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Abstract
We develop Latent Exploration Score (LES) to
mitigate over-exploration in Latent Space Op-
timization (LSO), a popular method for solv-
ing black-box discrete optimization problems.
LSO utilizes continuous optimization within
the latent space of a Variational Autoencoder
(VAE) and is known to be susceptible to over-
exploration, which manifests in unrealistic solu-
tions that reduce its practicality. LES leverages
the trained decoder’s approximation of the data
distribution, and can be employed with any VAE
decoder–including pretrained ones–without addi-
tional training, architectural changes or access
to the training data. Our evaluation across five
LSO benchmark tasks and twenty-two VAE mod-
els demonstrates that LES always enhances the
quality of the solutions while maintaining high
objective values, leading to improvements over ex-
isting solutions in most cases. We believe that new
avenues to LSO will be opened by LES’ ability to
identify out of distribution areas, differentiability,
and computational tractability.

1. Introduction
Many important tasks in scientific fields, such as small
molecule discovery and protein engineering, can be framed
as discrete black-box optimization problems. In con-
trast to conditional sampling-based approaches, including
GFlowNet (Bengio et al., 2023) and Diffusion (Corso et al.,
2022; Igashov et al., 2024), which are better suited for appli-
cations like linker design (Du et al., 2024), optimization is
particularly effective when the goal is to improve a specific
property, such as enhancing a drug’s safety.

LSO was recently developed to enhance the sample effi-
ciency of discrete optimization algorithms, such as genetic
algorithms, in the black-box setting (Gómez-Bombarelli
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Figure 1. Incorporating LES promotes valid solutions. We con-
sider the task of approximating the expression 1/3 + x +
sin(x * x), using LSO. Optimization trajectories with (blue)
and without (red) LES constraint in the latent space of a VAE
are projected onto a two-dimensional subspace that contains the
starting point and the end-points obtained after 10 gradient ascent
steps. In the left panel, we show the LES score for latent vectors
on the two-dimensional subspace, with darker shades correspond-
ing to lower LES. In the right panel, we show the validity of the
decoder outputs for each latent vector, with orange denoting in-
valid generations. High LES values correlate with valid areas, and
incorporating LES in LSO produce an expression that adheres to
the grammatical rules of Example 1.1.

et al., 2018). LSO transfers the optimization problem to
the domain of the latent space of a VAE, which can be ef-
ficiently explored using continuous optimization methods.
However, ensuring that LSO solutions respect the structure
of the original space remains a challenge. To illustrate this
issue, we provide some examples.

Example 1.1 (Arithmetic expressions). An expression built
up using numbers, arithmetic operators and parentheses
is called an arithmetic expression. However, not every se-
quence of the above elements correspond to a valid expres-
sion. For instance, the expression ”sin(x) + x” is a
valid expression while ”sin(xxx” is not.

Example 1.2 (Simplified molecular-input line-entry sys-
tem (SMILES)). SMILES provides a syntax to describe
molecules using short ASCII strings. Atoms are represented
by letters (e.g., water:”O”), bonds are represented by sym-
bols (e.g., triple: ”#”, double: ”=”, . . . ), branches are
represented in parentheses and cyclic structures are repre-
sented by inserting numbers at the beginning and the end.
Like the arithmetic expressions case, not every combina-
tion of the elements described above corresponds to a valid
molecule. For example, while ”C1CCCCC1” is valid, both

”C1CCCCC2” and ”C1CCCCC)” are not.
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Example 1.3 (Quality filters for molecules). Chemists seek
molecules that not only optimize desired chemical proper-
ties but are also stable and easy to synthesize. This has led
to the development of rules such as Lipinski’s Rule of Five
(RO5 Lipinski et al. (1997)), which helps determine if the
bioavailability (i.e., the proportion of a drug or other sub-
stance that enters the circulation when introduced into the
body) of a given compound meets a certain threshold. For
example, RO5 suggests that poor absorption is more likely
when the octanol-water partition coefficient (logP) exceeds
5. Similarly, the Pan Assay Interference Compounds (Baell
& Holloway, 2010) filter helps in identifying false positives
in assay screenings. The rd filters (Walters, 2019)
package has curated many such rules and is considered a

”high precision, low recall surrogate measure” (Brown et al.,
2019). Following (Notin et al., 2021) we consider a sample
valid if it passes the rd filters filters 1

Numerous directions have been explored to overcome the
challenge of providing valid solutions, including special-
ized VAE architectures (Kusner et al., 2017; Jin et al., 2018)
or robust representations for discrete data (Krenn et al.,
2020). Additionally, constrained objectives can be formu-
lated under the assumption that one has access to a function
which quantifies the validity of any point in the latent space
(Griffiths & Hernández-Lobato, 2020). However, in many
realistic scenarios, such as Example 1.3, these solutions may
not be directly applicable, as the structure of the sequence
space may not be sufficiently well understood. To address
this, (Notin et al., 2021) proposed using an estimator of the
uncertainty of the decoder, based on the variational approxi-
mation to a posterior distribution over the VAE parameters,
encouraging LSO to respect the sequence space structure
(details are provided Appendix D). Although this approach
proved effective, the non-differentiable nature of the un-
certainty score required its integration into LSO through
heuristic approaches. Additionally, the computation of the
uncertainty score is not exact (i.e., it relies on variational
approximation and Monte Carlo sampling) and requires sig-
nificant amount of time to compute. Therefore, there is a
need for robust methods that work across different VAEs
and sequence space structures, and can be easily integrated
into existing LSO pipelines.

To achieve this goal, we develop LES, a score that can be
used as a constraint in LSO optimization to increase the
number of solutions that respect a given structure. The
distinctive characteristics of LES are differentiability and
robustness that allow its easy integration into existing LSO
pipelines. Specifically, our contributions are as follows:

• We introduce LES, a score that achieves higher values
in regions of the latent space closer to the training data.

1We use the default Inpharmatica rule set comprised of 91 alerts

Our results demonstrate that LES is highly effective at
identifying regions that preserve the structure of the
sequence space. Although LES’ computation scales cu-
bically with the latent dimension, it is up to 80% faster
than the current state-of-the-art for identifying out-of-
distribution data points in the latent space of generative
models for discrete sequences (Tables 1 and 22).

• We develop a numerically stable optimization proce-
dure to incorporate LES as a constraint in LSO.

• We evaluate LES-constrained LSO across thirty opti-
mization tasks, including twenty-two VAEs and five
benchmark problems, demonstrating its robustness in
generating valid solutions and achieving high objective
values. Specifically, in 19 out of the 30 LSO exper-
iments, our method either finds the best solution on
average or achieves a solution within 1 standard devi-
ation of the best solution across 10 independent runs.
This outperforms the six alternative methods we con-
sidered by 19% (Tables 20 and 21).

2. Background: Latent Space Optimization
LSO is a method for solving black box optimization prob-
lems in discrete and structured spaces, such as the space of
valid arithmetic expressions. Formally, let V ⊂ RL×D be a
discrete and structured space, represented as a sequence of L
one-hot vectors of dimension D. We represent sequences of
length L of categorical variables with D categories. L is set
as the maximum sequence length that we are optimizing for,
and one of the D categories is used as an ”empty” category
(which enables generating sequences shorter than the max-
imal length). For instance, in the case of valid arithmetic
expressions, V would be the set of sequences that define
such expressions. Let M : V → R be the objective function.
LSO solves,

argmax
x∈V

M(x). (1)

In this setting, we assume that evaluations of the objective
function (M) are expensive to conduct. For example, the
objective may be the binding affinity of a compound to a
given protein, measured through a wet lab experiment.

A popular approach to solve Equation (1) is Bayesian Op-
timization (BO), which utilizes first order optimization of
a surrogate model for M. However, since the space is dis-
crete, first order optimization cannot be directly applied.
In an attempt to make BO applicable for solving Equa-
tion (1), (Gómez-Bombarelli et al., 2018) proposed to trans-
fer the optimization problem into that over a domain of the
latent space of a deep generative model and subsequently
perform BO in this space. The main idea is to (1) learn a
continuous representation of the discrete objects (e.g., us-
ing a VAE) and (2) perform BO in the latent space while
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decoding the solution at each step. Formally, given a pre-
trained encoder (Eθ) and decoder (Gθ) the initial labelled
dataset D = {xi, yi}ni=1 is first encoded into the latent
space Dz = {zi = Eθ(xi), yi}ni=1. Using the encoded
dataset, a BO procedure is conducted, which we describe in
Algorithm 1. Most commonly, a Gaussian process is used
as the surrogate model for M, and the acquisition function
is the expected improvement (Frazier, 2018), defined as:

Af̂ (z) = Ef̂ max(f̂(z)−max
i

yi, 0) (2)

where the expectation is with respect to the distribution of
the function f̂ , conditioned on Dz .

Algorithm 1 Latent Space Optimization
for t = 1 to T do

1. Fit a surrogate model f̂ to the encoded dataset, Dz

2. Generate a new batch of query points by optimizing a
chosen acquisition function (A)

z(new) = argmax
z

Af̂ (z) (3)

3. Decode x(new) = Gθ(z
(new)), evaluate the correspond-

ing true objective values (y(new) = M(x(new))) and
update Dz with (z(new), y(new)).

Over-exploration in LSO Multiple studies (Notin et al.,
2021; Kusner et al., 2017) have found that unconstrained
latent space optimization (LSO) often yields solutions that
disregard the aforementioned structures. For example, when
searching for arithmetic expressions, invalid equations like
”ssin(xxx” frequently occur. Similarly, many solutions in
molecule searches fail to pass basic quality filters (Exam-
ple 1.3), limiting their practical utility (Maus et al., 2022).

While acquisition functions such as expected improvement
(Equation (2)) are designed to balance exploration and ex-
ploitation based on the estimated uncertainty from the Gaus-
sian process model for M. The frequent generation of
invalid solutions during acquisition optimization, which im-
plies that the estimated uncertainty can be problematic in
this setting, underscores the need for additional regulariza-
tion (Tripp et al., 2020), which we aim to address.

To mitigate over-exploration, we propose adding a penalty
to Equation (3). The penalty uses a new score, giving higher
values over the latent space valid set, defined as:

{z;Gθ(z) ∈ V}, (4)

where Gθ : Z → RL×D is the decoder network, and V ⊂
RL×D is the set of valid sequences.

The derivation of our score leverages the Continuous Piece-
wise Affine (CPA) representation of neural networks, which
we briefly review below.

Deep generative networks as CPA Following (Humayun
et al., 2022; 2021; Balestriero & Baraniuk, 2018; Balestriero
et al., 2024), we consider the representation of Deep Gen-
erative Networks (DGNs) as Continues Piecewise Affine
(CPA) Splines operators. Let fθ be any neural network with
affine layers and piecewise affine activations then it holds
that

fθ(z) =
∑
ω∈Ω

(Aωz + bω) 1{z∈ω}, (5)

where Ω is the input space partition induced by fθ, ω is a
particular region and the parameters Aω and bω defines the
affine transformation depending on ω.

In cases where the neural network fθ is not composed solely
of piecewise affine layers and activations, we leverage the re-
sult from (Daubechies et al., 2022) to assert that Equation (5)
either exactly represents fθ or provides a sufficiently accu-
rate approximation for our practical purposes (Humayun
et al., 2022). We therefore argue that all the decoder neu-
ral networks included in our study (i.e., GRU, LSTM, and
Transformers) can be approximated with high accuracy as
continuous piecewise affine (CPA) functions.

3. A Latent Exploration Score to Reduce
Over-Exploration in LSO

In this section, we introduce Latent Exploration Score
(LES), our new score to reduce over-exploration in LSO.
We begin by motivating LES and proceed to formally derive
it in Section 3.1. In Section 3.2, we provide empirical evi-
dence that LES gives higher values in the latent space valid
set. The use of LES to regularize LSO is left for Section 4.

Motivation Our goal is to develop a meaningful constraint
for optimizing the acquisition function within a latent space
of a given VAE. Specifically, we aim to construct a con-
straint that is a continuous function of z with higher values,
indicating that it is more likely that z resides within valid
regions of the latent space (Equation (4)).

Such a score should be higher in regions near training data
points, assuming most of VAE training data is valid. To
achieve this, we treat the latent space of the VAE as a proba-
bility space, i.e. z ∼ pz , for some prior distribution p (for
example standard Gaussian). The prior should reflect our
best guess for the distribution of the observed data in the
latent space. Solutions are mapped back to sequences by the
decoder through a deterministic (we do not consider x to
follow a conditional distribution given z) transformation of
the latent vectors. Therefore, any distribution on the latent
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space defines a distribution over the space of sequences.
Our score uses the density function of the push-forward
measure of x = Gθ(z), which we call the sequence density.
Consequentially, our score depends only on the decoder
network, not the encoder, and can potentially be applied to
other generative models like GANs or diffusion models.

Why use the sequence density function? We argue that
for a well-trained decoder network, the density should be
higher in areas of the sequence space close to the training
data. To see why, consider a decoding model Gθ trained on
a dataset {(zi,xi)}ni=1. The average loss (L) at z is

ℓ(Gθ(z)) = Ex|Eθ(x)=zL(Gθ(z),x). (6)

As the training process is designed to minimize the popula-
tion loss: Eℓ(Gθ(z)), if successful, we hypothesize that the
distribution of Gθ(z) puts higher weight in the areas where
ℓ(Gθ(z)) is low. Since we expect most of the training data
to be valid and to achieve low expected loss, the sequence
density should put higher weight on the latent space valid
set. In, Section 3.2 we provide an empirical validation for
this hypothesis, for Examples 1.1 to 1.3. We highlight that
this relationship between the valid set and the sequence
density depends on how well the decoder fits the data.

3.1. Derivation of LES

Figure 2. Derivation of LES. The decoder network (Gθ), which
maps from the latent space to the output space, is assumed to be the
composition of a softmax operation over a continuous piecewise
affine (CPA) spline operator. LES is the density of a random
variable (z) in the latent space, under the decoder transformation.
Calculating LES only requires a pre-trained decoder.

Analytical formula for LES DGNs for discrete se-
quences typically output a matrix of logits, transformed
into normalized scores by the softmax function:

Gθ(z) = Softmax(Lθ(z)). (7)

Lθ(z) is a D × L logits matrix (D - vocabulary size, L -
sequence length) and Softmax is the softmax operation ap-
plied to every column of Lθ(z). In order to avoid a violation
of the assumption that Gθ is bijective, we extend the func-
tion’s output to include the normalizing constant for each
column. We find that parametrizing the output to include
the inverse of the normalizing constant (Equation (8)), helps
in avoiding numerical instabilities that are caused by the
constant being potentially very large. With this formulation,
we can now derive the sequence density function.
Theorem 3.1 (DGN sequence density). Let

Gθ(z) =
(
p(1)
z , (c(1)z )−1, . . . ,p(L)

z , (c(L)
z )−1

)
= xz (8)

where p
(i)
z = Softmax(Lθ(z)).i and c

(i)
z =

∑D
j=1 e

Lθ(z)ji .
Assume that Lθ is bijective and can be expressed as a CPA
(Equation (5)), and that z ∼ pz , then the density function
of Gθ(z) is given by:

fp(z)

√√√√det

(
L∑

i=1

(A†
i )

T (Bi)TBiA
†
i

)
(9)

for

Bi =

(
diag

(
1

(p
(i)
z )1

, . . . ,
1

(p
(i)
z )D

)
,−1

1

c
(i)
z

)T

(10)

A†
i =

(
A(1)

ω , . . . ,A(L)
ω

)†
(i·D):(i+1·D).

, (11)

where
(
A(1)

ω , . . . ,A(L)
ω

)†
is the Moore–Penrose inverse of(

A(1)
ω , . . . ,A(L)

ω

)
, and fp is the density function of pz .

The proof is provided in Appendix A. We define LES to be
the logarithm of the determinant term,

S(z) = log


√√√√det

(
L∑

i=1

(A†
i )

T (Bi)TBiA
†
i

) , (12)

as the contribution of the prior is negligible in magnitude in
all the decoders we study.
Remark 3.2. LES can be calculated directly without assum-
ing the decoder logits follow a CPA function (Ben-Israel,
1999). However, using the expessions derived in Equa-
tion (12) has two computational benefits for calculating the
derivative of LES. First, using Jacobi’s formula and observ-
ing that

∑L
i=1(A

†
i )

T (Bi)
TBiA

†
i is a quadratic formula of

the softmax probabilites, we can calculate the derivative of
LES in closed form. Second, by the CPA assumption, the
matrices A(i)

ω are a constant function of z and therefore
∂A(i)

ω

∂z = 0. As a result, we avoid the need to calculate the
hessian of the decoder when taking the derivative of LES.
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Limitations of Theorem 3.1 Our derivation relies on the
decoder logits being (i) a CPA operator and (ii) bijective be-
tween the latent space and the generated manifold in the am-
bient space. We argue that (i) is not a restrictive assumption,
as approximation theory has already demonstrated that any
continuous model can be approximated by a CPA network.
Therefore, one always recovers Theorem 3.1 even when
using non-CPA models. Specifically, Daubechies et al. 2022
show that ReLU networks (which are CPA spline functions)
can approximate refinable functions—a class of non-smooth
functions—in addition to known results on other classes
of functions (e.g., Weierstrass, polynomials, and analytic
functions).

On the other hand, (ii) is a stronger assumption that practi-
tioners should be mindful of, as it would invalidate LES as
a meaningful metric for comparing different samples. For
(ii) to be violated, i.e., for Equation (29) to be incorrect, the
Lebesgue measure of the set CGθ

= {z| ∃z∗;Gθ(z) =
Gθ(z

∗)} must be larger than 0 (see Lemma A.2 for proof).
This would suggest some degeneracy in the decoder func-
tion, where large regions of the latent space map to the same
output, resulting in a zero gradient of the decoder with re-
spect to its input. However, we believe this is rare in practice.
In our experiments, where we compute the gradient of the
decoder with respect to the input to calculate LES, we did
not encounter instances where the gradient was zero.

Although we do not formally validate (ii) (the bijectivity
assumption), we argue through our empirical analysis in
Table 22, conducted across 22 VAEs (including pre-trained
models), that (ii) may hold or, at the very least, serve as a
reasonable approximation for real-world VAEs.

Lastly, it is crucial to highlight that the ability of LES to
detect out-of-distribution data is closely tied to the decoder’s
capacity to accurately model the data. Although Theo-
rem 3.1 holds for poorly trained decoders under the given
conditions, we advise against relying on LES in such cases.

Computing LES LES is a function of the matrices Bi

and Aω. The matrices Bi are a function of the logits and
can be calculated using a single forward run of Gθ. The
matrix Aω is equal to the derivative of Lθ at z, and can
therefore can be obtained using automatic differentiation
((Paszke et al., 2017)). To avoid the (pseudo) inversion
of the matrix Aω we can exploit the inverse function the-
orem which states that JG−1

θ = (JGθ)
−1 and we can

take S(z) = −0.5 log det((Aω
∂Gθ(Lθ)

∂Lθ
)(Aω

∂Gθ(Lθ)
∂Lθ

)T ),

where ∂Gθ(Lθ)
∂Lθ

(derivative of the softmax w.r.t the logits)
admits a simple closed form solution. Ideally, LES can
be computed by performing all of the above calculations in
parallel using a single forward call to the Gθ network. In ad-
dition, the computation of the determinant is done via SVD
on a square matrix whose dimension is the latent dimension

of the decoder (d) with complexity of O(d3).

In Table 1 we provide the wall clock times for calculating
LES for a batch of 20 latent vectors across all architectures
and datasets studies in this work. LES is compared with the
Bayesian uncertainty score proposed by Notin et al. 2021
(with the default configuration: 10 sampled models and 40
sampled outcomes), which was previously used to regularize
LSO. We also compare with a Likelihood score:

ℓ(z) = max
x

pGθ
(X = x|Z = z) (13)

where pGθ
(z) is the distribution defined by the decoder

softmax probabilities, which reflects the likelihood of the
most likely x conditioned on the latent vector z.

For 9 out of the 10 models, particularly when the latent
dimension is larger (e.g., SMILES and SELFIES), LES is
computed faster than the Uncertainty score, achieving reduc-
tions of up to 85% in some cases. As the Likelihood score
requires only a single forward pass of the decoder, it offers
a more computationally efficient alternative, which comes
with some performance trade-offs (Sections 3.2 and 4).

Table 1. Wall clock times in seconds (lower is better) for
calculating LES, the Bayesian uncertainty and the Likelihood
scores for a sample of 20 latent vectors on a single A100 GPU.

Dataset Arch. (dim.) LES Uncertainty Likelihood

Expressions
GRU (25) 0.730 0.823 0.025
LSTM (25) 0.164 0.857 0.049
Transformer (25) 0.526 0.481 0.029

SMILES
GRU (56) 0.663 3.157 0.103
LSTM (56) 0.696 3.990 0.123
Transformer (56) 0.581 0.726 0.185

SELFIES

GRU (75) 0.498 1.925 0.064
LSTM (75) 0.525 2.442 0.071
Transformer (75) 0.451 0.583 0.085
Transformer (256) 7.422 42.882 0.410

Average – 1.226 5.787 0.114

3.2. Validating the Relationship Between LES and Valid
Generation

To assess LES’s ability to identify valid regions (as de-
fined in Examples 1.1 to 1.3), we sample data points in
the latent space using the twenty-two VAEs studied in Sec-
tion 4. Specifically, we sample 500 data points from three
distributions: train, prior (N (0, I)), and out-of-distribution
(N (0, I · 5)). We decode each data point and determine if
the decoded sequence is valid.

Identifying if a point in the latent space decodes into a
valid sequence can be viewed as a classification problem,
in which the different scores (i.e., LES or the Bayesian un-
certainty score) provide (unnormalized) probabilities for a
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Table 2. AUROC values (higher is better) for identifying valid
data points within the latent space, across datasets and decoder
architectures. Data points are sampled from the training data,
the VAE prior (standard Gaussian), and out-of-distribution data
(Gaussian with std of 5). LES achieves the best performance in
most cases (18 out of 22) and on average.

Dataset Arch. β LES Prior Uncertainty Likelihood

SMILES

GRU
0.05 0.93 0.09 0.85 0.94
0.1 0.94 0.12 0.84 0.94
1.0 0.91 0.16 0.87 0.92

LSTM
0.05 0.99 0.07 0.99 0.98
0.1 0.89 0.21 0.89 0.90
1.0 0.97 0.12 0.95 0.96

Transformer
0.05 0.93 0.14 0.84 0.92
0.1 0.94 0.14 0.87 0.93
1.0 0.97 0.10 0.89 0.95

Expressions

GRU
0.05 0.96 0.38 0.96 0.88
0.1 0.94 0.42 0.94 0.80
1.0 0.94 0.57 0.94 0.89

LSTM
0.05 0.96 0.38 0.90 0.96
0.1 0.95 0.37 0.91 0.95
1.0 0.95 0.56 0.91 0.91

Transformer
0.05 0.91 0.43 0.86 0.90
0.1 0.91 0.53 0.87 0.89
1.0 0.86 0.70 0.92 0.92

SELFIES Transformer
0.05 1.0 0.02 0.99 0.97
0.1 0.99 0.03 0.96 0.98
1.0 0.95 0.06 0.85 0.93

SELFIES ((Maus et al., 2022)) Transformer – 0.75 0.69 0.33 0.70

Average 0.93 0.29 0.88 0.91

sequence being valid. We measure the performance of these
scores using the AUROC metric. Besides LES, the Bayesian
uncertainty score and the Likelihood score, we add three
additional baseline scores for comparison. The first is the
density of a standard Gaussian (Prior), which is the distri-
bution the latent vectors are regularized to follow during
VAE training. The second is the polarity score (Polarity)
(Humayun et al., 2022), based only on the derivative of the
decoder logits with respect to the latent vector, which shows
the gains due to accounting for the softmax non-linearity
in the derivation of LES (Theorem 3.1). We also consider
the average distance to the closest three data points within a
random sample of 1000 points from the training data in the
latent space (Train distances).

The results are shown in Tables 2 and 22. LES provides the
best performance in 18 out of the 22 VAEs in this analysis,
and in all cases provides a clear signal for identifying valid
regions, as indicated by AUROC values that are at least
0.75. This is while being much faster to compute than the
Uncertainty score (Table 1) and without the need to store a
potentially large array of latent vectors.

4. LES-Constrained LSO
In Section 3.2 we showed that LES is a robust score that
obtains higher values in the latent space valid set (Equa-
tion (4)). Furthermore, LES is differentiable, which means

it can easily be used to constrain any optimization problem.
Therefore, we propose adding an explicit constraint to Equa-
tion (3), encouraging the solution to achieve a high LES
value. We modify Algorithm 1 by penalizing step (2):

znew = argmax
z

A(f̂(z)) + λS(z). (14)

4.1. Experimental Setup

VAE models To evaluate the effectiveness of LES as a reg-
ularization method for LSO, we trained twenty-two VAEs,
focusing on varying the decoder architectures and the β pa-
rameter, which controls the trade-off between reconstruction
loss and alignment with the prior (KL divergence term). All
models use a convolutional encoder based on the architec-
ture proposed by Kusner et al. (2017), and were trained for
300 epochs using the Adam optimizer (Kingma, 2014) with
a learning rate of 1e-3 and batch size of 256.

The VAEs for the Expressions dataset, sourced from Kusner
et al. (2017), were trained on 80k data points with a latent
dimension of 25. The SMILES VAEs were trained on the
ZINC250k dataset, consisting of approximately 250k drug-
like molecules in SMILES format. Following Kusner et al.
(2017) and Notin et al. (2021), a latent dimension of 56
was used. For the SELFIES VAEs, we used a subset of
approximately 200k molecules from the ZINC250k dataset
that passed a set of quality filters (Walters, 2019), using
the SELFIES representation (Krenn et al., 2020), with a
latent dimension of 75. Additionally, the pre-trained VAE
by Maus et al. (2022) had a latent dimension of 256.

LSO setup We begin by training a single-task Gaussian
Process on an initial dataset. Each sample is mapped to a
latent space and paired with its true objective value. For
Expressions and SMILES VAEs, we use 500 data points.
For SELFIES VAEs, we use 1500. Across all tasks, we
generate 500 candidate solutions per problem, aligned with
prior work (Kusner et al., 2017; Notin et al., 2021) and
reflective of real-world wet-lab constraints (Gao et al., 2022).
Solutions are proposed in batches of 20.

For the SELFIES VAEs (both from Maus et al. (2022) and
those trained by us), we employ a deep kernel that reduces
the latent space to 12 dimensions before fitting the Gaussian
Process. To mitigate vanishing gradients, we use log ex-
pected improvement (Ament et al., 2024) as our acquisition
function, which is sequentially maximized.

Optimization tasks The Expressions dataset consists of
arithmetic expressions that are functions of a single variable
(e.g., sin(x), 1 + x ∗ x). Our objective is to find an ex-
pression that approximates 1/3 + x + sin(x * x),
as described by Kusner et al. (2017). The optimization target
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is defined as M(x) = − log(1+MSE(x)), where MSE(x)
is the mean-squared error between the expression x and
1/3 + x + sin(x * x), evaluated over the range -10
to 10 using a grid of 1000 equally spaced points.

For the SMILES dataset, our goal is to maximize the octanol-
water partition coefficient, which is calculated using the
prediction model developed by Wildman & Crippen (1999).
In the case of the SELFIES dataset, following Maus et al.
(2022), we focus on three objectives: Perindopril MPO, Ra-
nolazine MPO, and Zaleplon MPO, all of which are part
of the Guacamol benchmarks (Brown et al., 2019). While
the SELFIES syntax is 100% robust, we consider only so-
lutions that pass a set of quality filters for evaluation (see
Example 1.3 for more details).

LES-constrained LSO For ease of implementation and
numerical stability, when applying LES regularization, we
adopt a simple optimization procedure in which the acqui-
sition function is optimized using 10 steps of normalized
gradient ascent. This is because we empirically find that
the norm of the derivative of the constraint (i.e., S(z)) is
typically much larger than the norm of the derivative of the
acquisition function. As a result, using the gradient ascent
update rule z(i+1) = ∂A(f̂(z(i))) + λ∂S(z(i)) leads to a
numerically unstable optimization process. To address this
issue, we propose the following update rule:

z(i+1) =
∂A(f̂(z(i)))

∥∂A(f̂(z(i)))∥2
+ λ

∂Sρ(z
(i))

∥∂Sρ(z(i))∥2
. (15)

We set λ = 0.05 for Expressions, λ = 0.1 for our
SELFIES models, and λ = 0.5 for SMILES and the
pre-trained SELFIES-VAE. For Ranolazine MPO with pre-
trained SELFIES-VAE, we use λ = 0.1 to prevent over-
regularization, as regularized methods already yield a high
percentage of valid solutions (Table 24). We select these
values because, without regularization, the SMILES and
pre-trained SELFIES models tend to produce a lower per-
centage of valid solutions (Table 24). Based on our findings,
we suggest λ = 0.5 as a reasonable default value, while
leaving the exploration of an optimal choice for future work.

Benchmark methods We compare our LES-constrained
method (LES) with five alternative approaches for op-
timizing the acquisition function. First, we evaluate a
non-regularized version of Equation (15) , where λ = 0
(LSO (GA)), and a two regularization methods that uses the
prior density (i.e., ℓ2 regularization) and likelihood (Equa-
tion (13)) instead of LES (Prior, and Likelihood respec-
tively), using similar λ values described above.

Additionally, we consider optimizing the acquisition func-
tion using the Limited-memory BFGS method within a sym-
metric hypercube centered at 0 (LSO (L-BFGS)), which is

the default approach in the BoTorch package (Balandat
et al., 2020). Since recent state-of-the-art LSO pipelines
(Maus et al., 2022; Lee et al., 2024) have utilized trust
regions centered around the best observed value (Eriks-
son et al., 2019), we also compare with this approach
(TuRBO). Lastly, we implement the Uncertainty Censoring
(UC) method proposed by Notin et al. (2021), which sug-
gests early stopping of the optimization when the estimated
uncertainty exceeds a certain threshold. For this threshold,
we use the 99th percentile of the observed uncertainty values
in the training data, as recommended by Notin et al. (2021).

Hyperparameters We calibrate the step size, which af-
fects LES, UC, Prior, Likelihood, and LSO (GA), to en-
sure our gradient ascent procedure (with λ = 0) improves
the acquisition function values across different initializa-
tions. The same step size is applied to all models within
the same dataset: Expressions = 0.8, SMILES = 0.003,
SELFIES = 0.03, and SELFIES pre-trained = 0.3. The
LSO (L-BFGS) method has a single hyperparameter, the
facet length, which is set to 5. For TuRBO, there are three
primary hyperparameters: the initial length, which we set to
0.8, along with the success and failure tolerances, determin-
ing when to expand or shrink the trust region, set at 10 and 2,
respectively. An ablation study is provided in Appendix B.

4.2. Results

Optimization results The experimental results, present-
ing the average across 10 independent LSO runs for the top
20 and best solutions found, are summarized in Tables 20
and 21 respectively. In both cases, LES achieves the average
best performance most frequently (22 and 17 out of 30 times,
respectively). Furthermore, LES outperforms other meth-
ods in both the average ranking across LSO tasks and the
frequency with which it falls within one standard deviation
of the best-performing method (Table 3). These findings
demonstrate that using LES as a regularization technique
generally enhances optimization performance.

Figures 3 and 4 show the cumulative average top-20 and
the best objective values during BO with the pre-trained
SELFIES-VAE (Maus et al., 2022), respectiveley. Results
align with (Maus et al., 2022) under our realistic evalua-
tion budget. For the average of the top-20 solutions on
the Ranolazine MPO and Zaleplon MPO tasks, LES outper-
forms TuRBO on valid solutions but underperforms overall,
highlighting that LES effectively constrains the optimzation.

Table 24 shows the percentage of valid solutions found by
each method across datasets and VAEs. LES improves upon
the non-regularized version of gradient ascent by 7% on
average and upon TuRBO and LSO (L-BFGS) by 24% and
36% on average respectively. While UC achieves a 2%
higher percentage of valid solutions on average, we show

7



Mitigating over-exploration in latent space optimization using LES

Figure 3. Cumulative objective for the top-20 solutions found
during Bayesian optimization with the pre-trained SELFIES-
VAE (27). Each method is shown in a distinct color. Solid
lines represent solutions passing quality filters, while dashed
lines include all evaluations. LES outperforms all baselines on
Ranolazine MPO and Perindopril MPO, achieving competitive re-
sults on Zaleplon MPO.

Table 3. Summary metrics for 30 Bayesian Optimization experi-
ments from Tables 20 and 21. We report the average rank (lower is
better) and the count of times each method is within one standard
deviation of the best. Results cover both the best solution and the
top-20 average. LES outperforms alternatives on both metrics.

Top 1 Top 20

Method Avg Rank # within std Avg Rank # within std

LES 2.15 19 1.9 22
Likelihood 2.76 16 2.53 13
LSO (GA) 3.15 8 2.87 7
Prior 3.86 10 3.8 5
UC 4.17 5 4.3 3
TuRBO 5.7 2 6.1 0
LSO (L-BFGS) 6.17 1 6.4 0

in Table 23 that for the Expressions datasets, where UC
excels, the number of valid produced by LES solutions can
be increased by setting a higher λ value. However, this did
not improve optimization performance.

5. Discussion
We proposed LES to mitigate over-exploration in latent
space optimization (LSO). LES is differentiable and fully
parallelizable. Extensive evaluations demonstrate that in-
corporating LES as a penalty in LSO consistently enhances
solution quality and objective outcomes. Moreover, LES
outperforms alternative regularization techniques, proving
to be the most robust across diverse datasets and varying
definitions of validity. In addition, LES has only a single hy-
perparameter (the regularization strength), and we observe
empirically that deploying LES can provide significant per-
formance gains. We therefore believe LES offers a powerful
approach for discovering more realistic solutions, when the
criteria for realism are difficult to define or validate.

While LES is fully parallelizable, it requires the calculation
of the derivative of the decoder as well as the determinant of
the change-of-variables term, which can be computationally
expensive. This step can become a bottleneck when the size
of the output and the latent dimension are both large. It is
left for future work to develop a fast approximation for this
operation in order to enable the use of LES in applications
involving large generative models.
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A. Proofs
Lemma A.1. Let fθ be a DGN as defined in Equation (8) and assume that fθ can be expressed as a CPA (Equation (5)) and
is inevitable, then

Jf−1
θ (x) =


B1 · · · 0

...
. . .

...
0 · · · BL

A†
ω


T

, (16)

where A†
ω is the Moore–Penrose inverse of the slope matrix, at the knot whose image constrains x, and

Bi =

(
diag

(
1

(p
(i)
z )1

, . . . ,
1

(p
(i)
z )D

)
,−1

1

c
(i)
z

)T

. (17)

Proof. First we write

fθ(z) = Softmax+(ℓθ(z)), (18)

Where Softmax+ is the extension of the column wise Softmax function to include the normalizing constants. Specifically,
for L by D ℓθ(z) matrix, we have

Softmax+(ℓθ(z)) =
(
p(1)
z , (c(1)z )−1, . . . ,p(L)

z , (c(L)
z )−1

)
= xz, (19)

with p
(i)
z = ( e

ℓθ(z)1i

c
(i)
z

), and c
(i)
z =

∑D
j=1 exp(ℓθ(z)ji).

Next,

f
(−1)
θ (x) = ℓ−1

θ (Softmax−1
+ (x)) (20)

A direct calculation yields,

Softmax−1
+ (x) =

(
log(p(1)

z ) + log(c(1)z ), . . . , log(p(L)
z ) + log(c(L)

z )
)
. (21)

As we assume ℓθ is bijective and can be written as

ℓθ(z) =
∑
ω∈Ω

(Aωz + bω) 1z∈ω, (22)

we have that

ℓ−1
θ (Softmax−1

+ (x)) = (Softmax−1
+ (x)− bω)A

†
ω. (23)

Lastly, as

∂Softmax−1
+ (x)

∂x
=

B1 · · · 0
...

. . .
...

0 · · · BL

 , (24)

for

Bi =

(
diag

(
1

(p
(i)
z )1

, . . . ,
1

(p
(i)
z )D

)
,−1

1

c
(i)
z

)T

. (25)

we obtain the final result.
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Proof of Theorem 3.1. First, we note that by our invertibility assumption we have that P(x ∈ W ) = P(z ∈ f
(−1)
θ (W )).

We then proceed with a direct calculation

P(x ∈ W ) = P(z ∈ f
(−1)
θ (W )) (26)

=
∑
ω∈Ω

P(z ∈ (f
(−1)
θ (W ) ∩ ω)) (27)

=
∑
ω∈Ω

∫
f
(−1)
θ (W )∩ω

fz(z)dz (28)

=
∑
ω∈Ω

∫
W∩fθ(ω)

fz(f
(−1)
θ (x))

√
det
(
Jf

(−1)
θ (x)Jf

(−1)
θ (x)T

)
dx (29)

=

∫
W

∑
ω∈Ω

fz(f
(−1)
θ (x))

√
det
(
Jf

(−1)
θ (x)Jf

(−1)
θ (x)T

)
1{x∈fθ(ω)}dx. (30)

Using Lemma A.1, we get that the volume element is

Jf
(−1)
θ (x)Jf

(−1)
θ (x)T =


B1 · · · 0

...
. . .

...
0 · · · BL

A†
ω


T 

B1 · · · 0
...

. . .
...

0 · · · BL

A†
ω

 (31)

(A†
ω)

T

B
T
1 · · · 0

...
. . .

...
0 · · · BT

L ,




B1 · · · 0

...
. . .

...
0 · · · BL

A†
ω

 (32)

=

L∑
i=1

(A†
i )

T (Bi)
TBiA

†
i , (33)

where A†
i =

(
A(1)

ω , . . . ,A(L)
ω

)†
(i·D):(i+1·D).

.

Lemma A.2. Let f : Z → X be a function and define f† : X → Z as f†(x) ∈ {z : f(z) = x}. Let µ be the Lebesgue
measure and assume that µ({z;∃z′ s.t. f(z) = f(z′)}) = 0, then for every B ⊆ Z we have

µ({z; f(z) ∈ B}) = µ(f†(B)) (34)

Proof. We proceed with direct calculation

µ({z; f(z) ∈ B}) ≤ µ(f†(B)) + µ({z;∃z′ s.t. f(z) = f(z′)}) (35)

Now assume that µ({z;∃z′ s.t. f(z) = f(z′)}) = 0, we have that µ({z; f(z) ∈ B}) ≤ µ(f†(B)). The other direction
follows immediately from the definition of f†.

Lemma A.2 implies that Equation (29) can still hold under the assumption that µ({z;∃z′ s.t. fθ(z) = fθ(z
′)}) = 0.

B. Ablation studies
B.1. TuRBO hyper-parameters

We provide an ablation study of the initial length and success and failure tolerances. For each setup, the values reported in
the main paper are highlighted in bold.
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Table 4. Ablation study for the initial length, success tolerance and failure tolerance for the TuRBO method. Average across 10
independent runs, of the top 20 best values across datasets, architectures. Column names indicate the length/success/fail values. Results
from the main paper are in bold.

Architecture β 0.8/10/10 0.8/10/2 0.8/2/10 0.8/2/2 1.6/10/10 1.6/10/2 1.6/2/10 1.6/2/2

E
xp

re
ss

io
ns

GRU

0.05 -2.03 (0.12) -2.1 (0.11) -2.0 (0.09) -2.0 (0.11) -1.93 (0.09) -1.92 (0.08) -1.91 (0.06) -1.93 (0.07)

0.1 -2.18 (0.15) -2.14 (0.18) -2.11 (0.2) -2.14 (0.2) -1.98 (0.13) -2.05 (0.12) -2.0 (0.17) -2.09 (0.22)

1 -1.39 (0.12) -1.34 (0.05) -1.56 (0.11) -1.61 (0.11) -1.36 (0.08) -1.42 (0.11) -1.45 (0.12) -1.38 (0.12)

LSTM

0.05 -1.45 (0.09) -1.59 (0.13) -1.63 (0.12) -1.49 (0.1) -1.46 (0.08) -1.52 (0.08) -1.51 (0.12) -1.31 (0.07)

0.1 -1.31 (0.12) -1.32 (0.13) -1.37 (0.11) -1.31 (0.11) -1.31 (0.1) -1.36 (0.13) -1.36 (0.11) -1.35 (0.09)

1 -2.16 (0.06) -2.22 (0.08) -2.23 (0.08) -2.23 (0.08) -2.13 (0.07) -2.16 (0.06) -2.15 (0.05) -2.08 (0.06)

Transformer

0.05 -2.07 (0.12) -2.16 (0.09) -2.03 (0.17) -2.15 (0.14) -1.96 (0.13) -1.74 (0.13) -2.09 (0.1) -1.79 (0.11)

0.1 -1.45 (0.13) -1.39 (0.12) -1.56 (0.13) -1.38 (0.13) -1.32 (0.11) -1.43 (0.17) -1.4 (0.1) -1.33 (0.12)

1 -1.96 (0.11) -1.77 (0.12) -1.81 (0.11) -1.85 (0.09) -1.85 (0.11) -1.76 (0.08) -1.78 (0.08) -1.75 (0.09)

SE
L

FI
E

S

Transformer (pdop)

0.05 0.02 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.09 (0.01) 0.09 (0.03) 0.08 (0.01) 0.09 (0.02)

0.1 0.01 (0.0) 0.01 (0.0) 0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.08 (0.03) 0.04 (0.02) 0.05 (0.02)

1 0.24 (0.01) 0.23 (0.02) 0.21 (0.02) 0.24 (0.01) 0.27 (0.01) 0.26 (0.01) 0.28 (0.01) 0.26 (0.01)

Transformer (rano)

0.05 0.06 (0.01) 0.06 (0.0) 0.06 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.0) 0.04 (0.0) 0.03 (0.01)

0.1 0.03 (0.01) 0.03 (0.01) 0.03 (0.0) 0.02 (0.0) – – – –

1 – – 0.08 (0.0) – 0.05 (0.01) 0.07 (0.01) 0.07 (0.0) –

Transformer (zale)

0.05 0.02 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.07 (0.01) 0.07 (0.02) 0.06 (0.01) 0.06 (0.01)

0.1 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.01 (0.0) 0.02 (0.0) 0.09 (0.0) 0.04 (0.0)

1 0.16 (0.02) 0.17 (0.02) 0.16 (0.02) 0.17 (0.02) 0.18 (0.02) 0.16 (0.02) 0.18 (0.02) 0.19 (0.02)

SE
L

FI
E

S
(2

7) Transformer (pdop) 1 0.44 (0.01) 0.44 (0.01) 0.44 (0.01) 0.44 (0.01) 0.45 (0.0) 0.45 (0.01) 0.44 (0.01) 0.44 (0.01)

Transformer (rano) 1 0.20 (0.02) 0.22 (0.02) 0.21 (0.01) 0.20 (0.01) 0.23 (0.01) 0.22 (0.01) 0.22 (0.01) 0.23 (0.01)

Transformer (zale) 1 0.37 (0.01) 0.37 (0.01) 0.36 (0.01) 0.37 (0.01) 0.39 (0.01) 0.38 (0.01) 0.39 (0.01) 0.39 (0.01)

SM
IL

E
S

GRU

0.05 0.89 (0.19) 0.82 (0.15) 0.64 (0.2) 0.89 (0.14) 1.0 (0.14) 0.98 (0.19) 0.7 (0.24) 1.07 (0.19)

0.1 0.4 (0.22) 0.41 (0.19) 0.63 (0.26) 0.55 (0.14) 0.83 (0.13) 0.96 (0.33) 0.69 (0.18) 0.75 (0.18)

1 1.44 (0.0) -0.16 (0.0) – – 0.14 (0.65) – – 1.14 (0.0)

LSTM

0.05 1.18 (0.25) 1.54 (0.41) 1.1 (0.15) 1.1 (0.36) 0.86 (0.27) 1.05 (0.21) 1.07 (0.29) 1.22 (0.27)

0.1 – – – – 0.21 (0.0) – – –

1 0.61 (0.16) 0.52 (0.26) 0.48 (0.13) 0.7 (0.23) 0.67 (0.23) 1.13 (0.16) 0.97 (0.28) 0.88 (0.23)

Transformer

0.05 0.88 (0.18) 0.97 (0.19) 0.92 (0.14) 0.67 (0.15) 0.93 (0.17) 1.16 (0.1) 1.09 (0.11) 0.97 (0.24)

0.1 0.42 (0.12) 0.62 (0.14) 0.44 (0.16) 0.73 (0.14) 0.91 (0.1) 0.6 (0.14) 0.81 (0.14) 0.7 (0.14)

1 0.72 (0.18) 0.48 (0.18) 0.61 (0.15) 0.47 (0.16) 0.99 (0.12) 0.74 (0.15) 0.83 (0.16) 0.68 (0.15)
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Table 5. Ablation study for the initial length, success tolerance and failure tolerance for the TuRBO method. Average across 10
independent runs, of the best value across datasets, architectures. Column names indicate the length/success/fail values. Results from the
main paper are in bold.

Architecture β 0.8/10/10 0.8/10/2 0.8/2/10 0.8/2/2 1.6/10/10 1.6/10/2 1.6/2/10 1.6/2/2

E
xp

re
ss

io
ns

GRU

0.05 -0.65 (0.11) -0.73 (0.12) -0.71 (0.09) -0.61 (0.1) -0.65 (0.12) -0.59 (0.06) -0.62 (0.11) -0.72 (0.13)

0.1 -0.56 (0.05) -0.61 (0.07) -0.59 (0.07) -0.71 (0.1) -0.54 (0.04) -0.58 (0.05) -0.62 (0.04) -0.63 (0.04)

1 -0.56 (0.05) -0.54 (0.05) -0.54 (0.06) -0.6 (0.08) -0.56 (0.06) -0.61 (0.05) -0.6 (0.04) -0.59 (0.05)

LSTM

0.05 -0.46 (0.03) -0.43 (0.02) -0.43 (0.02) -0.38 (0.02) -0.43 (0.02) -0.43 (0.02) -0.47 (0.04) -0.4 (0.01)

0.1 -0.38 (0.04) -0.39 (0.0) -0.41 (0.01) -0.42 (0.02) -0.42 (0.02) -0.42 (0.02) -0.42 (0.02) -0.42 (0.02)

1 -0.96 (0.09) -0.86 (0.0) -0.86 (0.0) -1.01 (0.11) -0.88 (0.01) -0.98 (0.06) -0.92 (0.04) -0.88 (0.01)

Transformer

0.05 -0.39 (0.04) -0.44 (0.02) -0.39 (0.04) -0.4 (0.05) -0.44 (0.02) -0.39 (0.04) -0.38 (0.04) -0.42 (0.02)

0.1 -0.38 (0.04) -0.41 (0.02) -0.42 (0.02) -0.42 (0.02) -0.39 (0.04) -0.41 (0.01) -0.41 (0.02) -0.37 (0.04)

1 -0.67 (0.1) -0.58 (0.1) -0.52 (0.08) -0.62 (0.06) -0.66 (0.11) -0.62 (0.07) -0.56 (0.05) -0.54 (0.05)

SE
L

FI
E

S

Transformer (pdop)

0.05 0.13 (0.02) 0.15 (0.03) 0.17 (0.03) 0.18 (0.03) 0.23 (0.03) 0.17 (0.04) 0.22 (0.04) 0.2 (0.04)

0.1 0.08 (0.02) 0.09 (0.03) 0.1 (0.03) 0.09 (0.03) 0.1 (0.03) 0.12 (0.04) 0.1 (0.03) 0.14 (0.04)

1 0.36 (0.02) 0.31 (0.03) 0.36 (0.02) 0.34 (0.02) 0.38 (0.01) 0.38 (0.0) 0.4 (0.01) 0.36 (0.02)

Transformer (rano)

0.05 0.17 (0.02) 0.2 (0.02) 0.2 (0.02) 0.18 (0.02) 0.11 (0.02) 0.08 (0.01) 0.12 (0.02) 0.13 (0.02)

0.1 0.09 (0.02) 0.1 (0.01) 0.11 (0.02) 0.1 (0.02) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01) 0.06 (0.01)

1 0.07 (0.02) 0.05 (0.02) 0.11 (0.03) 0.07 (0.02) 0.16 (0.02) 0.16 (0.03) 0.11 (0.02) 0.12 (0.02)

Transformer (zale)

0.05 0.11 (0.02) 0.15 (0.03) 0.12 (0.02) 0.16 (0.03) 0.22 (0.03) 0.23 (0.03) 0.21 (0.04) 0.19 (0.03)

0.1 0.14 (0.01) 0.16 (0.01) 0.15 (0.02) 0.14 (0.01) 0.1 (0.02) 0.12 (0.02) 0.13 (0.02) 0.14 (0.03)

1 0.36 (0.02) 0.31 (0.03) 0.38 (0.02) 0.36 (0.02) 0.38 (0.01) 0.34 (0.02) 0.31 (0.03) 0.38 (0.02)

SE
L

FI
E

S
(2

7) Transformer (pdop) 1 0.48 (0.02) 0.48 (0.02) 0.53 (0.03) 0.49 (0.02) 0.51 (0.02) 0.51 (0.02) 0.49 (0.02) 0.50 (0.01)

Transformer (rano) 1 0.38 (0.01) 0.35 (0.01) 0.35 (0.01) 0.32 (0.01) 0.36 (0.01) 0.36 (0.01) 0.37 (0.01) 0.34 (0.01)

Transformer (zale) 1 0.44 (0.02) 0.44 (0.01) 0.44 (0.03) 0.49 (0.02) 0.47 (0.01) 0.46 (0.01) 0.49 (0.01) 0.47 (0.01)

SM
IL

E
S

GRU

0.05 2.47 (0.22) 2.47 (0.22) 2.42 (0.21) 2.24 (0.17) 2.35 (0.23) 2.42 (0.28) 1.97 (0.18) 2.25 (0.31)

0.1 1.76 (0.3) 2.57 (0.31) 2.45 (0.26) 2.07 (0.34) 2.24 (0.28) 2.26 (0.33) 2.24 (0.31) 1.92 (0.24)

1 2.43 (0.32) 2.48 (0.29) 2.76 (0.24) 2.17 (0.49) 2.43 (0.32) 2.35 (0.37) 1.4 (0.52) 2.04 (0.33)

LSTM

0.05 2.65 (0.32) 2.73 (0.33) 2.89 (0.26) 3.02 (0.34) 2.64 (0.3) 2.91 (0.29) 2.77 (0.23) 2.68 (0.37)

0.1 1.97 (0.37) 1.78 (0.43) 1.98 (0.4) 2.16 (0.29) 2.36 (0.41) 1.87 (0.39) 2.34 (0.33) 1.73 (0.41)

1 3.06 (0.2) 2.71 (0.34) 2.65 (0.16) 2.83 (0.25) 2.75 (0.28) 3.49 (0.26) 2.68 (0.31) 3.16 (0.35)

Transformer

0.05 2.47 (0.23) 2.88 (0.24) 2.42 (0.17) 2.67 (0.27) 2.91 (0.3) 2.25 (0.2) 2.43 (0.24) 2.48 (0.29)

0.1 3.03 (0.3) 2.15 (0.18) 2.51 (0.25) 2.41 (0.24) 2.28 (0.12) 2.28 (0.22) 2.53 (0.26) 2.46 (0.16)

1 2.37 (0.21) 2.25 (0.18) 2.16 (0.17) 2.21 (0.25) 2.46 (0.2) 2.11 (0.12) 2.31 (0.16) 2.71 (0.32)

B.2. LSO (L-BFGS) hyper-parameters

We provide an ablation study for the facet-length parameter. For each setup, the values reported in the main paper are
highlighted in bold.
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Table 6. Ablation study for the facet length parameter of LSO (L-BFGS) method. Average across 10 independent runs of the average top
20 values across datasets, architectures, and bound methods are displayed for facet lengths of size 1, 5 and 10. Results from the main
paper are bold.

Architecture β 1 5 10

E
xp

re
ss

io
ns

GRU

0.05 -1.79 (0.08) -1.72 (0.07) -1.72 (0.07)

0.1 -1.73 (0.11) -1.93 (0.09) -1.89 (0.11)

1 -1.94 (0.07) -1.97 (0.07) -2.03 (0.09)

LSTM

0.05 -1.89 (0.09) -1.78 (0.09) -1.93 (0.06)

0.1 -1.29 (0.06) -1.39 (0.08) -1.37 (0.06)

1 -2.04 (0.05) -2.04 (0.04) -2.04 (0.05)

Transformer

0.05 -3.11 (0.14) -2.93 (0.13) -3.02 (0.09)

0.1 -3.19 (0.28) -2.69 (0.25) -2.93 (0.22)

1 -2.44 (0.11) -2.41 (0.09) -2.28 (0.11)

SE
L

FI
E

S

Transformer (pdop)

0.05 0.22 (0.01) 0.21 (0.01) 0.25 (0.01)

0.1 0.25 (0.01) 0.19 (0.01) 0.22 (0.03)

1 0.26 (0.01) 0.25 (0.01) 0.27 (0.01)

Transformer (rano)

0.05 0.04 (0.0) 0.03 (0.0) –

0.1 – – –

1 0.09 (0.02) 0.07 (0.0) 0.08 (0.01)

Transformer (zale)

0.05 0.12 (0.02) 0.13 (0.01) 0.11 (0.01)

0.1 0.08 (0.01) 0.06 (0.0) 0.07 (0.0)

1 0.18 (0.02) 0.18 (0.02) 0.19 (0.02)

SE
L

FI
E

S
(2

7) Transformer (pdop) 1 0.45 (0.00) 0.42 (0.00) 0.43 (0.01)

Transformer (rano) 1 0.22 (0.01) 0.17 (0.01) 0.19 (0.01)

Transformer (zale) 1 0.4 (0.01) 0.37 (0.01) 0.38 (0.01)

SM
IL

E
S

GRU

0.05 0.65 (0.12) 0.52 (0.12) 0.52 (0.13)

0.1 0.52 (0.14) 0.12 (0.14) 0.36 (0.15)

1 – – –

LSTM

0.05 0.67 (0.15) 0.66 (0.12) 0.56 (0.2)

0.1 – – –

1 0.49 (0.16) 0.7 (0.2) 0.55 (0.15)

Transformer

0.05 0.52 (0.18) 0.42 (0.15) 0.55 (0.12)

0.1 0.63 (0.18) 0.61 (0.15) 0.56 (0.17)

1 0.16 (0.15) 0.23 (0.12) 0.39 (0.13)

16



Mitigating over-exploration in latent space optimization using LES

Table 7. Ablation study for the facet length parameter of LSO (L-BFGS) method. Average across 10 independent runs, of the best value
across datasets, architectures, and bound methods are displayed for facet lengths of size 1, 5 and 10. Results from the main paper are bold.

Architecture β 1 5 10

E
xp

re
ss

io
ns

GRU

0.05 -0.57 (0.07) -0.56 (0.04) -0.56 (0.07)

0.1 -0.53 (0.04) -0.46 (0.02) -0.46 (0.02)

1 -0.68 (0.05) -0.77 (0.02) -0.73 (0.04)

LSTM

0.05 -0.57 (0.11) -0.56 (0.04) -0.67 (0.09)

0.1 -0.4 (0.05) -0.44 (0.04) -0.47 (0.04)

1 -1.01 (0.1) -1.02 (0.07) -0.86 (0.0)

Transformer

0.05 -1.06 (0.13) -0.8 (0.1) -1.11 (0.18)

0.1 -0.8 (0.14) -0.65 (0.1) -0.69 (0.09)

1 -0.85 (0.1) -0.82 (0.1) -0.78 (0.12)

SE
L

FI
E

S

Transformer (pdop)

0.05 0.36 (0.01) 0.36 (0.02) 0.34 (0.03)

0.1 0.29 (0.03) 0.34 (0.02) 0.27 (0.03)

1 0.39 (0.01) 0.36 (0.02) 0.35 (0.03)

Transformer (rano)

0.05 0.06 (0.01) 0.07 (0.01) 0.08 (0.01)

0.1 0.08 (0.02) 0.08 (0.02) 0.07 (0.01)

1 0.16 (0.02) 0.16 (0.02) 0.16 (0.02)

Transformer (zale)

0.05 0.27 (0.03) 0.27 (0.03) 0.26 (0.03)

0.1 0.15 (0.04) 0.19 (0.03) 0.18 (0.04)

1 0.38 (0.01) 0.38 (0.02) 0.39 (0.01)

SE
L

FI
E

S
27 Transformer (pdop) 1 0.51 (0.02) 0.47 (0.01) 0.48 (0.01)

Transformer (rano) 1 0.34 (0.02) 0.37 (0.01) 0.34 (0.02)

Transformer (zale) 1 0.47 (0.0) 0.44 (0.01) 0.45 (0.02)

SM
IL

E
S

GRU

0.05 2.06 (0.3) 1.71 (0.24) 2.02 (0.22)

0.1 2.11 (0.28) 1.74 (0.2) 1.94 (0.22)

1 2.4 (0.31) 2.1 (0.32) 2.34 (0.31)

LSTM

0.05 2.31 (0.21) 2.32 (0.19) 2.15 (0.18)

0.1 1.74 (0.5) 1.85 (0.34) 1.47 (0.49)

1 2.8 (0.25) 3.09 (0.16) 2.42 (0.3)

Transformer

0.05 1.82 (0.2) 1.79 (0.13) 1.74 (0.17)

0.1 2.19 (0.16) 2.24 (0.1) 2.09 (0.17)

1 1.72 (0.18) 2.0 (0.14) 1.96 (0.14)
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B.3. Likelihood hyper-parameters

We provide an ablation study on the effect of changing the regularization strength parameter λ. For each setup, the values
reported in the main paper are highlighted in bold.

B.3.1. EXPRESSIONS

Table 8. Ablation study for the regularization parameter λ for Likelihood. We report the average of the top 20 solutions found for the
Expressions VAEs.

Architecture β λ = 0.05 λ = 0.1 λ = 0.2

GRU
0.05 -1.15 -1.10 -1.11

0.1 -1.31 -1.16 -1.14

1 -0.88 -1.04 -1.15

LSTM
0.05 -1.00 -1.05 -1.17

0.1 -0.75 -0.81 -0.72

1 -1.81 -1.79 -1.78

Transformer
0.05 -0.93 -0.95 -0.98

0.1 -0.81 -0.74 -0.70

1 -1.45 -1.42 -1.19

Table 9. Ablation study for the regularization parameter λ for Likelihood. We report the average of the top solution found for the
Expressions VAEs.

Architecture β λ = 0.05 λ = 0.1 λ = 0.2

GRU
0.05 -0.4 -0.43 -0.48

0.1 -0.43 -0.42 -0.47

1 -0.43 -0.58 -0.59

LSTM
0.05 -0.4 -0.45 -0.44

0.1 -0.32 -0.39 -0.36

1 -0.86 -0.86 -0.86

Transformer
0.05 -0.38 -0.39 -0.43

0.1 -0.41 -0.39 -0.39

1 -0.65 -0.50 -0.42
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B.3.2. SMILES

Table 10. Ablation study for the regularization parameter λ for Likelihood. We report the average of the top 20 solutions found for the
SMILES VAEs.

Architecture β λ = 0.3 λ = 0.5 λ = 0.8

GRU
0.05 2.15 2.31 2.25

0.1 2.10 2.12 2.22

1 0.60 1.49 1.40

LSTM
0.05 2.17 2.28 2.30

0.1 0.81 1.43 1.58

1 0.53 1.67 1.77

Transformer
0.05 2.43 2.25 2.32

0.1 2.26 2.23 2.34

1 2.01 2.16 1.98

Table 11. Ablation study for the regularization parameter λ for Likelihood. We report the average of the top solution found for the
SMILES VAEs.

Architecture β λ = 0.3 λ = 0.5 λ = 0.8

GRU
0.05 2.96 3.26 3.27

0.1 3.02 3.33 3.07

1 3.12 3.89 3.47

LSTM
0.05 3.30 3.37 3.19

0.1 2.44 3.54 2.92

1 3.00 3.48 2.94

Transformer
0.05 3.24 3.19 3.07

0.1 3.10 3.16 3.25

1 3.18 3.2 2.92
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B.3.3. SELFIES

Table 12. Ablation study for the regularization parameter λ for Likelihood. We report the average of the top 20 solutions found for the
SELFIES VAEs.

Objective β λ = 0.1 λ = 0.3 λ = 0.5

Pdop

0.05 0.37 0.37 0.37

0.1 0.36 0.36 0.34

1 0.34 0.29 0.28

(Maus et al., 2022) 0.42 0.40 0.35

Rano

0.05 0.21 0.22 0.21

0.1 0.22 0.21 0.20

1 0.21 0.23 0.19

(Maus et al., 2022) 0.22 0.29 0.26

Zale

0.05 0.33 0.33 0.32

0.1 0.34 0.33 0.32

1 0.30 0.29 0.26

(Maus et al., 2022) 0.41 0.39 0.31

Table 13. Ablation study for the regularization parameter λ for Likelihood. We report the average of the top solution found for the
SELFIES VAEs.

Objective β λ = 0.1 λ = 0.3 λ = 0.5

Pdop

0.05 0.43 0.43 0.42

0.1 0.43 0.41 0.39

1 0.40 0.40 0.37

(Maus et al., 2022) 0.47 0.45 0.42

Rano

0.05 0.31 0.31 0.29

0.1 0.33 0.30 0.30

1 0.33 0.30 0.33

(Maus et al., 2022) 0.34 0.36 0.37

Zale

0.05 0.44 0.45 0.42

0.1 0.44 0.42 0.42

1 0.42 0.40 0.37

(Maus et al., 2022) 0.49 0.49 0.42

B.4. LES hyper-parameters

We provide an ablation study on the effect of changing the regularization strength parameter λ. For each setup, the values
reported in the main paper are highlighted in bold.
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B.4.1. EXPRESSIONS

Table 14. Ablation study for the regularization parameter λ for LES. We report the average of the top 20 solutions found for the
Expressions VAEs.

Architecture β λ = 0.05 λ = 0.1 λ = 0.2

GRU
0.05 -1.43 -1.28 -1.32

0.1 -1.34 -1.06 -1.29

1 -0.84 -0.98 -1.08

LSTM
0.05 -1.06 -1.09 -1.00

0.1 -0.80 -0.72 -0.73

1 -1.79 -1.79 -1.84

Transformer
0.05 -1.00 -0.86 -0.92

0.1 -0.77 -0.75 -0.67

1 -1.36 -1.28 -1.05

Table 15. Ablation study for the regularization parameter λ for LES. We report the average of the top solution found for the Expressions
VAEs.

Architecture β λ = 0.05 λ = 0.1 λ = 0.2

GRU
0.05 -0.55 -0.56 -0.44

0.1 -0.45 -0.44 -0.41

1 -0.47 -0.47 -0.52

LSTM
0.05 -0.43 -0.42 -0.41

0.1 -0.32 -0.39 -0.39

1 -0.86 -0.86 -0.86

Transformer
0.05 -0.43 -0.39 -0.41

0.1 -0.36 -0.39 -0.32

1 -0.52 -0.52 -0.45

B.4.2. SMILES

Table 16. Ablation study for the regularization parameter λ for LES. We report the average of the top 20 solutions found for the SMILES
VAEs.

Architecture β λ = 0.3 λ = 0.5 λ = 0.8

GRU
0.05 2.20 2.31 2.32

0.1 2.12 2.30 2.35

1 0.38 1.64 1.77

LSTM
0.05 2.34 2.33 2.37

0.1 0.94 1.57 1.80

1 0.59 1.94 2.17

Transformer
0.05 2.30 2.26 2.35

0.1 2.31 2.26 2.29

1 2.09 2.17 2.30
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Table 17. Ablation study for the regularization parameter λ for LES. We report the average of the top solution found for the SMILES
VAEs.

Architecture β λ = 0.3 λ = 0.5 λ = 0.8

GRU
0.05 3.16 3.29 3.18

0.1 3.19 3.55 3.42

1 3.13 3.85 3.53

LSTM
0.05 3.51 3.29 3.35

0.1 3.10 3.54 2.93

1 2.6 3.6 3.29

Transformer
0.05 3.16 3.21 3.35

0.1 3.09 3.23 3.03

1 2.94 3.2 3.17

B.4.3. SELFIES

Table 18. Ablation study for the regularization parameter λ for LES. We report the average of the top 20 solutions found for the SELFIES
VAEs.

Objective β λ = 0.1 λ = 0.3 λ = 0.5

Pdop

0.05 0.37 0.37 0.37

0.1 0.36 0.36 0.36

1 0.35 0.32 0.33

(Maus et al., 2022) 0.46 0.48 0.47

Rano

0.05 0.21 0.22 0.21

0.1 0.21 0.21 0.19

1 0.21 0.21 0.20

(Maus et al., 2022) 0.30 0.29 0.30

Zale

0.05 0.33 0.34 0.34

0.1 0.34 0.33 0.33

1 0.31 0.31 0.31

(Maus et al., 2022) 0.40 0.40 0.41
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Table 19. Ablation study for the regularization parameter λ for LES. We report the average of the top solution found for the SELFIES
VAEs.

Objective β λ = 0.1 λ = 0.3 λ = 0.5

Pdop

0.05 0.43 0.43 0.42

0.1 0.43 0.41 0.40

1 0.41 0.42 0.40

(Maus et al., 2022) 0.50 0.50 0.54

Rano

0.05 0.33 0.32 0.29

0.1 0.33 0.30 0.31

1 0.31 0.28 0.30

(Maus et al., 2022) 0.37 0.37 0.39

Zale

0.05 0.43 0.45 0.45

0.1 0.44 0.45 0.42

1 0.42 0.43 0.39

(Maus et al., 2022) 0.50 0.50 0.47
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C. Additional experimental results

Table 20. Average of the top solution found during LSO (higher is better), across datasets and decoder architectures. We bold the best
method and underline the second-best. The average ranking for each method (lower is better) is provided, along with the number of times
each method is within one standard deviation of the best. LES and Prior achieve the highest value most frequently (14 out of 30) and
outperforms other methods both in terms of the average ranking and the frequency of being within one standard deviation of the best
result.

Architecture β LES LSO (L-BFGS) UC LSO (GA) Prior TuRBO Likelihood

E
xp

re
ss

io
ns

GRU
0.05 -0.55 (0.04) -0.56 (0.04) -0.59 (0.04) -0.45 (0.05) -0.4 (0.07) -0.73 (0.12) -0.4 (0.07)
0.1 -0.45 (0.03) -0.46 (0.02) -0.47 (0.05) -0.43 (0.02) -0.37 (0.03) -0.61 (0.07) -0.43 (0.02)
1 -0.47 (0.03) -0.77 (0.02) -0.51 (0.04) -0.46 (0.02) -0.47 (0.03) -0.54 (0.05) -0.43 (0.01)

LSTM
0.05 -0.43 (0.02) -0.56 (0.04) -0.52 (0.05) -0.43 (0.01) -0.41 (0.01) -0.43 (0.02) -0.4 (0.01)
0.1 -0.32 (0.05) -0.44 (0.04) -0.39 (0.04) -0.38 (0.02) -0.4 (0.01) -0.39 (0.0) -0.32 (0.04)
1 -0.86 (0.0) -1.02 (0.07) -0.86 (0.0) -0.86 (0.0) -0.86 (0.0) -0.86 (0.0) -0.91 (0.04)

Transformer
0.05 -0.43 (0.03) -0.8 (0.1) -0.57 (0.05) -0.44 (0.02) -0.37 (0.05) -0.44 (0.02) -0.38 (0.04)
0.1 -0.36 (0.03) -0.65 (0.1) -0.55 (0.04) -0.39 (0.01) -0.35 (0.04) -0.41 (0.02) -0.41 (0.02)
1 -0.52 (0.05) -0.82 (0.1) -0.58 (0.05) -0.58 (0.04) -0.62 (0.09) -0.58 (0.1) -0.65 (0.08)

SE
L

FI
E

S

Transformer (pdop)
0.05 0.43 (0.0) 0.36 (0.02) 0.42 (0.0) 0.42 (0.0) 0.42 (0.0) 0.15 (0.03) 0.43 (0.0)
0.1 0.43 (0.0) 0.34 (0.02) 0.42 (0.01) 0.42 (0.0) 0.41 (0.01) 0.09 (0.03) 0.43 (0.01)
1 0.41 (0.01) 0.36 (0.02) 0.39 (0.01) 0.4 (0.0) 0.38 (0.01) 0.31 (0.03) 0.4 (0.0)

Transformer (rano)
0.05 0.33 (0.01) 0.07 (0.01) 0.36 (0.01) 0.33 (0.01) 0.32 (0.01) 0.2 (0.02) 0.31 (0.01)
0.1 0.33 (0.01) 0.08 (0.02) 0.36 (0.02) 0.32 (0.01) 0.32 (0.01) 0.1 (0.01) 0.33 (0.01)
1 0.31 (0.01) 0.16 (0.02) 0.39 (0.02) 0.31 (0.01) 0.33 (0.02) 0.05 (0.02) 0.33 (0.01)

Transformer (zale)
0.05 0.43 (0.01) 0.27 (0.03) 0.42 (0.01) 0.43 (0.01) 0.42 (0.0) 0.15 (0.03) 0.44 (0.01)
0.1 0.44 (0.01) 0.19 (0.03) 0.42 (0.01) 0.42 (0.01) 0.42 (0.01) 0.16 (0.01) 0.44 (0.01)
1 0.42 (0.01) 0.38 (0.02) 0.39 (0.01) 0.42 (0.01) 0.37 (0.01) 0.31 (0.03) 0.42 (0.01)

SE
L

FI
E

S
(2

7) Transformer (pdop) 1 0.54 (0.01) 0.46 (0.01) 0.50 (0.01) 0.49 (0.01) 0.36 (0.02) 0.48 (0.02) 0.42 (0.00)

Transformer (rano) 1 0.37 (0.00) 0.37 (0.01) 0.36 (0.01) 0.37 (0.01) 0.34 (0.01) 0.35 (0.02) 0.34 (0.01)

Transformer (zale) 1 0.47 (0.01) 0.43 (0.01) 0.44 (0.01) 0.47 (0.01) 0.39 (0.01) 0.44 (0.01) 0.42 (0.01)

SM
IL

E
S

GRU
0.05 3.29 (0.1) 1.71 (0.24) 3.13 (0.07) 3.26 (0.11) 3.18 (0.06) 2.47 (0.22) 3.26 (0.08)
0.1 3.55 (0.14) 1.74 (0.2) 3.2 (0.1) 3.31 (0.16) 3.15 (0.11) 2.57 (0.31) 3.33 (0.12)
1 3.85 (0.17) 2.1 (0.32) 2.24 (0.28) 3.66 (0.16) 3.89 (0.28) 2.48 (0.29) 3.89 (0.2)

LSTM
0.05 3.29 (0.07) 2.32 (0.19) 3.12 (0.08) 3.3 (0.1) 3.28 (0.1) 2.73 (0.33) 3.37 (0.09)
0.1 3.66 (0.2) 1.85 (0.34) 2.65 (0.19) 3.52 (0.22) 3.57 (0.18) 1.78 (0.43) 3.54 (0.16)
1 3.6 (0.14) 3.09 (0.16) 2.6 (0.3) 3.18 (0.17) 3.28 (0.17) 2.71 (0.34) 3.48 (0.11)

Transformer
0.05 3.21 (0.08) 1.79 (0.13) 3.1 (0.07) 3.14 (0.04) 3.14 (0.04) 2.88 (0.24) 3.19 (0.08)
0.1 3.23 (0.04) 2.24 (0.1) 3.28 (0.08) 3.11 (0.05) 3.09 (0.06) 2.15 (0.18) 3.16 (0.06)
1 3.2 (0.07) 2.0 (0.14) 2.8 (0.13) 3.13 (0.07) 3.11 (0.1) 2.25 (0.18) 3.2 (0.06)

Average rank 2.15 6.17 4.17 3.15 3.86 5.7 2.76
# within 1 std of best 19 1 5 8 10 2 16
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Table 21. Average of the top 20 solutions found during LSO (higher is better) across datasets and decoder architectures. We bold the best
method and underline the second-best. The average ranking for each method (lower is better) is provided, along with the number of
times each method is within one standard deviation of the best. LES achieves the highest value in most experiments (20 out of 30) and
outperforms other methods in terms of both the average ranking and the frequency of being within one standard deviation of the best
result.

Architecture β LES LSO (L-BFGS) UC LSO (GA) Prior TuRBO Likelihood

E
xp

re
ss

io
ns

GRU
0.05 -1.43 (0.05) -1.72 (0.07) -1.5 (0.05) -1.25 (0.06) -1.28 (0.05) -2.1 (0.11) -1.15 (0.09)
0.1 -1.34 (0.08) -1.93 (0.09) -2.01 (0.12) -1.21 (0.09) -1.18 (0.11) -2.14 (0.18) -1.31 (0.08)
1 -0.84 (0.02) -1.97 (0.07) -0.91 (0.03) -0.84 (0.02) -0.89 (0.05) -1.34 (0.05) -0.88 (0.03)

LSTM
0.05 -1.06 (0.06) -1.78 (0.09) -1.53 (0.06) -0.98 (0.05) -1.02 (0.03) -1.59 (0.13) -1.0 (0.07)
0.1 -0.8 (0.03) -1.39 (0.08) -1.09 (0.04) -0.79 (0.03) -0.79 (0.03) -1.32 (0.13) -0.75 (0.03)
1 -1.79 (0.02) -2.04 (0.04) -2.02 (0.03) -1.81 (0.02) -1.83 (0.02) -2.22 (0.08) -1.81 (0.03)

Transformer
0.05 -1.0 (0.04) -2.93 (0.13) -1.64 (0.08) -1.03 (0.04) -0.99 (0.05) -2.16 (0.09) -0.93 (0.05)
0.1 -0.77 (0.02) -2.69 (0.25) -1.79 (0.08) -0.77 (0.04) -0.78 (0.03) -1.39 (0.12) -0.81 (0.03)
1 -1.36 (0.09) -2.41 (0.09) -1.52 (0.09) -1.5 (0.07) -1.41 (0.08) -1.77 (0.12) -1.45 (0.12)

SE
L

FI
E

S

Transformer (pdop)
0.05 0.37 (0.0) 0.21 (0.01) 0.36 (0.0) 0.37 (0.0) 0.37 (0.0) 0.04 (0.01) 0.37 (0.0)
0.1 0.36 (0.0) 0.19 (0.01) 0.35 (0.0) 0.36 (0.0) 0.34 (0.0) 0.01 (0.0) 0.36 (0.0)
1 0.35 (0.0) 0.25 (0.01) 0.31 (0.01) 0.33 (0.0) 0.28 (0.01) 0.23 (0.02) 0.34 (0.0)

Transformer (rano)
0.05 0.21 (0.0) 0.03 (0.0) 0.22 (0.0) 0.21 (0.0) 0.21 (0.0) 0.06 (0.0) 0.21 (0.0)
0.1 0.21 (0.0) – 0.23 (0.01) 0.21 (0.0) 0.22 (0.0) 0.03 (0.01) 0.22 (0.0)
1 0.21 (0.0) 0.07 (0.0) 0.22 (0.01) 0.19 (0.0) 0.2 (0.0) – 0.21 (0.0)

Transformer (zale)
0.05 0.33 (0.0) 0.13 (0.01) 0.32 (0.0) 0.33 (0.0) 0.32 (0.0) 0.04 (0.01) 0.33 (0.0)
0.1 0.34 (0.0) 0.06 (0.0) 0.31 (0.01) 0.32 (0.01) 0.31 (0.0) 0.04 (0.01) 0.34 (0.0)
1 0.31 (0.0) 0.18 (0.02) 0.26 (0.01) 0.29 (0.01) 0.23 (0.01) 0.17 (0.02) 0.3 (0.01)

SE
L

FI
E

S
(2

7) Transformer (pdop) 1 0.48 (0.01) 0.42 (0.01) 0.44 (0.00) 0.44 (0.00) 0.3 (0.01) 0.44 (0.01) 0.35 (0.01)

Transformer (rano) 1 0.29 (0.00) 0.17 (0.03) 0.27 (0.01) 0.27 (0.01) 0.25 (0.01) 0.22 (0.03) 0.22 (0.01)

Transformer (zale) 1 0.4 (0.00) 0.37 (0.01) 0.38 (0.01) 0.39 (0.0) 0.27 (0.01) 0.37 (0.01) 0.31 (0.01)

SM
IL

E
S

GRU
0.05 2.31 (0.04) 0.52 (0.12) 2.18 (0.05) 2.21 (0.05) 2.2 (0.04) 0.82 (0.15) 2.31 (0.03)
0.1 2.3 (0.05) 0.12 (0.14) 1.68 (0.04) 2.09 (0.07) 1.93 (0.06) 0.41 (0.19) 2.12 (0.07)
1 1.64 (0.14) – – 1.19 (0.2) 0.58 (0.28) -0.16 (0.0) 1.49 (0.14)

LSTM
0.05 2.33 (0.03) 0.66 (0.12) 2.02 (0.03) 2.22 (0.05) 2.13 (0.05) 1.54 (0.41) 2.28 (0.03)
0.1 1.57 (0.1) – – 0.8 (0.12) 0.9 (0.09) – 1.43 (0.12)
1 1.94 (0.1) 0.7 (0.2) 0.95 (0.24) 1.14 (0.21) 0.81 (0.26) 0.52 (0.26) 1.67 (0.13)

Transformer
0.05 2.26 (0.04) 0.42 (0.15) 2.04 (0.05) 2.22 (0.03) 2.24 (0.03) 0.97 (0.19) 2.25 (0.03)
0.1 2.26 (0.03) 0.61 (0.15) 2.08 (0.04) 2.21 (0.03) 2.17 (0.03) 0.62 (0.14) 2.23 (0.02)
1 2.17 (0.05) 0.23 (0.12) 1.32 (0.09) 1.98 (0.06) 1.82 (0.06) 0.48 (0.18) 2.16 (0.05)

Average rank 1.9 6.4 4.3 2.87 3.8 6.1 2.53
# within 1 std of best 22 0 3 7 5 0 13
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Figure 4. Cumulative true objective for the best solution found during Bayesian optimization with the pre-trained SELFIES-VAE (27).
Each method is shown in a distinct color. Solid lines represent solutions passing quality filters, while dashed lines include all evaluations.
LES achieves the best performance on Perindopril MPO and is comptetitive on Zaleplon MPO and Ranolazine MPO.
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Table 22. AUROC values (higher is better) for identifying valid data points within the latent space, across datasets and decoder
architectures. Data points are sampled from the training data, the VAE prior (standard Gaussian) and out of distribution (Gaussian with std
of 5). LES achieves the best performance in most cases (18 out of 22) and on average. In addition, LES achieves AUROC values of at
least 0.75 in all cases, indicating it can effectively differentiate valid from invalid data points.

Dataset Arch. β LES Polarity Prior Uncertainty Train distances Likelihood

SMILES

GRU
0.05 0.93 0.42 0.09 0.85 0.85 0.94
0.1 0.94 0.72 0.12 0.84 0.86 0.94
1.0 0.91 0.35 0.16 0.87 0.80 0.92

LSTM
0.05 0.99 0.93 0.07 0.99 0.91 0.98
0.1 0.89 0.67 0.21 0.89 0.81 0.9
1.0 0.97 0.76 0.12 0.95 0.85 0.96

Transformer
0.05 0.93 0.89 0.14 0.84 0.77 0.92
0.1 0.94 0.91 0.14 0.87 0.86 0.93
1.0 0.97 0.93 0.10 0.89 0.85 0.95

Expressions

GRU
0.05 0.96 0.89 0.38 0.96 0.67 0.88
0.1 0.94 0.86 0.42 0.94 0.71 0.8
1.0 0.94 0.80 0.57 0.94 0.75 0.89

LSTM
0.05 0.96 0.86 0.38 0.90 0.67 0.96
0.1 0.95 0.83 0.37 0.91 0.66 0.95
1.0 0.95 0.79 0.56 0.91 0.72 0.91

Transformer
0.05 0.91 0.79 0.43 0.86 0.71 0.90
0.1 0.91 0.79 0.53 0.87 0.78 0.89
1.0 0.86 0.61 0.70 0.92 0.89 0.92

SELFIES Transformer
0.05 1.0 0.99 0.02 0.99 0.62 0.97
0.1 0.99 0.98 0.03 0.96 0.81 0.98
1.0 0.95 0.94 0.06 0.85 0.72 0.93

SELFIES (27) Transformer – 0.75 0.39 0.69 0.33 0.69 0.70

Average 0.93 0.78 0.29 0.88 0.77 0.91
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Table 23. Effect of increasing λ parameter for LES, for the expressions dataset. Increasing the value of the parameter λ increases the
percentage of valid solution in all cases.

Architecture β LES (λ = 0.05) LES (λ = 0.5)

GRU
0.05 0.92 0.96
0.1 0.7 0.82
1 0.72 0.87

LSTM
0.05 0.93 0.98
0.1 0.93 0.98
1 0.76 0.97

Transformer
0.05 0.87 0.94
0.1 0.88 0.96
1 0.83 0.85

D. Background on related work
Bayesian uncertainty (Notin et al., 2021) Under a Bayesian viewpoint, the trained neural network parameters (θ) follow a
variational distribution, which we can sample from using MC-Dropout (Gal & Ghahramani, 2016). Based on this distribution,
the uncertainty is defined as

M(z) = Hp(p(X|Z = z))− EθHpθ
(pθ(X|Z = z)), (36)

where H is the entropy and p(X|Z = z) is the posterior predictive distribution. The uncertainty is estimated using
MC-Dropout with important sampling (using the posteior predictive as the importance distribution) designed to approximate
the expectations over the random variable X , as it is typically a very large space (i.e., the sample of molecules that can
implemented using a SMILE string with 120 characters)
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Table 24. Proportion of valid solutions found during LSO (higher is better) across datasets and decoder architectures.We bold the best
method (higher is better) and underline the second best. LES improves the validity of the solutions compared with LSO (GA) (which is
LES with λ = 0) across all datasets.

Architecture β LES LSO (L-BFGS) UC LSO (GA) Prior TuRBO Likelihood

E
xp

re
ss

io
ns

GRU

0.05 0.92 0.59 1.0 0.91 0.91 0.94 0.89

0.1 0.7 0.57 1.0 0.64 0.66 0.9 0.67

1 0.72 0.45 0.99 0.69 0.69 0.83 0.69

LSTM

0.05 0.93 0.62 1.0 0.88 0.89 0.94 0.92

0.1 0.93 0.67 1.0 0.9 0.89 0.94 0.92

1 0.76 0.58 0.99 0.65 0.66 0.89 0.73

Transformer

0.05 0.87 0.37 1.0 0.83 0.85 0.9 0.84

0.1 0.88 0.28 1.0 0.8 0.81 0.89 0.85

1 0.83 0.36 1.0 0.74 0.76 0.87 0.79

SE
L

FI
E

S

Transformer (pdop)

0.05 0.8 0.05 0.81 0.76 0.73 0.14 0.77

0.1 0.68 0.04 0.71 0.62 0.56 0.14 0.64

1 0.59 0.08 0.55 0.49 0.44 0.08 0.53

Transformer (rano)

0.05 0.66 0.02 0.73 0.61 0.57 0.09 0.62

0.1 0.57 0.01 0.67 0.52 0.44 0.04 0.53

1 0.43 0.02 0.49 0.36 0.28 0.01 0.39

Transformer (zale)

0.05 0.71 0.08 0.74 0.66 0.62 0.12 0.69

0.1 0.66 0.01 0.67 0.59 0.51 0.08 0.63

1 0.54 0.18 0.47 0.43 0.35 0.17 0.46

SE
L

FI
E

S
(2

7) Transformer (pdop) 1 0.69 0.45 0.56 0.58 0.75 0.43 0.68

Transformer (rano) 1 0.26 0.07 0.14 0.19 0.20 0.11 0.15

Transformer (zale) 1 0.65 0.52 0.66 0.66 0.75 0.48 0.76

SM
IL

E
S

GRU

0.05 0.61 0.14 0.48 0.47 0.44 0.12 0.59

0.1 0.37 0.07 0.25 0.23 0.22 0.06 0.35

1 0.09 0.02 0.05 0.05 0.04 0.02 0.08

LSTM

0.05 0.6 0.11 0.44 0.42 0.39 0.11 0.57

0.1 0.08 0.01 0.06 0.05 0.04 0.01 0.07

1 0.16 0.09 0.07 0.08 0.07 0.09 0.12

Transformer

0.05 0.7 0.42 0.7 0.68 0.68 0.31 0.72

0.1 0.65 0.67 0.63 0.6 0.55 0.41 0.64

1 0.48 0.35 0.46 0.34 0.26 0.3 0.45

Average 0.62 0.26 0.64 0.55 0.53 0.38 0.59
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