/(L+1). Then, for any globally optimal solution of the L-DUFMϵ problem, the distance between
any two feature vectors of the same class in any layer is at most

6ϵ
√
D(L+ 1)

(L+ 1)L+1λ̄
√
n
. (5)

Proof. In order not to mix approximation technical details with the gist of the proof, we split the
argument into two parts: in the first part, we provide a heuristic for ϵ = 0 by assuming that ReLU is
differentiable at 0; in the second part, we discuss what changes in the proof if we use the relaxation and
then execute a technical computation that bounds the error based on the strength of the approximation
(the size of ϵ). It is useful to split the loss function L into the two terms LF and LR. The former
represents the fit part of the loss (which penalizes for deviation of the predictions from Y ), and the
latter represents the regularization part of the loss.

Part 1: Heuristic for ϵ = 0. We start identically to the proof of Theorem 6. As in Step 1 of that
argument, if we have a globally optimal solution that does not exhibit DNC1 in the first layer, we can
construct two different solutions of the n = 1 L-DUFM problem where the two solutions only differ
in the first column of the H1 matrix. Let us denote two such constructions Hx

1 ̸= Hy
1 , where we

denote x ̸= y, to be the mentioned first columns, respectively. We emphasize that Hx
1 , H

y
1 both form

optimal solutions of the n = 1 L-DUFM with the same tuple of weight matrices (W ∗
1 , . . . ,W

∗
L). In

particular, this means that

∂L
∂W1

∣∣∣∣
(H1,W1,...,WL)=(Hx

1 ,W
∗
1 ,...,W∗

L)

= 0 =
∂L
∂W1

∣∣∣∣
(H1,W1,...,WL)=(Hy

1 ,W
∗
1 ,...,W∗

L)

.

An application of the chain rule gives

∂L
∂W1

=
∂LF

∂H̃2

∂H̃2

∂W1
+ λW1W1 =

∂LF

∂H̃2

HT
1 + λW1W1.

Plugging this back to the previous equation and using that the W ∗
1 is the same in both expressions,

we get

∂LF

∂H̃2

∣∣∣∣
(H1,W1,...,WL)=(Hx

1 ,W
∗
1 ,...,W∗

L)

(Hx
1 )

T =
∂LF

∂H̃2

∣∣∣∣
(H1,W1,...,WL)=(Hy

1 ,W
∗
1 ,...,W∗

L)

(Hy
1 )

T .

Let us denote

A =
∂LF

∂H̃2

∣∣∣∣
(H1,W1,...,WL)=(Hx

1 ,W
∗
1 ,...,W∗

L)

, B =
∂LF

∂H̃2

∣∣∣∣
(H1,W1,...,WL)=(Hy

1 ,W
∗
1 ,...,W∗

L)

.

Due to the separability of LF with respect to the columns of H1 (and, thus, also Hl for all l ≤ L),
we get that the matrices A,B can only differ in their first columns and are identical otherwise. We
denote these columns a, b for A,B, respectively. This implies that axT = byT .

Now, we treat a few cases. First, assume a = b = 0. Since it holds that (Hx
1 ,W

∗
1 , . . . ,W

∗
L) is the

optimal solution, then necessarily

0 =
∂L
∂h1

11

∣∣∣∣
(H1,W1,...,WL)=(Hx

1 ,W
∗
1 ,...,W∗

L)

= (W ∗
1 )

Ta+ λH1
x ⇐⇒ 0 = x.

Similarly, we get y = 0, but that is a contradiction with x ̸= y. Therefore, at least one of a, b is
non-zero. Next assume x = 0. Then axT = 0. If b = 0 then y = 0 and we have a contradiction. On
the other hand, if b ̸= 0, then the row of byT that corresponds to a non-zero entry of b must be zero
and thus y = 0. Similarly, if y = 0 we can get x = 0.

Let us therefore assume x, y are both non-zero, which also implies a, b are both non-zero. Looking at
any fixed row (column) of axT and byT we see that necessarily x, y (a, b) are aligned. Let us write
x = αy and αa = b for some α ̸= 0. We will first show that if α > 0 then necessarily α = 1 and
x = y. For this, let us fix any ray r ∈ Rd1 . The ray r represents a set of possible first columns in
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H1. Let us fix any (W1, . . . ,WL). Since L is separable in the columns of H1, we can consider an
optimization over β ≥ 0 to minimize L on (βr,W1, . . . ,WL). However, LF is convex by assumption
and the mapping h1

11 −→ hL
11 is ray-linear, therefore LF is convex in β. Moreover LR is strongly

convex in h1
11 and therefore L is strongly convex in β. This means it has a unique optimal solution

β∗.

We have just showed that, if α > 0, then since x, y are aligned and thus lie on the same ray and are
both optimal together with the same tuple of weight matrices, they must necessarily be identical and
so α = 1, x = y. This is a contradiction and thus we are left with the case α < 0. Denote s = W ∗

1 x,
t = W ∗

1 y. From linearity, we have s = αt. Note that if s = t = 0, then necessarily x = y = 0
because they don’t have any effect on LF and they minimize L at 0. Thus, s, t are non-zero and
negative entries of s are positive entries of t and vice-versa. This means that σ(s) and σ(t) have
different sets of positive entries. However, from the optimality of the both solutions we know:

∂L
∂W2

∣∣∣∣
(H1,W1,...,WL)=(Hx

1 ,W
∗
1 ,...,W∗

L)

= 0 =
∂L
∂W2

∣∣∣∣
(H1,W1,...,WL)=(Hy

1 ,W
∗
1 ,...,W∗

L)

.

Again, using the chain rule we get:

∂L
∂W2

=
∂LF

∂H̃3

∂H̃3

∂W2
+ λW2W2 =

∂LF

∂H̃3

HT
2 + λW2

W2.

Plugging this back to the previous equation and using that W ∗
2 is the same in both expressions, we get

∂LF

∂H̃3

∣∣∣∣
(H1,W1,...,WL)=(Hx

1 ,W
∗
1 ,...,W∗

L)

(Hx
2 )

T =
∂LF

∂H̃3

∣∣∣∣
(H1,W1,...,WL)=(Hy

1 ,W
∗
1 ,...,W∗

L)

(Hy
2 )

T .

Let us denote

C =
∂LF

∂H̃3

∣∣∣∣
(H1,W1,...,WL)=(Hx

1 ,W
∗
1 ,...,W∗

L)

, D =
∂LF

∂H̃3

∣∣∣∣
(H1,W1,...,WL)=(Hy

1 ,W
∗
1 ,...,W∗

L)

.

Due to the separability of LF with respect to the columns of H1 (and, thus, also Hl for all l ≤ L),
we get that the matrices C,D can only differ in their first columns and are identical otherwise. We
denote these columns c, d for C,D respectively. This implies that cσ(s)T = dσ(t)T .

As above, if either c or d is zero, using the chain rule we would get that x or y (respectively) are
zero too, which cannot happen. Therefore, both c and d are non-zero and σ(s), σ(t) must be aligned.
Since they are non-zero, non-negative and with different supports, we have reached a contradiction.
This proves that α < 0 is also impossible and the only possible case is α = 1, but that forces x = y,
which is also a contradiction.

Part 2: Relaxation to ReLUϵ. The difficulty in making the previous heuristic rigorous is that
ReLU is not differentiable at 0 and, thus, we do not have the desired analytical statement that global
solutions must necessarily admit zero derivative (because the loss might not be differentiable at them
at all). If we tried to use the same proof as in part 1 with the differentiable relaxed version of ReLU –
ReLUϵ, an issue would occur when showing that, if x, y are aligned and α ≥ 0, then α must be 1.
The reason is that the mapping h1

11 −→ hL
11 is no longer ray-linear and the corresponding optimization

problem on any fixed ray is no longer quadratic and strongly convex. However, we can prove that
the optimization problem admits a solution that is close to the solution of the corresponding ReLU
optimization problem. For this, let us fix any direction r such that ∥r∥ = 1 and an optimization
parameter t ≥ 0, and define the following two losses:

L0(t, r) =
1

2K

∥∥W ∗
Lσ(W

∗
L−1σ(. . .W

∗
2 σ(W

∗
1 tr) . . . ))− e1

∥∥2
F
+

nλH1

2
t2, (19)

Lϵ(t, r) =
1

2K

∥∥W ∗
Lσϵ(W

∗
L−1σϵ(. . .W

∗
2 σϵ(W

∗
1 tr) . . . ))− e1

∥∥2
F
+

nλH1

2
t2. (20)

We now bound max
t≥0

|L0(t, r)− Lϵ(t, r)|. For this, we fix any t ≥ 0, and bound the accumulated l2

error of using σϵ instead of σ throughout the layers. For this, a useful statement that we will need is
the following:

λWL

2
∥W ∗

L∥
2
F =

λWL−1

2

∥∥W ∗
L−1

∥∥2
F
= · · · = λW1

2
∥W ∗

1 ∥
2
F =

nλH1

2
∥H∗

1∥
2
F ≤ 1

2(L+ 1)
.
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This is true because, by a simple computation, we get that the terms must be balanced and the
inequality comes from the fact that the solution (0, 0, . . . , 0) achieves full loss 1/2 in the L-DUFM
as well as L-DUFMϵ problems and, thus, LR is trivially upper-bounded by this. This implies that, for
each Wl (and H1), ∥Wl∥ ≤ ∥Wl∥F ≤ 1√

(L+1)λWl

.

For ease of exposition, we set t = 1 (the same argument would work for all t). We see that W1r
does not introduce any l2 error. Then, the l2 error that is introduced in the application of the ReLU is
trivially upper-bounded by ϵ

√
d2. After applying W2, we can use the bound on the operator norm

∥W2∥ obtained above to upper bound the propagated l2 error by

1√
(L+ 1)λW2

ϵ
√
d2.

After that, we obtain an additive l2 error of ϵ
√
d3 by applying σϵ, which gives a total l2 error of

1√
(L+ 1)λW2

ϵ
√

d2 + ϵ
√
d3.

Then, again, we multiply this whole expression with 1√
(L+1)λW3

to account for the multiplication by

W3. Inductively, the upper bound on the l2 error in the output space is

ϵ

L∑
l=2

√
dl

(L+ 1)
L−l+1

2

L∏
j=l

1√
λWj

.

This can be further upper bounded as

ϵ
√
D
√
λH1

λW1

(L+ 1)
L−1

2

√
λ̄
.

Using the triangle inequality, the upper bound on |L0(t, r)− Lϵ(t, r)| is this expression squared. On
the other hand, the second derivative of L0(t, r) with respect to t is lower bounded by nλH1 .

Given two functions f1 and f2, with f1 strongly convex with second derivative at least c and f2
everywhere at most d distant from f1, then the distance between their global minimizers is at most
2
√
d/c. Applying this to our case, we get that the distance between the minimizers t0 and tϵ of

L0(t, r) and Lϵ(t, r) is at most
2ϵ
√
D(L+ 1)

(L+ 1)
L+1
2

√
λ̄n

.

Since the ray r is unit-norm, this is also the upper bound on the distance between two feature vectors
of any globally optimal solution in the first layer. To obtain the upper bound on the distance between
two vectors in any layer, we proceed as follows.

Assume we have two input vectors of the first class (now we know they need to be aligned):
x1, y1 = α1x1, where α1 > 1. As before, x̃l, xl, ỹl, yl are the l-th layer representations of these
vectors before and after σϵ. If we would compute ∂L

∂Wl
with respect to any layer l ≥ 2 and used

the same arguments as in part 1 (that still carry to the analysis for σϵ), we would find out that in
each layer, we need to have yl = αlxl. Moreover, we can assume that x̃l, xl, ỹl, yl are non-zero
at all layers because otherwise the same argument in part 1 would trivialize the rest of the proof.
By a simple inductive argument, since α1 > 1, we know that α2 > 1 as well because σϵ is strictly
increasing on [0,∞). Similarly, αl > 1 for all l. Note that, if there exists at least one index i on
which xl

i is bigger or equal than ϵ, then necessarily αl = αl−1, because σϵ is the identity on inputs
of at least ϵ, and the αl can be uniquely determined from yli/x

l
i = yl−1

i /xl−1
i . Having αl = αl−1

makes us have more control over the distance between xl and yl. If this fails to hold at some layer,
we need a separate analysis.

For this, let l0 denote the first layer (assuming it exists), where x̃l0 does not have any entries that
are bigger or equal than ϵ. This means that

∥∥xl0
∥∥ ≤ ϵ

√
dl0 . We now compute the maximal possible

norm of yl0 . Since α1 = α2 = · · · = αl0−1, for all 2 ≤ l < l0 and for each index i, either x̃l
i, ỹ

l
i ≤ ϵ

or ϵ ≤ x̃l
i, ỹ

l
i. Otherwise, since σϵ(x) < x ∀x ∈ (0, ϵ), yli/x

l
i > αl, a contradiction. Thus, we get
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∥∥x̃l − ỹl
∥∥ ≥

∥∥xl − yl
∥∥ . Therefore,

∥∥xl − yl
∥∥ can only grow by applying Wl. Thus, after applying

W1,W2, . . . ,Wl0−1 and using the operator norm bound with all of the matrices, we get∥∥xl − yl
∥∥ ≤

2ϵ
√
D(L+ 1)

(L+ 1)
L+1
2

√
λ̄n

1

(L+ 1)
l0−1

2

√
λW1λW2 . . . λWl0−1

.

Combining with
∥∥xl0

∥∥ ≤ ϵ
√
dl0 and using the triangle inequality, we get∥∥yl∥∥ ≤

2ϵ
√
D(L+ 1)

(L+ 1)
L+1
2

√
λ̄n

1

(L+ 1)
l0−1

2

√
λW1

λW2
. . . λWl0−1

+ ϵ
√
dl0 .

Applying the operator norm bound with Wl0 ,Wl0+1, . . . ,WL−1, we get:∥∥yL∥∥ ≤
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Since
∥∥xL

∥∥ ≤
∥∥yL∥∥ we can use the triangle inequality again to obtain the final:∥∥xL − yL

∥∥ ≤
6ϵ
√
D(L+ 1)

(L+ 1)L+1λ̄
√
n
.

Note that the same bound is an upper bound for any layer, since in each layer we are increasing the
upper bound by at least a factor (L+ 1)−1/2λ

−1/2
Wl

.

In case such a layer l0 does not exist, the upper bound above is still valid, since we can simply use the
error propagation through all the layers, as we did for l < l0 in the previous case. We would arrive at
the same bound as above but with 4 instead of 6 as a multiplicative factor (because we would not
introduce the additive error ϵ

√
dl0 ).

B Further experimental evidence

B.1 L-DUFM experiments

Experiments on small number of classes and layers. For L = 3, we weren’t able to find any
solutions that would outperform DNC for K ≤ 6. For K = 7, the difference in the losses is extremely
small. For K = 6, we did find some low rank solutions, but these were either slightly worse than
DNC or the losses were the same up to four decimal places. Already for L ≥ 4, we find low-rank
solutions for all K ≥ 3. We present some of them for K ∈ {3, 4, 5} in Figure 5. Note, that all these
solutions were found automatically by gradient descent through the optimization process.

We specifically highlight the solution for K = 4, as it represents another graph structure different
from SRG. Namely, this solution is based on the square graph. We see that each column (edge) has
positive scalar product with exactly two other columns (the corresponding edges share a vertex), and
it is orthogonal to one other column (the non-touching sides of a square). Each row (vertex) has only
two positive values, and these correspond to the two sides (edges) to which they belong.

Experiments on large number of classes or layers. For large L or K, the behavior of the low-rank
solutions is slightly different from the behavior when both L and K are moderate. When l is close
to L, it no longer holds that M̃l = Ml, and the rank of Ml is larger as the singular values do not
decay sharply to 0. However, we note that the singular values are rather small and, thus, it is not clear
whether they would disappear with a longer training (we trained for 200000 steps of full gradient
descent with learning rate 0.5). In Figure 6, we take L = 7,K = 15, and weight decay 0.0025 in all
layers. We highlight that M̃6 ̸= M6 and the singular values of M6 are small but non-zero after the 3
dominant values. We also highlight that the rank of previous layers is 3, which is remarkably small
(and also smaller than the rank of the SRG solution).
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Figure 5: 4-DUFM training for K = 3 (top), K = 4 (middle), and K = 5 (bottom). Left: Loss
progression, also decomposed into the fit and regularization terms. Middle left: Visualization of
the matrix M3. Middle right: Visualization of the matrix M̃4. Right: Visualization of the matrix
MT

3 M3.

SRG solutions. In Figure 1 presented in the main body, we recover the SRG solution for K = 10.
In Figures 7 and 8, we show that solutions very similar to SRG are recovered for K = 6 and K = 15,
respectively. The only difference with SRG is in the construction of M̃L. We note that the losses
of these solutions are slightly lower than the loss of our construction, which proves that the SRG
solution itself is not necessarily globally optimal.

B.2 End-to-end experiments with DUFM-like regularization

We complement the experiments of Figure 3 with two extra ablation studies for ResNet20 trained
on CIFAR-10 with a 4-layer MLP head. We focus on the dependence of the average rank on the
weight decay and the learning rate, and present the results in Figure 9. The weight decay has a clear
effect on the rank of the solutions found by gradient descent, similarly to the results in Figure 3 for
the L-DUFM model. The effect of the learning rate is slightly less clear, but we still see a general
downward trend.

B.3 End-to-end experiments with standard regularization

Finally, in Figure 10, we include the analysis of the average rank as a function of weight decay in the
standard regularization setting for training on the MNIST dataset. The results confirm the trend from
the previous experimental settings, showing that the weight decay strength is a crucial predictor of
the final rank even in standard regularization setting, which has a different loss landscape compared
to the L-DUFM.
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Figure 6: Class-mean matrices and singular values at convergence for a DUFM model with K = 15
and L = 7. Top row: Singular values of M̃2, and visualization of the matrices M̃2, M̃6,M6 and
Bottom row: Singular values of M̃6 and M6.

Figure 7: 4-DUFM training for K = 6. Top row: Visualization of the matrices M̃T
3 M̃3, M̃3, and

M̃4. Bottom row: Singular values of H3, and loss progression including its decomposition into fit
and regularization terms.
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Figure 8: 4-DUFM training for K = 15. Top row: Visualization of the matrices M̃T
3 M̃3, M̃3 and

M̃4. Bottom row: Loss progression including its decomposition into fit and regularization terms.

Figure 9: Average ranks as a function of log2 weight decay (left) and log2 learning rate (right). We
trained ResNet20 with 4-layer MLP head on CIFAR-10. The experiments are averaged over three
and two independent runs, respectively.
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Figure 10: Average rank as a function of the log2 weight decay. We trained ResNet20 with 5-layer
MLP head on MNIST. The experiments are averaged over 4 independent runs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work performed by the authors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provides the full set of assumptions and complete proofs in the
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes enough details so as to perform the same kind of experi-
ments as the ones presented in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The contribution of our paper is mostly theoretical. The experiments are for
illustrative purposes. The source code will be provided on request.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [No]

Justification: We do provide most of the experimental details in the manuscript. Additional
(minor) parameter choices can be derived from the source code, which is available on
request.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: The experiments do not require any specific hardware setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: no societal impact of the work performed

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide references for the datasets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

37



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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